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Abstract. For climate change impact assessment, many
applications require very high-resolution, spatiotemporally
consistent precipitation data on current or future climate. In
this regard, stochastic weather generators are designed as a
statistical downscaling tool that can provide such data. Here,
we adopt the precipitation generator framework of Kleiber
et al. (2012), which is based on latent and transformed Gaus-
sian processes, and propose an extension of that framework
for a mountainous region with complex topography by allow-
ing elevation dependence in the model. The model is used to
generate two-dimensional fields of precipitation with a 1 km
spatial resolution and a daily temporal resolution in a small
region with highly complex terrain in the Austrian Alps. This
study aims to evaluate the model with respect to its ability to
simulate realistic precipitation fields over the region using
historical observations from a network of 29 meteorological
stations as input. The model’s added value over the origi-
nal setup and its limitations are also discussed. The results
show that the model generates realistic fields of precipita-
tion with good spatial and temporal variability. The model
is able to generate some of the difficult areal statistics use-
ful for impact assessment, such as the areal dry and wet
spells of different lengths and the areal monthly mean of
precipitation, with great accuracy. The model also captures
the inter-seasonal and intra-seasonal variability very well,
while the inter-annual variability is well captured in summer
but largely underestimated in autumn and winter. The pro-
posed model adds substantial value over the original mod-
eling framework, specifically with respect to the precipita-
tion amount. The model is unable to reproduce the realis-
tic spatiotemporal characteristics of precipitation in autumn.
We conclude that, with further development, the model is a

promising tool for downscaling precipitation in complex ter-
rain for a wide range of applications in impact assessment
studies.

1 Introduction

Precipitation is a major component of the hydrological cycle.
With global warming, the hydrological cycle is expected to
intensify, and the risk associated with extreme events will
increase (Tabari, 2020; Pfahl et al., 2017). The resulting
changes in precipitation will be unequally distributed around
the world. There are many hydrologic responses to climate
change, and the potential impacts of these are likely to af-
fect the availability of fresh water, agriculture, the timing and
severity of wildfires, and habitat sustainability (Bates et al.,
2008; Kundzewicz et al., 2008). With the increasing aware-
ness of climate change and its global impacts on ecosystems
and human societies (Konapala et al., 2020; Haddeland et al.,
2014; Schewe et al., 2014), there is also an increasing need
to understand the effects and impacts that would occur at the
local scale. Knowledge of how the local hydrological cycle
and water resources will be affected by climate change is es-
sential for planning reliable adaptation strategies and water
policy.

In Austria, where a large part of the country is covered by
mountains, the local hydrological cycle depends heavily on
temporal and spatial variations in precipitation. Tourism and
agriculture are among the main drivers of Austria’s economy,
and the accessibility of water resources for human consump-
tion and ecosystems is largely contingent on the spatiotem-
poral distribution of precipitation. In the Austrian Alps, stud-
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ies on the observed and projected impact of climate change
have shown changes in the availability of snow cover and
water flux (e.g., Abermann et al., 2009; Wijngaard et al.,
2016). This will ultimately have an impact on the econ-
omy, the ecosystem, the environment, and society. To assess
the impacts of climate change at local scales, precise cli-
mate information is critical and can serve the requirements
of decision-makers. Often, such information should be con-
sistent in space and time for the present and future climate.
Many applications in hydrology require very high-resolution
precipitation data, typically at a 1 km spatial resolution and
a daily temporal resolution. However, obtaining such high-
resolution precipitation data is still a challenging task, espe-
cially in mountainous regions (Henn et al., 2018). Most im-
portantly, for complex topography, such as the Austrian Alps,
even a 1 km resolution cannot include the impact of topogra-
phy on climate correctly. For such regions, many applications
in hydrology and ecology require even higher-resolution data
– at a spatial scale of 100 m and at an hourly temporal scale.
Climate models with higher resolutions, like regional climate
models, are also unable to provide such data. For this reason,
various downscaling methods have been in use over the past
few decades. Among these downscaling methods, statistical
downscaling using stochastic weather generators (WGs) has
become very popular, mainly because WGs are computation-
ally parsimonious.

A vast variety of WGs have been developed based on dif-
ferent approaches. The most widely used WGs are founded
on a rather simplistic approach in which the sites are mu-
tually independent in space and time. Such WGs are gener-
ally referred to as “single-site” WGs. Among the single-site
WGs, the most popular are the parametric models based on
Richardson (1981). Richardson (1981) used a Markov chain
to simulate time series of precipitation occurrence (wet/dry
days) and amount, and other variables were generated upon
the condition of whether the generated day was wet or dry
(e.g., Dabhi et al., 2021; Caron et al., 2008; Zhang et al.,
2004; Dubrovský et al., 2004; Wilks, 1992). Details on the
available WGs can be found in the review articles by Ail-
liot et al. (2015), Maraun et al. (2010), and Wilks and Wilby
(1999); Maraun et al. (2010) focused solely on precipitation.

The major drawback of single-site WGs is that they are
only focused on a single location; this can generate realistic
data at a location, but it lacks a spatially correlated structure
in the generated data. Obtaining a spatially and temporally
consistent dataset – which is more realistic – from single-
site models is impossible. Thus, over the past 2 decades, the
focus has moved towards the development of spatiotempo-
ral WGs, also known as “multi-site” WGs. For precipitation
with its uneven nature of occurrence and intensity, it is even
more challenging to model it under the condition of main-
taining its spatiotemporal structure. In particular, in complex
topography, such as the Alps, this task is even more challeng-
ing.

Numerous approaches have been proposed to generate
spatially and temporally correlated precipitation data. Wilks
(1998) published one of the early works on the multi-site
generation of daily precipitation data; in the aforementioned
study, single-site parametric WGs at sites were forced with
correlated random numbers to generate the occurrence of
precipitation, and the amount of precipitation was gener-
ated using a mixture of two exponential distributions. Other
approaches to the spatiotemporal modeling of precipita-
tion are hidden Markov models (e.g., Ghamghami et al.,
2016; Charles et al., 1999; Ailliot et al., 2009), copula-
based approaches (Serinaldi, 2009; Bárdossy and Pegram,
2009), resampling based on the k-nearest-neighbors ap-
proach (Apipattanavis et al., 2007; Buishand and Brandsma,
2001; Rajagopalan and Lall, 1999), Poisson cluster mod-
els (Ramesh et al., 2012; Cowpertwait, 1995), artificial neu-
ral networks (Harpham and Wilby, 2005), and approaches
based on generalized linear models (GLMs) (Kleiber et al.,
2012; Verdin et al., 2018). Moreover, Baxevani and Lennarts-
son (2015) proposed a spatiotemporal model using a cen-
sored latent Gaussian field for precipitation generation, Ol-
son and Kleiber (2017) used the approximate Bayesian com-
putation method, and Gao et al. (2021) developed a multi-
site stochastic daily rainfall model by coupling a univariate
Markov chain with a multi-site rainfall event model. More
sophisticated WGs also exist that can provide high-resolution
spatiotemporal fields combining physical and stochastic ap-
proaches (e.g., Peleg et al., 2017; Paschalis et al., 2013).

However, most of the aforementioned approaches simu-
late precipitation only at the locations where observations
are available, and such multi-site WGs have been imple-
mented for the Alps; for example, Keller et al. (2015) and
Keller et al. (2017) used a Wilks-type WG for precipitation
simulation and downscaling, respectively, for a mountain-
ous catchment in the Swiss Alps, and Breinl et al. (2013)
used a semi-parametric multi-site precipitation generator for
the mountains in the Austrian–German Alps. Nevertheless,
high-resolution data in space and time are needed to provide
more realistic input for local climate impact assessment. To
achieve this, a gridded multi-site model is required. Sparks
et al. (2017) proposed a multi-site multivariate WG based
on the use of periodically extended empirical orthogonal
functions (EOFs), in which they modeled precipitation as
a censored latent Gaussian process. They generated grid-
ded precipitation and temperature data over Europe using
gridded input data, but their WG cannot provide gridded
data without gridded observations. Peleg et al. (2017) devel-
oped a WG called AWE-GEN-2d, which can generate two-
dimensional fields of various meteorological variables where
precipitation is generated at a 2 km spatial resolution and a
5 min temporal resolution, and used it in the Swiss Alps. Al-
though their approach is sophisticated, as it is a hybrid ap-
proach combining dynamical and statistical approaches, it re-
quires spatially distributed data for the calibration of the WG
and cannot generate data for a region outside of the calibra-
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tion region. Such WGs are of limited use if the observed grid-
ded data are not available, which is often the case. To our
knowledge, not much work has been done on complex ter-
rain, like the European Alps, using multi-site gridded WGs
without gridded observations.

Wilks (2009) developed one of the first ever WGs that
could provide gridded data of precipitation and temperature
at locations with no observations. Kleiber et al. (2012) also
provided an approach using a GLM-based model that utilizes
Gaussian processes to generate gridded data. Their approach
is appealing, as it generates the readily available field of pre-
cipitation using kriging for the interpolation of the model pa-
rameters. The advantage of their approach is that one could
include various covariates in the GLM framework, such as
large-scale climate indices, local climate information, and to-
pographical information, which makes the model more flex-
ible. Another advantage is that it is a probabilistic approach
that allows one to quantify the uncertainties in the parame-
ter estimation. However, Kleiber et al. (2012) only tested the
model for multi-site precipitation generation, i.e., at locations
with observation, and not for generated gridded data of pre-
cipitation. As many applications for impact studies require
gridded data as input, prior to producing the gridded data for
such applications, one must evaluate the model for its ability
to reproduce gridded fields. Another important point to be
noted is, as the model can provide data at locations without
historical observations, one can obtain historical time series
of daily precipitation at those locations. In order to use the
model for this purpose, it is necessary to assess the model
performance with respect to gridded fields. Verdin et al.
(2018) modified the framework of Kleiber et al. (2012) by in-
cluding seasonal precipitation as an additional covariate, and
they evaluated the model for gridded data, although it was
implemented on flat terrain. Moreover, their modified model
and the original model both used an isotropic and stationary
covariance structure with ordinary kriging (OK) for the inter-
polation of the model parameters; this may not be suitable for
complex topographical terrain. Bennett et al. (2018) gener-
ated precipitation fields using a latent-variable approach that
provides a parsimonious method to jointly generate the rain-
fall occurrence and amount. They used an isotropic, pow-
ered exponential function to include spatial correlations and
kriging for the interpolation of the parameters. However,
they also implemented their model in relatively flat terrain
in South Australia. To our knowledge, no space–time grid-
ded precipitation generator has been evaluated with respect
to its ability to generate two-dimensional fields of precipi-
tation in the highly complex terrain without the requirement
for gridded input data.

Here, we propose an extension of the framework of
Kleiber et al. (2012) for complex terrain and evaluate the
model with respect to its capability to generate realistic two-
dimensional fields of precipitation for a mountainous region
in the Austrian Alps. In addition, we examine the added value

of our model over the original isotropic setup and discuss the
limitations of the model.

This article is organized as follows: Sect. 2 describes the
extension of the isotropic framework for the implementation
in a mountainous region; Sect. 3 details the study area, the
data, and the model evaluation strategy used in the study;
Sect. 4 presents and analyses the results; Sect. 5 comprises a
discussion of the results; and Sect. 6 summarizes the study.

2 Model description

2.1 Precipitation occurrence

At a location s and on a day t , the precipitation occur-
rence O(s, t) is 0 (dry day) if no precipitation occurs and
1 (wet day) if precipitation occurs. A wet day is defined as a
precipitation amount in excess of 0.1 mm.

For a set of locations s and on a day t , a latent Gaussian
process WO(s, t) is defined with a mean function µO(s, t)

and a covariance function CO(h,v, t), where h= |si − sj |
is the horizontal (Euclidean) distance between two locations
denoted by i and j and v = |vi − vj | is the elevation differ-
ence between the two locations. The suffix “O” stands for oc-
currence. As we are implementing the model in a mountain-
ous region, we also define the covariances among the sites as
a function of the difference in the elevation. In comparison
with the original model, where an isotropic covariance struc-
ture is used as a function of horizontal distances among the
sites, this allows us to include anisotropy in the model. The
precipitation occurrence then is defined as follows:

O(s, t)= 0 if WO(s, t) < 0,

O(s, t)= 1 if WO(s, t)≥ 0. (1)

Here, the mean function is

µO(s, t)= β
′

O(s)XO(s, t), (2)

where XO is a vector of covariates and βO is a vector of
regression parameters, as in Eq. (5).

Kleiber et al. (2012) used a stationary and isotropic expo-
nential covariance function of the form

C(h, t)= exp
(
−|h|

A(t)

)
, (3)

where A(t) is the time-dependent scale parameter.
As our goal is to use the model in complex topography,

we introduce anisotropy in the covariance function (Eq. 3)
by taking the difference in elevation between two locations.
Thus, our stationary and anisotropic covariance function
C(h,v, t) takes the following form:

CO(h,v, t)= exp
(
−
|h|

A(t)
−
|v|

B(t)

)
, (4)

whereA(t) andB(t) are the time-dependent scale parameters
in the horizontal and vertical directions, respectively.
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Elevation dependence in the covariance structure is a
natural assumption in complex terrain. In the literature
(e.g., Wilks, 1999, 2009), it has been used for precipitation
simulation in the mountains.

At the base of this model is the single-site precipitation
generator based on a GLM framework (e.g., Stern and Coe,
1984; Chandler and Wheater, 2002; Furrer and Katz, 2007);
this is similar to a Richardson-type precipitation generator
(Richardson, 1981), in which the daily precipitation occur-
rence is modeled as a first-order Markov chain and the daily
precipitation amount is modeled using a gamma distribution.
The GLM-based approach allows more flexibility, as one
may include as many covariates as desirable; therefore, the
seasonality or the influence of large-scale circulation on the
local precipitation can be included. In the GLM approach,
taking the previous day’s occurrence as a covariate forms a
first-order Markov chain. Thus, at individual sites, the model
reduces to a logit model given by

log
(

pt

1−pt

)
= β ′O(s)XO(s, t), (5)

where pt is the probability of occurrence on a day t .
Note that we use a logit link function instead of a probit

link function, as was the choice in the original model. The
parameters βO are estimated at each location using the max-
imum likelihood estimation (MLE) approach.

In order to spatialize the model to obtain gridded data,
the estimated regression parameters at observation locations
must be interpolated at grid locations. The Gaussian process
allows for a spatial interpolation method called kriging; this
method allows one to interpolate the model parameters βO
associated with each covariate (estimated at the observation
locations) to any location of interest. These interpolated co-
efficients are then used to obtain the mean function (Eq. 2).
Here, we use kriging with external drift (KED) to interpolate
the regression parameters. As precipitation in the mountains
is unequally distributed across terrain, we allow elevation as
an external drift in kriging such that the predicted values of
precipitation (through the interpolated parameters) reflect the
elevation dependence of precipitation. Again, inclusion of
the elevation in kriging interpolation is natural in complex
terrain. It has been used in the literature for precipitation in-
terpolation in the mountains and proven to outperform OK
(e.g., Tobin et al., 2011; Rata et al., 2020). Moreover, we
have found linear dependence in the model parameters with
elevation (not shown). In KED, an auxiliary variable is as-
sumed (which is elevation here) that is linearly related to the
variable of interest (which is the β parameter associated with
each covariate in the model).

The variogram for the regression parameter associated
with each of the covariates is estimated using the MLE. The
nugget gets close to zero. Once the parameters of the logit
model are interpolated, precipitation occurrence can be mod-
eled at each grid point. However, the generated gridded field
of precipitation occurrence, which is correlated in space,

must also be correlated in time. Hence, the time-dependent
covariance CO(h,v, t) (see Eq. 4) has been introduced. This
covariance is estimated using the residuals in the logit model.
We use the method of moments approach, as suggested by
Kleiber et al. (2012), to estimate the parameters of the co-
variance function. The parameters are estimated separately
for each month to allow for seasonality in the generated data.
Following this process, the generated field of precipitation
occurrence is correlated in both space and time and also re-
flects the seasonality.

Note that Gaussian process modeling is considered a non-
parametric method. In a parametric model, the number of pa-
rameters remains fixed with respect to the amount of data
available (i.e., number of stations in our case), whereas the
number of parameters grows with the number of data points
when using nonparametric methods.

We also compare the results of our model with a simu-
lation using ordinary kriging (OK) instead of KED in our
model as well as with the original isotropic model using OK
and KED. This will be discussed in Sect. 4.3.

2.2 Precipitation amount

To simulate spatially correlated fields of precipitation, an-
other Gaussian processWA(s, t) is defined with a mean func-
tion µA(s, t) and a covariance function CA(h,v, t) such that

Y (s, t)=G−1
s,t (8(WA(s, t))) . (6)

Here, Gs,t is the cumulative distribution function (CDF) of
the gamma distribution at the location s and time t , and 8 is
the CDF of a standard normal distribution. The suffix “A”
stands for amount.

At an individual location, the amount model is the gamma
GLM with a logarithmic link function as given by Furrer and
Katz (2007). The shape parameter α of the gamma distribu-
tion varies in space but not in time, whereas the scale param-
eter γ varies in both space and time. Hence, each location has
its own distinct value of shape and scale parameters, with the
scale parameter varying with time. Thus, we have

log(γ (s, t)α(s))= β ′A(s)XA(s, t), (7)

with the mean of the gamma distribution being the product
of the scale and shape parameters, i.e., γα. XA is the vec-
tor of covariates possibly different from those selected in the
occurrence model.

The scale and shape parameters (γ and α, respectively)
and the model parameters (βA) are estimated at each individ-
ual observation site using the MLE approach and are then in-
terpolated using KED. We allow the scale parameter to vary
with every month in order to include seasonal variations in
precipitation at each location.

The mean function µA(s, t) of the Gaussian process
WA(s, t) is again obtained from a regression on covariates.
The covariance function CA(h,v, t) is the same as that given
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in the occurrence model (Eq. 4) but with different parame-
ters. The parameters of the covariance function are estimated
for each month separately using the method of moments ap-
proach in order to allow seasonality in the spatiotemporal
pattern of the precipitation amount.

3 Implementation

3.1 Study area and data

The model is implemented in a small region compris-
ing highly complex terrain (ranging from 256 to over
3500 m a.s.l., meters above sea level) in the Austrian Alps.
The area surrounds the catchment of the Oetz River, mainly
in the federal state of Tyrol but also including a part of the
Autonomous Province of Bolzano in northern Italy. The rea-
son for selecting this region is that the catchment of the Oetz
River is a widely researched area (e.g., Wijngaard et al.,
2016; Abermann et al., 2009). To include more stations in
the study, we allowed stations from the surrounding region,
including northern Italy. The study region is comprised of
several valleys including the Oetz and Pitz valleys in Austria
and the Passeier Valley in South Tyrol. Daily observations
from 29 meteorological stations (Fig. 1) based on the avail-
ability of homogeneous time series for a period of 30 years
from 1981 to 2010 are selected. Typically, input data for hy-
drological applications are required on an hourly temporal
scale for the spatial scale of the terrain considered; however,
due to the fact that very few hourly datasets are available
over climate timescales, we selected daily data for the study.
The dataset comprises data provided by the Austrian Na-
tional Weather Service (ZAMG – Zentralanstalt für Meteo-
rologie und Geodynamik), the Hydrographic Service of Aus-
tria, the Hydrographic Service of the Autonomous Province
of Bolzano, the Institute of Atmospheric and Cryospheric
Sciences – University of Innsbruck, and TIWAG (Tiroler
Wasserkraft AG). The highest station is on a glacier (Hin-
tereisferner) at an elevation of 2860 m a.s.l., whereas the low-
est station is at 588 m a.s.l. in northern Italy. A few stations
have missing values for single days or for a short period. Our
model ignores such values while computing the observed
statistics. The data at all of the stations are thoroughly quality
controlled by the respective service providers.

In the northern part of the region, we have a dense net-
work of stations, whereas the southern part has relatively
fewer stations. The average inter-station distance between
two locations is 28.15 km, the maximum inter-station dis-
tance is 72.84 km, and the minimum inter-station distance
is 1.25 km. The average altitude difference between two sta-
tions is 0.605 km, while the maximum altitude difference
is 2.272 km. The locations of the 29 stations are shown in
Fig. 1, and further details about the stations are given in Ta-
ble 1.

The mean annual precipitation observed in the lowlands
is approximately 780 mm over an average of 150 wet days
per year, whereas the highest mean annual precipitation of
1320 mm over an average of 176 wet days per year is ob-
served at the high-mountain station of Dresdner Huette. The
highest number of mean annual wet days is 220 at St. Martin
in the Passeier Valley in South Tyrol, with an annual average
of 887 mm of precipitation.

Due to strongly different topography, a large variability
in both space and time is observed in the dataset. Of the
29 stations, Prutz has the most distinct climatological char-
acteristics. For example, Prutz has the largest variability in
almost all months. Moreover, the most extreme precipita-
tion (156.5 mm) in a day is recorded at Prutz (in July 2009),
while the second highest amount of precipitation amongst
the remaining 28 stations was recorded on the same day at
Dresdner Huette (35.1 mm). Apart from Prutz, only Dresd-
ner Huette recorded a daily precipitation amount as high as
120.4 mm during the 30 years of record. At the St. Leon-
hard im Pitztal location, there are two stations operated by
two different service providers: one by the Austrian Hydro-
graphic Service (St. Leonhard im Pitztal-1; see Table 1) in the
northern part of the valley and the other by ZAMG (St. Leon-
hard im Pitztal-2; see Table 1) in the southern part of the Pitz
Valley. St. Leonhard im Pitztal-2 has somewhat different cli-
matological characteristics than the nearby stations. Another
station that has quite a different climatology compared with
the Austrian stations is St. Martin. Note that this station is
in the south of the Alpine crest (i.e., in northern Italy) and
has the lowest elevation in the observed data. Thus, there are
high variations in the observed climatologies of precipitation
from valley to valley and also for stations within the same
valley. This creates a particular challenge with respect to the
simulation.

To reduce the sampling uncertainty and increase the ro-
bustness of the observations, we increase the sample size of
the observed data by considering a 7 d window centered on
the day of interest. Thus, the chance that a particular date had,
for example, 30 dry days by random choice is minimized,
thereby avoiding the probability of a dry day being 1.0 (rather
than a value such as 0.98), which is a problematic model set-
ting.

We generate N = 30 stochastic realizations, each 30 years
long (30 realizations× 30 years= 900 years), of daily two-
dimensional fields of precipitation on a 1 km grid over the
region using the aforementioned observed 30 years of daily
data. The Shuttle Radar Topography Mission (SRTM) 1 km
(30 arcsec) resolution dataset (Becker et al., 2009) is used
as a simulation grid. We select a 1 km spatial resolution to
reduce the simulation time and the data storage requirements.

For the Northern Atlantic Oscillation Index (NAOI) (see
Sect. 3.2), a daily time series from 1981 to 2010 is obtained
from the National Oceanic and Atmospheric Administration
(NOAA) website (https://www.cpc.ncep.noaa.gov/products/
precip/CWlink/pna/nao.shtml, last access: 15 May 2023).
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Figure 1. The study area used in this work showing (a) the location of the region in the central Alps and (b) the locations of the 29 meteoro-
logical observation stations whose data are used in the study. Latitude and longitude are given in degrees north and east, respectively. Gray
shading denotes the elevation (m a.s.l.). Stations with an elevation higher than 1500 m a.s.l., usually high-mountain stations, are shown using
the symbol “M”, and the stations with an elevation lower than 1500 m a.s.l., typically the valley stations, are shown using the symbol “V”.
The stations shown in red are selected as example stations to illustrate the results in the article.

Note that the observed data are from different service
providers; therefore, the time of the data collection may dif-
fer, which may affect the results.

3.2 The selection of covariates in the model

We allow several covariates in the model so that the model
can capture a realistic structure of precipitation patterns over
the region. This includes the day-to-day time dependence,
the seasonality, and the influence of large-scale circulation.
As the first covariate, we select the occurrence of precipita-
tion on the day prior (Occt−1) as a possible covariate so that
day-to-day temporal dependency in occurrence at a location
is captured. To include seasonality, the time-dependent first-
and second-order harmonics of sine and cosine (see Table 2)
are considered as possible covariates. To allow for the in-
fluence of large-scale circulation over Europe, the NAOI is
considered as a possible covariate. Studies show that there
are links between the NAOI and precipitation characteris-
tics (Casty et al., 2005; Beniston, 1997). A strongly posi-
tive NAOI is associated with persistent high pressure over
the Alpine region, resulting in warmer than average temper-
atures and lower than average precipitation. In general, the
winter NAOI correlates negatively with precipitation. Along
with the described covariates, we also consider their interac-
tion terms as possible covariates.

For the selection of the covariates in the model, we use
both the Akaike information criterion (AIC) (Akaike, 1974)
and the Bayesian information criterion (BIC) (Schwarz,
1978). The criteria do not select the same set of covariates at

all of the stations: the BIC has a tendency to select the sim-
plest model, whereas the AIC has a tendency to select more
complex models. However, it turns out that the BIC helps to
identify the most important covariates at all of the stations.

The three most important covariates for the occurrence
model at the majority of stations are Occt−1, cos(2πt/n),
and cos(4πt/n), where “t” is the day of the year. We select
the covariates that are selected by both the AIC and BIC at
the majority stations. The selected covariates are listed in Ta-
ble 2. The BIC selected this set of covariates at 18 of the 29
stations (see Sect. 3.1), whereas the AIC selected the same
set of covariates at 11 stations. Thus, the vector of covariates
in the model is as follows:

XO(s, t)=
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)
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)
,

cos
(
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)
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(
4πt
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)
· sin

(
4πt
n

)
,

Occt−1 · cos
(

2πt
n

)
,NAOI

)
, (8)

where “n” is 365 (or 366 in the case of a leap year). The first
term is associated with the intercept in the model.

For the precipitation amount, we also consider all of the
possible covariates described for the occurrence model. Fur-
thermore, as above, we select the covariates using both the
AIC and BIC for the amount model. Additionally, selecting
the same seven covariates as in the occurrence model at the
majority of stations, the second-order harmonic of sine is also
selected by both the AIC and BIC (17 stations by the BIC and
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Table 1. List of the 29 meteorological stations whose data are used in the study. The names in bold are the three representative stations used
to illustrate the results.

ID no. Name of the station Longitude Latitude Altitude
(m a.s.l.)

1 Gries im Sellrain 11.16 47.20 1200
2 Kuehtai 11.01 47.20 1970
3 Oetz 10.89 47.21 760
4 Umhausen 10.93 47.14 1040
5 Jerzens-Ritzenried 10.78 47.12 1120
6 Fliess 10.65 47.11 860
7 Landeck 10.57 47.13 800
8 Ladis-Neuegg 10.65 47.10 1350
9 See im Paznaun 10.46 47.08 1040
10 Laengenfeld 10.97 47.08 1180
11 St. Leonhard im Pitztal-1 10.84 47.08 1329
12 Prutz 10.66 47.07 871
13 Ried im Oberinntal 10.66 47.06 895
14 Fendels 10.68 47.05 1343
15 Kaunertal-Vergoetschen 10.75 47.04 1269
16 St. Leonhard im Pitztal-2 10.86 47.02 1460
17 Dresdner Huette 11.14 47.00 2290
18 Plangeross 10.87 46.99 1605
19 Soelden Schmiedhof 11.01 46.97 1380
20 Pfunds 10.51 46.95 992
21 Spiss 10.45 46.96 1540
22 Pitztaler Gletscher (Pitztal Glacier) 10.88 46.93 2860
23 Nauders 10.50 46.90 1360
24 Obergurgl 11.02 46.86 1940
25 Vent 10.91 46.86 1890
26 Vernagtbach 10.83 46.86 2640
27 Ausserrojen 10.48 46.81 1833
28 St. Martin im Passeier Beobachter 11.23 46.78 588
29 Marienberg 10.52 46.71 1310

Table 2. List of the covariates included in the occurrence and amount models (Eqs. 8 and 9, respectively).

No. Name of the covariate Description Occurrence Amount
model model

1 Occt−1 Previous day’s occurrence X X
2 cos(2πt/n) First-order harmonic of cosine X X
3 sin(2πt/n) First-order harmonic of sine X X
4 cos(4πt/n) Second-order harmonic of cosine X X
5 sin(4πt/n) Second-order harmonic of sine × X
6 cos(4πt/n) · sin(4πt/n) Interaction of cos(4πt/n) and sin(4πt/n) X X
7 Occt−1 · cos(2πt/n) Interaction of Occt−1 and cos(2πt/n) X X
8 NAOI Northern Atlantic Oscillation Index X X

“n” is 365 (366 in the case of a leap year).

16 stations by the AIC). Thus, we allow a total of eight co-
variates in the amount model (see Table 2), and the vector of
covariates for the amount model is as follows:

XA(s, t)=
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. (9)
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The correlations for the precipitation amount in the model
are computed only for days when precipitation was observed.

3.3 Model evaluation strategy

Although the model produces daily fields of precipitation,
before evaluating the model for gridded data, we first eval-
uate it at the individual locations for which observations are
available. It is common practice for the validation of WGs
that first the input statistics must be reproduced. From the
simulated gridded data, the 30-year time series of daily pre-
cipitation at the nearest grid point to the observation locations
is extracted from each of the N = 30 realizations. The mean
of the simulated statistics in each realization is compared
with the observed statistics. The validation is carried out for
daily and long-term statistics, and more difficult statistics to
be reproduced by the model are also considered. For the il-
lustration of the results at individual locations, 3 example sta-
tions (from the 29 available stations) are selected: (i) Oetz,
(ii) Pitztal Glacier, and (iii) Prutz. These three stations are
highlighted in red in Fig. 1b. The three stations are selected
such that Oetz represents the results at valley stations, Pitz-
tal Glacier represents the results at high-mountain stations,
and Prutz represents stations with different climatic charac-
teristics and also has the climatic characteristics most dis-
tinct from those at the surrounding stations (which makes it
the most challenging to simulate). Note that Pitztal Glacier is
the highest station amongst the 29 observation stations (see
Table 1).

In the next step, we evaluate the model with respect to its
ability to reproduce spatial statistics. Thus, gridded observed
data are required. We use the Alpine Precipitation Grid
Dataset (APGD) (Isotta et al., 2014) from the Swiss Fed-
eral Office for Meteorology and Climatology (MeteoSwiss),
which has a 5 km spatial resolution and a daily temporal res-
olution. The dataset is based on measurements from high-
resolution rain gauge networks, incorporating more than
5500 rain gauge measurements on average per day from more
than 8500 stations in seven Alpine countries. With a 10–
15 km station spacing, the dataset is one of the densest in situ
observation networks over high-Alpine topography world-
wide. These data are available from 1971 to 2008. Note that
this dataset is not a perfect reference. To obtain 30 years of
gridded observations, we select the period from 1979 to 2008
for the validation of the simulated gridded data.

In order to assess the interpolation accuracy, we perform a
holdout cross-validation in which one or more stations are
withheld from the model fitting process. We withhold the
same three stations that were selected for the illustration
of the results: Oetz, Pitztal Glacier, and Prutz. The model
should be able to reproduce the observed statistics accurately
at the withheld stations. For cross-validation, we also gener-
ate N = 30 realizations of 30 years, i.e., 900 years of data.

For the uncertainty estimation in the N = 30 realizations,
we use a tolerance interval (TI) (Patel, 1986; Krishnamoorthy

and Mathew, 2009; Young, 2010) instead of the conventional
method of using a confidence interval for the sampling error,
which is sensitive to sample size. As opposed to confidence
intervals, which would give expected bounds on the means of
the simulated data, the TI gives bounds on the future individ-
ual observations. In our view, TIs provide an appropriate vi-
sualization of the expected variability in the simulated data as
well as a means of comparison with the original data. Here,
we use a parametric two-sided TI with a normal distribution.
The TIs are computed for each of the statistics considered
in this study, obtained from the simulated 30 realizations at
each station. As uncertainty criteria, we select a confidence
interval of 95 % and a 99 % proportion of the population for
the TI, i.e., the TIs indicate the 99 % range of the simulated
values (with 95 % confidence). The TIs are shown in each fig-
ure as a shaded area around the curve and are denoted as TI95

99
throughout the article.

To quantify the model performance, along with various er-
ror metrics, we also take correlation coefficients (CCs) and
coefficients of determination (R2 values) into account. Thus,
we employ the following metrics: (i) mean bias error (MBE),
(ii) mean absolute error (MAE), (iii) root-mean-square er-
ror (RMSE), (iv) CC, and (v) R2. Each of the performance
metrics serves a different purpose. The MBE measures the
overall bias in the model performance, whereas the MAE and
RMSE both provide information on the mean magnitude of
the error, regardless of the direction of the error. However,
the greater the difference between them, the greater the vari-
ance in the individual errors in the sample. Similarly, correla-
tion shows the association between the two variables (which
are the observed and synthetic statistics here), but R2 shows
the proportion of data variation explained by the model. All
of the performance metrics for the spatial statistics (corre-
sponding to Fig. 13) are obtained between the observed and
synthetic statistics derived at all of the grid points; for exam-
ple, for the spatial occurrence probabilities, the metrics are
derived between the observed and synthetic “spatial series”
of the occurrence probabilities.

4 Results

An extensive evaluation of the model-generated data is car-
ried out here.

4.1 Evaluation at individual stations

4.1.1 Daily occurrence probabilities at individual
stations

First, we assess the performance of the occurrence model
with respect to the daily conditional probabilities on which
the model was trained. These are important statistics, as they
are associated with the ability of the model to reproduce dry
and wet spells. Figure 2 illustrates the annual cycle of the em-
pirical and simulated daily conditional probability of a dry
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Figure 2. Daily conditional probability of a dry day following a dry day (Pdd) at three selected stations: (a) Oetz, (b) Pitztal Glacier, and
(c) Prutz (Fig. 1, Table 1). The observed probabilities (navy blue) are obtained from the 30 years (1981–2010) of observed data. The simulated
probabilities are the mean of the 30 realizations (sky blue) and of the holdout cross-validation simulation (brown). The solid lines are the
curves fitted (using the LOESS method) to the observed and simulated probabilities, respectively.

Figure 3. The same as Fig. 2 but for the daily conditional probability of a wet day following a wet day (Pww).

day following a dry day (Pdd) at the three selected stations
along with the results of cross-validation for the same vari-
able, whereas Fig. 3 illustrates the daily conditional probabil-
ity of a wet day following a wet day (Pww). The solid lines
are the curves fitted, using the locally weighted scatterplot
smoothing (LOESS) method (Cleveland, 1979), to the ob-
served, simulated, and cross-validated probabilities, respec-
tively. The annual cycle of Pdd is accurately simulated at
Oetz and Pitztal Glacier, whereas the model largely underes-
timates it throughout the year at Prutz. However, the season-
ality in Pdd is well captured at Prutz. The annual cycle of Pww
is well captured at Oetz and Pitztal Glacier but slightly under-
estimated at Oetz during the entire year, whereas the model
accurately reproduces the probabilities throughout the year
at Pitztal Glacier.

At Prutz, the model performs badly for Pww (Fig. 3c). The
observed seasonality in Pww at Prutz is completely differ-
ent compared with the seasonality at other stations, but this
is not reproduced by the model at all. Similar to Prutz, the
other two stations (St. Leonhard im Pitztal-2 and St. Mar-
tin), which have very different climatic characteristics, also
exhibit marked differences (not shown) between the simu-
lated and the observed daily values of Pdd and Pww. What is
noteworthy here is that the magnitude and the seasonality of
both Pdd and Pww at Prutz are close to the magnitude and sea-
sonality of Pdd and Pww at the valley station (Oetz). Similar
behavior is observed at the other two stations with poor per-
formance. This is partly due to the fact that the covariates,
which were selected as optimal at the majority of stations,
did not optimally represent the statistics at Prutz (nor at the
other stations with distinct climatologies). This indicates that
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Figure 4. The same as Fig. 2 but for the daily occurrence probability of wet days (Pw).

the selected set of covariates is unable to reproduce season-
ality at all of the stations because a small subset of stations
has distinctly different seasonality. Furthermore, the perfor-
mance of the model at Prutz is influenced by the climate char-
acteristics at nearby stations, with respect to magnitude and
seasonality, and not the other way around. At all other sta-
tions, Pdd and Pww are well simulated. This suggests that the
selected harmonics are capable of capturing the seasonality
in daily occurrence probabilities. Moreover, the temporal de-
pendency in the occurrence is well reproduced by the covari-
ate Occt−1. In general, we find that the performance of the
model at valley stations is similar to that at Oetz, and the per-
formance of the model at high-mountain stations is similar to
that at Pitztal Glacier.

Cross-validation produces similar results at all three sites
for Pdd. Compared with the results with the simulated prob-
abilities, Prutz and Oetz show slightly more underestimation
throughout the year, whereas Piztal Glacier has mostly the
same results with only minor deviations. For Pww, Oetz has
similar results throughout the year, whereas Pitztal Glacier
has deviations in spring and Prutz has deviations in autumn
and winter. The seasonal differences are likely due to very
different precipitation characteristics at Prutz, which was re-
moved from the model fitting along with Oetz and Pitztal
Glacier in cross-validation.

To further examine the ability of the model to reproduce
the observed climatology of wet days, we next consider the
unconditional daily occurrence probability of wet days (Pw)
(Fig. 4). Again, Pw is very well simulated at both Oetz and
Pitztal Glacier, and the annual cycle of Pw is well captured
by the model. At Prutz, the generator not only largely over-
estimates the probabilities but is also unable to accurately
capture the seasonality. Again, both the seasonality and mag-
nitude in simulated probabilities at Prutz are closer to those
of valley stations (such as Oetz). Cross-validation produces

similar results at all three sites for Pw with small deviations
compared with the simulated results.

The performance metrics for daily occurrence probabili-
ties are shown in Fig. 8a. (Note that the performance metrics
are presented for the simulated data and not for the cross-
validation.) The metrics are computed for each of the 29 sta-
tions and are plotted as a box plot. All of the error metrics
as well as the CC and R2 suggest that the best performance
is seen for Pdd, followed by Pw and then Pww. The high CC
and R2 values for Pdd and Pw demonstrate the overall very
good performance for these two statistics. Conversely, the
small CC and R2 values for Pww indicate relatively poor
model performance. This is – at least partly – due to the fact
that the model performs very poorly with respect to generat-
ing precipitation series at the stations with distinct climatolo-
gies (see Fig. 3c).

4.1.2 Frequency of spells of different lengths at
individual stations

Another important feature of the model is its ability to sim-
ulate long sequences of wet and dry days. Here, we exam-
ine the ability of the model to simulate wet and dry spells
of different lengths at individual stations. Figure 5 displays
the frequency of wet spells at the selected stations with a
length of 2 to 15 d. The precipitation generator is able to
reproduce wet spells of different lengths at the valley and
high-mountain stations accurately. The shaded region is the
tolerance interval TI95

99 of the 30 realizations. The observed
values of the spells of different lengths are within the TI,
showing that the model does an excellent job of reproducing
even the longer spells. It is noteworthy that the model cap-
tures the spells very accurately, even if it is not trained on
these statistics. There are very few occurrences of wet spells
longer than 10 d at the majority of stations in the observed
data, albeit they are also well reproduced. At Prutz, the model
overestimates wet spells of all lengths. The observed values
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of the spells are not within the TI95
99, indicating a consistent

overestimation in all 30 realizations. This overestimation oc-
curs because the model is unable to reasonably reproduce the
conditional probabilities of Pww at Prutz. In fact, the large
overestimation of Pw at Prutz (Fig. 4) ultimately contributes
to the overestimation of wet spells. Again, cross-validation
produces similar results.

Figure 6 demonstrates the frequency of dry spells with
lengths from 2 to 25 d at the three selected stations. The
model is able to simulate dry spells of all different lengths
at the valley and high-mountain stations with great accu-
racy. There are very few occurrences of extreme spells longer
than 15 d in the observed data, although these are also repro-
duced well by the model. At Prutz, the model overestimates
spells shorter than 4 d but does a very good job for the longer
spells. Again, the shaded regions are the statistical tolerance
level TI95

99 of the 30 ensembles. The observed values of the
spells are within the tolerance region except for the shorter
spells (even at Prutz). The worst performance for both wet
and dry spells is observed at Prutz. In general, the model
does a better job for valley stations than for high-mountain
stations (not shown). The previous day’s occurrence as a co-
variate (Occt−1) is able to simulate long sequences of both
wet and dry days very well at the majority of stations with
great accuracy. The occurrence model satisfactorily repro-
duces the occurrence pattern at the majority of the stations,
except at the few distinct stations with peculiar climatologies.
Again, the results of the cross-validation are similar.

With respect to wet and dry spells, the model performance
is mostly similar for both events (Fig. 8b) except that the
RMSE is generally larger for the former, suggesting slightly
worse overall performance for wet spells. The CC and R2

values are nearly 1, indicating excellent model agreement
with the observations for both dry and wet spells.

4.1.3 Monthly mean precipitation at individual stations

An important aspect of the precipitation generator is its abil-
ity to reproduce the amount of precipitation observed at the
stations. As the model for amount is the gamma distribution
at the observed locations, the mean, which is the product of
the shape and scale parameters of the gamma distribution,
should be well reproduced. Figure 7 displays the monthly
mean precipitation for the observed and simulated data at
the selected stations along with the results of the cross-
validation. At both Oetz and Pitztal Glacier, the model is able
to reproduce the mean very well, as the observed values are
within the TI95

99 (the shaded region). At Prutz, the model un-
derestimates the mean in April, May, October, and Novem-
ber, whereas it is able to reproduce the mean reasonably well
in other months, as the observed values are within the TI95

99.
The results for cross-validation are similar at all three sta-
tions; however, compared with simulated data, Pitztal Glacier
and Prutz show slight deviations. The performance metrics
are displayed in Fig. 8b. For the monthly mean precipitation,

the model performs very well, as can be seen by the small
magnitudes of the errors (typically less than 0.5 mm d−1) and
the strong CC and R2 values.

4.1.4 Quantile–quantile (Q–Q) plots at individual
stations

Here, we examine the Q–Q plots at each individual station
for which observed data are available (Fig. 9). It can be seen
that the distribution of precipitation is accurately simulated
at the majority of stations. The largest discrepancy between
the observed and simulated distributions is found at Prutz;
this station has the largest spread in the observed data, and
this is not reproduced well by the model. Apart from that,
there are some stations, including Dresdner Huette, where the
higher quantiles are not well reproduced. These are stations
that have longer tails in the precipitation distribution in the
observed data. This is a commonly reported problem in the
literature: the gamma distribution is not adequate to simulate
extremes.

We further examine the distributions of the generated
data for each month at each of the 29 stations using a
Kolmogorov–Smirnov test and a Wilcoxon–Mann–Whitney
test. The results are shown in the Supplement (Figs. S1, S2).
As revealed by the Q–Q plots, the worst performance is ob-
served at Prutz, St. Martin, and St. Leonhard im Pitztal-2,
which have distinct climatologies.

4.2 Evaluation of simulated gridded data

In this section, we focus on evaluating the spatial dependence
structure in the simulated data, which is an important aspect
for many hydrological applications. Here, we present the re-
sults of the validation – first for the spatial statistics related to
the occurrence and then for the occurrence and amount com-
bined. More details on this aspect of validation are given in
Sect. 5.

4.2.1 The frequency of areal spells of different lengths

One of the most challenging features of the gridded precip-
itation generator is its ability to reproduce the areal spells
of wet and dry days of different lengths. This is one of the
sought-after features in agricultural and hydrological appli-
cations. We define an areal wet (dry) spell as the number
of consecutive days on which 95 % of the study area is wet
(dry). Figure 10 illustrates the areal spells of dry and wet
days of different lengths in the observed and simulated data.
It can be seen that the areal dry spells are better simulated
than the areal wet spells. The areal dry spells longer than 2 d
are accurately simulated, whereas the areal dry spells of 2 d
are overestimated. For areal wet spells, the model underes-
timates spells of all lengths. Larger discrepancies are found
for shorter spells.

For the areal spells, the performance metrics are shown
in Table 3. For areal dry spells, the error statistics suggest
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Figure 5. The frequency of wet spells of different lengths at three selected stations: (a) Oetz, (b) Pitztal Glacier, and (c) Prutz. The frequency
of the observed spells is obtained from the observed 30 years (1981–2010) of data. The frequency of the simulated spells is determined for
each of the 30-year simulations separately and averaged over the 30 realizations. The shaded region is the selected tolerance interval TI95

99 for
the simulated values of the 30 realizations. The two-sided TI is specified for 99 % of the population and with a 95 % confidence level. Note
that the TIs are not presented for cross-validation.

Figure 6. The same as Fig. 5 but for the frequency of dry spells of different lengths.

that the model has a tendency to overestimate the spells. This
is because the model largely overestimates shorter areal dry
spells. The CC is perfect and the R2 is also nearly 1, suggest-
ing excellent model performance. For areal wet spells, the
error metrics (the MBE, MAE, and RMSE) are small; here,
a negative MBE value indicates overall underestimation of
wet spells, and strong CC and R2 values suggest very good
agreement with the observed values.

4.2.2 Spatial distribution of occurrence probabilities

The spatial distribution of the simulated probabilities of wet
days (Pw) for each season (Fig. 11a, d, g, j) is compared to
that of the (gridded) observations (Fig. 11b, e, h, k). It is

noteworthy that the model-generated data have a 1 km spa-
tial resolution, whereas the observed gridded data have a
5 km resolution. The model is able to generate the season-
ality in the spatial distribution of Pw very well. In particular,
the higher probabilities in spring and summer are well re-
produced. Moreover, at a 1 km resolution, the influence of
topography on the spatial distribution of Pw is clearly visi-
ble. This is due to the inclusion of elevation in the kriging
interpolation.

To test the model performance at each grid point, we up-
scale the simulated data from 1 to 5 km, and the difference
between the observed and the simulated data is shown in
Fig. 11c, f, i, and l. It can be seen that the biases are small
in spring and summer and are mostly similar throughout the
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Figure 7. Monthly mean precipitation (mm d−1) at the three selected stations: (a) Oetz, (b) Pitztal Glacier, and (c) Prutz. The observed values
are obtained from the observed 30 years (1981–2010) of data, and the simulated values are the mean of the 30 realizations. The shaded region
is the selected tolerance interval TI95

99 for the simulated 30 realizations.

Figure 8. Performance metrics for the model at individual stations for the (a) daily occurrence probabilities (Pdd, Pww, and Pw) and the
(b) frequency of dry spells and wet spells of different lengths and monthly mean precipitation (MMP). The unit for the MBE, MAE, and
RMSE for wet and dry spells is per year (yr−1), and the unit for MMP is millimeters per day (mm d−1). The red horizontal line in each panel
corresponds to the optimal performance for the corresponding metric.

domain. However, there is an overestimation in the south-
eastern part of the region and a slight underestimation in the
northwestern part in winter. The overestimation in the south-
eastern part of the study area is because the station density is
low in that part of the area. There is one station (St. Mar-
tin) which is heavily influencing the aforementioned area,
and it has the highest probability of precipitation occurrence,
which is manifested through the spatial interpolation of the
model parameters via kriging (Sect. 2). Except for summer,
this station has a much higher probability of precipitation oc-
currence relative to the other stations. This is also reflected

by the fact that, in the simulation, the bias is mostly zero in
the southeastern part of the region in summer.

Figure 13a illustrates the performance metrics for the
spatial distribution of Pw for each month. All three error
statistics are within 0.1, suggesting very good model per-
formance. The largest errors are for August, during which
time a negative MBE indicates an overall underestimation
of Pw, whereas the largest overestimation is found in Febru-
ary. The lowest overall bias is found in September. The high-
est CC and R2 values are observed in May. In colder months,
i.e., in winter and autumn, the correlations between the ob-
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Figure 9. Quantile–quantile (Q–Q) plot showing the percentiles of daily precipitation at each of the 29 individual stations (Table 1). The
shaded region is the selected two-sided tolerance interval TI95

99 for the simulated 30 realizations. The black solid line in each panel plot
corresponds to the 1 : 1 line.

Table 3. Performance metrics of the gridded model for reproducing areal statistics.

Statistics MBE MAE RMSE CC R2

Frequency of areal dry spells of different lengths 1.02 (yr−1) 1.38 (yr−1) 3.34 (yr−1) 1.00 0.99
Frequency of areal wet spells of different lengths −0.41 (yr−1) 0.62 (yr−1) 1.30 (yr−1) 0.99 0.97
Monthly mean areal precipitation −0.23 (mm d−1) 0.26 (mm d−1) 0.33 (mm d−1) 0.96 0.93

served and simulated probabilities are weak and the R2 is
also small, suggesting poor performance for these months.
The worst performance is observed in January, during which
time the CC and R2 values are almost 0, whereas the best
performance is found in May.

4.2.3 Spatial distribution of mean wet-day daily
precipitation

Next, we consider the mean wet-day daily precipitation in
order to assess the ability of the model to reproduce the ob-
served climatology of the precipitation amount over the re-
gion. We consider the mean daily precipitation on wet days in
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Figure 10. The frequency of the areal spells of different lengths (see Sect. 4.2.1) for (a) dry spells and (b) wet spells. The observed spells
are obtained from the 30 years (1979–2008) of APGD gridded data. The simulated spells are the mean of the 30 realizations. The shaded
region is the selected tolerance interval TI95

99 for the simulated data. The two-sided tolerance interval is specified for 99 % of the population
and with a 95 % confidence level.

each season over the 30 years of the simulated 30 ensembles,
i.e., 900 years of data at each grid point (Fig. 12a, d, g, j), and
compare it to the observations (Fig. 12b, e, h, k). Figure 12c,
f, i, and l depict the bias in the simulated and observed values
at each grid point. The model is able to simulate the spatial
seasonal variability in precipitation very well. In particular,
the summer precipitation due to the convective processes and
thunderstorms, which account for high amounts of precipita-
tion, is well reproduced. In the colder seasons (December–
January–February, DJF, and September–October–November,
SON), the precipitation amount in the simulated data has vis-
ibly less dependence on elevation; hence, the generator has
a tendency to generate less spatial variability in the daily
precipitation amount across the region. In contrast with the
largely overestimated spatial probability of occurrence in the
southeastern part of the study area (Fig. 11), the model un-
derestimates the precipitation amount. St. Martin not only
has a high frequency of wet days but also the highest pre-
cipitation amount in all seasons among the 29 stations. The
gamma distribution is unable to reproduce the large precipi-
tation amount at this station, resulting in an underestimation
of the precipitation amount in the surrounding area as well.

Another important aspect to note with respect to the ob-
served APGD data is that the probabilities of wet days in
the southeastern part of the region in the colder seasons are
low (Fig. 11), whereas the precipitation amount is high in
the same part of the region – particularly in SON (Fig. 12).
The model fails to capture this behavior. This is also because
the model has to extrapolate the parameters in this part of
the study area, as there is no observed station present beyond
St. Martin. Hofstra et al. (2010) found that the density of the
station network used for interpolation influences the distri-
bution of precipitation and the areal mean amount of pre-
cipitation. They reported that when fewer stations are used,

precipitation is oversmoothed, leading to a strong tendency
for interpolated values to be less than the “true” value, and
that the effect was largest for higher percentiles. Dresdner
Huette also has a larger precipitation amount in the observed
data in autumn (and also in winter) compared with other sta-
tions. Moreover, the model underestimates the precipitation
amount in the region surrounding this station, mainly in SON
(see the northeastern part in SON in Fig. 12). Another rea-
son for the underestimation in autumn could be the inability
of the model to simulate orographic precipitation particularly
related to föhn events. These factors combined lead to a large
underestimation in this region in autumn.

Figure 13b depicts the performance metrics for the spa-
tial distribution of mean wet-day daily precipitation for each
month. The MBE, MAE, and RMSE are the largest in
November, and the negative MBE value of approximately
−2 mm d−1 suggests a large underestimation in that month.
For October, a large underestimation is also found, whereas
the smallest error metrics are found in March, followed by
February. High CC and R2 values are observed in Febru-
ary and March, suggesting the best performance in these
months, whereas the worst performance is found in Septem-
ber. Contrary to the bad performance for the spatial distribu-
tion of Pw, the spatial distribution of mean precipitation is
better reproduced in winter (compare panels c, f, i, and l of
Figs. 11 and 12).

4.2.4 Monthly mean areal precipitation

Next, we assess the ability of the precipitation generator to
provide an areal climatology of the precipitation amount.
This is also one of the desired characteristics for impact
modeling. Figure 14 displays the areal precipitation mean
for each month in both the observed and simulated gridded
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Figure 11. Spatial distribution of the occurrence probability (Pw) in four seasons in the simulated 30 realizations (a, d, g, j) and the 30 years
(1979–2008) of observed APGD gridded data (b, e, h, k) as well as the bias (simulated− observed) in the simulated data (c, f, i, l). The
spatial resolution of the APGD data is 5× 5 km. Note the different scales in the color coding for the different seasons.

data. The precipitation generator simulates the mean areal
precipitation in all seasons with good accuracy (except in au-
tumn), with observed values within the TI95

99. As seen in the
spatial distribution of the amount of precipitation (Fig. 12),
the model underestimates the areal precipitation in autumn,
mainly in October and November. The statistics are shown
in Table 3. The small negative MBE value indicates an over-
all slight underestimation, and the MAE and RMSE are also
small (approximately less than 0.4 mm d−1). The high CC

and R2 values show that the model-estimated means are in
very good agreement with the observed values.

4.2.5 Annual maximum precipitation sums

Here, we assess the ability of the model to reproduce ex-
treme precipitation amounts. We consider the annual max-
imum daily precipitation at 29 sites. The daily sum of the
observed daily precipitation at 29 sites is obtained, and the
maximum of the daily sum in every year is shown as a box
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Figure 12. Spatial distribution of the mean wet-day daily precipitation amount for four seasons (mm d−1) for the simulated (a, d, g, j) and
observed (b, e, h, k) data as well as the bias (simulated− observed) in the simulated data (c, f, i, l). The mean wet-day daily precipitation
is obtained at each grid point for each season in each of the 30 realizations, and the average of the 30 realizations is shown. The spatial
resolution of the simulated data is 1× 1 km, whereas the spatial resolution of the observed data is 5× 5 km. Note the different scales in the
color coding for the different seasons.

plot in Fig. 15. For the simulated data, the time series of
daily precipitation for 30 years at the nearest grid point to
the 29 observation stations is extracted from the gridded data
for each of the 30 realizations. The sum of the daily pre-
cipitation at the 29 sites in the simulated data is obtained,
and the maximum in each year is presented as a box plot in
Fig. 15. There is an underestimation in the simulated max-
imum precipitation sums. The median is underestimated by

approximately 20 %. The inter-annual variability in the max-
imum precipitation sums is also underestimated, as can be
seen from the interquartile range (IQR). However, the range
of the box plot of the model-simulated values is larger than
that of the observed values, with extreme outliers suggesting
that the model generates higher extreme precipitation sums
than those in the observed dataset. In general, the model is
able to generate extreme precipitation reasonably well.
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Figure 13. Performance metrics for the gridded model for the (a) spatial distribution of probabilities of wet days (Pw) in each month and the
(b) spatial distribution of mean wet-day daily precipitation. The unit for the MBE, MAE, and RMSE is millimeters per day (mm d−1). The
red horizontal line in each panel corresponds to the optimal performance for the corresponding metric.

Figure 14. Monthly mean areal precipitation (mm d−1). The ob-
served values are obtained from the 30 years (1979–2008) of ob-
served APGD data, and the simulated values are the mean of the
30 realizations. The shaded region is the selected two-sided toler-
ance interval TI95

99 for the simulated data.

4.3 Comparison between the anisotropic and isotropic
models using KED and OK

Here, we compare the results of our simulations, i.e., us-
ing KED in the anisotropic model (Aniso–KED) with three
different model setups: (i) considering OK in the interpola-
tion of the parameters of the anisotropic model (Aniso–OK),
(ii) using the original isotropic model that utilizes OK for
the interpolation of the parameters (Iso–OK), and (iii) using

Figure 15. The annual maximum daily precipitation sum at the
29 sites for the observed and simulated data. The sum of daily pre-
cipitation at the 29 sites is obtained, and the maximum in each year
is presented as a box plot. Thus, the box plot for the observed data is
based on 30 values, whereas is based on 900 values (30 realizations
of 30 years) for the simulated data.

the isotropic model with KED (Iso–KED). We examine the
results for the monthly sum of the areal mean daily precipita-
tion in these four simulation cases (experiments) with the ob-
served APGD gridded data. Figure 16 displays the distribu-
tions of the monthly sum of the areal mean daily precipitation
for the simulated 900 years for each of the four experiments
and the observed 30 years of gridded data.

The model performance of Aniso–KED and Iso–KED is
mostly similar in all months, whereas the model performance
of Iso–OK and Aniso–OK is similar in all months. The model
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Figure 16. Monthly sum of the areal mean daily precipitation (mm) for each month in the 30 years (1979–2008) of observed APGD data and
the simulated 900 years (30 realizations of 30 years) of data for the four experiments: Aniso–KED, Iso–KED, Aniso–OK, and Iso–OK (see
the text for specifications).

performance varies greatly from month to month for all four
experiments, but both experiments involving KED (Aniso–
KED and Iso–KED) outperform those using OK in the vast
majority of months. It is evident that allowing elevation as a
covariate in the kriging interpolation for prediction at each
grid point appreciably improved the amount of precipitation
in most months.

The median for both of the KED experiments is overesti-
mated in February, March, May, and September, whereas the
median is underestimated in the rest of the months. The IQR
in Fig. 16 shows the inter-annual variability (IAV), but the
figure also shows the intra-seasonal and inter-seasonal vari-
ability. The model reproduces the intra-seasonal and inter-
seasonal variability very well in all four experiments, but it
generally performs better for the experiments in which KED
is employed. The IAV is better simulated in summer than in
colder months. The best performance is found in July, when
the variability is larger in the simulated data for all four ex-
perimental setups compared with the observed data. Further-
more, the median in July is very close to the observed value
for both of the simulations using KED. This is remarkably
good performance, as WGs are typically criticized as having
the tendency to underestimate the low-frequency variability,
as is the case for most of the months in our precipitation gen-
erator. Conversely, for all four experiments, our model is un-
able to reproduce the larger IAVs in other months (particu-
larly October). This could also be one of the reasons for the
large underestimation of the precipitation amount over the
study area in autumn, as discussed in the previous sections. It
is noteworthy that the model performance is essentially sim-
ilar from October to December in all four experiments. This
shows that, regardless of the type of correlation structure and

the interpolation method, the model is unable to capture the
spatial distribution of precipitation in those months. In gen-
eral, the model performance is better in warmer months than
in colder months.

The differences in the observed and simulated median and
IQR in each month for each of the four experiments are
listed in Table 4. Overall, the experiments with KED outper-
form those using ordinary kriging, and the Iso–KED com-
bination is slightly superior to the fully anisotropic combi-
nation. Apparently, even for a small region in complex ter-
rain, such as the present study area, isotropic covariance
is adequate to reproduce the precipitation fields. In the ob-
served data, anisotropy is indeed present, but the difference
between the variation in the correlations with horizontal dis-
tance and the variation in the correlations with vertical dis-
tance is very small. Hence, there is almost no difference in
the performance of the model in the isotropic and anisotropic
formulations. The two experiments with OK not only un-
derestimate the amount of precipitation but also lack the to-
pographical influence on the simulated precipitation amount
and rather produce smooth precipitation fields over the re-
gion (see Fig. S3). However, the influence of topography
must be included in the model in order to realistically simu-
late the precipitation fields, as we have shown here by con-
sidering KED interpolation.

As for the occurrence model, the covariance structure has
a slight influence on the model performance. Figure 17 com-
pares the areal dry and wet spells for all four experiments
with those observed. The performance of the anisotropic
model is better for dry spells: Aniso–KED performs sightly
better than Aniso–OK. In contrast, the performance of the
isotropic model is better for wet spells: Iso–KED performs
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Table 4. Difference (simulated− observed) in the median and interquartile range (IQR) of the observed and simulated monthly sum of the
areal mean daily precipitation (mm) in each month and each of the four experiments. The bold values indicate the best model performance
in each month.

Difference in the median (IQR) (mm)

Month Aniso–KED Iso–KED Aniso–OK Iso–OK

Jan −3.54 (−20.52) −4.01 (−20.16) −7.70 (−22.06) −5.84 (−19.79)
Feb 1.33 (−12.52) 1.57 (−11.93) −2.76 (−15.34) −3.99 (−15.44)
Mar 8.35 (−11.10) 8.31 (−10.66) 0.70 (−12.92) 0.78 (−12.32)
Apr −2.15 (−13.13) −1.80 (−8.94) −7.98 (−13.42) −8.26 (−12.15)
May 7.08 (−10.58) 6.26 (−6.86) −4.20 (−10.33) −1.63 (−7.19)
Jun −5.69 (−8.56) −3.13 (−6.55) −14.47 (−10.95) −14.71 (−9.98)
Jul −2.30 (5.87) −1.61 (9.83) −13.91 (0.95) −9.22 (5.84)
Aug −18.18 (−17.34) −16.76 (−18.80) −24.67 (−22.44) −25.30 (−21.56)
Sep 7.10 (−20.44) 10.28 (−18.20) 0.60 (−22.71) 1.00 (−23.03)
Oct −12.42 (−49.34) −13.56 (−45.64) −14.64 (−48.79) −13.24 (−47.90)
Nov −7.90 (−23.54) −10.00 (−24.4) −9.30 (−25.25) −10.04 (−22.74)
Dec −4.29 (−9.79) −3.43 (−9.26) −4.94 (−9.89) −6.65 (−8.19)

slightly better than Iso–OK. For both areal dry and wet spells,
KED interpolation adds little value to the simulation over us-
ing OK.

5 Discussion

In this study, we have tested two extensions of the original
isotropic framework of Kleiber et al. (2012) for the simula-
tion of precipitation fields: (i) the inclusion of anisotropy in
the covariance function and (ii) the application of KED in the
interpolation of the parameters (instead of OK). Our model
adds substantial value over the original model in a highly
complex mountainous region in the Austrian Alps. As a sta-
tistical downscaling tool, this model does not require any
large computational resources. Obviously, compared with a
single-site WG, it requires additional computing resources,
but it is still very parsimonious and fast compared with dy-
namical downscaling models. It can be easily run on any
high-end personal computer. In terms of model complexity,
our model only has two parameters more than the original
model: the two range parameters in the vertical direction due
to the inclusion of elevation in the covariance functions of
the occurrence and amount models, respectively. Hence, in
terms of computational time, the proposed model takes ap-
proximately 8 % longer than the original model to complete
a run, which includes model fitting and simulation.

The major improvement in the results from our model
comes from the KED interpolation, rather than the included
anisotropy in the covariance structure. This suggests that
there is no strong directional dependency in the precipitation
simulation. Although there are minor differences in model
performance using the isotropic and anisotropic covariance
functions, it can be concluded that an isotropic covariance
function is sufficient, even for small-scale topographic vari-

ability such as that in the present study in the European Alps.
However, the topographical details must be included in the
interpolation of the parameters of the model. Similar results
can be expected for complex terrain in other mountainous
regions.

At individual locations with observations, the model satis-
factorily reproduces various observed statistics and the over-
all distribution of precipitation. The model is also able to
capture spatial and temporal variability over the entire region
reasonably well. It is capable of simulating the dry-day statis-
tics over the whole region very well; however, an underesti-
mation is observed for the wet-day statistics. The frequency
of the areal dry spells of 1 or 2 days is strongly overestimated.
The model uses the previous day’s occurrence as a covari-
ate, which creates a first-order two-state Markov chain at an
individual location. Dabhi et al. (2021) applied a first-order
two-state Markov chain model at stations covering different
climate zones in Europe and found that it had a tendency to
overestimate dry spells. The first-order Markov chain uses
the occurrence from only 1 day in the past; however, there
may be longer-lasting correlations present in the data. Con-
sidering the occurrence from 2 or more days in the past,
i.e., forming a second-order or higher-order Markov chain,
at individual locations may potentially improve the results
for both dry and wet spells. For example, Wilson Kemsley
et al. (2021) studied the order of Markov chains in different
climate regimes across the world and showed that a third-
order model reproduces observed dry-spell distributions the
best. Alternatively, allowing other meteorological variables,
such as wind speed and humidity, as covariates in the GLM
can also improve the results (Ataharul Islam and Chowdhury,
2006).

The model captures the month-to-month variability in the
monthly sum of precipitation very well due to the use of
the time-dependent harmonics of sine and cosine as covari-
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Figure 17. The frequency of areal spells (yr−1) of different lengths in each of the four experiments with 900 years of simulated data and
with 30 years (1979–2008) of observed APGD data for (a) areal dry spells and (b) areal wet spells. For the simulated dry and wet spells,
their frequency is determined for each of the 30-year simulations separately and averaged over the 30 realizations.

ates in the modeled spatial covariance structure. However,
the inter-annual variability is largely underestimated, mainly
for the colder months. Even if we adopt the NAOI as a co-
variate to alleviate the well-known problem of overdisper-
sion in this type of model, overdispersion remains an issue.
One reason for this is the tendency of the model to under-
estimate large daily precipitation amounts. This is because
the model generates the precipitation amount using a trans-
formed Gaussian process that reduces to a gamma distribu-
tion at individual locations. The gamma distribution is not
a heavy-tailed distribution and is, therefore, not well suited
to reproducing heavy precipitation. However, Wilks (2009)
also reported the underestimation of heavy precipitation us-
ing a mixture of two exponential distributions to account
for both smaller and larger precipitation amounts. This is
another commonly reported problem for precipitation gen-
erators (e.g., Wilks, 1999; Furrer and Katz, 2008). Allow-
ing heavy-tailed distributions alleviates overdispersion (Seri-
naldi and Kilsby, 2014), but simulating spatial extremes and
successfully capturing smaller precipitation amounts with
such a simple model is even more challenging. Another way
to reduce overdispersion is by allowing a suitable covariate,
such as seasonal total precipitation, in the GLM, as shown
by Kim et al. (2012), or by including seasonal dry/wet in-
dicators, as in Kim and Lee (2017). Verdin et al. (2018)
modified the model of Kleiber et al. (2012) by allowing the
domain-averaged seasonal total precipitation as a covariate
and showed that the inclusion of this covariate improved the
simulation. However, their study was focused on flat terrain,
where it is promising to take the areal precipitation as a co-
variate for the whole domain. This may not be suitable for
mountainous terrain, and location-specific climate informa-
tion might, instead, be more promising. In this study, we
wanted to evaluate the model with respect to its ability to

reproduce the observed statistics at locations where no ob-
servations are available; thus, we avoided the inclusion of
any location-specific information so that the model was not
conditioned upon the availability of information at each grid
point. We believe that the model performance could be im-
proved by allowing such gridded information as a covariate.

In complex mountainous terrain, individual stations can
exhibit precipitation characteristics quite distinct from those
of neighboring (or more distant) stations with more typical
characteristics. A station-by-station evaluation (Sect. 4.1) re-
vealed that the model cannot reproduce precipitation at these
distinct stations (e.g., Prutz in Figs. 2–7). For the gridded
simulations, we would have expected that these distinct sta-
tions might negatively influence their neighboring stations.
In contrast, however, the nearby stations influenced the dis-
tinct stations by generating overly strong correlations. Fig-
ure S4 depicts the inter-station correlations in the precipita-
tion occurrence among the 29 stations in the observed data
against the simulated data. The cloud of points with weak
correlations in the observed data belongs to the distinct sta-
tions, but the correlations are very strong in the generated
data. The reason for this is the good density of the network of
29 stations in such a small region. This is also the reason that
the largest discrepancy in the performance of both the occur-
rence and amount models amongst the 29 stations is found
at those distinct stations: the model generates the statistics
of the nearby stations at those distinct stations, rather than
reproducing their own observations. Thus, a distinct station
in a region with a dense observational network cannot be re-
produced but also does not strongly deteriorate the overall
performance with respect to the reproduction of the spatial
information. This finding is also confirmed by the holdout
cross-validation. As discussed in Sect. 3.2, this is due to the
choice of the same set of covariates. Using the same set of
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covariates is, however, a necessary restriction if the model
is aimed at gridded output fields. Reproducing the spatial
statistics over the whole region, especially in mountainous
regions, is indeed a challenging task; moreover, capturing
the realistic spatiotemporal fields of precipitation with such
a simple model is even more challenging. Despite this, our
model successfully captures many difficult statistics useful
for climate change impact applications, such as long spells
of dry and wet days and the areal monthly mean precipita-
tion.

However, if a distinct station is located in a data-sparse
area (such as St. Martin in our study area), it dominates the
entire neighboring region and destroys the spatial structure.
Thus, for a spatial precipitation generator in complex terrain,
the stations should not only be selected according to data
availability (and quality) but also based on their precipitation
characteristics. If they have distinctly different precipitation
characteristics from the majority of the stations in the region,
they should not be included in the training dataset, and if
one is explicitly interested in such a station, one should use a
single-site approach.

Another limitation of this model is its inability to real-
istically simulate autumn and winter precipitation. This is
because there are systematic differences in the characteris-
tics of weather types between various seasons. In autumn
and winter, westerly currents are stronger and the associ-
ated precipitation patterns are more pronounced than dur-
ing spring and summer. The precipitation pattern in winter
is associated with dynamically active synoptic-scale weather
systems (fronts and low-pressure systems specifically from
the North Atlantic Ocean and the Adriatic Sea) in combi-
nation with orographic enhancement, whereas the pattern in
summer is related to convective activity that is either embed-
ded in frontal systems or generated locally. Our model does
not account for the influence of wind on precipitation. This
could be the reason for the model not being capable of cap-
turing the spatiotemporal patterns in autumn and winter. The
convective season in Austria usually starts in May and lasts
until September, and the model successfully captures the spa-
tiotemporal patterns during these months.

The covariance function used in the model is assumed to
be stationary, which may not be a realistic assumption. De-
tecting spatial nonstationarity and modeling it is beyond the
scope of this article and will be explored in future research.
However, it is possible that the model performance may be
improved by considering a nonstationary covariance func-
tion (e.g., Paciorek, 2003). As the precipitation–topography
relationship is dominant in mountainous regions, the results
can also be improved by including not just elevation but also
other variables, like slope, aspect, and latitude and longitude,
in kriging (Wotling et al., 2000). Considering east–west and
north–south gradients of the topography along with elevation
in the KED also improves the results (Hiebl and Frei, 2017).
As the inclusion of elevation at a 1 km resolution improved
the results, we believe that considering an even higher spatial

resolution would provide even better simulation of precipita-
tion.

6 Conclusion

A multi-site gridded precipitation generator that provides
high-resolution two-dimensional fields of precipitation in
complex terrain using historical observations from a network
of meteorological stations is developed, implemented, and
evaluated. The precipitation generator is an extension of the
original framework of Kleiber et al. (2012) that uses a sta-
tionary isotropic covariance structure. The original frame-
work is based on a latent Gaussian process for the occurrence
and on a transformed Gaussian process for the amount of pre-
cipitation in which gamma-distributed random numbers are
transformed to normally distributed random numbers. This
framework considers the parameters of a generalized linear
model (GLM) as a realization of a spatial Gaussian process
which allows one to spatially interpolate the parameters us-
ing kriging. In this article, two extensions to the original
framework are proposed: (i) allowing anisotropy in the co-
variance structure and (ii) allowing elevation as an external
drift in kriging. The anisotropy is included in the model by
accounting for the elevation difference in the stationary co-
variance function of both the occurrence and amount models.
Furthermore, elevation is allowed as an auxiliary variable in
the kriging equations for the interpolation of the parameters
of both the occurrence and amount models.

The model is tested in a small region (about 100×
100 km2) with highly complex terrain in the European Alps
for which 29 observational stations with 30 years (1981–
2010) of data are available. The test region comprises stations
with elevation differences of about 2300 m. A total of 30 re-
alizations of 30 years of synthetic gridded data at a 1×1 km2

resolution are generated to allow for a robust statistical as-
sessment.

The main findings of this study can be summarized as fol-
lows:

– At individual stations where observations are available,
the model reproduces the observed statistics realistically
well, including annual cycles of daily probabilities of
precipitation occurrence and monthly means of precip-
itation, dry and wet spells of different lengths, and the
overall distribution of precipitation amount.

– The model has a great capability to capture the spa-
tiotemporal statistics in complex terrain, including
the spatial distribution of occurrence probabilities and
amount, areal dry and wet spells of different lengths,
monthly mean areal precipitation, and monthly sum of
areal daily mean precipitation.

– The proposed extensions considerably improve the sim-
ulation of the spatiotemporal fields of precipitation –
mainly due to the incorporation of elevation in kriging.
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– The use of an isotropic or anisotropic covariance func-
tion in the mountainous region is equally good, with
marginal trade-offs for some of the statistics.

– The performance of the model varies greatly from
month to month, being the best in summer and the worst
in autumn.

– Intra-seasonal and inter-seasonal variabilities are well
reproduced, whereas inter-annual variability is largely
underestimated in autumn and winter.

– At a few of the 29 stations, where the observed precip-
itation statistics and in particular their seasonality were
distinctly different from all of the other stations, the
model performance is markedly compromised.

– The underestimation of large amounts of precipitation
remains a problem.

Reproducing the spatiotemporal fields of precipitation in
a region characterized by complex terrain like the Alps is a
challenging task, especially at locations where no observa-
tions are available. However, this is an essential requirement
for hydrological modeling, as hydrological models are driven
by spatially and temporally coherent precipitation data. The
proposed model can respond to this need to some extent; nev-
ertheless, further improvement is required, as discussed in
the article, to employ the model for downscaling purpose.
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