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S1: Physiographic maps over the full model domain 

To complement the site description in the main article (Section 2.2 and Figure 1), Figure S1.1 reports additional maps of 

physiographic variables across the model domain, including local canopy cover fraction, elevation, aspect and slope. 

 

Figure S1.1: Local canopy cover fraction (a), elevation (b), aspect classes (c), and slope (d) across the full model domain. 25 
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S2: Canopy structure representation in FSM2 

The diversified representation of canopy structure of FSM2 with process-specific canopy metrics constitutes the model’s 

principal asset. With this strategy, FSM2 considers that different canopy-mediated processes are regulated by different and 30 

potentially uncorrelated canopy characteristics. A point located in a canopy gap, as example, experiences the interception 

regime of a very sparse canopy, but may be affected by frequent shading, which implies conditions typical of a dense 

canopy. These independent and contrasting canopy controls on each of the various processes cannot be reproduced if all 

processes are parametrized with the same, bulk canopy descriptors. Bulk canopy metrics may thus be suited for intermediate- 

or coarse-resolution model applications targeting the estimation of spatially averaged fluxes and states, but hyper-resolution 35 

approaches that strive to reproduce meter-scale patterns require explicit representation of a wide range of detailed canopy 

features. The canopy metrics used within FSM2 comprise horizontal, vertical, local, and stand-scale canopy characteristics at 

each modelled location. Consequently, the canopy’s structural diversity is captured even though canopy is represented with a 

so-called one-layer model. Figure S2.1 illustrates this concept, summarizing the different canopy perspectives, the 

corresponding metrics, approaches, and data sources used to derive them, and the processes employing them. The schematic 40 

complements the mathematical formulation of the process parametrizations provided in the respective model description 

papers, Essery (2015) and Mazzotti et al. (2020a,b).  

Transmission of direct shortwave radiation through the canopy involves a particularly complex interaction with small-scale 

canopy elements. Because transmissivity is dictated by the presence of canopy elements in the path of the solar beam, it 

depends on the exact geometric arrangement of the point of interest, the canopy, and the sun, and is thus highly variable in 45 

space and time. By accepting transmissivity time series as model input, FSM2 forgoes simplification of the process 

representation that comes with any parametrization, and instead leverages the benefits of an (external) radiative transfer 

model that resolves the process explicitly. So far, FSM2.0.3 has been used in tandem with the radiative transfer model 

HPEval (Jonas et al., 2020), which comprises a traditional approach to compute transmissivity time series at a point based on 

a high-resolution hemispherical image. The radiative transfer model depicted in the schematic in Figure S2.1 illustrates the 50 

HPEval approach. In this study, transmissivity time series are computed following the HPEval methodology based on 

synthetic hemispherical images derived from LiDAR datasets instead of real ones. The workflow to create these synthetic 

images, detailed in Webster et al. (2020), integrates canopy segmentation algorithms to identify individual trees in a canopy 

height model and point cloud enhancing algorithms to densify the point cloud, aimed at mimicking opaque stems and 

branches. The resulting images feature more realistic and detailed tree shapes than images obtained with unprocessed 55 

LiDAR data (see Section S3). 
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Figure S2.1: Overview of the concepts underlying the canopy structure representation in FSM2: different perspectives, relevant 

data sources and computation approaches, resulting metrics, and modelled processes that use the respective metrics.  60 

  



5 

 

S3: Summary of FSM2 validation at the process level 

This study relies on FSM2’s capability to accurately simulate the spatio-temporal patterns of individual fluxes and states that 

constitute forest snow processes, which was extensively tested in a previous study by Mazzotti et al. (2020a). Figure S3.1 

reports an example of their validation efforts to illustrate the underlying methodology. Data were acquired with multiple 65 

meteorological sensors mounted on a motorized cable car platform (Figure S3.1). Over the course of a winter, the system 

was deployed along several forest transects of approx. 50 m length each in both Switzerland and Finland. Surveys covered 

variable canopy structures and forest species, weather conditions, as well as sub-alpine and boreal climates. Observations 

from the cable car setup were complemented by data from two additional handheld and stationary setups, yielding a dataset 

with an unprecedented variety of micro-meteorological and snow measurements. FSM2 simulations at high spatial and 70 

temporal resolution were directly compared to the acquired datasets. The example in Figure S3.1 features measurements 

from a full 24-hour cycle along a cable car transect and corresponding FSM2 simulations at 1.5m spacing and 10min 

temporal resolution. To our knowledge, FSM2 is the only forest snow model to have ever undergone such a rigorous 

validation.  

FSM2’s ability to replicate individual fluxes and states and their spatial and temporal variability was quantitatively assessed 75 

in terms of transect averages and standard deviations of all measured variables across all available datasets (Figure S3.2). 

Root means square errors (RMSE) of 23 Wm−2 and 4Wm−2 resulted for average shortwave and longwave irradiances, 

respectively, while their standard deviations featured RMSEs of 21Wm−2  and 2Wm−2. RMSEs of mean and standard 

deviation of canopy air space temperatures were 1.6°C and 0.4°C, for snow surface temperatures they amounted to 0.6°C 

and 0.4°C. Performance metrics all showed substantial improvements relative to the standard land surface model canopy 80 

implementation that was used as benchmark in Mazzotti et al. (2020a).  

The accuracy of the shortwave radiative transfer calculations in FSM2 is dictated by the accuracy of the external radiative 

transfer model. Webster et al. (2020) showed that shortwave radiation estimates using synthetic images obtained with the 

LiDAR enhancing methodology were similar to estimates obtained with real images (Figure S3.3, a-e), and patterns of 

shadows on the snow surface (f) matched those captured with UAV-imagery (g) with high level of detail.  85 

While plausibility checks as presented in Section 2.3 (main article) are important to ensure model applicability for a specific 

use case, we believe that quantitative validations at the level of individual fluxes and states such as in Mazzotti et al. (2020a) 

and summarized here are more conclusive than assessments based on snow extent and depth data alone.  
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Figure S3.1: The multi-sensor platform in operation along a 50-m cable (yellow arrow) in a pine stand near Davos, Switzerland 90 

below variable canopy cover (sky-view fraction, SVF, obtained from hemispherical photographs acquired along the transect). 

Resulting model validation: observed spatiotemporal variability of measured variables during a 24-h cycle (19. to 20.03.2019) and 

corresponding FSM2 simulations. The direct comparison between model results and observations is achieved by extracting model 

output at each point based on the time stamp of the respective observation. Adapted from Mazzotti et al. (2020a), Fig. 1 and 3.  
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 95 

Figure S3.2: Observed vs. modelled averages and standard deviations of subcanopy shortwave (a,b) and longwave (c,d) 

irradiances, canopy air space (e,f) and snow surface (g,h) temperatures. Data points correspond to temporal averages at point 

locations (crosses), spatial averages along the cable car transects (dots), and spatial averages over plots surveyed with a handheld 

setup (squares) at given points in time. Individual colors represent each study area, where Laret and Flin are located in the 

Eastern Swiss Alps and Sodankylä in sub-arctic Finland. Adapted from Mazzotti et al. (2020a), Figures 5 and 7. 100 
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Figure S3.3: Changing solar position across a 6-month solar cycle in yellow within (a) a real hemispherical photograph, (b) 

synthetic hemispherical images from the enhanced LiDAR and (c) original LiDAR. Modelled total daily radiation across the same 

period (d) at location X in the canopy height model (e). Comparison of modelled radiation (f) and snow surface shadowing as 105 

photographed from a drone (g) at 09:30 (left), 12:30 (center) and 15:30 (right) on 28.03.2019. Adapted from Webster et al. (2020), 

Fig. 8 and 10. 
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S4: Meteorological conditions during the simulation period 

The following figures provide an overview of meteorological conditions during the six simulated water years to give context 

to the observed differences in snow cover dynamics outlined in the main article. We focus on the three variables that, as 110 

elaborated on in the main article, have the largest potential to cause differences between years: snowfall (affects total 

accumulation), shortwave radiation, and temperature (affect the timing and strength of melt, as well as whether it is mainly 

driven by short- or longwave radiation contributions). The left panel of Figure S4.1 reports weekly snowfall sums between 

the beginning of November and June, which represent the earliest and latest yearly median of the start of snow cover period 

and snow disappearance date. Some marked differences in how the precipitation is distributed throughout the snow season 115 

can be observed. The right panel of Figure S4.1 shows cumulative snowfall between the median start of snow cover and 

snow disappearance dates of each specific year. This visualization evidences the substantial differences in timing and length 

of snow cover period and total snowfall between the years, with WY2016 (lowest accumulation) amounting to only half of 

total snowfall of WY 2019 (highest accumulation). 

 120 

Figure S4.1: Weekly snowfall during the six modelled winters between November and June (left) and cumulative snowfall over the 

median snow cover duration period of the respective year (right). 
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Figure S4.2 contrasts shortwave radiation (left) and air temperatures (right) during the six simulated winters, with the upper 

row showing weekly values and the lower row the weekly deviation from the six-year average. While no year is clearly 125 

above or below average for any of the two variables for the entire season, some marked deviations from the averages can be 

detected in these plots, for instance the relatively warm period in the middle of the 2020 winter.  

 

Figure S4.2: Incoming shortwave radiation (left) and air temperature (top right) of the six simulated winters, and deviation from 

mean (lower row) for the same variables. 130 
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S5: Maps of snow cover and energy balance descriptors for WY2019 over the full model domain 

While some figures in the main article include maps of a subdomain of the model domain to illustrate patterns of snow cover 

descriptors and energy fluxes, here we add the corresponding maps for the full model domain for interested readers. Figure 

S5.1 reports peak SWE, ablation rate, day of peak SWE and snow disappearance day for WY 2019, corresponding to Figure 135 

5 of the main article.  

 

Figure S5.1: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2019. 
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Figure S5.2 shows average incoming irradiances and early melt between mid-January and end of February 2019, analogous 140 

to Figure 7 of the main article. Note the addition of incoming longwave radiation which further underpins the statement that 

all-wave irradiance patterns are largely determined by patterns of incoming shortwave radiation.  

 

Figure S5.2: Average incoming short (a) and longwave (b) radiation, all-wave radiation (c) and snow melt (d) between mid-

January and end of February 2019. 145 
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Figure S5.3 includes average patterns of the individual surface energy balance components (net short- and longwave 

radiation, sensible and latent heat) as well as net surface energy flux computed as the sum of the four. Maps shown are for 

the second half of February 2019, analogous to the upper part of Figure 8 in the main article. 

 150 

Figure S5.3: Individual surface energy components (net short- and longwave radiation, SWR (a) and LWR (b), as well as sensible 

and latent heat fluxes, SHF (c) and LHF (d)) and net surface energy flux (NSEF, e) computed as sum of the four, for the second 

half of February 2019. 
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S6: Location of example points within the model domain 

The location of example points used for the analysis of snow evolution and energy balance partitioning pathways presented 155 

in Section 3.3 and 3.5 are shown in Figure S6.1. In Section 3.3, points were chosen to cover the entire range of canopy 

structures and topographic locations (Figure S6.1b, corresponding to points shown in Figure 6 of the main article). In Section 

3.5, we focused our analysis on points located at the south-exposed slope and sparse canopy or small gaps to explore 

differences between years (Figure S6.1c, corresponding to points shown in Figure 10 of the main article). 

 160 

Figure S6.1: Locations of example points. Overview (a), points presented in Section 3.3 / Figure 6 of the main article (b), and points 

used in Section 3.5 / Figure 10 of the main article. Colours marking individual points match the colour code of the figures in the 

main article. 
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S7: Maps of snow cover descriptors for the other simulated WYs 

In Section S5, we presented full-domain maps of snow cover descriptors for WY 2019, which is used as main example 165 

throughout the article. To complement Figure S5.1, Figures S7.1 to S7.5 report snow cover descriptors for all other 

simulated WYs. These figures provide an additional visual impression of the between-year consistencies and differences of 

these snow metrics. Moreover, it should be noted that correlation coefficients presented in Section 3.2 of the main article rely 

on these data. 

 170 

Figure S7.1: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2016. 
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Figure S7.2: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2017. 
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Figure S7.3: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2018. 175 
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Figure S7.4: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2020. 
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Figure S7.5: Peak SWE (a), ablation rate (b), day of peak SWE (c) and snow disappearance day (d) in WY 2021. 

  180 
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