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Abstract. The mechanism of radial dispersion is essential
for understanding reactive transport in the subsurface and for
estimating the aquifer parameters required in the optimiza-
tion design of remediation strategies. Many previous stud-
ies demonstrated that the injected solute firstly experienced a
mixing process in the injection wellbore, then entered a skin
zone after leaving the injection wellbore, and finally moved
into the aquifer through advective, diffusive, dispersive, and
chemical–biological–radiological processes. In this study, a
physically based new model and the associated analytical so-
lutions in the Laplace domain are developed by considering
the mixing effect, skin effect, scale effect, aquitard effect,
and media heterogeneity (in which the solute transport is de-
scribed in a mobile–immobile framework). This new model
is tested against a finite-element numerical model and experi-
mental data. The results demonstrate that the new model per-
forms better than previous models of radial dispersion in in-
terpreting the experimental data. To prioritize the influences
of different parameters on the breakthrough curves, a sensi-
tivity analysis is conducted. The results show that the model
is sensitive to the mobile porosity and wellbore volume, and
the sensitivity coefficient of the wellbore volume increases
with the well radius, while it decreases with increasing dis-
tance from the wellbore. The new model represents the most
recent advancement in radial dispersion study, incorporating

many essential processes not considered in previous investi-
gations.

1 Introduction

Radial dispersion refers to a process of reactive transport un-
der the radial flow condition. One unique feature of radial
dispersion (as compared to unilateral dispersion, where the
flow velocity is unilateral) is that the dispersive transport be-
comes progressively weaker when the radial distance from
the injection/pumping well becomes larger (or the radial flow
velocity becomes smaller), and thus the relative importance
of molecular diffusion (which is assumed to be constant) ver-
sus the dispersion becomes progressively more robust with a
more significant radial distance. The radial dispersion prob-
lem is both theoretically interesting and practically important
in many fields, like chemical engineering (Davis and Davis,
2002), environmental science (Reinhard et al., 1997; Chen
et al., 2016), and hydrogeology (Webster et al., 1970). Al-
though numerical modeling is probably inevitable and more
powerful than the analytical modeling in describing radial
dispersion, especially put forward for heterogeneous aquifers
with complex initial and boundary conditions, the numeri-
cal errors and computational cost are not always trivial is-
sues and have to be considered by the engineers. As an al-
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ternative, many analytical models have been developed for
radial dispersion around an injection well under rather sim-
plified conditions. Such analytical models can fulfill a host of
tasks, such as (1) prioritizing the importance of different con-
trolling parameters through a sensitivity analysis, (2) bench-
marking the numerical solutions to elucidate the possible nu-
merical errors such as numerical dispersion and artificial os-
cillation, which are notorious for advection-dominated trans-
port problems, and (3) providing a quick screening tool be-
fore implementing a full-scale comprehensive study.

Because of the benefits mentioned above, significant ef-
forts have been put forward over many decades in developing
advanced analytical models of radial dispersion. Some ex-
amples include the works of Hoopes and Harleman (1967),
Gelhar and Collins (1971), Tang and Babu (1979), Moench
and Ogata (1981), Chen (1985, 1986, 1991), Hsieh (1986),
Tang and Peaceman (1987), Yates (1988), Falade and
Brigham (1989), Novakowski (1992), Philip (1994), Vel-
ing (2001, 2011), Huang and Goltz (2006), Chen et
al. (2007, 2011, 2012, 2017), Gao et al. (2009a), Cihan and
Tyner (2011), Wang and Zhan (2013), Hsieh and Yeh (2014),
Zhou et al. (2017), Wang et al. (2018, 2020), Huang et
al. (2019), and Li et al. (2020). A general trend of such de-
velopments is to provide more robust models that can better
represent physical reality. However, despite the enormous ef-
forts to date, some significant pitfalls still exist and become
roadblocks to quick and accurate interpretation of observed
data in the experiments. A primary task of this research is
to eliminate such pitfalls, which are briefly illustrated in the
following.

A well–aquifer system with radial dispersion comprises a
wellbore, skin zone, and aquifer formation zone. The skin
zone refers to the disturbed region around the well caused
by drilling and construction practices or well completion
(Yeh and Chang, 2013; Chen et al., 2012; Li et al., 2019,
2020; Huang et al., 2019). It is spatially between the well
screen and the aquifer formation zone. Correspondingly, the
injected solute may experience three processes from the well-
bore to the aquifer formation zone.

Firstly, the injected solute goes through a mixing pro-
cess with native (or pre-injection) water in the wellbore at
the early injection stage, which is called the mixing effect.
Probably due to the small radius of the well, the mixing ef-
fect has been overlooked by almost all the analytical solu-
tions mentioned above except Novakowski (1992), Wang et
al. (2018), Shi et al. (2020), and Wang et al. (2020), e.g., ei-
ther by assuming that the well radius was infinitesimal or as-
suming that the solute concentration in the wellbore was the
same as the concentration of the injected solution (Hoopes
and Harleman, 1967; Veling, 2011; Zhou et al., 2017). Con-
sequently, the solutions developed without considering the
wellbore mixing effect may overestimate concentration val-
ues in both the wellbore and the aquifer (Novakowski, 1992;
Wang et al., 2018; Shi et al., 2020; Wang et al., 2020). The
reason is that the solute concentration in the wellbore is ini-

tially zero (when the aquifer is free of solute before the in-
jection) and then increases steadily until it is up to the maxi-
mum, which is equal to the concentration of the injected so-
lution.

Secondly, the solute enters the skin zone after leaving the
wellbore. Compared with the aquifer formation zone of in-
terest, the dimension of the skin zone is much smaller, e.g.,
ranging from 0.1 m to several meters, and it is ignored or in-
cluded in the wellbore. In other words, the effect of the skin
zone on radial dispersion (named the skin effect) was neg-
ligible. However, numerous previous studies demonstrated
that the existence of a skin zone might significantly alter the
mechanism of groundwater flow and solute transport around
a well (Chen et al., 2012; Hsieh and Yeh, 2014; Yeh and
Chang, 2013; Li et al., 2019, 2020). This is because the phys-
ical properties (such as permeability, porosity, or dispersiv-
ity) of the skin zone are often vastly different from their
counterparts in the formation zone. Previously, studies on
the skin effect mainly concentrated on the groundwater flow
process around the well, and they paid less attention to so-
lute transport processes. To date, few studies have considered
the skin effect among the abovementioned analytical models
on radial dispersion, such as Chen et al. (2012), Hsieh and
Yeh (2014), Huang et al. (2019), and Li et al. (2020). Chen et
al. (2012) proposed an analytical solution of solute transport
with the skin effect to investigate the influences of disper-
sivity on radial dispersion; soon after, Hsieh and Yeh (2014)
extended the model of Chen et al. (2012) by taking into ac-
count a third type (Robin) of condition. Huang et al. (2019)
demonstrated that the skin effect significantly influences ob-
served breakthrough curves (BTCs) for radially convergent
tracer tests. Recently, Li et al. (2020) developed an analyt-
ical model for radial reactive transport with the skin effect
to investigate the impacts of dispersivity, effective porosity,
and mass transfer coefficient in the skin zone on radial dis-
persion. The abovementioned studies demonstrated that the
skin effects are significant for radial dispersion.

Thirdly, the solute moves into the formation zone from
the skin zone by advective, diffusive, and dispersive pro-
cesses. Such processes have been widely described by the
traditional advection–dispersion equation (ADE) which is
based on Fick’s law; however, many recent studies demon-
strated that the ADE model mainly worked well for homo-
geneous (or nearly homogeneous) porous media. As for re-
active transport in heterogeneous media, the BTCs may ex-
hibit a host of non-Fickian characteristics, such as early ar-
rival and heavy tailing (Di Dato et al., 2017; Molinari et
al., 2015). Alternatively, many non-Fickian transport mod-
els have been developed, such as the multirate mass trans-
fer model (MRMT) (Le Borgne and Gouze, 2008; Hag-
gerty et al., 2001; Guo et al., 2020), the mobile–immobile
model (MIM) (van Genuchten and Wierenga, 1976; Zhou
et al., 2017; Wang et al., 2020), continuous-time random-
walk (CTRW) models (Dentz et al., 2015; Hansen et al.,
2016), fractional-derivative ADE (fADE) models (Soltan-
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pour Moghadam et al., 2022; Chen et al., 2017), a combi-
nation of MRMT and CTRW (Kang et al., 2015), and so on
(Zheng et al., 2019; Lu et al., 2018). Although the models of
MRMT, CTRW, and fADE perform well in modeling non-
Fickian transport, it is not easy to obtain the analytical solu-
tions of these models. Meanwhile, these theories are usually
not easy to apply when solving regional-scale transport prob-
lems, as pointed out in a recent study (Zheng et al., 2019).
MIM is an extension of ADE by considering both flowing
and stagnant regions in porous media and mass transfer be-
tween them (van Genuchten and Wierenga, 1976; Zhou et
al., 2017; Wang et al., 2020). Zhou et al. (2017) and Wang
et al. (2020) derived the MIM solutions of radial dispersion.
However, the skin effect and the scale effect were ignored
in their studies, which will be investigated in this study. Be-
sides the MRMT, MIM, CTRW, and fADE models, another
approach to representing the heterogeneity is to use a scale-
dependent dispersivity (or dispersion) in the ADE or MIM
models (Haddad et al., 2015; Gelhar et al., 1992). Gao et
al. (2009a) and Chen et al. (2007) discussed radial dispersion
and found that the scale-dependent dispersion effect was not
negligible. There is also experimental evidence for the scal-
ing of dispersion, mixing, and reaction (Leitão et al., 1996;
Edery et al., 2015).

The differences among the currently available analytical
solutions for radial dispersion have been reviewed and sum-
marized in Table 1. As one can see from this table, the mix-
ing effect in the wellbore was ignored in all of the models
except for Novakowski (1992), Wang et al. (2018, 2020),
and Shi et al. (2020). Only Chen et al. (2012), Hsieh and
Yeh (2014), Huang et al. (2019), and Li et al. (2020) took
the skin effect into account. The differences among the solu-
tions of Tang and Babu (1979), Moench and Ogata (1981),
Hsieh (1986), Tang and Peaceman (1987), Yates (1988), Ci-
han and Tyner (2011), and Chen et al. (2011) mainly consist
of the boundary conditions, source-injection types (instanta-
neous or continuous), and initial conditions.

In summary, no existing analytical model has ever con-
sidered the mixing, skin, scale, and media heterogeneity ef-
fects (which are described using MIM) simultaneously. Al-
though the numerical method is more powerful than the ana-
lytical method for problems with complex initial and bound-
ary conditions and heterogeneous aquifers of interest, numer-
ical errors could not be avoided easily for the MIM models
of concern here, such as numerical dispersion and numerical
oscillation issues (Zheng and Wang, 1999; Wang and Zhan,
2013). Meanwhile, the analytical solutions are usually com-
putationally more efficient than the numerical solutions and
can be easily coupled into optimization algorithms for prob-
lems related to parameter estimation (Neuman and Mishra,
2012). Therefore, a primary purpose of this study is to de-
velop such an analytical model. Furthermore, the accuracy
and robustness of the developed model will be tested against
a finite-element numerical simulation and experimental data.
Moreover, a sensitivity analysis will be conducted to prior-

itize the influences of various controlling parameters on the
newly developed radial dispersion reactive transport model.

2 Methods

2.1 Mathematical model of radial dispersion

An aquifer is assumed to be confined, homogeneous, hor-
izontally isotropic, have a constant thickness, and be fully
penetrated by a well from which the solute is injected. A
cylindrical coordinate system is established with the r axis
horizontal and the z axis vertically upward. The origin of the
coordinate system is located at the intersect of the well center
and the middle elevation of the aquifer. A schematic diagram
of the problem is available in Fig. S1 in the Supplement.

In this study, we mainly focused on developing analytical
solutions of radial dispersion with a Heaviside step source (or
step function for short hereinafter), as solutions of a variety
of injection scenarios can be easily obtained based on such
a step source solution, as shown in Eq. (S2), Eqs. (4a, b),
or Eqs. (5a, b). Assuming that tinj is the duration of the step
source, the solute source concentration (C0) is Cinj(t) when
time is smaller than tinj, while it is Ccha(t) when time is
greater than tinj, in which Cinj(t) and Ccha(t) represent the
solute concentrations (M L−3) in the wellbore before time
tinj and after time tinj, respectively. When Ccha(t)= 0 and
tinj approach zero but the total injected mass remains finite,
the model of the step source reduces to the model of the in-
stantaneous injection. Similarly, the model of the step source
becomes the model of the continuous injection source when
tinj becomes infinity.

Similar to Chen et al. (2012) and Hsieh and Yeh (2014),
a two-region (skin and formation) model of radial dispersion
is employed to describe the skin effect. In the skin zone, the
governing equations of radial dispersion are

θm1Rm1

∂Cm1

∂t
=
θm1

r

∂

∂r

(
rα1

∣∣va1

∣∣ ∂Cm1

∂r

)
− θm1va1

∂Cm1

∂r
−ω1

(
Cm1 −Cim1

)
− θm1µm1Cm1 , rw ≤ r ≤ rs, (1a)

θim1Rim1

∂Cim1

∂t
=ω1

(
Cm1 −Cim1

)
− θim1µim1Cim1 ,

rw ≤ r ≤ rs. (1b)

In the formation zone, one has

θm2Rm2

∂Cm2

∂t
=
θm2

r

∂

∂r

(
rα2

∣∣va2

∣∣ ∂Cm2

∂r

)
− θm2va2

∂Cm2

∂r
−ω2

(
Cm2 −Cim2

)
− θm2µm2Cm2 , r > rs, (1c)
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Table 1. Summary of the current models for the radial dispersion around the recharge well.

Authors Conceptual models GE ME SCE SKE Method

Hoopes and Harleman (1967) Confined aquifer ADE N N N Approximated solution
and finite-difference
solution

Gelhar and Collins (1971) Confined aquifer ADE N N N A boundary-layer
approximation

Tang and Babu (1979), Moench Confined aquifer ADE N N N Laplace transform
and Ogata (1981), Hsieh (1986),
Tang and Peaceman (1987),
Yates (1988), Cihan and Tyner
(2011), Chen et al. (2011)

Chen (1985, 1991) Leaky confined aquifer ADE N N N Laplace transform

Chen (1986) Fracture aquifer ADE N N N Laplace transform

Falade and Brigham (1989) Confined aquifer MIM N N N Laplace transform

Novakowski (1992) Leaky confined aquifer ADE Y N N Laplace transform

Philip (1994) Confined aquifer ADE N N N Finite-difference solution

Veling (2001, 2011), Chen et Confined aquifer ADE N N N Generalized Hankel
al. (2011) transform

Chen et al. (2007), Gao et al. Confined aquifer ADE N Y N Laplace transform
(2009a)

Chen et al. (2012), Hsieh and Confined aquifer ADE N N Y Laplace transform
Yeh (2014)

Wang and Zhan (2013) Leaky confined aquifer ADE N N N Laplace transform

Zhou et al. (2017) Fracture aquifer MIM N N N Laplace transform

Chen et al. (2017) Confined aquifer MIM N N N Laplace transform

Wang et al. (2018) Confined aquifer ADE Y N N Laplace transform and
Green’s function method

Huang et al. (2019) Confined aquifer ADE N N Y Laplace transform

Li et al. (2020) Confined aquifer MIM N N Y Laplace transform

Shi et al. (2020) Confined aquifer ADE Y N N Approximation

Wang et al. (2020) Confined aquifer MIM Y N N Laplace transform and
Green’s function method

Note: “GE”, “ME”, “SCE”, and “SKE” represent governing equation, mixing effect, scale effect, and skin effect, respectively. “Y” and “N” represent whether
the effect is considered or not.

θim2Rim2

∂Cim2

∂t
=ω2

(
Cm2 −Cim2

)
− θim2Cim2

r > rs, (1d)

where the subscripts “m” and “im” refer to parameters in the
mobile and immobile domains, respectively. The subscripts
“1” and “2” refer to parameters in the skin and formation re-
gions, respectively. Cm1 and Cim1 are the mobile and immo-
bile concentrations (M L−3) of the skin zone, respectively.
Cm2 and Cim2 are the mobile and immobile concentrations

(M L−3) of the formation zone, respectively. r is the radial
distance (L) from the center of the well. rw is the well radius.
rs is the radial distance (L) from the center of the well to the
outer boundary of the skin zone. va is the average radial pore
velocity (L T−1) in the aquifer. va1 =

ua1
θm1

and va2 =
ua2
θm2

; ua1

and ua2 represent Darcian velocities (L T−1) in the skin and
formation zones, respectively. α1 and α2 represent the longi-
tudinal dispersivities (L) in the skin and formation zones, re-
spectively. µm1 , µim1 , µm2 , and im2 are reaction rates for the
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first-order reaction rate, the first-order biodegradation, or the
radioactive decay (T−1). θm1 , θim1 , θm2 , and θim2 are porosi-
ties. Rm1 , Rim1 , Rm2 , and Rim2 are retardation factors (di-
mensionless). ω1 and ω2 represent the first-order mass trans-
fer coefficients (T−1) between the mobile and immobile dis-
solved phases in the skin and formation zones, respectively.
One point to note is that the molecular diffusive effect is as-
sumed to be negligible in the above governing equations.

Assuming that the skin and formation zones are initially
free of solute, the initial conditions are

Cm1(r, t)
∣∣
t=0 = Cim1(r, t)

∣∣
t=0 = Cm2(r, t)

∣∣
t=0

= Cim2(r, t)
∣∣
t=0 = r ≥ rw. (2)

The outer boundary condition at an infinite distance is

Cm2(r, t)
∣∣
r→∞

= Cim2(r, t)
∣∣
r→∞

= 0. (3)

Two types of models have been widely applied to the bound-
ary condition at the well screen: the mass flux continu-
ity (MFC) model and the resident concentration continuity
(RCC) model. The RCC model is[
Cm1(r, t)

]∣∣
r=rw
=
[
Cinj(t)

]∣∣
r=rw

, 0< t ≤ tinj, (4a)[
Cm1(r, t)

]∣∣
r=rw
= [Ccha(t)]|r=rw , t > tinj, (4b)

and the MFC model is[
Cm1(r, t)−α1

∣∣va1,inj
∣∣

va1,inj

∂Cm1(r, t)

∂r

]∣∣∣∣∣
r=rw

=
[
Cinj(t)

]∣∣
r=rw

, 0< t ≤ tinj, (5a)[
Cm1(r, t)−α1

∣∣va1,cha
∣∣

va1,cha

∂Cm1(r, t)

∂r

]∣∣∣∣∣
r=rw

= [Ccha(t)]|r=rw , t > tinj, (5b)

where va1,inj and va1,cha refer to velocities in the injection
and chasing phases, respectively. It was demonstrated that the
mass balance requirement could not be satisfied in the RCC
model, while the resident concentration was not continuous
in the MFC model (Wang et al., 2018). Many experimen-
tal studies demonstrated that the MFC model performed bet-
ter than the RCC model (Novakowski, 1992). Therefore, the
MFC model will be used to describe the boundary condition
in the wellbore in this study. Comparing Eqs. (4) and (5), one
may find that the main difference between these two models
is whether the dispersivity is involved or not. Recently, Wang
et al. (2019) pointed out that the conflicts between these two
models could be resolved by a scale-dependent dispersivity,
which was zero at the well screen and increased with the
travel distance of the solute. This is because when the dis-
persivity is zero in Eqs. (5a) and (5b), the MFC model re-
duces to the RCC model. The model of the scale-dependent
dispersivity will be discussed in Sect. 2.4.

When taking into account the mixing effect in the well-
bore, one has

Vw,inj
dCinj

dt
=−ξva1,inj (rw)

[
Cinj(t)−C0

]
, 0< t ≤ tinj, (6)

Vw,cha
dCcha

dt
=−ξva1,cha (rw) [Ccha(t)] , t > tinj, (7)

where Vw,inj is the volume (L3) of water in the wellbore when
t ≤ tinj, and Vw,inj = πr

2
whw,inj. hw,inj is the water level (L)

in the wellbore when t ≤ tinj. ξ = 2πrwθm1B, B is the thick-
ness (L) of the aquifer, Vw,cha is the volume (L3) of water in
the wellbore when t > tinj, and Vw,cha = πr

2
whw,cha. hw,cha is

the water level (L) in the wellbore when t > tinj, va1,inj(rw)

is the velocity at the well screen in the injection phase, and
va1,inj(rw)=

Qinj
2πBrwθm1

. va1,cha(rw) is the velocity at the well

screen in the chasing phase, and it equals Qcha
2πBrwθm1

. Qinj and

Qcha are the well flow rates (L3 T−1) in the injection and
chasing phases, respectively. The mass balance for the well
in Eqs. (6) and (7) is only relevant when velocity exceeds
zero because it does not contain terms for possible diffusive
losses.

The water level in the wellbore (e.g., hw,inj and hw,cha)
could be determined by solving the groundwater flow model.
In the steady state, one has

Qinj = 2πrBK
dh
dr
, 0< t ≤ tinj, (8)

Qcha = 2πrBK
dh
dr
, t > tinj, (9)

where K is the hydraulic conductivity (L T−1), and K ={
K1 when rw ≤ r < rs
K2 when rs ≤ r

; K1 and K2 are the hydraulic

conductivities (L T−1) of the skin and formation zones, re-
spectively.

By conducting the integration on Eqs. (8) and (9) from rw
to rs and from rs to re, respectively, the water level in the
wellbore can be obtained as follows:

hw,inj = h0+
Qinj

2πBK1
ln
rs

rw
+

Qinj

2πBK2
ln
re

rs
, 0< t ≤ tinj, (10)

hw,cha = h0+
Qcha

2πBK1
ln
rs

rw
+

Qcha

2πBK2
ln
re

rs
, t > tinj, (11)

where re is the radial distance (L) from the center of the well
to the outer boundary of the formation zone, and h0 is the
hydraulic head (L) at re. One could find that a finite radius re
is needed to keep hw finite. It seems to contradict the bound-
ary condition of the transport problems, which is at infinity,
as shown in Eq. (3). The reason for such a “contradiction”
could be explained as follows. In reality, the influence area
is limited by the finite injection rate and the finite injection
time of the well (from a plane-view perspective), bounded by
a circle with a radius re where the hydraulic head is almost
constant and the flow velocity is almost zero.
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At the interface between the skin and formation zones, the
concentration and dispersive flux have to be continuous, and
one has

Cm1 (rs, t)= Cm2 (rs, t) , t > 0, (12)[
α1
∣∣va1

∣∣ ∂Cm1(r, t)

∂r

]∣∣∣∣
r=rs

=

[
α2
∣∣va2

∣∣ ∂Cm2(r, t)

∂r

]∣∣∣∣
r=rs

,

t > 0. (13)

Since Darcy fluxes (advective solute fluxes) are continuous,
dispersive fluxes must be continuous, which is Eq. (13).

Here, it is worthwhile to comment on the nature of us-
ing the MIM approach to describe transport in heteroge-
neous aquifers. First, it has been commonly observed that the
aquifer heterogeneity renders the use of ADE invalid in many
cases, as ADE is developed and used primarily for homoge-
neous aquifers. In particular, ADE fails to explain the early
breakthrough and long tailing phenomena that are frequently
observed in transport in heterogeneous aquifers, as illustrated
in the introduction. Second, a striking feature of a heteroge-
neous aquifer is that a sequence of mobile and less mobile
regions coexists. In contrast, a homogeneous aquifer may be
simplified as a single (mobile) region. Ideally, suppose one
knows precisely the spatial distribution of those mobile and
less mobile regions and their associated flow and transport
parameters. In that case, one can use a high-resolution nu-
merical simulator to predict the flow and transport process
precisely. Unfortunately, this is not feasible for most practi-
cal cases. Therefore, as an alternative, we have adopted the
concept of the MIM approach in which two continuums con-
sisting of a mobile domain and an immobile domain coex-
ist over the entire heterogeneous aquifer. Each of these two
continuums has uniform flow and transport parameters (such
as porosity or retardation factor) for the sake of simplifica-
tion. Furthermore, mass can transfer between these two con-
tinuums in a certain fashion, usually using the first-order
rate-limited equation. Third, this alternative approach has
successfully explained many phenomena that cannot be ex-
plained using ADE, for instance, the early breakthrough and
long tailing issues. Later, the two-continuum MIM approach
was expanded to multiple-continuum MIM or multirate MIM
approaches to better capture the transport features in a het-
erogeneous aquifer (Vangenuchten and Wierenga, 1976; Ele-
nius and Abriola, 2019; Guo et al., 2019). In summary, the
MIM does not incorporate the spatial variation of flow and
transport parameters that are mostly unknown. Instead, it is
based on an alternative approach, using two or more interre-
lated continuums, and in each continuum, the flow and trans-
port parameters remain uniform over space. To date, the val-
idation of the MIM model has been tested by numerous ex-
perimental studies (Griffioen et al., 1998; Gao et al., 2009b;
Elenius and Abriola, 2019).

2.2 Solution of radial dispersion

In this study, dimensionless forms of parameters used in the
derivation of analytical solutions are defined as Cm1D =

Cm1
C0

,

Cim1D =
Cim1
C0

, Cm2D =
Cm2
C0

, Cim2D =
Cim2
C0

, Cinj,D =
Cinj
C0

,

Ccha,D =
Ccha
C0

, tD =
|A|t

α2
2Rm1

, tinj,D =
|A|tinj

α2
2Rm1

, rD = r
α2

, rwD =

rw
α2

, rsD =
rs
α2

, r0D =
r0
α2

, µm1D =
α2

2µm1
A

, µim1D =
α2

2Rm1µim1
Rim1A

,

µm2D =
α2

2µm2Rm1
ARm2

, µim2D =
α2

2Rm1Rim2
Rim2A

, and A= Q
2πBθm1

.
The detailed derivation of the analytical solution in the

Laplace domain can be seen in Sect. S1 in the Supplement.
The analytical solution is

Cm1D =N1 exp
( rD

2λ

)
Ai (y1)+N2 exp

( rD
2λ

)
Bi (y1) ,

rwD ≤ rD ≤ rsD, (14a)

Cim1D =
εim1

s+ εim1 +µim1D
Cm1D, rwD ≤ rD ≤ rsD, (14b)

Cm2D =N3 exp
( rD

2

)
Ai (y2) , rD > rsD, (15a)

Cim2D =
εim2

s+ εim2 +µim2D
Cm2D, rD > rsD, (15b)

where Ai(·) and Bi(·) are the Airy functions of the first
and second kinds, respectively. Cinj,D and Ccha,D can be
determined by Eqs. (S18) and (S19), which can be seen
in Sect. S1. A′i(·) and B ′i(·) are the derivatives of the
Airy function of the first and second kinds, respectively.

λ= α1
α2

, η =
θm1Rm1
θm2Rm2

, y1 =
(
E1
λ

)1/3(
rD+

1
4λE1

)
, y1s =(

E1
λ

)1/3(
rsD+

1
4λE1

)
, y2 = (E2)

1/3
(
rD+

1
4E2

)
, y2s =

(E2)
1/3
(
rsD+

1
4E2

)
, E1 = s+ εm1 +µm1D−

εm1εim1
s+εim1+µim1D

,

E2 =
1
η

(
s+ εm2 +µm2D−

εm2εim2
s+εim2+µim2D

)
, βinj =

Vw,injrwD
ξRm1α2

,

βcha =
Vw,charwD
ξRm1α2

, εm1 =
ω1α

2
2

Aθm1
, εim1 =

ω1α
2
2Rm1

Aθim1Rim1
,

εm2 =
ω2α

2
2Rm1

Aθm2Rm2
, and εim2 =

ω2α
2
2Rm1

Aθim2Rim2
. s is the dimensionless

Laplace transform parameter in respect to dimensionless
time tD. The expressions for N1, N2, and N3 are listed in
Table 2.

From Eqs. (14) and (15), one may find that it is not easy
to invert the Laplace-domain solution to obtain the real-time
solution analytically. Alternatively, numerical Laplace trans-
form techniques such as the Fourier series method (Dubner
and Abate, 1968), Zakian method (Zakian, 1969), Schapery
method (Schapery, 1962), de Hoog method (De Hoog et al.,
1982), and Stehfest method (Stehfest, 1970) are called in,
where the de Hoog and Stehfest methods perform better for
problems related to radial dispersion (Wang and Zhan, 2015).
In this study, the MATLAB script of the de Hoog method
compiled by Hollenbeck (1998) will be employed to facili-
tate the computation of the inverse Laplace transform, where
the numerical tolerance is set to 1× 10−10.
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Table 2. Expressions of coefficients in solutions of Eqs. (14a)–
(15b).

N1
F−H2N2
H1

N2
H3H8F−H5H6F

H1H5H7+H2H3H8−H2H5H6−H1H4H8

N3
H3F
H1H5

−
H2H3N2
H1H5

+
H4N2
H5

H1 exp
( rwD

2λ
)[ 1

2Ai (yw)− λ
(
E1
λ

)1/3
A′
i (yw)

]
H2 exp

( rwD
2λ
)[ 1

2Bi (yw)− λ
(
E1
λ

)1/3
exp

( rwD
2
)
B ′
i (yw)

]
H3 exp

( rsD
2λ
)
Ai (y1s)

H4 exp
( rsD

2λ
)
Bi (y1s)

H5 exp
( rsD

2
)
Ai (y2s)

H6 exp
( rsD

2λ
)[ 1

2Ai (y1s)+ λ
(
E1
λ

)1/3
A′
i (y1s)

]
H7 exp

( rsD
2λ
)[ 1

2Bi (y1s)+ λ
(
E1
λ

)1/3
B ′
i (y1s)

]
H8 exp

( rsD
2
)[ 1

2Ai (y2s)+ (E2)
1/3A′

i (y2s)
]

F F = Cinj,D
1−exp

(
−tinj,Ds

)
s +Ccha,D

exp
(
−tinj,Ds

)
s

2.3 Special cases of the new solution

The new solution of this study considers the mixing effect,
skin effect, and media heterogeneity (which is described us-
ing MIM) simultaneously, and the solute is injected into the
well as a step source. This general solution encompasses
many previous studies as special cases. For instance, when
rs→∞, the skin effect is excluded. tinj→∞ implies that
the solute is continuously injected into the well. tinj→ 0
means that the solute is instantaneously injected into the well.
ω = 0 implies that the MIM solution reduces to the ADE so-
lution. Vw,inj = 0 or rw = 0 shows that the mixing effect is
excluded.

Therefore, the new solution reduces to the solutions of
Hoopes and Harleman (1967), Gelhar and Collins (1971),
Tang and Babu (1979), Moench and Ogata (1981),
Hsieh (1986), Tang and Peaceman (1987), and Philip (1994)
when rs→∞, tinj→∞, ω = 0, and Vw,inj = 0. The solu-
tion of Wang et al. (2018) is a special case of this study when
rs→∞, tinj→∞, and ω = 0.

2.4 Extension of the new solution with scale-dependent
dispersivity

Due to the heterogeneities of the porous media, the disper-
sivity was found to be dependent on the travel distance of
the solute from the source, and such a phenomenon was first
observed in the field-scale experiment (Dagan, 1988; Gelhar

et al., 1992; Pickens and Grisak, 1981a). The field-scale ef-
fect (i.e., dispersivity growing with distance from the well)
is usually considered to be a result of spatial heterogene-
ity at different scales in the aquifer. Subsequently, the scale-
dependent dispersivity phenomenon was also found in con-
trolled laboratory tests due to heterogeneities caused by the
bridging effect and microstructures, although the sediments
(as the porous media) are well sorted and carefully packed
(Silliman and Simpson, 1987; Berkowitz et al., 2000; Wang
et al., 2019; Gao et al., 2010). For example, Silliman and
Simpson (1987) found that the dispersivity continuously in-
creased with distance, based on the experiments conducted
in a 2.4×1.07×0.10 m sandbox. Berkowitz et al. (2000) ob-
tained similar conclusions to Silliman and Simpson (1987) in
the laboratory-controlled experiment. Wang et al. (2019) also
concluded that the scale-dependent model performed better
than the scale-independent model in interpreting observed
BTCs of the laboratory-controlled experiment. To date, four
types of functions have been widely used to describe scale-
dependent dispersivity, including asymptotic, parabolic, ex-
ponential, and linear functions, as summarized by Pickens
and Grisak (1981b). In this section, the model of the scale-
independent dispersivity (e.g., Eqs. 14 and 15 in Sect. 2) will
be extended by considering the linear-asymptotic dispersiv-
ity model in the formation zone. As for the other types of
scale-dependent functions, the analytical solutions could be
derived using a similar approach. The formula of the linear
distance-dependent dispersivity is

α2(r)=

{
kr, rs ≤ r ≤ r0
α0, r > r0

, (16)

where r0 is the distance (L), α2(r0)= α0, k is a constant (di-
mensionless), and the modified solutions are

Cm1D =T1 exp
( rD

2λ

)
Ai (y1)+ T2 exp

( rD
2λ

)
Bi (y1) ,

rwD ≤ rD ≤ rsD, (17a)

Cim1D =
εim1

s+ εim1 +µim1D
Cm1D, rwD ≤ rD ≤ rsD, (17b)

Cm2D = T 3r
m
DKm (ε1rD)+ T4r

m
D Im (ε1rD) ,

rsD ≤ rD ≤ r0D, (18a)

Cm2D =T5 exp
( rD

2

)
Ai (y3)+ T6 exp

( rD
2

)
Bi (y3) ,

rD > r0D, (18b)

Cim2D =
εim2

s+ εim2 +µim2D
Cm2D, rD > rsD, (18c)

where m= 1
2k , Km(·) is the mth-order modified Bessel

function of the second kind, and Im(·) is the mth-order
modified Bessel function of the first kind. The expres-
sions for T1, T2, T3, T4, T5, and T6 are listed in Ta-
ble 3. y3 = (ε1)

1/3
(
rD+

1
4ε1

)
, y4 = (ε1)

1/3
(
r0D+

1
4ε1

)
,
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Table 3. Expressions of coefficients in solutions of Eqs. (17a)–
(18c).

T1
F−W2T2
W1

T2
W1W5

W1W4−W2W3
T3+

W1W6
W1W4−W2W3

T4−
W3F

W1W4−W2W3

T3
W13W15−W12W16
W11W16−W13W14

T4

T4
W3F(W1W8−W2W7)−W7F(W1W4−W2W3)

(W1W52+W1W6)(W1W8−W2W7)−(W1W92−W1W10)(W1W4−W2W3)

T5
W14
W16

T3+
W15
W16

T4

T6 0

2
W13W15−W12W16
W11W16−W13W14

W1 exp
( rwD

2λ
)[ 1

2Ai (yw)− λ
(
E1
λ

)1/3
A′
i (yw)

]
W2 exp

( rwD
2λ
)[ 1

2Bi (yw)− λ
(
E1
λ

)1/3
exp

( rwD
2
)
B ′
i (yw)

]
W3 exp

( rsD
2λ
)
Ai (y1s)

W4 exp
( rsD

2λ
)
Bi (y1s)

W5 rmsDKm (ε1rsD)

W6 rmD Im (ε1rD)

W7 exp
( rsD

2λ
)[ 1

2Ai (y1s)+ λ
(
E1
λ

)1/3
A′
i (y1s)

]
W8 exp

( rsD
2λ
)[ 1

2Bi (y1s)+ λ
(
E1
λ

)1/3
B ′
i (y1s)

]
W9 −kε1r

m+1
sD Km−1 (ε1rsD)

W10 k
{
mrm−1

sD Im (ε1rD)+ 0.5ε1r
m
sD
[
Im−1 (ε1rD)+ Im+1 (ε1rD)

]}
W11 −kε1r

m+2
0D Km−1 (ε1r0D)

W12 k
{
mrm0DIm (ε1r0D)+ 0.5ε1r

m+1
0D

[
Im−1 (ε1r0D)+ Im+1 (ε1r0D)

]}
W13 0.5exp

( rD
2
)
Ai (y4)+ ε

1/3
1 exp

( rD
2
)
A′
i (y4)

W14 rm0DKm (ε1r0D)

W15 rm0DIm (ε1r0D)

W16 exp
( r0D

2
)
Ai (y4)

Cinj,D, and Ccha,D can be determined by Eqs. (S34)–(S36),
and the detailed derivation of Eqs. (17) and (18) can be seen
in Sect. S2.

Substituting Eq. (16) into the dispersivity coefficient (Dα),
one has

Dα = α2
∣∣va1

∣∣+D0

=

{
krQ

2πrBθm1
+D0 =

kQ
2πBθm1

+D0, rs ≤ r ≤ r0
α0Q

2πrBθm2
+D0, r > r0

, (19)

where D0 is the molecular diffusion coefficient (L2 T−1). A
few interesting features are notable here. First, because of the
unique feature of a divergent flow field in which the velocity
is inversely proportional to the radial distance and the use of
a dispersivity function that is proportional to the radial dis-
tance when r ≤ r0, the dispersion coefficient in Eq. (19) ac-
tually becomes constant. However, one must be aware that

if other types of dispersivity equations are used (such as
exponential and parabolic functions), the dispersion coeffi-
cient in Eq. (19) will depend on the radial distance from the
well. Second, even when Dα becomes constant for a lin-
ear dispersivity function when r ≤ r0, the mechanical dis-
persion is still dominant since the value of D0 is generally
much smaller than the mechanical dispersion term of kQ

2πBθm1
.

For instance, the diffusion coefficient in water ranges from
1× 10−9 to 2× 10−9 m2 s−1, and it is much smaller in the
porous media (Freeze and Cherry, 1979). When k = 0.01,
Q= 0.1 m3 s−1, B =1 m, and θm1 = 0.3, one has kQ

2πBθm1
=

5.3× 10−4 m2 s−1. Therefore, it is reasonable to ignore the
molecular diffusion effect when r ≤ r0. The values of kQ

2πBθm1
are dependent on k. The chosen value of k = 0.01 is from
experimental studies, for instance, k = 0.018 in Chen et
al. (2007) and k = 0.024 and 0.013 in this study, as shown
in Table 5.

2.5 Extension of the new solution to a leaky confined
aquifer

Regardless of Eqs. (14) and (15) or Eqs. (17) and (18), the
aquifer is assumed to be completely isolated from the un-
derlying and overlying aquitards (strictly confined), which
might not be true in real applications. As stated before (Zhan
et al., 2009a, b), it is nearly impossible to maintain a strictly
confined condition in terms of transport. This is because as
long as a solute in the aquifer is in contact with the up-
per or lower aquitard, molecular diffusion will always drive
the solute from a high-concentration aquifer into the solute-
free aquitard, even if the cross-formation flow in the aquitard
does not exist. In fact, such diffusion-driven transport of a
solute into the aquitard and the subsequent back-diffusion
(from aquitard to aquifer when the aquifer solute concentra-
tion drops below the solute concentration in the aquitards)
is responsible for many long tails in aquifer BTCs. The im-
portance of aquitards in regulating solute transport has in-
deed been recognized by a number of investigators, such as
Chen (1985, 1986, 1991), Yates (1988), Novakowski (1992),
Q. Wang and Zhan (2013), and Zhou et al. (2017).

In this section, the solutions of Eqs. (14) and (15) will
be extended considering underlying and overlying aquitards.
The detailed derivation of the analytical solution in the
Laplace domain can be seen in Sect. S3.

In the aquifer, the solutions are

Cm1D =T1 exp
( rD

2λ

)
Ai (ϕ1)+ T2 exp

( rD
2

)
Bi (ϕ1) ,

rwD ≤ rD ≤ rsD, (20a)

Cim1D =
εim1

s+ εim1 +µim1D
Cm1D, rwD ≤ rD ≤ rsD, (20b)
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Cm2D = T3 exp
( rD

2

)
Ai (ϕ2) , rD > rsD, (21a)

Cim2D =
εim2

s+ εim2 +µim2D
Cm2D, rD > rsD. (21b)

In the aquitards, the solutions are

CumD = Cm1D exp(a2zD− a2) , rwD ≤ rD ≤ rsD, (22a)

CumD = Cm2D exp(a2zD− a2) , rD > rsD, (22b)

CuimD =
εuim

s+ εuim+µuimD
CumD, rD > rwD, (22c)

ClmD = Cm1D exp(b1zD+ b1) , rwD ≤ rD ≤ rsD, (23a)

ClmD = Cm2D exp(b1zD+ b1) , rD > rsD, (23b)

ClimD =
εlim

s+ εlim+µlimD
ClmD, rD > rwD, (23c)

where the letters “u” and “l” in the subscripts repre-
sent the upper and lower aquitards, respectively, ϕw =(
E3
λ

)1/3(
rwD+

1
4λE3

)
, ϕ1 =

(
E3
λ

)1/3(
rD+

1
4λE3

)
, ϕ2 =

E
1/3
4

(
rD+

1
4E4

)
, ϕ1s =

(
E3
λ

)1/3(
rsD+

1
4λE3

)
, and ϕ2s =

E
1/3
4

(
rsD+

1
4E4

)
. The expressions for a2, b1, T1, T2, and T3

are listed in Table 4. Cinj,D and Ccha,D can be determined by
Eqs. (S71) and (S72), which can be seen in Sect. S3.

The solutions of Chen (1985, 1986, 1991) and
Yates (1988) are special cases of this study when rs→∞,
tinj→∞, ω = 0, and Vw,inj = 0. When rs→∞, tinj→∞,
and Vw,inj = 0, the new solution reduces to the solution of
Zhou et al. (2017). Novakowski (1992) considered the well-
bore mixing effect in an aquifer–aquitard system, while he
ignored other factors such as the skin effect, scale-dependent
dispersivity, and mass transfer between the mobile and
immobile domains in porous media.

3 Results and discussion

3.1 Test of new solutions

To test the new solution of this study, a numerical simu-
lation based on the Galerkin finite-element method is con-
ducted in the COMSOL Multiphysics platform. More de-
tails about the numerical simulation setup can be seen in
Sect. S4. The parameters used in the numerical simulation
are rw = 2.5 cm, rs = 12.5 cm, Qinj =Qcha = 100 mL s−1,
tinj = 300 s, α1 = 2.5 cm, α2 = 2.5 cm, θm = 0.30, θim =

0.01, ω = 0.001 d−1, Rm1 = Rim1 = Rm2 = Rim2 = 1, B =
50 cm, µm1 = µm2 = µim1=im2 = 10−7 s−1, and hw,inj =

hw,cha = B. These parameters are from the experimental ap-
plications of Chao (1999), Chen et al. (2017), and Wang et
al. (2018, 2020), in which Wang et al. (2020) summarized
the values of reaction rate, retardation factor, dispersivity,
porosity, and first-order mass transfer coefficient for sand and
clay used in numerous investigations, as shown in Table 4 of

Table 4. Expressions of coefficients in solutions of Eqs. (20a)–
(23c).

T1
F−G2T2
G1

T2
G3G8F−G5G6F

G1G5G7+G2G3G8−G2G5G6−G1G4G8

T3 T3 =
G3F
G1G5

−
G2G3T2
G1G5

+
G4T2
G5

G1 exp
( rwD

2λ
)[ 1

2Ai (ϕw)− λ
(
E3
λ

)1/3
A′
i (ϕw)

]
G2 exp

( rwD
2λ
)[ 1

2Bi (ϕw)− λ
(
E3
λ

)1/3
B ′
i (ϕw)

]
G3 exp

( rsD
2λ
)
Ai (ϕ1s)

G4 exp
( rsD

2λ
)
Bi (ϕ1s)

G5 exp
( rsD

2
)
Ai (ϕ2s)

G6 exp
( rsD

2λ
)[ 1

2Ai (ϕ1s)+ λ
(
E3
λ

)1/3
A′
i (ϕ1s)

]
G7 exp

( rsD
2λ
)[ 1

2Bi (ϕ1s)+ λ
(
E3
λ

)1/3
B ′
i (ϕ1s)

]
G8 exp

( rsD
2
)[ 1

2Ai (ϕ2s)+E
1/3
4 A′

i (ϕ2s)
]

F Cinj,D
1−exp

(
−tinj,Ds

)
s +Ccha,D

exp
(
−tinj,Ds

)
s

E3 s+ εm1 +µm1D−
εm1εim1

s+µim1D+εim1
−
a2θumα

2
2Du

2Aθm1b
2 +

b1θlmα
2
2Dl

2Ab2θm1

E4
1
η

(
s+ εm2 +µm2D−

εm2εim2
s+µim2D+εim2

−
a2θumα

2
2Du

2Aθm2b
2 +

b1θlmα
2
2Dl

2Ab2θm2

)
a2 −

√
s+ εum+µumD−

εumεuim
s+µuimD+εuim

b1
√
s+ εlm+µlmD−

εlmεlim
s+µlimD+εlim

Wang et al. (2020). In addition, the values of the retardation
factor and reaction rate show that the chemical reaction and
sorption are weak for the tracer of potassium bromide (KBr)
in the experiment of Chao (1999). This is unsurprising since
KBr is commonly treated as a “conservative” tracer.

As it is difficult to describe the wellbore mixing effect in
COMSOL Multiphysics, the wellbore concentration is com-
puted by the analytical solutions of Eqs. (14) and (15). Fig-
ure 1a and b show the comparison of concentration between
the numerical and analytical solutions of this study, and good
agreement between these two kinds of solutions is evident for
different times and locations. The comparisons between the
numerical solution and analytical solutions of Eqs. (20)–(23)
are shown in Sect. S4.2, and the agreement is also good be-
tween them.

3.2 Test of the model using experimental data

To test the influence of the mixing effect, skin effect, scale ef-
fect, and heterogeneity of the media on radial dispersion, the
experimental data of Chao (1999) are employed. Chao (1999)
reported a laboratory experiment of radial dispersion in a
sand tank 244 cm in length, 122 cm in width, and 6.35 cm
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Figure 1. Comparison of the numerical solution by COMSOL Mul-
tiphysics and the analytical solution of this study for different times.
(a) In the injection phase; (b) in the chasing phase.

in depth. A well with a radius of 1.0 cm fully penetrated a
confined aquifer. Two observation wells were, respectively,
located 22.5 cm and 30.4 cm away from the well center. KBr
is chosen as a conservative tracer. Before the tracer is in-
troduced into the wellbore, a steady-state flow field is pro-
duced by injecting KBr-free water into the aquifer with a
constant injection rate of 9.9 mL min−1. The injection time
is 5 h (tinj = 300 min) for the tracer while maintaining the
same injection rate of 9.9 mL min−1. The experimental data
of Chao (1999) were interpreted by Gao et al. (2009a) us-
ing the model of Chen et al. (2007), as shown in Fig. 2.
“SDM” and “CDM” in the legend of Fig. 2 refer to the scale-
dependent dispersivity model and the constant dispersivity
model, respectively. Chen et al. (2007) approximated the in-
jection as an instantaneous source (the validity of such a
treatment will be addressed later), and the mass M of the
instantaneous injection is calculated by

Figure 2. Fitness of observed BTC by the solution of Chen et
al. (2007) which considers the scale effect but ignores the mixing
and skin effects.

M = C0Qinjtinj. (24)

The other parameters of the analytical solution are listed in
Table 5. The parameters estimated by Gao et al. (2009a) are
also included in Table 5 for comparison. One may find that
the goodness of fit between the observed data and the mod-
els of Gao et al. (2009a) and Chen et al. (2007) seems good
at the observation point close to the well, but they could not
capture BTCs at r = 30.4 cm. This is probably for the follow-
ing two reasons. Firstly, the model of Chen et al. (2007) used
to best fit the data is an instantaneous slug test model, which
is a rather gross approximation of the injection, which lasted
about 5 h. A more proper way is to treat the 5 h injection as a
step source. Secondly, the solution of Chen et al. (2007) only
considered the scale-dependent dispersivity but ignored the
mixing effect and the mass transfer between the mobile and
immobile domains.

To test the new solutions of this study, we try to best-fit
the observed data again using the newly developed model
considering the scale-dependent dispersivity, mixing effect,
and heterogeneity of the media (described using MIM). As
there is no aquitard in the controlled laboratory experiment,
the aquitard effect is irrelevant. Meanwhile, as there is no
skin, the skin effect is not included either. The best fitness
between the analytical solution and the experimental data is
an optimization process by minimizing the “error” between
them:

Er=
N∑
i=1

(COBS−CCOM)
2, (25)

where COBS and CCOM represent the observed and computed
concentrations, respectively, Er is the error, and N is the
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Table 5. Parameter values used in Figs. 2 and 3.

Parameters SDM of CDM of Eqs. (17) Eqs. (14)
Chen et Chen et and (18) and (15)

al. (2007) al. (2007)

θ (–) 0.58 0.58 – –
θm1 = θm2 (–) – – 0.38 0.39
θim1 = θim2 (–) – – 0.04 0.02
α1 = α2 (cm) – 0.45 0.50 0.45
k (–) 2.4× 10−2 – 1.3× 10−2 –
r0 (cm) – – 10 000 –
α0 (cm) – - 0.50 –
ω1 = ω2 (d−1) – – 1.0× 10−3 1.0× 10−3

tinj (min) – – 300 300
µm1 (s−1) 0.0 0.0 1.0× 10−7 1.0× 10−7

µm2 (s−1) 0.0 0.0 1.0× 10−7 1.0× 10−7

µim1 (s1) 0.0 0.0 1.0× 10−7 1.0× 10−7

im2 (s−1) 0.0 0.0 1.0× 10−7 1.0× 10−7

hw,inj (cm) – – 6.35 6.35
hw,cha (cm) – – 6.35 6.35
rs (cm) – – rw rw
R = Rm1 = Rim1 = Rm2 = Rim2 (–) 1

Note: “SDM” represents the scale-dependent dispersivity model. “CDM” represents the constant dispersivity model. “–” in
units represents that the variable is dimensionless. “ – ” represents that the variable is not included in the model.

number of sampling points. In this study, the genetic algo-
rithm (GA) is employed to search the optimal parameter val-
ues, such as θm2 , α1, and ω1 for CDM of Eqs. (14) and (15)
and θm2 , α0, k, and ω1 for SDM of Eqs. (17) and (18). GA
is a stochastic search method based on natural selection and
is preferred for optimization. Meanwhile, GA has been pack-
aged into the MATLAB toolbox (Katoch et al., 2020; Whit-
ley, 1994; Deb et al., 2002), and therefore it is efficient, sim-
ple to program, and robust. The estimated values of some
key parameters are listed in Table 5. The errors between the
observed and computed BTCs by different models are listed
in Table 6. Figure 3 shows the fitness between the analyti-
cal solution and experimental data, with and without scale-
dependent dispersivity, respectively. As GA converges after
500 generations (iterations), the fitness is good, as shown in
Fig. 3, and the estimated parameters are physically sound.

Comparing Figs. 2 and 3 shows that the solutions of this
study perform better than the model of Chen et al. (2007),
since the fitness is good for both observation locations. To
better evaluate the overall performance of the models for both
locations, we have used Eq. (25) and the coefficient of deter-
mination (R2) to compute the errors of best fitness with two
BTCs simultaneously in Figs. 2 and 3, and R2 is defined by

R2
= 1−

N∑
i=1
(COBS−CCOM)

2

N∑
i=1

(
COBS−COBS

)2 , (26)

Figure 3. Fitness of observed BTCs by new solutions of this study,
where Eqs. (14) and (15) are without the scale effect and Eqs. (17)
and (18) are with the scale effect, respectively.

where COBS is the average concentration of observed data.
The results are listed in the last two columns of Table 6. This
table shows that the new model performs better. For example,
when using CDM, the overall errors for the best-fitting two
locations are 0.89 (which is the summation of 0.06 and 0.83
in Table 6) for Chen et al. (2007) and 0.39 (which is the sum-
mation of 0.34 and 0.05 in Table 6) for this study. When using
SDM, however, the overall errors for the best-fitting two lo-
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Table 6. Errors between observed and computed BTCs in Figs. 2 and 3.

Models Solutions Observation Error (Er) R2

location (cm)

CDM
Chen et al. (2007)

22.5 0.06
0.89

0.962
1.107

30.4 0.83 0.145

This study
22.5 0.34

0.39
0.878

1.805
30.4 0.05 0.927

SDM
Chen et al. (2007)

22.5 0.07
0.78

0.958
1.051

30.4 0.71 0.093

This study
22.5 0.23

0.25
0.909

1.881
30.4 0.02 0.972

cations are 0.78 for Chen et al. (2007) and 0.25 for this study.
The overall R2 shows the same observation as the overall
Er, where the overall R2 is closer to 2, implying that the
model precision is much higher. Evidently, the model with
the scale effect is the best choice for interpreting the experi-
mental data.

We must emphasize that better fitting of one model than
the other with the experimental data should not be used as
the only evidence of proof of model performance. This is
because a model with more fitting parameters usually per-
forms better than the model with fewer fitting parameters.
Besides the best-fitting exercises, however, one should pay
more attention to see whether the model adequately acknowl-
edges the underlying physiochemical principles governing
the transport processes. As far as we can see, the new model
proposed in this study has honored the underlying physio-
chemical principles governing the radial dispersion process
properly. In addition, the model performance (as reflected in
the best-fitting practice with the experimental data) is also
considerably better. Therefore, based on these two consid-
erations, the new model of this study can be regarded as a
significant advancement of present knowledge on radial dis-
persion. Furthermore, the new model is quite general and en-
compasses almost all the existing models as subsets.

3.3 Sensitivity analysis

As the new model involves several controlling parameters, it
is necessary to prioritize the importance of these parameters
in their control on the model performance. In this study, a
sensitivity analysis involving normalized parameters is con-
ducted as follows (Kabala, 2001; Yang and Yeh, 2009):

SCi,j = Ij
∂Ci

∂Ij
, (27)

where SCi,j is the sensitivity coefficient of the j th parameter
Ij at the ith time. Ci is the concentration at the ith time. Ij
represents any one parameter of interest, like the volume of
water in the wellbore (Vw), k, θm = θm1 = θm2 , ω = ω1 = ω2,
and so on. A larger

∣∣SCi,j
∣∣ value means a higher sensitivity.

As the expression of the new analytical solution is com-
plex, it is not easy to get the values of SCi,j directly from
Eq. (27). Therefore, a finite-difference scheme is used al-
ternatively to approximate the right-hand-side term (Kabala,
2001; Yang and Yeh, 2009):

SCi,j = Ij
Ci
(
Ij +1Ij

)
−Ci

(
Ij
)

1Ij
, (28)

where 1Ij is a small increment of Ij .
The main parameters of the new model include the volume

of the water in the wellbore (Vw) for the mixing effect, rs and
αs for the skin zone, θm and ω for the MIM model, and k for
scale-dependent dispersivity. Figure 4a and b show SCi,j at
r = 22.5 and r = 30.4 cm, respectively. The parameters used
in these two figures are the same as those used in Fig. 3.

Two observations can be found from Fig. 4a and b. Firstly,
the results are sensitive to the parameter of θm. To test such
a finding, we use the model of this study (Eqs. 17 and 18)
with the mixing effect to best fit the experimental data of
Chao (1999) (shown in Fig. S5 in Sect. S5), and the results
show that the influence of the mixing effect could be negligi-
ble. Secondly, by comparing Fig. 4a and b, we find that the
sensitivity coefficient of Vw, rs, αs, and R on BTCs increases
with the distance from the wellbore.

Figure 4a and b show that the sensitivity coefficient of
Vw on BTCs is minimal, which might contradict the find-
ing reported in some previous studies (Wang et al., 2018).
A careful inspection indicates that the well radius and the
initial water level in the wellbore are tiny in the experiment
of Chao (1999), resulting in a minimal value of Vw. From
Eqs. (6) and (7), one can see that Vw could be influenced by
the pumping rate, well radius, initial water level (h0), and hy-
draulic parameters of the aquifer. In actual field practices, the
value of Vw can be significantly larger than what Chao (1999)
uses. Therefore, the sensitivity coefficient of Vw on BTCs
will be investigated again using the well radius and the initial
water level that is more commonly seen in field applications,
e.g., rw = 5.0 cm and h0 = 31.75 cm, and the other parame-
ters are the same as the ones in Fig. 3.
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Figure 4. SCi,j of the parameters rw, rs, k, θm, ω, R, and µ us-
ing the parameters estimated by best-fitting the experimental data.
(a) r = 22.5 cm; (b) r = 30.4 cm.

The sensitivity analysis after such modification shows that
the parameter with the highest sensitivity coefficient is still
θm. However, the parameter with the second-highest sensitiv-
ity coefficient becomes the volume of water in the wellbore
(Fig. 5). Figures 6 and 7 illustrate SCi,j of Vw for different
rw and different observation locations and that the sensitivity
coefficient of Vw increases with the well radius but decreases
with the distance from the wellbore.

4 Conclusions

Radial dispersion is an important process in the fields of
chemical engineering, environmental science, and hydroge-
ology. It has been commonly employed to describe the reac-
tive transport in the subsurface or to estimate aquifer trans-
port parameters (dispersivity, porosity, reactive rate, etc.) re-

Figure 5. SCi,j of the parameters Vw, rs, k, θm, ω, R, and µ when
increasing Vw.

Figure 6. SCi,j of Vw for different rw at r = 22.5 cm.

quired in optimization of remediation strategies. However,
previous studies did not include all of the mixing effect, skin
effect, and mass transfer between the mobile and immobile
domains in porous media.

In this study, a new general model is developed consider-
ing all the abovementioned factors. The new general model is
compared against a finite-element numerical model and ex-
isting experimental data. Meanwhile, the new model is also
expanded considering the effect of the overlying and underly-
ing aquitards and the scale-dependent dispersivity. The sensi-
tivity analysis is conducted to prioritize influences of various
controlling parameters on BTCs. The following conclusions
could be summarized.

1. The new general model honors the most relevant pro-
cesses involved in radial dispersion (wellbore mixing
effect, well skin effect, aquitard effect, and mass trans-
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Figure 7. SCi,j of Vw for different observed locations when rw =
5.0 cm.

fer between the mobile and immobile domains), for
which a solution has not yet been presented.

2. The new general model fits the experimental data of
Chao (1999) much better than previous models.

3. The results are sensitive to parameters θm (mobile
porosity) and Vw (the volume of water in the wellbore).
When Vw is very small, as in the laboratory experiment
of Chao (1999), the sensitivity coefficient approaches 0.
However, for typical values of Vw in actual field appli-
cations, the sensitivity coefficient of Vw increases sig-
nificantly, and the value is often ranked as the second
highest, after that of θm.

4. The sensitivity coefficient of Vw increases with well ra-
dius, while it decreases with increasing distance from
the wellbore.

Appendix A: Nomenclature

Symbol Description
Ai(·), Bi(·) Airy functions of the first kind and

second kind, respectively
A′i(·), B

′

i(·) Derivative of the Airy functions of the
first kind and second kind, respectively

α0 Longitudinal dispersivity (L) in the
formation zone at r > r0

α1, α2 Longitudinal dispersivities (L) in the skin
and formation zones, respectively

B The thickness (L) of the aquifer
b Half of the aquifer thickness (L)

Cm1 , Cim1 Resident mobile and immobile
concentrations (M L−3) of
the skin zone, respectively

Cm2 , Cim2 Resident mobile and immobile
concentrations (M L−3) of the formation
zone, respectively

Cum, Cuim Resident mobile and immobile
concentrations (M L−3) of the upper
aquitard, respectively

Clm, Clim Resident mobile and immobile
concentrations (M L−3) of the lower
aquitard, respectively

Cinj(t), Ccha(t) Concentrations (M L−3) of the tracer
in the wellbore in the injection and
chasing phases, respectively

C0 Concentration (M L−3) of the tracer
injected into the wellbore

Cw Concentration (M L−3) of the tracer
in the wellbore

Du, Dl Vertical dispersion coefficients
(L2 T−1) of the upper and
lower aquitards, respectively

D0 Molecular diffusion coefficient
(L2 T−1)

h Hydraulic head (L)
h0 Hydraulic head (L) at re
hw,inj, hw,cha Water level in the wellbore in the

injection and chasing phases (L)
k A constant (dimensionless)

ranging from 0 to 1
K1, K2 Hydraulic conductivities (L T−1) of

the skin and formation zones,
respectively

Kd Equilibrium distribution coefficient
(M−1 L3) for the linear sorption
process

Im(·), Km(·) The mth-order modified Bessel
function of the first and second kinds,
respectively

Q Pumping rate (L3 T−1) (negative for
injection and positive for pumping)

Qinj, Qcha Well flow rates (L3 T−1) in the
injection and chasing phases,
respectively.

r Radial distance (L) from the center
of the well

rs Distance (L) from the center of the
well to the outer boundary of the
skin zone

rw Radius (L) of the well
re Radial distance (L) from the center of

the well to the outer boundary
r0 Radial distance (L) for the linear
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distance-dependent dispersivity
Rm1 , Rim1 Retardation factors (dimensionless)

for the mobile and immobile regions
of the skin zone

Rm2 , Rim2 Retardation factors (dimensionless)
for the mobile and immobile regions
of the formation zone

Rum, Ruim Retardation factors (dimensionless)
for the mobile and immobile regions
of the upper aquitard

Rlm, Rlim Retardation factors (dimensionless)
for the mobile and immobile regions
of the lower aquitard

t Time (T)
tinj, tcha Ending times (T) of the injection and

chasing phases, respectively
va1 , va2 Average radial pore velocities (L T−1)

of the skin zone and formation zone,
respectively

va1,inj, va1,cha Average radial pore velocities (L T−1)
at the well screen in the injection
and chasing phases, respectively.

vum, vlm Vertical velocities (L T−1) of the upper
and lower aquitards, respectively

αu, αl Dispersivities (L) of the upper
and lower aquitards, respectively

µm1 , µim1 Decay constant for radioactive decay
or reaction rate coefficient (T−1) in the
mobile and immobile regions of the skin
zone

µm2 , im2 Decay constant (T−1) for radioactive
decay or reaction rate coefficient in the
mobile and immobile regions of the
formation zone

µum, µuim Decay constant (T−1) for radioactive
decay or reaction rate coefficient in the
mobile and immobile regions of the
upper aquitard

µlm, µlim Decay constant (T−1) for radioactive
decay or reaction rate coefficient in the
mobile and immobile regions of the
lower aquitard

θm1 , θim1 Mobile and immobile porosities
(dimensionless) in the skin zone

θm2 , θim2 Mobile and immobile porosities
(dimensionless) in the formation zone

θum, θuim Mobile and immobile porosities
(dimensionless) in the upper aquitard

θlm, θlim Mobile and immobile porosities
(dimensionless) in the lower aquitard

ρb Bulk density (M L−3) of the aquifer
material

ω1, ω2 First-order mass transfer coefficients
(T−1) in the skin and formation zones,
respectively

s Laplace transform variable with
respect to the time tD

Subscript Description
D Dimensionless form
m, im Mobile and immobile regions,

respectively
inj, cha Injection and chasing phases,

respectively
u, l Upper and lower aquitard,

respectively
1, 2 Parameters in the skin and

formation regions,
respectively

Abbreviation Description
ADE Advection–dispersion equation
BTCs The observed breakthrough curves
CDM The constant dispersivity model
CTRW Continuous-time random-walk models
fADE Fractional-derivative ADE models
GA The genetic algorithm
MFC The mass flux continuity
MIM Mobile–immobile model
MRMT The multirate mass transfer model
RCC The resident concentration continuity
SDM The scale-dependent dispersivity model
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