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Abstract. Statistical post-processing techniques are widely
used to reduce systematic biases and quantify forecast un-
certainty in numerical weather prediction (NWP). In this
study, we propose a method to correct the raw daily fore-
cast precipitation by combining large-scale circulation pat-
terns with local spatiotemporal information such as topog-
raphy and meteorological factors. Particularly, we first use
the self-organizing map (SOM) model to classify large-scale
circulation patterns for each season, then we build the convo-
lutional neural network (CNN) model to extract spatial infor-
mation (e.g., elevation, specific humidity, and mean sea level
pressure) and the long short-term memory network (LSTM)
model to extract time series (e.g., t , t − 1, t − 2), and we
finally correct local precipitation for each circulation pat-
tern separately. Furthermore, the proposed method (SOM-
CNN-LSTM) is compared with other benchmark methods
(i.e., CNN, LSTM, and CNN-LSTM) in the Huaihe River
basin with a lead time of 15 d from 2007 to 2021. The results
show that the proposed SOM-CNN-LSTM post-processing
method outperforms other benchmark methods for all lead
times and each season with the largest correlation coefficient
improvement (32.30 %) and root mean square error reduc-
tion (26.58 %). Moreover, the proposed method can effec-
tively capture the westward and northward movement of the
western Pacific subtropical high (WPSH), which impacts the
basin’s summer rain. The results illustrate that incorporating
large-scale circulation patterns with local spatiotemporal in-
formation is a feasible and effective post-processing method
to improve forecasting skills, which would benefit hydrolog-
ical forecasts and other applications.

1 Introduction

Precipitation is an important component of the global water
cycle and a fundamental driver of surface hydrological pro-
cesses, such as floods and droughts (Xu et al., 2022). In par-
ticular, floods generated by heavy precipitation can cause a
wide range of costly, disruptive, and dangerous consequences
(Herman and Schumacher, 2018). Accurate and reliable pre-
cipitation forecasts are vital for flood disaster warnings and
water resource management. As the dominant way of pre-
cipitation forecasting (Bauer et al., 2015), numerical weather
prediction (NWP) can provide forecast information within 2
weeks and the forecast skills continue to improve by about
1 d per decade.

However, due to the chaotic nature of the model dynamics
and multi-source deficiencies of the NWP models, such as
initial condition, boundary condition errors, and model struc-
tural errors, raw forecasts usually exhibit systematic and ran-
dom errors that are rapidly magnified in time (Vannitsem et
al., 2021; Gneiting and Raftery, 2005). In order to reduce
systematic biases and quantify forecast uncertainty, statis-
tical post-processing techniques are often employed, which
can be divided into parametric and nonparametric methods
statistically (Li et al., 2022b). Classical parametric methods
based on distribution assumptions include Bayesian model
averaging (BMA) (Raftery et al., 2005), ensemble model
output statistics (EMOS) (Scheuerer and Hamill, 2015), and
Bayesian joint probability (BJP) (Shrestha et al., 2015). Non-
parametric methods contain quantile regression (Bremnes,
2004), ensemble copula coupling (ECC) (Schefzik et al.,
2013), and the Schaake shuffle (SSH) (Clark et al., 2004),
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and the latter two methods can consider space–time variabil-
ity and re-establish the dependence structure.

Besides the above traditional methods, machine learning
(ML) methods, with the advantages of strong self-learning
ability and dealing with nonlinear problems, have been used
in statistical post-processing in recent years (Ghazvinian et
al., 2021; Zhang and Ye, 2021; Peng et al., 2020). Particu-
larly, these methods can calibrate the model by using a va-
riety of predictor-related characteristics as input variables.
Furthermore, the recent developments in deep learning, espe-
cially convolutional neural networks (CNNs), have enabled
it to be applied in the meteorological domain by taking into
account high-dimensional structured spatial data (Pan et al.,
2019; Veldkamp et al., 2021). For example, Li et al. (2022b)
adopted the CNN model to correct raw forecast precipita-
tion by considering multi-spatial information such as tem-
perature, total column water, mean sea level pressure, and
specific humidity.

Precipitation is not only influenced by large-scale circula-
tion systems (e.g., the western Pacific subtropical high and
the South Asian high) but also by local topography and me-
teorological elements (e.g., elevation, specific humidity, and
mean sea level pressure); their interaction together deter-
mines the location, intensity, and duration of precipitation
(Liu et al., 2016; Ning et al., 2017). For instance, the July
2021 extraordinary rainfall events in Henan (named the 21 ·7
extreme precipitation event) happened under an abnormally
strong northerly western Pacific subtropical high and the to-
pographic blocking effect from the Funiu and Taihang moun-
tains (Zhang et al., 2021, 2022). In addition, meteorological
information from a few days ago will have an impact on the
precipitation. However, the aforementioned post-processing
methods (e.g., BMA, EMOS, and BJP) usually do not effec-
tively incorporate large-scale circulation patterns with local
spatiotemporal information. The self-organizing map (SOM)
is a nonlinear cluster technique, which has been widely
used to identify large-scale circulation patterns and deter-
mine their possible effects on local-scale precipitation and
temperature (Horton et al., 2015; Loikith et al., 2017). The
CNN-LSTM model (where LSTM denotes long short-term
memory) can effectively combine the advantages of CNN in
processing spatial information and LSTM in processing time
series, and it has been applied in precipitation fusion (Wu
et al., 2020), soil moisture prediction (Li et al., 2021), and
flood prediction (Chen et al., 2022). In this study, we aim to
combine the SOM technique and CNN-LSTM model to cor-
rect the raw forecast precipitation and thus propose the SOM-
CNN-LSTM post-processing method. First, considering the
influence of large-scale circulation on local precipitation, we
use the SOM model to classify large-scale circulation pat-
terns in the target basin. Second, we build the CNN-LSTM
model to extract spatiotemporal information (e.g., elevation,
specific humidity, and mean sea level pressure) and correct
local precipitation for each circulation pattern separately.

This study mainly focuses on the following three ques-
tions: (1) what is the effectiveness of using the SOM model
for large-scale circulation classification, (2) will building
an SOM-CNN-LSTM model separately for each circulation
pattern improve the quality and usefulness of precipitation
forecasts, and (3) will using the CNN-LSTM model to ex-
tract spatiotemporal information enhance precipitation fore-
cast skills?

The rest of this paper is organized as follows. Section 2
describes the study area and datasets. Section 3 describes the
details of the SOM model and the CNN-LSTM model. Sec-
tions 4 and 5 present the results and discussion, respectively.
The conclusion of the current research is drawn in the last
section.

2 Study area and datasets

2.1 Study area

In this study, we choose the Huaihe River basin as the
research area. The Huaihe River basin (30◦55′–36◦20′ N,
111◦55′–121◦20′ E) is located in the east of China and has
an area of 270 000 km2, including two major water systems:
the Huaihe River and the Yishusi River (Fig. 1). Due to the
effect of complex circulation systems, the precipitation has
significant interannual differences in this area, and the annual
distribution is extremely uneven. The rainfall in the flood sea-
son (June to September) accounts for about 50 %–75 % of
the annual precipitation (700–1600 mm). The Huaihe River
basin is located at the boundary of the north and south cli-
mate, and the monsoon climate is very prone to heavy rains
or plum rains, which can cause floods. Therefore, an accu-
rate precipitation forecast is critical to decision-making and
disaster prevention (Liu et al., 2013).

2.2 Datasets

In this study, we choose the CN05.1 dataset as the standard
precipitation data. The CN05.1 dataset is constructed based
on over 2400 observing stations following the “anomaly ap-
proach”, which is a spatial resolution of 0.25◦× 0.25◦ (Wu
and Gao, 2013). We select the daily precipitation from 2007
to 2021 for calibrating and validating the forecast dataset.

The THORPEX Interactive Grand Global Ensemble
(TIGGE) database collects ensemble forecasts generated by
13 numerical weather prediction (NWP) centers (Bougeault
et al., 2010), such as the European Centre for Medium-Range
Weather Forecasts (ECMWF), the National Centers for En-
vironmental Prediction (NCEP), and the China Meteorologi-
cal Administration (CMA). ECMWF consists of one control
forecast and 50 perturbed forecasts generated by perturbed
initial conditions, with a spatial resolution of 0.5◦× 0.5◦.
Previous studies have compared the performance of differ-
ent TIGGE products and suggested that ECMWF outper-
forms other products in most cases (Hamill, 2012; Huang and
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Figure 1. Overview of the topography and rivers in the Huaihe River basin.

Luo, 2017; Li et al., 2022a). Therefore, in this study, we use
the ECMWF dataset and download a 51-member ensemble
forecast of precipitation for the lead time of 15 d initialized
at 00:00 UTC every day. We choose meteorological factors
and topography as predictors. Meteorological factors include
mean sea level pressure, U and V components of wind at
500/850/1000 hPa, 10 m U and V wind components, and
specific humidity at 500/850/1000 hPa. Among them, hu-
midity can reflect the water vapor availability, and sea level
pressure and wind components can reflect the moisture trans-
port (Li et al., 2020). We also use elevation to represent the
topography, which is downloaded from the Geospatial Data
Cloud of China and further extracted by ArcGIS software.
Considering that the ensemble means usually contain most
of the information in the ensemble forecast, we only use the
51-member mean for all predictors. The above predictors are
resampled to 0.25◦ with the bilinear interpolation technique.
Besides this, 500 hPa geopotential height anomalies with a
lead time of 15 d are selected to describe the large-scale cir-
culation patterns. Forecast precipitation, meteorological fac-
tors, and 500 hPa geopotential height are from the forecast
dataset of ECMWF and can be downloaded from the follow-
ing website: https://apps.ecmwf.int/datasets/data/tigge (last
access: 11 May 2023).

3 Methodology

Figure 2 presents a flowchart of the proposed SOM-CNN-
LSTM post-processing methodology for ECMWF forecast-
ing precipitation. First, we adopt the SOM model to get the
large-scale circulation patterns over the Huaihe River basin
for each lead time. Second, at each lead time, we build a
CNN-LSTM model for each circulation pattern separately
to correct local precipitation. Due to the significant seasonal
difference in ECMWF raw forecast precipitation skills, we
build statistical post-processing models for each season sep-
arately. Details about the SOM and CNN-LSTM models will
be presented in Sect. 3.1 and 3.2, respectively. Section 3.3
presents the experimental design and statistical metrics.

3.1 SOM model

The self-organizing map (SOM) is an unsupervised neural
network first introduced by Kohonen (1990) and makes no
a priori assumptions about the data, which is more practi-
cal and robust than principal component analysis (PCA) or
empirical orthogonal functions (EOFs) in circulation classi-
fication (Wang et al., 2019; Zhou et al., 2020). To represent
daily large-scale circulation patterns over the Huaihe River
basin, we use the daily 500 hPa geopotential height anoma-
lies over the domain 95–135◦ E, 12–53◦ N as input for the
SOM model, and the circulation pattern in each lead time is
different. The larger domain is selected to consider the influ-
ence of multiple circulation agents on precipitation (Zhou et
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Figure 2. The flowchart of the SOM-CNN-LSTM method. The 500 hPa-gha stands for the daily 500 hPa geopotential height anomalies,
1000− u stands for the U component of wind at 1000 hPa, 1000− sh stands for the specific humidity at 1000 hPa, and pressure stands for
mean sea level pressure, etc.

al., 2020). The 500 hPa geopotential height is chosen because
it provides valuable information for diagnosing weather con-
ditions in the low-level atmosphere. On the other hand, it
plays a central role in controlling synoptic dynamics (Ford
et al., 2015; Wang et al., 2022). The calculation formula of
500 hPa geopotential height normalized anomaly can be ex-
pressed as

〈Z〉 =
Z−Zmean

σZ
cosφ, (1)

where Z is 500 hPa geopotential height, Zmean is the mean
500 hPa geopotential height over the quarterly average of all
data, σZis the standard deviation, and φ is the latitude. The
cosine latitude (cosφ) is adopted to account for area differ-
ences across the grid points (Loikith et al., 2017; Mechem et
al., 2018).

The SOM nodes are the clustered large-scale circulation
patterns, which need to be determined before implementing
the SOM model. A fewer number of nodes in the SOM array
cannot capture specific circulation patterns while a greater
number of nodes will produce redundant circulation patterns
that are similar. Therefore, choosing the optimal SOM node
is critical. In this study, we have tested several SOM ar-
rays by quantization and topological errors, including 2× 2,
2× 3, 2× 4, and 3× 4 nodes, and we found that six distinc-
tive circulation patterns with a 2× 3 configuration can pro-
vide enough details for physical interpretation and satisfac-
torily describe the variations of the synoptic situations in the
Huaihe River basin. In this study, the SOM analysis is per-
formed mainly using the Python miniSOM library (Vettigli,
2021), and the corresponding optimal parameters are sum-
marized in Table 1.

Table 1. SOM optimal parameters in this study.

SOM optimal parameters Value

Sigma 0.5
Learning_rate 0.05
Neighborhood_function Gaussian
Random_seed 5
Train_batch 10000

3.2 CNN-LSTM model

CNN has the advantage of extracting distinctive spatial fea-
tures from images, and LSTM has the ability to deal with
temporal series data (Shen, 2018; LeCun et al., 2015). Con-
sidering that the precipitation is influenced by the surround-
ing topography and the weather state of the current day and
the previous days, we develop a spatiotemporal deep neural
network model by combining CNN and LSTM. We build the
model in the following steps:

1. Data preparation. Taking summer precipitation as an
example, first, each predictor is normalized to reduce
the influence of different dimensions by min–max nor-
malization. Second, we use the normalized data to con-
struct input arrays with dimensions of (508 · 1380)×
14×5×5×3, where 508 represents the number of pre-
cipitation grids in the basin, 1380 represents the num-
ber of summer days, 14 is the number of predictors
(Table 2), and 3 represents the time dimension (i.e., t ,
t − 1, and t − 2). For each grid, a 5× 5 sub-grid (about
125 km× 125 km) centered on it is extracted to fully
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consider the spatial information (Fig. S4). Third, in or-
der to build models separately for each circulation pat-
tern, we divide the input arrays into six groups based on
the SOM results.

2. CNN model construction. Convolutional neural net-
works (CNNs) have been widely used in image recog-
nition, object detection, and precipitation forecasting.
It can extract more abstract features from the original
image through a simple nonlinear model, avoiding the
complex feature extraction process. As shown in Fig. 2,
the CNN model includes an input layer with dimensions
of 14×5×5, two convolutional layers, and a flattening
layer. The convolution layer can extract informative lo-
cal features from the input layer, and the flattening layer
converts the matrix into a one-dimensional feature vec-
tor that is used as the input to the LSTM layer (Amini et
al., 2022). Among them, the kernel size of the first con-
volutional layer is set to 32×3×3, where 32 is the out-
put channel number, and 3× 3 is the size of the kernel.
To avoid overfitting and accelerate the training, batch
normalization is applied to convolution layers (Pan et
al., 2019).

3. LSTM model construction. The recurrent neural net-
work (RNN) is a kind of neural network for process-
ing sequence data, which can mine time series and se-
mantic information from data. As a special RNN model,
the long short-term memory network (LSTM) can over-
come the vanishing and exploding gradient problems
(Hochreiter and Schmidhuber, 1997). Besides this, the
interactive operation among the input gate, output gate,
and forget gate in LSTM enables the model to solve the
long-term dependency problem (Huang and Kuo, 2018).
As shown in Fig. 2, the LSTM model includes an input
layer where the data come from the output of the CNN,
a bidirectional LSTM layer with 16 hidden units, and a
fully connected layer. Considering the impact of previ-
ous meteorological information on the precipitation, the
input of the LSTM model not only includes the data of
the current day but also 2 d ago (i.e., t − 1 and t − 2).

We select the Python package PyTorch as the framework of
the above models and the NVIDIA A5000 GPU (graphics
processing unit) to accelerate model training. The hyperpa-
rameters of models, such as learning rate, epochs, and batch
size, are determined by the trial-and-error method. Further-
more, the above models are trained with the Adam optimiza-
tion algorithm (Kingma and Ba, 2014).

3.3 Experimental design and statistical metrics

To answer the three questions in the introduction, we com-
pare the SOM-CNN-LSTM method with three other bench-
mark methods including CNN, LSTM, and CNN-LSTM.
The design differences of the four methods are shown in Ta-

Table 2. The predictors in this study.

ID Variable name Abbreviation

1 Specific humidity (500 hPa) 500− sh
2 Specific humidity (850 hPa) 850− sh
3 Specific humidity (1000 hPa) 1000− sh
4 U component of wind (500 hPa) 500− u
5 U component of wind (850 hPa) 850− u
6 U component of wind (1000 hPa) 1000− u
7 V component of wind (500 hPa) 500− v
8 V component of wind (850 hPa) 850− v
9 V component of wind (1000 hPa) 1000− v
10 10 m U wind component surface− u
11 10 m V wind component surface− v
12 Surface pressure pressure
13 Elevation elevation
14 Total precipitation precipitation

Table 3. Experiment design of different methods.

Methods Circulation Spatial Temporal
patterns information information

SOM-CNN-LSTM Included Included Included
CNN Included Included Not included
LSTM Included Not included Included
CNN-LSTM Not included Included Included

ble 3. Among them, the CNN-LSTM method is used to il-
lustrate the effectiveness of circulation classification, while
the CNN and LSTM methods are used to illustrate the im-
portance of the incorporation of temporal and spatial infor-
mation. Besides this, the precipitation forecast skill continu-
ously decreases with increasing lead times, so we build the
post-processing method for each lead time separately. This
means that only for the SOM-CNN-LSTM method, we need
to build 15× 6× 4= 360 models, where 15 represents the
number of lead times, 6 represents the number of circula-
tion patterns, and 4 represents different seasons. Therefore,
to improve work efficiency, we first filter out the optimal
parameter combination for one model and then adjust other
model parameters based on that. In addition, each season has
different training samples (Table 4), and we use four-fold
cross-validation to calibrate and evaluate the model accu-
racy. For four-fold cross-validation, the 15 years of datasets
are randomly grouped into four groups, and one group of
datasets is selected as validation data, while the other groups
of datasets are used as the training data to fit the statisti-
cal post-processing models (i.e., SOM-CNN-LSTM, CNN,
LSTM, and CNN-LSTM). This step will be repeated four
times until all datasets are used for validation.

To evaluate the performance of the post-processing results,
three statistical metrics are selected, including root mean
square error (RMSE), correlation coefficient (CC), and rel-
ative bias (RB).
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Figure 3. Circulation patterns at the lead time of 1 d in the summer of 2007–2021. The blue bold line (5880 gpm) is the characteristic
position of the WPSH, the red rectangle represents the scope of the Huaihe River basin, the colored shading stands for the geopotential
height anomalies at 500 hPa, and the numbers for each circulation pattern are shown in the upper right corner.

Table 4. Training samples of different seasons.

Season Months Total Total Training
days grids samples

Spring Mar, Apr, May 1380 508 701 040
Summer Jun, Jul, Aug 1380 508 701 040
Autumn Sep, Oct, Nov 1365 508 693 420
Winter Dec, Jan, Feb 1354 508 687 832

RMSE=

√√√√√ n∑
i=1
(Pi −Oi)

2

n
(2)

CC=

n∑
i=1

(
Pi −P

)(
Oi −O

)
√

n∑
i=1

(
Pi −P

)2
×

√
n∑
i=1

(
Oi −O

)2 (3)

RB=

n∑
i=1
(Pi −Oi)

n∑
i=1
Oi

, (4)

where Pi andOi represent simulated and observed precipita-
tion at the ith point, respectively; P andO denote the average

simulated and observed precipitation, respectively; and n is
the number of samples.

4 Results

4.1 Linkages between large-scale circulation patterns
and precipitation

Figure 3 presents six large-scale circulation patterns at the
lead time of 1 d in the summer of 2007–2021. It can be seen
that the SOM model can well capture the key atmospheric
circulation of the western Pacific subtropical high (WPSH)
that affects the summer precipitation in eastern China (Zhou
et al., 2020). For the WPSH, pattern CP1 exceeds 30◦ N in
the eastern zone of the Huaihe River basin, pattern CP4 ex-
tends westward to 113◦ E and reaches the southeast zone of
the basin, while pattern CP3 is in the southeast zone of the
basin and is located around 20◦ N. From the perspective of
geopotential height anomalies, patterns CP2, CP3, CP5, and
CP6 have similar features, with negative (positive) 500 hPa
geopotential height anomalies to the north (south) of the
basin, while CP1 and CP4 have positive anomalies in the en-
tire basin.

To further characterize the relationship between circula-
tion patterns and precipitation, we calculate the percent of
each circulation pattern, the percent of rainy days, and the
percent of precipitation contribution, which can be seen in
Table 5. In general, CP1 and CP4 are frequent circulation
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Table 5. Contribution of different circulation patterns (CPs) to summer precipitation at a lead time of 1 d during 2007–2021.

Category CP1 CP2 CP3 CP4 CP5 CP6

CPs days 279 222 153 290 230 206
Precipitation days 214 149 61 220 162 117
Total precipitation (mm) 1685 1360 372 1795 1334 957
Percent of CPs days (%) 20.22 16.09 11.09 21.01 16.67 14.92
Percent of rainy days (%) 76.70 67.12 39.87 75.86 70.43 56.80
Percent of precipitation contribution (%) 22.46 18.13 4.96 23.92 17.78 12.75

Figure 4. Correlation coefficient (CC) of different methods over 1–15 lead days in four seasons.

patterns, and they contribute most to total summer precipi-
tation, exceeding 40 %. In contrast, CP3 has the lowest fre-
quency (11.09 %) with a small contribution to precipitation
(only 4.96 %). Besides this, precipitation is more likely to oc-
cur in CP1 (76.70 %) and CP4 (75.86 %), although it can oc-
cur in any circulation pattern. The above results show that the
change of WPSH (moving westward and expanding north-
ward) exerts considerable impacts on precipitation in the
Huaihe River basin. On the other hand, it also indirectly con-
firms the effectiveness of the circulation classification.

Considering that precipitation mainly occurs in summer,
we only take this season as an example to analyze the re-
sults of large-scale circulation patterns and its statistical re-
lationship with precipitation. The results of other seasons are
shown in Supplement.

4.2 Overall performance of different post-processing
methods

Figure 4 shows the values of CC for different post-
processing methods (i.e., SOM-CNN-LSTM, CNN, LSTM,
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Figure 5. Root mean square error (RMSE) of different methods over 1–15 lead days in four seasons.

CNN-LSTM) over 1–15 lead days during spring, summer,
autumn, and winter. Overall, for each lead day and season,
the four methods generally perform better than the raw fore-
casts. For example, the CC of the four methods ranges from
0.05 to 0.78, increased by an average of 18.69 % compared
with the raw forecasts. Particularly, the SOM-CNN-LSTM
method performs best, followed by CNN-LSTM, CNN, and
LSTM. For instance, compared with the raw forecasts, the
CC values of the SOM-CNN-LSTM method increase by
an average of 32.30 %, followed by 16.90 % (CNN-LSTM),
13.42 % (CNN), and 12.15 % (LSTM).

As shown in Fig. 5, the raw forecasts have a relatively
higher RMSE, and once the four post-processing methods
are applied, RMSE values of the four seasons are largely de-
creased. Once again, the SOM-CNN-LSTM method exhibits
preferable performance with the lowest RMSE. For example,
compared with the raw forecasts, the RMSE of the SOM-
CNN-LSTM method decreases by an average of 26.58 %,
followed by 23.64 % (CNN-LSTM), 22.16 % (CNN), and
21.86 % (LSTM).

The relative bias (RB) of the four post-processing methods
is shown in Fig. 6. Similar to the above results, the SOM-
CNN-LSTM method has the lowest RB. Taking summer pre-
cipitation as an example, the average RB of the SOM-CNN-
LSTM method is 1.83 %, CNN-LSTM is 2.12 %, CNN is
2.35 %, and the LSTM is 2.40 %, while the average RB of
the raw forecasts is highest, reaching 2.6 %, which further
illustrates that the SOM-CNN-LSTM method outperforms
other methods. Besides this, forecast precipitation is over-
estimated in spring, summer, and winter, and it is underesti-
mated in autumn. For example, for the optimal SOM-CNN-
LSTM method, precipitation is overestimated by 11.12 % in
spring, 1.83 % in summer, 11.42 % in winter, and underesti-
mated by 4.17 % in autumn. Particularly, the underestimation
of the SOM-CNN-LSTM method is especially visible during
the fourth lead time of summer and autumn, exceeding 15 %.

From the above results of three statistical metrics, the
proposed SOM-CNN-LSTM post-processing method outper-
forms the no-circulation-pattern method (CNN-LSTM), the
no-temporal information method (CNN), and the no-spatial
information method (LSTM) at all lead times and each sea-
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Figure 6. Relative bias (RB) of different methods over 1–15 lead days in 4 seasons.

son, indicating that incorporating large-scale circulation pat-
terns with local spatiotemporal information (e.g., elevation,
specific humidity, and mean sea level pressure) can improve
forecast skills.

We further adopt the CC, RMSE, and RB to compare the
correction skills of the optimal SOM-CNN-LSTM method in
different seasons and lead times. As shown in Fig. 7a and c,
the values of CC (RMSE) continuously decrease (increase)
with increasing lead times, which indicates the precipita-
tion forecast skill has deteriorated over time. Taking 0.4 as
the limit of CC, the effective lead time is 9 d in winter, 7 d
in spring and autumn, and only 3 d in summer. In addition,
winter forecast precipitation has the highest CC and lowest
RMSE, followed by spring, autumn, and summer. However,
winter precipitation has a larger RB compared with other
seasons (Fig. 7e); the reason is that a small deviation may
lead to a large relative bias. The above results indicate that
winter forecast precipitation performs better than other sea-
sons, especially in summer, which is consistent with previ-
ous studies (Buizza et al., 1999). As shown in Fig. 7b and d,
the improvement of CC (RMSE) is highest in summer with

an average of 0.09 (1.78), followed by 0.07 (0.60) in au-
tumn, 0.06 (0.60) in spring, and 0.05 (0.32) in winter, indicat-
ing that the SOM-CNN-LSTM method has better correction
skills in summer. The further comparison reveals that, while
the precipitation forecast performance in winter is superior,
the corrective ability is weaker. Although the summer pre-
cipitation forecast performance is not as good as the winter,
it displays superior correction skills.

Since the above results show that the SOM-CNN-LSTM
method has the best performance, we only use it to ana-
lyze the spatial correction skills. The first two columns in
Fig. 8 show the spatial distribution of CC for the SOM-CNN-
LSTM method and raw forecasts at the lead time of 1 d, re-
vealing the significant seasonal differences in CC. For in-
stance, for most regions of the Huaihe River basin, winter
raw forecasts have the highest CC (0.55–0.75), followed by
autumn (0.45–0.71), spring (0.42–0.68), and summer (0.40–
0.60), and this trend remains unchanged after SOM-CNN-
LSTM correction. The third column indicates that the CC
values exhibit improvement in all seasons for most regions
of the basin after bias correction. Particularly, most regions
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Figure 7. (a) CC, (c) RMSE, and (e) RB of SOM-CNN-LSTM method over 1–15 lead days during spring, summer, autumn, and winter. The
second column is the (b) improvement (IM) of CC, (d) RMSE, and (f) RB relative to raw forecasts.

in summer and the midlands in autumn show the better cor-
rection skill (Fig. 8f and i), whereas south and northwest
of the basin in spring generally show a poorer performance
(Fig. 8c), and winter has the lowest improvement of CC. In
addition, all seasons have relatively poor correction skills in
the northwest, which may be related to the higher topography
in the region. The spatial distribution of the RMSE is similar
to Fig. 8, which is shown in the Supplement (Fig. S5).

4.3 Evaluation of interannual and different
precipitation intensities in summer

4.3.1 Interannual assessment of different methods

In the previous section, we mainly focus on analyzing the
overall and spatial forecast skills of different post-processing
methods. The forecast skills of precipitation in the time di-
mension may be also different. Therefore, in this subsec-
tion, we take the summer precipitation as an example to ana-
lyze the annual forecast skills of different methods. Figure 9
presents the RB of four methods for each summer over 1–
15 lead days during 2007–2021. Overall, for each year and

most lead times, the SOM-CNN-LSTM method performs
best with the lowest RB, lowest RMSE (Fig. S7), and high-
est CC (Fig. S8). In addition, there are significant interannual
differences in the forecast performance. For example, precip-
itation of all four methods is significantly underestimated for
most lead times in 2018, 2019, and 2021, and it is overesti-
mated in 2009, 2011, and 2012. Furthermore, when the lead
time exceeds 12 d, forecast precipitation is overestimated in
most years, especially in 2013 and 2014. This significant in-
terannual difference may be related to large-scale circulation
configuration. Besides this, forecast precipitation has larger
biases in 2007, 2020, and 2021 compared with other years
(Fig. S7), and the CC is below 0.4 in most years when the
lead time exceeds 3 d (Fig. S8).

4.3.2 Performance under different precipitation
intensities

We further investigate the performance of four post-
processing methods at different intensities, namely 0–1, 1–
5, 5–10, 20–40, and ≥ 40 mm d−1, corresponding to no rain,
light rain, moderate rain, heavy rain, and violent rain, respec-
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Figure 8. Spatial distributions of the CC for the SOM-CNN-LSTM method and raw forecasts at a lead time of 1 d. The third column is the
improvement of CC in spring, summer, autumn and winter.

tively (Zambrano-Bigiarini et al., 2017). Considering that
precipitation mainly occurs in summer, we take the season
as an example for analysis. As shown in Fig. 10, the values
of RMSE for all post-processing methods are lower than raw
forecasts at different precipitation intensities, especially for
no rain, light rain, and moderate rain events, which indicates
that the four post-processing methods can reduce the bias and
significantly improve the forecast skills. Clearly, the SOM-
CNN-LSTM method achieves better scores than other meth-
ods in terms of the lowest RMSE. For example, compared
with the raw forecasts, the RMSE values of the SOM-CNN-
LSTM method in moderate rain events (Fig. 10c) decrease by
an average of 39.70 %, followed by 36.02 % (CNN-LSTM),
34.95 % (CNN), and 33.91 % (LSTM). For heavy and violent
rain events, the SOM-CNN-LSTM method has relatively bet-
ter performance under lead times ranging from 1 to 7 d, with
the RMSE decreasing by 14.85 % and 3.05 %, respectively,
whereas the advantage is no longer obvious when the lead
time exceeds 7 d; the values of RMSE only decrease by 5.4 %
and 2.34 %, respectively. We can also get the similar conclu-
sion from the CC and RB (Figs. S9 and S10). The reason is
that the accuracy of forecast skills decreases with increasing

lead times, and on the other hand, few violent rain events can-
not provide enough training samples for deep learning mod-
els. In addition, there is a large RB between for both no rain
and light rain (Fig. S9), which may be due to a small devia-
tion leading to a large relative bias.

5 Discussion

Raw precipitation forecasts usually exhibit systematic and
random errors due to the initial condition, boundary con-
dition errors, and model structural errors from NWP. Prior
work has documented the effectiveness of statistical post-
processing techniques in reducing these biases and im-
proving the accuracy of NWP. For instance, Scheuerer
and Hamill (2015) presented a parametric post-processing
method by fitting censored, shifted gamma distributions to
access the conditional distribution of observed precipita-
tion, which can significantly improve forecast skills. Particu-
larly, for the Huaihe River basin, Tao et al. (2014) adopted
the ensemble pre-processor (EPP) method to calibrate the
TIGGE multi-model ensemble forecast precipitation, and Li
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Figure 9. RB of different methods for each summer over 1–15 lead days from 2007 to 2021. The asterisk (∗) indicates the best method with
the lowest RB for each lead time.

et al. (2022b) adopted the CNN model to correct raw fore-
cast precipitation by considering multi-spatial information.
Although the above results show that post-processed precip-
itation forecasts have substantial improvement over the raw
forecasts, these traditional post-processing methods overlook
the influence of large-scale circulations and spatiotemporal
information on precipitation. To overcome the problem, we
propose the SOM-CNN-LSTM post-processing method. We
compare the method with other benchmarks, including CNN,
LSTM, and CNN-LSTM methods. The findings of this re-
search are as follows.

Firstly, the SOM model can well capture the westward
and northward movement of the WPSH, the primary cir-
culation system influencing summer precipitation in eastern
China, suggesting the effectiveness of circulation classifica-
tion using SOM. The SOM-CNN-LSTM method performs
better than the CNN-LSTM method in terms of three statis-
tical metrics, indicating the effectiveness of considering the
large-scale circulation patterns to correct the forecast precip-

itation. Secondly, the SOM-CNN-LSTM method performs
better than CNN and LSTM methods, which indicates that
considering both temporal and spatial information can im-
prove forecast skills.

There are a growing number of deep learning models for
statistical post-processing of numerical weather prediction,
such as CNN (Pan et al., 2019) and ConvLSTM (Shi et al.,
2015). The highlight of our work is the effective combination
of the advantages of CNN for spatial data and LSTM for time
series. On the other hand, through circulation classification,
the effective information of the large-scale circulation pattern
(i.e., westward and northward movement of the WPSH) is
subtly integrated into the deep learning model.

However, some limitations still need to be further stud-
ied. Firstly, we primarily use 500 hPa geopotential height
for circulation classification: more circulation variables such
as column-integrated moisture fluxes (Zhang et al., 2022),
sea level pressure (Loikith et al., 2017), and vertical ve-
locity (Schlef et al., 2019) can also be used to represent
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Figure 10. RMSE of different methods over 1–15 lead days in summer at different intensities of (a) no rain, (b) light rain, (c) moderate rain,
(d) heavy rain, and (e) violent rain.

the large-scale circulation patterns. Particularly, persistence
and/or transitioning of circulation patterns may influence
the local precipitation, which can be incorporated into the
post-processing frame (Roller et al., 2016). Secondly, the
SOM-CNN-LSTM method has relatively poor performance
in heavy and violent rain when the lead time exceeds 7 d,
which can be attributed to the limited violent rain samples
training the model. Therefore, more studies on how to im-
prove the forecast skills of violent rain should be carried out
(Chen and Wang, 2022; Li et al., 2018). Thirdly, the spa-
tiotemporal deep neural network can significantly improve
the precipitation forecast skills; however, as a black box
model, interpretability and understanding have been seen as
potential weaknesses (Guidotti et al., 2019; Reichstein et al.,
2019), meaning that we cannot understand how these pre-
dictors (e.g., elevation, specific humidity, and mean sea level
pressure) affect the precipitation process. It will be valuable
to consider interpretability in post-processing.

6 Conclusion

In this study, we propose the SOM-CNN-LSTM statistical
post-processing method that combines large-scale circula-
tion patterns with local spatiotemporal information to cor-
rect the raw ECMWF forecast precipitation over 1–15 lead
days in the Huaihe River basin from 2007 to 2021. The pro-
posed method is systematically evaluated with other bench-
mark methods (i.e., CNN, LSTM, and CNN-LSTM) in terms
of root mean square error, correlation coefficient, and relative
bias, and it is also evaluated from space-scale, timescale, and
intensity. The main conclusions of the study are as follows:

1. The SOM model can effectively classify the large-scale
circulation patterns over the Huaihe River basin. Par-
ticularly, the SOM can well capture the westward and
northward movement of the western pacific subtropi-
cal high, and the corresponding circulation patterns CP1
and CP4 contribute the most to the total summer precip-
itation, exceeding 40 %.
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2. The proposed SOM-CNN-LSTM post-processing
method outperforms the no-circulation-pattern method
(CNN-LSTM), the no-temporal information method
(CNN), and the no-spatial information method (LSTM)
at all lead times and each season, and the optimal
method has the largest correlation coefficient improve-
ment (32.30 %) and root mean square error reduction
(26.58 %). The results indicate incorporating large-
scale circulation patterns with local spatiotemporal
information can improve forecasting skills.

3. There are significant seasonal and interannual dif-
ferences in the forecast skills of precipitation. Win-
ter precipitation has better forecast skills than sum-
mer, whereas summer precipitation has better correc-
tion skills than winter. Summer precipitation is signif-
icantly underestimated in 2018, 2019, and 2021, and
it is overestimated in 2009, 2011, and 2012. Further-
more, when the lead time exceeds 12 d, forecast precipi-
tation is overestimated in most years, especially in 2013
and 2014.

4. The SOM-CNN-LSTM method also performs best for
different precipitation intensities. Particularly, for heavy
and violent rain events, the SOM-CNN-LSTM method
has relatively better performance under lead times rang-
ing from 1 to 7 d, whereas the advantage is no longer
obvious when the lead time exceeds 7 d, which can be
attributed to the limited precipitation samples for train-
ing the model.

In summary, this study provides a feasible and effective
post-processing method to improve precipitation forecasting
skills, which would benefit hydrological forecasts and other
applications.
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