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Abstract. In this paper, the question of how the interpola-
tion of precipitation in space by using various spatial gauge
densities affects the rainfall–runoff model discharge if all
other input variables are kept constant is investigated. The
main focus was on the peak flows. This was done by us-
ing a physically based model as the reference with a recon-
structed spatially variable precipitation model and a concep-
tual model calibrated to match the reference model’s out-
put as closely as possible. Both models were run with dis-
tributed and lumped inputs. Results showed that all consid-
ered interpolation methods resulted in the underestimation of
the total precipitation volume and that the underestimation
was directly proportional to the precipitation amount. More
importantly, the underestimation of peaks was very severe
for low observation densities and disappeared only for very
high-density precipitation observation networks. This result
was confirmed by using observed precipitation with different
observation densities. Model runoffs showed worse perfor-
mance for their highest discharges. Using lumped inputs for
the models showed deteriorating performance for peak flows
as well, even when using simulated precipitation.

1 Introduction

Hydrology is to a very large extent driven by precipitation,
which is highly variable in space and time. Point precipita-
tion is interpolated in space that is subsequently used as the
true precipitation input for hydrological models without any
further adjustments. A common problem with most interpo-
lation schemes is that the variance in an interpolated field is
always lower than the variance in the individual point data
that were used to interpolate it. Another problem, which is

very important in the case of high precipitation events, is that
the absolute maximum precipitation coordinates in the inter-
polated field are at one of the observation locations. Contrary
to reality, it is very unlikely that for any given precipitation
event the maximum precipitation takes place at any of the
observation locations. Accounting for conditional changes
with additional variables helps only a little, but it is never
enough. New interpolation schemes are introduced on a reg-
ular basis, but the main drawback is inherent to all of them.
Furthermore, the distribution of the interpolated values tends
to be Gaussian, with an increase in the number of observa-
tions used for interpolation for each grid cell, even when it
is known that the precipitation has an exponential-like dis-
tribution in space for a given time step and also for a point
in time. From experience in previous studies (Bárdossy et al.,
2020, 2022; Bárdossy and Das, 2008), it was clear that model
performance was dependent on the number and the configu-
ration of observation station locations, but no decisive con-
clusion was made. It should not come as a surprise that mod-
els perform better, in terms of cause and effect, with increas-
ing data quantity and quality.

1.1 The problem of fewer precipitation observations

The effects of taking a sample from a population on the final
distribution of precipitation can be visualized in the follow-
ing manner. Suppose that precipitation is measured at each
point in space. For any given time step, when it is raining at
some of the points, the distribution of values is exponential-
like. When sampling a finite number of N values from the
space, the chances that the points are sampled from the up-
per tail become smaller and smaller as N approaches 1, or
conversely, samples from the lower tail are more likely. This
has a strong bearing on the rainfall–runoff process. A large
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part of small rainfall volumes is intercepted by the soil and
the vegetation. These do not influence the peak flows directly.
Large flows in rivers are due to soil saturation during or af-
ter a rainfall event. To produce soil saturation and therefore
runoff, a model first needs to be fed such large precipitation
values. The saturation overflow is not necessarily catchment-
wide. It could also be due to a large precipitation event over
part of the catchment. If the precipitation observation net-
work is not dense enough, then it is possible that a represen-
tative pattern of the event is not captured, even after interpo-
lation, due to the reasons mentioned before. Using this false
precipitation as model input will consequently lead to pro-
ducing less saturation overflow and thereby model runoffs
not matching the observed.

1.2 Objectives

To investigate the effects of sampling finite points in space
on model performance and the reproduction of flood peaks,
this study tries to answer the following questions:

1. How strong is the effect of the sampling density on the
estimation of areal precipitation for intense precipita-
tion events? Is there a systematic signal?

2. How do interpolation quality and hydrological model
performance change with precipitation observation den-
sity?

3. How strong is the effect of an error in the precipitation
observations on discharge estimations?

4. What is the role of spatial variability in hydrological
model performance? How much information is lost if
areal mean precipitation is used (i.e., sub-scale variabil-
ity is ignored)?

Some of the aforementioned points, among others, were
recently discussed in a review paper by Moges et al. (2021).
They highlighted four sources of hydrological model un-
certainties, namely parameter, input, structural, and calibra-
tion data uncertainty. Their conclusion was that, out of the
four, parameter uncertainty received the most attention, even
though all of these sources contribute to the final results in
their own unique manner.

Kavetski et al. (2003) concluded that addressing all types
of uncertainty will force fundamental shifts in the model cal-
ibration/verification philosophy. So far, the rainfall–runoff
modeling community has not been able to put such ideas into
common practice. The reason for this is that a true estimate of
the uncertainty in a forever-changing system is extremely dif-
ficult to find. The so-called epistemic uncertainty will always
exist. Moreover, there is no consensus on how to model these
uncertainties. Following Kavetski et al. (2003), Renard et al.
(2010) showed that taking both input and structural uncer-
tainty into account is an ill-posed problem, as combinations

of both affect the output and the performance of the model
and addressing both simultaneously is not possible.

Balin et al. (2010) tried to assess the impacts of having
point rainfall uncertainty on the model discharge by taking a
100 km2 catchment at a spatial resolution of 200 m at a daily
timescale. A normally distributed error of 10 % was added to
the observed time series to produce a new time series. This
was done multiple times and independently. By running the
model with the erroneous data (among other things), they
found that the resulting performances were not so different
from the original case. The only noticeable difference was
that the uncertainty bounds on discharge were slightly wider,
resulting in more observed values being contained by it. The
conclusion was that the causes of model output uncertainty
may not be due to erroneous data, as the measurement er-
rors everywhere compensated for the runoff error in a way
that the final model performance stayed the same. More in-
terestingly, they found out that using observed rainfall for
modeling resulted in the underestimation of the peak flows, a
problem that this study will also try to address. Furthermore,
for the same catchment, Lee et al. (2010) arrived at simi-
lar conclusions by using a different approach and a lumped
rainfall–runoff model. Yatheendradas et al. (2008) investi-
gated the uncertainty of flash floods using a physically based
distributed model by considering a mixture of parameter and
input data uncertainty. They concluded that their model re-
sponses were heavily dependent on the properties of the pre-
cipitation estimates using radar, among other findings.

This study is a special case of model input uncertainty. It
specifically deals with the effects of using interpolated pre-
cipitation data as a rainfall–runoff model input that is derived
from point observations. It does not deal with input uncer-
tainty as it is meant to be, as doing so requires very strong
assumptions that are likely to remain unfulfilled (as was also
pointed out in Beven, 2021). The idea that various forms of
uncertainties exist and should be considered is not disputed.

The rest of the study is organized as follows. Section 2
shows the investigation area, and Sect. 3 shows the model
setup, inputs, and the main idea of this study in detail. Sec-
tion 4 discusses the two rainfall–runoff models used in this
study and the methods of their calibration. Section 5 dis-
cusses the results in detail, where the questions posed in the
beginning of this section are answered. Section 6 presents
two coarse correction approaches that were tried to reduce
precipitation bias. Finally, in Sect. 7, the study ends with the
summary, main findings, and implications of the results.

2 Investigation area

The study area is the Neckar catchment situated in the south-
west of Germany in the federal state of Baden-Württemberg
(Fig. 1). It has a total area of 14 000 km2. In the east, it is
bounded by the Swabian Alps and by the Black Forest in the
west. The maximum elevation is ca. 1000 m in the Swabian
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Figure 1. Study area (taken from Bárdossy et al., 2022).

Alps that goes down to 170 m at the confluence of the Neckar
and Rhine in the north. Mean recorded temperature is about
9.1 ◦C, while the minimum and maximum temperatures ever
recorded are −28.5 and 40.2 ◦C, respectively. Annual pre-
cipitation sums reach about 1800 mm in the Black Forest,
while the rest of the area receives mean precipitation of 700
to 1000 mm. The probability of precipitation on a given day
and at a specific location is ca. 50 %, with a mean precipita-
tion of 2.5 mm d−1.

The entire catchment area of the Neckar was not mod-
eled by the considered rainfall–runoff models in this study.
Rather, the large headwater catchments were modeled only
where the times of the concentration were long enough
to allow for model runs on a daily resolution (i.e., if a
large precipitation event takes place, then the ensuing peak
in discharge is observed at the next time step). The Enz,
Kocher and Jagst, with catchment areas of 1656, 1943, and
1820 km2, respectively, were studied. Other reasons for the
selection of these catchments were that they are relatively in-
tact compared to the main river, which is modified for trans-
portation, and also the fact the effects of catchment bound-
aries (e.g., exact boundary line and exchanges with neighbor-
ing catchments) vanish as the size becomes larger.

3 Model input data preparation

Point meteorological data time series (daily precipitation and
temperature) were downloaded from the Deutscher Wetter
Dienst (DWD; German Weather Service) open-access portal

Figure 2. Comparison of elevation distributions of observation lo-
cations (red) and the whole simulation grid (blue) using the Shuttle
Radar Topography Mission (SRTM) 90 m grid for the study area.

(DWD, 2019). The daily discharge time series was down-
loaded from the open-access portal of the Landesanstalt
für Umwelt Baden-Württemberg (LUBW; Environmental
Agency of the Federal State of Baden-Württemberg; LUBW,
2020). The considered time period is from 1991 to 2015.
Furthermore, the precipitation gauges used in this study are
evenly distributed across the catchment, even at high ele-
vations (Fig. 2). This is very important because one of the
cited causes of precipitation volumes (e.g., Yang et al., 1999;
Legates and Willmott, 1990; Neff, 1977) is the smaller den-
sity of gauges at higher elevations. It is also important to note
that effects of elevation on daily precipitation are negligible
(Bárdossy and Pegram, 2013).

3.1 Precipitation interpolation using various gauge
densities

To demonstrate the effects of various gauge densities on the
peak flows of the models, time series of the existing precipi-
tation network for the time period of 1991–2015 were taken.
There were a total of 343 gauges. Only a subset of these was
active at any given time step, as old stations were decommis-
sioned and new ones were commissioned. Out of the total,
random samples sized 10, 25, 50, and 100, 150 gauge time
series were selected, and gridded precipitation was interpo-
lated using these for each catchment that was subsequently
lumped into a single value for each time step. This was
done 100 times. For comparison, the same was done by us-
ing all the gauges. Furthermore, two interpolation schemes,
namely nearest neighbor (NN) and ordinary kriging (OK),
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were used to show that the problem was not interpolation
scheme dependent. A stable variogram fitting method that
was described in Bárdossy et al. (2021) was used for OK.

3.2 Reference precipitation

In the previous case, precipitation interpolations were not
compared to reality, as one cannot not know what the real
precipitation was at locations with no stations. To obtain a
complete coverage of rainfall, simulated precipitation fields
were considered.

A realistic virtual dataset was created to investigate the ef-
fect of the precipitation observation density instead of using
interpolated precipitation. For this purpose, a 25-year-long
daily precipitation dataset corresponding to the time period
of 1991–2015 was used. This dataset contains gridded pre-
cipitation on a 147×130 km grid with 1 km resolution. It was
created so that the precipitation amounts were the same as the
observed precipitation at the locations of the weather service
observation stations. Additionally, the empirical distribution
function of the entire field for any selected day is the same as
that of the observations, and its spatial variability (measured
as the variogram) is the same as the observed. This precipi-
tation is considered to be reality. It is called the reference or
reconstructed precipitation throughout this text. Full details
of the procedure are described in Bárdossy et al. (2022). To
summarize the idea of the said study, consider the problem of
inverse modeling in which a physically based rainfall–runoff
model is set up for a catchment. Daily fields of interpolated
precipitation are fed to it, among other inputs. The model
hydrograph is computed. It should come as no surprise that
the model and observed runoff do not match. Assume that all
the errors in the model hydrograph are due to precipitation
only. Now the question to be answered is as follows: what
precipitation will result in a hydrograph that has very little
to no error compared to the observed? To find the answer,
new realizations of precipitation that are constrained to have
precipitation values that are exactly the same as those at the
observation locations, along with the same correlation func-
tion for any given time step in space, are needed. The time
step with a large error is selected, and precipitation fields for
the about 10 time steps before this are simulated and fed to
the model as new inputs. The resulting error is checked. If
it reduces, then the new precipitation fields replace the old
ones as observed. If not, then they are rejected, and new ones
are simulated and tested. This procedure is repeated up to the
point where the model runoff error stops improving. Next,
another time step is selected that is far away (more than 10
time steps) from the one rectified before, and the same pro-
cedure is repeated for that one. In this way, all the time steps
are treated and a new time series of precipitation fields is
obtained that has significantly fewer errors compared to the
case when interpolated precipitation is used.

3.3 Precipitation interpolation using the reference

To demonstrate the effects of the sparse sampling of data and
the resulting model runoff error, the following method was
used.
N number of points were sampled from the reference grid.

A time series for each point (1× 1 km cell) was then ex-
tracted and taken as if it were an observed time series. Care
was taken to sample points such that the density was nearly
uniform over the study area. N was varied to obtain a given
amount of gauge density. Here, densities of 1 in 750, 400,
200, and 130 km2 were used. These correspond to 25, 50,
100, and 150 cells out of the 19 110, respectively. Labels of
the form MN are used to refer to these in the figures, where
M is a suffix to signify interpolation, and N being the num-
ber of points used to create the interpolation. For reference,
Germany has around 2000 active daily precipitation stations
for an area of 360 000 km2, which is about one station per
180 km2. The random sampling was performed 10 times for
each N in order to see the effects of different configurations
later on in the analysis of the results.

In this way, many time series were sampled from the ref-
erence for various gauge densities. From here on, the same
procedure was applied that is normally used in practice (i.e.,
spatial interpolation). To keep things simple, the OK method
was used to interpolate fields on the same spatial resolution
as the reference at each time step. The use of OK is arbitrary.
One could just as well use any preferred method. The use of
other methods that interpolate in space will not help much, as
all of them tend to result in fields that have reduced variance
as compared to the variance of the observed values. More-
over, it is also very unlikely (but possible in theory) that an
interpolation scheme predicts an extreme at locations where
no measurements were made.

3.4 Temperature and potential evapotranspiration

External drift kriging (EDK; Ahmed and De Marsily, 1987)
was used to interpolate the daily observed minimum, mean,
and maximum temperature for all cells at a resolution sim-
ilar to that of the precipitation with resampled elevation
from the Shuttle Radar Topography Mission (SRTM; Farr
et al., 2007) dataset as the drift. For potential evapotranspira-
tion (PET), the Hargreaves–Samani (Hargreaves and Samani,
1982) equation was used with the interpolated temperature
data at each cell as input. It was assumed that temperature
and potential evapotranspiration are much more continuous
in space as compared to precipitation, which behaves as a
semi-Markov process in space–time that has a much larger
effect on the hydrograph in the short term. To clarify that the
role of temperature and PET is not very important while con-
sidering peaks, consider the following: peaks are a result of
large-scale precipitation. It could be due to continuous pre-
cipitation that is not very intense but persists longer in time
or an intense event of a smaller duration. Long precipita-

Hydrol. Earth Syst. Sci., 27, 1987–2000, 2023 https://doi.org/10.5194/hess-27-1987-2023



A. Bárdossy et al.: Peak flow underestimation 1991

tion events result in very little sunlight and therefore little
evapotranspiration. What is the effect of 2 mm of evapotran-
spiration on a day where it rained 50 mm? An intense event
will result in the saturation of the soil and increased overland
flow, which is again not enough time for evapotranspiration
to have any significant impact. The only time when tempera-
ture may have a considerable effect is when it becomes very
low, a large snow event takes place for many days, and then
the temperature suddenly rises rather quickly in the coming
days (it is very rare). For example, such an event that is on
record in the study area took place in 1882. This was also
investigated previously in Bárdossy et al. (2020). Even then,
the effect of temperature is modeled to a very good extent by
the interpolation, due to its nature in space–time.

4 Model setup

Two rainfall–runoff models, namely SHETRAN (Ewen et al.,
2000) and HBV (Bergström, 1992), were considered in this
study. The same gridded inputs were used for both at a spa-
tial resolution of 1×1 km and at a daily temporal resolution.
Except for precipitation, all other inputs remained the same
during all the experiments. A description of the model used
and the setup specific to each is discussed in the following
two subsections.

4.1 SHETRAN

SHETRAN is a physically based distributed hydrological
model which simulates the major flows (including subsur-
face) and their interactions on a fine spatial grid (Ewen et al.,
2000). It includes the components for vegetation interception
and transpiration, overland flow, variably saturated subsur-
face flow and channel–aquifer interactions. The correspond-
ing partial differential equations are solved using a finite dif-
ference approximation. The model parameters were not cali-
brated. Instead, available data, such as the elevation, soil, and
land use maps were used to estimate the model parameters at
a 1× 1 km spatial resolution (Lewis et al., 2018; Birkinshaw
et al., 2010). It was considered to be a theoretically correct
transformation of rainfall to runoff. In this way, combined
with the reference precipitation, a realistic virtual reality was
created in which the effect of different sampling densities
could be investigated. Same SHETRAN settings were used
for the various precipitation interpolations. Furthermore, the
model and settings are the same as those in Bárdossy et al.
(2022), which the readers are encouraged to read before pro-
ceeding further.

4.2 HBV

HBV is one of the most widely used models that needs no
introduction. It requires very little input data (i.e., precipi-
tation, temperature, and potential evapotranspiration). Each
grid cell of HBV was assumed to be a completely indepen-

dent unit. All cells shared the same parameters, and only the
inputs were different. The runoff produced by all cells was
summed up at the end to produce the final simulated dis-
charge value for each time step. It was calibrated for the
reference precipitation and each of the precipitation inter-
polation steps. Differential evolution (DE; Storn and Price,
1997) was used to find the best parameter vector. It is one
of the genetic-type optimization schemes to find the global
optimum by updating a given sample of parameter vectors
successively by mixing three in a specific manner. A popula-
tion size of 400 was used to find the global optimum. Overall,
it needed 150 to 200 iterations to converge for 11 parameters.
In total, 50 % Nash–Sutcliffe (NS; Nash and Sutcliffe, 1970)
and 50 % NS using the natural logarithm (Ln-NS) was used
as the objective function for calibration. Ln-NS was chosen
because NS alone concentrates too much on the peak flows
during calibration and disregards almost 95 % of the remain-
ing flows. Ln-NS helps to mitigate this flaw to some degree
but not completely.

5 Results

Before showing the results, some terms specific to the fol-
lowing discussion are defined first. They are put here for the
readers’ convenience.

1. The term reference precipitation refers to the recon-
structed precipitation that is taken as if it were the obser-
vation. The term reference model refers to SHETRAN,
with the reference precipitation as input and the result-
ing discharge of this setup is the reference discharge.

2. The term interpolated discharge refers to the discharge
of SHETRAN or HBV with interpolated precipitation
as input. The model is mentioned specifically for this
purpose. The term subsampling refers to extraction of
the time series of a subset of points from the entire grid.

3. The term model performance refers to the value of
the objective function whose maximum, and optimum,
value is 1.0; anything less is a poorer performance. The
performance of the reference discharge is 1.

4. Furthermore, the terms discharge and runoff are used
interchangeably. They both refer to the volume of water
produced by a catchment per unit of time, which is cu-
bic meters per second in this study. The terms observa-
tion station, gauge, and station are used interchangeably.
These refer to the meteorological/discharge observation
stations.

5.1 Metrics used for evaluation

To compare the change in precipitation or model runoff, scat-
terplots of the reference values on the horizontal versus their
corresponding values after interpolation on the vertical scale
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are shown. Each point represents the lumped precipitation for
all the cells (i.e., mean of all the cells per time step).

The largest five aerially lumped values for precipitation in
the reference and the values at the corresponding time steps
in interpolation are compared by showing them as a per-
centage of the reference. This produces a number of points
that is the product of the number of interpolations and the
considered number of events. For comparing discharge, the
five largest values in the reference discharge are compared
against the values at the same time steps using interpolated
discharge. This results in five points per interpolation. Violin
plots are used to show these points as densities.

Furthermore, figures comparing a high discharge event us-
ing all the interpolations are shown at the end of each sub-
section, wherever relevant. Tables summarizing the over- and
underestimations as percentages relative to the reference are
shown at the end of each subsection.

5.2 Comparison of interpolations using fewer vs. all
gauges

A comparison of the depth of the largest five precipitation
events, using various numbers of gauges taken from the en-
tire network, are shown in Figs. 3 and 4 for Enz. These are
normalized with respect to the values computed using the en-
tire network (343 gauges). There are many cases in which
the fewer gauge interpolations have larger values than the
ones making use of the entire network. However, the more
important point to notice is the bias. By using a lower num-
ber of gauges, an underestimation of the largest precipitation
events is more likely. NN exhibits a larger variance in terms
of under- and overestimations compared to OK. Using more
gauges shows that the deviations reduce significantly. An-
other aspect that should be kept in mind is that here the in-
terpolations are compared to an interpolation. Even by using
all of the gauges, there is still a very high chance of miss-
ing the absolute maximum precipitation at a given time step.
Keeping this in mind, one should be aware that the runoff
predicted by a model using this smoothed precipitation with
all the gauges will still produce, on average, smaller peaks.
This will become clearer from the results in the next sec-
tions, where the reference precipitation is used. Tables 1 and
2 summarize the cases with under- and overestimations, us-
ing various numbers of gauges with respect to using all of
them for interpolation for the three catchments, using NN
and OK, respectively.

5.3 Effects of subsampling from reference on
precipitation

Figure 5 shows an exemplary event with very high daily pre-
cipitation for the reference and various interpolation cases.
For the lowest number of gauges, the field appears to be very
smooth and has a smaller variance compared to the field with
the most stations which is much closer to the reference.

Figure 3. Precipitation bias comparison of the top five largest values
due to using fewer points against an interpolation that uses all of the
points using NN.

Figure 4. Precipitation bias comparison of the top five largest values
due to using fewer points against an interpolation that uses all of the
points using OK.

In Fig. 6, the scatterplot of the lumped reference against
one of the lumped interpolation values for all time steps for
Kocher is shown. Here, it is interesting to notice that, over-
all, the larger the value in reference, the more it is reduced
by the interpolation. On the other hand, the interpolation in-
creases the magnitude of the smaller values. Events in the
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Table 1. Relative percentages of under- and overestimations of the
top five precipitation events using various gauge densities (columns)
with respect to the top five values using interpolation with all of
the gauges for the three considered catchments (rows) using NN.
The values are of the format of the percentage of underestimations
(below 97.5 %), within a threshold of ±2.5 %, and overestimations
(above 102.5 %) with respect to the interpolation using all of the
gauges. For example, 60-09-31 in the first row and first column
means that, out of the 100 interpolations (with five events per inter-
polation) using 10 gauges for Enz, 60 % of the events were below
97.5 %, 9 % were within 97.5 % and 102.5 %, and 31 % were above
102.5 % of the top five events using the interpolation with all of the
343 gauges.

10 25 50 100 150

Enz 60-09-31 51-16-33 45-26-29 35-41-24 25-52-23
Kocher 55-13-32 49-20-31 40-28-32 32-38-30 22-53-25
Jagst 52-15-33 48-20-32 40-28-32 32-36-32 25-53-22

Table 2. Under- and overestimation percentages of the top five pre-
cipitation events using OK. The caption of Table 1 explains how to
interpret the numbers here.

10 25 50 100 150

Enz 66-09-25 56-18-26 50-29-21 36-43-21 24-56-20
Kocher 61-15-24 62-17-21 52-25-23 35-42-23 20-57-22
Jagst 60-12-28 57-20-23 50-29-21 39-40-22 24-60-15

mid-range values are underestimated by a significant mar-
gin. Most points are below the ideal line. Consider the sub-
sequent mass balance problems that could arise from such a
consistent bias. In the long term, one would adjust the model
to have lower evapotranspiration. In the short term, the peak
flows would almost always be underestimated. It is important
to keep in mind that high discharge values are the result of a
threshold process in the catchment where the water moves in
larger volumes towards the stream once the soil saturates or
when the infiltration cannot keep up with the rainfall/melt in-
tensity. To match the peaks in such scenarios, it is important
to obtain the correct estimates of precipitation.

Figure 7 shows the relative change in the largest five peak
precipitation values. These were computed by dividing the
interpolated precipitation by the reference at the time steps of
the top five events. A consistent bias (i.e., underestimation)
is clear, especially for the coarsest interpolation (25 points).
Such a bias appears small, but consider the extra volume over
a 1000 km2 catchment that is not intercepted by the soil. An-
other interesting point to note is that, for the other interpola-
tions, there are some overestimations as well. All the relative
under- and overestimations for the three catchments with var-
ious densities are summarized in Table 3.

Figure 5. Comparison of precipitation interpolations for a time step
with high precipitation with the reference.

Figure 6. Scatter of reference and lumped interpolated precipitation
for one catchment.

5.4 Effects of subsampling from reference on discharge
of SHETRAN

Similar to the precipitation, systematic bias in model runoff
was investigated next. Figure 8 shows the resulting runoff by
using the same precipitation (Fig. 6) as input to SHETRAN.
What is immediately clear is that there are almost no over-
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Figure 7. Precipitation bias comparison of various interpolations
with respect to the reference for the top five largest values.

Table 3. Percentages of under- and overestimations of the top five
precipitation events using various gauge densities (columns) with
respect to the top five values using reference precipitation for the
three considered catchments (rows). The values are of the format of
the percentage of underestimations (below 97.5 %), within a thresh-
old of ±2.5 %, and overestimations (above 102.5 %) with respect
to the reference precipitation. For example, 31-44-24 in the sec-
ond row and last column means that, out of the 10 interpolations
(with five events per interpolation) using 150 points for Kocher,
31 % of the events were below 97.5 %, 44 % were within 97.5 %
and 102.5 %, and 24 % were above 102.5 % of the top five events
using the reference precipitation.

M025 M050 M100 M150

Enz 74-20-06 60-20-20 45-38-18 44-47-09
Kocher 80-06-14 60-18-22 50-15-35 31-44-24
Jagst 84-04-12 42-24-34 35-35-30 22-53-24

estimations of discharge values when using interpolated pre-
cipitation. The largest peak is reduced by almost 50 %.

Looking at Fig. 9, the mean of the largest five peaks is re-
duced significantly while using the least number of points for
Kocher. The other point to note is that the peaks drop on aver-
age for other interpolations (except for the last one), which is
much more compared to the reduction in precipitation. To see
the effects more in detail, Figs. 10 and 11 show hydrographs
obtained using various gauging densities for two events. It is
very clear that, as the gauging density rises, the underestima-
tion decreases proportionally, and the hydrographs become
similar. All the under- and overestimations are summarized
in the Table 4 for all the catchments.

Figure 8. Scatter of discharge using reference and interpolated pre-
cipitation for one catchment using SHETRAN.

Figure 9. Discharge bias comparison of various interpolations
with respect to the reference for the top five largest values using
SHETRAN.

5.5 Effects of subsampling from reference on discharge
of HBV

While observing the scatter of the reference and interpolated
precipitation discharge in Fig. 12, HBV shows a different be-
havior compared to SHETRAN. Overestimations from low
to high flows exist, except for the largest high flows which
are underestimated as well, which, again, is not as much as
that by SHETRAN. This is due to the recalibration, where
the new parameters compensate for the missing precipitation
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Figure 10. Event hydrograph comparison for various gauging den-
sities using SHETRAN.

Figure 11. Event hydrograph comparison for various gauging den-
sities using SHETRAN.

by the decrease in evapotranspiration. This aspect will be in-
vestigated thoroughly in future research.

Figure 13 shows the scaling of the five highest peaks com-
pared to the reference discharge. Here, a similar reduction
for the least number of stations can be seen. Even for the
highest number of stations, the discharges are still underes-
timated. This signifies that even a distributed HBV with the
full freedom to readjust its parameters cannot fully mimic the
dynamics of the flow produced by SHETRAN. Hydrographs
for the same events shown in the previous section for HBV
are shown in Figs. 14 and 15. It is interesting to note that
the first event is overestimated by all the interpolations and
that the hydrographs become similar to the gauging density
increases. The second event is estimated better as the gaug-

Table 4. Percentages of under- and overestimations of the top five
discharge events using various gauge densities (columns) with re-
spect to the top five values using reference discharge for the three
considered catchments (rows) using SHETRAN. The values are of
the format of the percentage of underestimations (below 97.5 %),
within a threshold of ±2.5 %, and overestimations (above 102.5 %)
with respect to the reference discharge. For example, 38-38-24 in
the third row and last column means that, out of the 10 interpola-
tions (with five events per interpolation) using 150 points for Jagst,
38 % of the events were below 38 %, 38 % were within 97.5 % and
102.5 %, and 24 % were above 102.5 % of the top five events using
the reference discharge.

M025 M050 M100 M150

Enz 80-02-18 78-06-16 60-28-12 49-27-24
Kocher 91-04-04 84-10-06 56-24-20 27-49-24
Jagst 76-04-20 62-18-20 56-28-16 38-38-24

Figure 12. Scatter of discharge using reference and interpolated
precipitation for one catchment using HBV.

ing density increases. All the under- and overestimations are
summarized in the Table 5 for all the catchments.

5.6 Effects of removing subscale variability in
precipitation on SHETRAN discharge

The effects of using lumped precipitation on the resulting dis-
charge (i.e., mean precipitation value at each time step for
all cells) were also investigated. The aim was to see the ef-
fects of subscale variability on runoff. While considering 10
largest peaks per catchment for the entire time period, the
NS efficiencies of these dropped to 0.77, 0.78, and 0.90 for
Enz, Kocher, and Jagst respectively. Almost all peaks were
reduced in their magnitudes to 84 %, 85 %, and 93 % with
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Figure 13. Discharge bias comparison of various interpolations
with respect to the reference for the top five largest values using
HBV.

Figure 14. Event hydrograph comparison for various gauging den-
sities using HBV.

respect to the ones produced by the model on average with
the distributed reference precipitation. Most of the underes-
timation of the peaks was during winter, which is likely to
be snowmelt events. These are location/elevation dependent,
and it makes sense that using a lumped value of precipita-
tion results in incorrect melt behavior. Overall, the tendency
was towards reduced discharge when using lumped precipita-
tion. This tendency is likely to be much higher when a single
cell is used to represent the catchment (i.e., a fully lumped
model).

Figure 15. Event hydrograph comparison for various gauging den-
sities using HBV.

Table 5. Percentages of under- and overestimations of the top five
discharge events using various gauge densities (columns) with re-
spect to the top five values using reference discharge for the three
considered catchments (rows) using HBV. The caption of Table 4
explains how to interpret the numbers here.

M025 M050 M100 M150

Enz 78-04-18 78-04-18 78-02-20 71-00-29
Kocher 100-00-00 96-04-00 90-08-02 89-11-00
Jagst 74-06-20 78-00-22 80-00-20 80-00-20

5.7 Effects of measurement error in precipitation on
runoff

To test how the measurement error affects the model dis-
charge, precipitation with a measurement error of 10 % of
each observed value having a standard normal distribution
was used and then interpolated as well. There, it was ob-
served that the magnitude of the under- and overestimation
of the peaks becomes more variable as compared to the ref-
erence, but the bias remained the same as that compared to
using precipitation with no error. Table 6 shows the effects
for precipitation. Comparing these to Table 3, it can be con-
cluded that the trends are not significantly different for the
two cases. Similar to interpolations with no errors, the ones
with the largest number of samples have more values closer
to the reference precipitation. These results corroborate the
conclusions by Balin et al. (2010), Lee et al. (2010).

These results have an interesting consequence. If the
gauges have measurement errors that are normally dis-
tributed, then cheaper gauges, such as the Netatmo personal
weather stations, can be used to close the gap of missing pre-
cipitation due to sparse distribution networks. Studies, such
as those by de Vos et al. (2017), de Vos et al. (2019), and Bár-
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Table 6. Percentages of under- and overestimations of the top five
precipitation events using various gauge densities (columns) with
respect to the top five values using reference precipitation for the
three considered catchments (rows). The values are of the format of
the percentage of underestimations (below 97.5 %), within a thresh-
old of ±2.5 %, and overestimations (above 102.5 %) with respect
to the reference precipitation. For example, 38-34-28 in the sec-
ond row and last column means that, out of the 10 interpolations
(with five events per interpolation) using 150 points for Kocher,
38 % of the events were below 97.5 %, 34 % were within 97.5 %
and 102.5 %, and 28 % were above 102.5 % of the top five events
using the reference precipitation.

M025 M050 M100 M150

Enz 71-11-18 46-32-22 54-22-24 24-50-26
Kocher 80-09-11 66-18-16 46-34-20 38-34-28
Jagst 82-11-07 60-16-24 48-30-22 30-40-30

dossy et al. (2021), have shown that these alternative sources
of data can augment the existing networks, while still hav-
ing some drawbacks. The type of measurement error by these
can be further studied to validate their usefulness for rainfall–
runoff modeling.

6 Preliminary attempts to correct precipitation bias

Consistent bias was shown by the interpolated precipitation.
Consequently, rectifying it was attempted by transforming
the precipitation in such a manner that an improvement in
the discharge could be observed. Two different approaches
were tested. These are described as follows.

Static transform of the form

P ′(t)=

{
P(t) if P(t) < ψ,

β(P (t)−ψ)γ else,
(1)

where ψ is a threshold for transformation. β is a multiplier,
while γ is an exponent that may transform the values above
the threshold either linearly or nonlinearly.

Using transforms that neither consider the time of the year
nor the type of weather during a precipitation event are also
not optimal. For example, precipitation events in summer are
more intense, occur for a shorter period of time, are more
abrupt in nature, and cover smaller areas as compared to win-
ter, where the intensity is less, they occur for longer periods
of time, and cover much larger areas. Accounting for such
information while correcting for bias can be useful. Hence,
transformations based on weather circulation patterns (CPs)
were used to correct the precipitation bias based on the type
of event. An automatic CP classification method based on
fuzzy logic (Bárdossy et al., 2002) was used to find relevant
CPs that were dominant in the study area. The procedure as-
signs a type of weather to each time step based on the atmo-
spheric pressure in and around the catchment area and some

other constraints. The number of CPs that may be obtained is
arbitrary. For this study, five CPs were chosen based on previ-
ous experience and also to avoid too many free variables for
calibration. The transformation was then applied to precipi-
tation that took place only in the two CPs that were related
to the wettest weather. Contrary to a static transform based
on the precipitation magnitude only, independent of time or
weather, transforms are applied to each time step based on its
CP, which depends on the weather and time of the year. The
CP-based transform was as follows:

P ′(t)= βCP ·P(t)
γCP , (2)

where βCP is a CP-dependent multiplier, and γCP is a CP-
dependent exponent.

Finally, a simple experiment was set up to search for a con-
sistent pattern in the unknown terms of the transforms using
the lumped HBV. The method to find the optimal transfor-
mation involved applying the same transform to precipita-
tion values for all catchments while optimizing their model
parameters independently. The assumption is that the model
efficiencies will bring better performance compared to the
case where no precipitation correction was considered. This
leads to a problem of optimization in higher dimensions. For
the previous cases, the optimization of model parameters was
carried out for each catchment independently, which was an
11-dimensional problem. For the case of testing transforms,
the model parameters of the three catchments and the un-
known transform parameters have to be optimized simulta-
neously. This has to be the case, as optimizing transforms for
each catchment will lead to them being very different to the
neighbors. However, considering the behavior of precipita-
tion in space, it could be argued that each catchment should
be treated individually, but here the aim was to evaluate if an
overall correction was possible. Hence, 36 parameters for the
static transform case and 37 for the CP-based case had to be
optimized. For the case of the static transform, a slight im-
provement in the results was observed for all the catchments,
but no consistent patterns were observed, as was the case for
the CP-based case. Strangely, all transforms resulted in a re-
duction in the high precipitation values, which signifies that
the problem of the large precipitation underestimation can-
not be considered independently of the low and medium pre-
cipitation values. Similar approaches and more sophisticated
ones will be investigated in later research.

7 Summary and conclusions

An often-ignored problem of peak flow underestimation in
rainfall–runoff modeling by using interpolated data was in-
vestigated in this study. To do so, data were interpolated us-
ing different gauge densities. It was shown how interpolated
precipitation differs from reference precipitation. This may
come as no surprise, as interpolation produces smooth tran-
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sitions between two or more points that are very unlikely
to represent the actual state of the variable in space–time.
SHETRAN was used as a reference model that was assumed
to represent reality with reconstructed precipitation as input.
The other model was HBV. Runoff from SHETRAN was
chosen as a reference to avoid an inherent mismatch of mass
balances as compared to using the observed discharge series.
Simple approaches for bias correction were also presented,
where it was learned that the bias cannot be corrected using
simple static- or weather-dependent transforms of input pre-
cipitation.

We arrived at the following answers to the questions that
were stated at the beginning:

1. The sampling density of stations in and around a catch-
ment has profound effects on the quality of interpolated
precipitation. While it is obvious that more stations lead
to better estimates of precipitation, it was recognized
that a low density leads to a more frequent high under-
estimation of areal precipitation, especially for the large
events. Depending on the density, the worst case was
an underestimation of about 75 % of the precipitation
volume. This effect decreased as the sampling density
increased.

2. Both considered hydrological models showed a con-
sequent underestimation of peak flows. For example,
SHETRAN produced a peak that was about 50 % less
compared to the case when reference precipitation was
used. HBV did not show a comparatively similar loss, as
it was recalibrated each time for different precipitation,
but its performance deteriorated nonetheless.

3. Similar to previous studies, the effects of random mea-
surement errors in precipitation on model discharge
were not significant.

4. Using precipitation as input with no spatial variabil-
ity showed an overall loss in model performance, es-
pecially for the events that involved snowmelt.

Further conclusions that can be derived from the above-
mentioned results are as follows:

1. While modeling in hydrology, variables should be mod-
eled in space and time at the correct resolution to have
usable results. Disregarding spatial characteristics (in
terms of variance) leads to problems that cannot be
solved by any model or finer-resolution temporal data.

2. Cheaper networks may prove valuable where observa-
tions are sparse, if the condition that their measurement
errors are normally distributed is met.

3. Finally, the results and conclusions of this study must
be interpreted with the important fact in mind that mod-
els were used to demonstrate the effects of the under-

estimation of peaks due to sparse networks and inter-
polations. In reality, it could very well be that these ef-
fects become less dominant/observable due to any num-
ber of other reasons, such as incorrect temperature or
discharge readings, or due to using models that insuffi-
ciently represent all the processes the lead to river flows
or changes in it. Nevertheless, this study proves that the
main culprit behind the underestimation of peaks is the
observation network density, provided that a model is
used that has a description of the dominant rainfall–
runoff-producing mechanisms in it. The models used to
demonstrate the effects are circumstantial to a large ex-
tent, as the peak flow underestimation is due to the miss-
ing volume of input precipitation.

In future research, the following issues could be addressed:

1. The underestimation of intense precipitation due to in-
terpolation.

2. The sensitivity of other variables, such as temperature,
to interpolation and their effects on runoff, especially in
catchments with seasonal or permanent snow cover.

3. The magnitude of performance compensation that recal-
ibration introduces due to the missing precipitation.

4. The effects of using different density networks on cal-
ibrated model parameters and the regionalization of
model parameters.

5. The determination of the error distributions of cheaper
precipitation gauges to establish their usefulness in
rainfall–runoff modeling.
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