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Abstract. Hybrid hydroclimatic forecasting systems employ
data-driven (statistical or machine learning) methods to har-
ness and integrate a broad variety of predictions from dy-
namical, physics-based models – such as numerical weather
prediction, climate, land, hydrology, and Earth system mod-
els – into a final prediction product. They are recognized as
a promising way of enhancing the prediction skill of mete-
orological and hydroclimatic variables and events, including
rainfall, temperature, streamflow, floods, droughts, tropical
cyclones, or atmospheric rivers. Hybrid forecasting meth-
ods are now receiving growing attention due to advances
in weather and climate prediction systems at subseasonal to
decadal scales, a better appreciation of the strengths of AI,
and expanding access to computational resources and meth-
ods. Such systems are attractive because they may avoid the
need to run a computationally expensive offline land model,
can minimize the effect of biases that exist within dynam-
ical outputs, benefit from the strengths of machine learn-
ing, and can learn from large datasets, while combining dif-
ferent sources of predictability with varying time horizons.
Here we review recent developments in hybrid hydroclimatic
forecasting and outline key challenges and opportunities for

further research. These include obtaining physically explain-
able results, assimilating human influences from novel data
sources, integrating new ensemble techniques to improve
predictive skill, creating seamless prediction schemes that
merge short to long lead times, incorporating initial land sur-
face and ocean/ice conditions, acknowledging spatial vari-
ability in landscape and atmospheric forcing, and increasing
the operational uptake of hybrid prediction schemes.

1 Introduction: defining hybrid forecasting and
prediction

This review addresses the growing popularity of hybrid fore-
casting, an approach that seeks to enhance the predictability
of hydroclimatic variables by merging predictions from dy-
namical physics-based weather or climate simulation mod-
els with data-driven models. Dynamical models represent
the temporal changes in system properties by using numeri-
cal modelling to solve dynamical physical processes. Data-
driven models include empirical, statistical, and machine
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learning (ML) methods (i.e. can be described as artificial in-
telligence or AI) and can range from simple linear regression
to deep neural networks. Recognizing that dynamical and AI
models have different strengths, hybrid prediction reflects the
deliberate fusing of the two.

While challenging to identify distinct categories, given the
flexibility and diversity of hybrid methods, three principal
types of hybrid model structure may be discerned (Fig. 1;
Table 1). These include (i) statistical–dynamical models that
typically drive a statistical or ML model (data driven) with
dynamical weather or climate model outputs from numeri-
cal weather prediction (NWP) models or Earth system mod-
els (ESMs). The statistical–dynamical structure is the most
common type of hybrid model in the literature (Table 2). (ii)
Serial models combine data-driven and dynamical models se-
quentially and may include additional types of models, such
as a hydrological model. (iii) Coupled or parallel approaches
combine data-driven and dynamical models in parallel. The
coupled approach is more commonly employed in opera-
tional settings, where ML is increasingly being used to up-
grade components within existing modelling schemes. We do
not provide a prescriptive definition of hybrid forecasting, as
it exists along a continuum from loosely to fully hybrid (e.g.
AghaKouchak et al., 2022) and may include a wide range of
models and big data, such as Earth observations (EOs).

Traditional workflows in which a physics-based or con-
ceptual land/hydrology model generates the final forecast
product are still the most commonly used operational fore-
casting systems worldwide. Physics-based models are based
on a spatially distributed representation of known physical
laws through mathematical equations and numerical solu-
tions (e.g. Freeze and Harlan, 1969), while conceptual mod-
els simplify the representation of physical processes, often
using empirical relationships (e.g. Nash and Sutcliffe, 1970).
There is a long history of the development and application
of standalone dynamical land surface and catchment hydrol-
ogy models of varying complexity (from conceptual to phys-
ically explicit) for operational forecasting. Process-based hy-
drological modelling approaches may either be spatially dis-
tributed (gridded) or lumped (catchment averaged). Exam-
ples include the hourly conceptual rainfall–runoff GR4H
(Génie Rural à 4 paramétres Horaires) model used by the Bu-
reau of Meteorology in Australia (Hapuarachchi et al., 2022),
the conceptual reservoir-based HSAMI model implemented
by Hydro-Québec (Bisson and Roberge, 1983), or the con-
ceptual Sacramento Soil Moisture Accounting (SAC-SMA)
model of the Community Hydrologic Prediction System of
the U.S. National Weather Service (Burnash et al., 1973).
In operational systems, the hydrological model is typically
forced with NWP-based forecast meteorology, as in the case
of the U.S. National Water Model (NOAA, 2016; see Zappa
et al., 2008, for a report on the science-driven operational ap-
plication of several end-to-end ensemble hydrometeorologi-
cal forecasting systems). Outputs from coupled atmosphere–
ocean–land GCMs may be used over longer time horizons,

as is the case with the European and Global Flood Aware-
ness Systems, EFAS and GloFAS (Alfieri et al., 2013; Thie-
len et al., 2009; Smith et al., 2016; Arnal et al., 2018; Emer-
ton et al., 2018; Harrigan et al., 2023). These approaches are
considered to be more physically interpretable than black
box statistical methods. However, the large computational
demand and variable skill of many traditional forecasting ap-
proaches still persists (Arnal et al., 2018), and their calibra-
tion still requires substantial effort (Arheimer et al., 2020;
Hirpa et al., 2018) relative to most data-driven models (see
Sect. 3.4).

In contrast with traditional forecast workflows, data-driven
prediction has historically relied more on observed data than
dynamical climate model predictions, building empirical re-
lationships between, for example, streamflow and precipita-
tion (Garen, 1992), using time lag relationships between up-
stream and downstream flow, or stochastic autoregression ap-
proaches, like autoregressive moving average models (Jain
et al., 2018). In such data-driven models, the hydroclima-
tological predictands can be regressed on a range of co-
variates, such as observed precipitation/temperature records,
static variables (e.g. elevation, slope, and geology), initial
hydrologic conditions, or large-scale predictors such as sea
surface temperatures (SSTs), surface air temperature, geopo-
tential height, meridional wind, sea ice extent, or modes of
climate variability such as the El Niño–Southern Oscillation
(ENSO; e.g. Wilby et al., 2004; Dixon and Wilby, 2019;
Mendoza et al., 2017; Meißner et al., 2017). Broadly speak-
ing, the strength of statistical models lies in their simplicity,
speed, ease of use, and comparable skill to dynamical meth-
ods when there are sufficient observations for model train-
ing. However, data-driven models are sometimes thought to
be less able to extrapolate to extreme outlier values that
have not been seen in the historical record (Milly et al.,
2008; Frame et al., 2022a; Reichstein et al., 2019) or un-
able to reflect shifts in the relationship between the predic-
tand and predictors. Others have raised the risk of artifi-
cial skill in cases where predictors are selected preferentially
based on the correlation with the predictand and are not fully
cross-validated (e.g. DelSole and Shukla, 2009). Data-driven
models may also be difficult to optimize for multi-variate,
high-dimensional output fields, which are simulated intrinsi-
cally by dynamical models. Recent studies focusing on more
complex data-driven techniques such as deep learning have
suggested that some of these limitations can be overcome,
such as the extrapolation to extreme or unforeseen condi-
tions (Frame et al., 2022a), to new (untrained) catchments
(Kratzert et al., 2019a), and to poorly gauged large regions
(Feng et al., 2021; Ma et al., 2021). Nevertheless, the inclu-
sion of physical constraints could further elevate the predic-
tion robustness in data-sparse situations (Feng et al., 2022a).
Research is required to understand the hydroclimatological
conditions to which new ML and DL models are able to ex-
trapolate from the training set and their performance as they
are extrapolated in space.
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Table 1. Examples of different hybrid model structures.

Name Description

(i) Statistical–dynamical Statistical–dynamical hybrid models consist of driving or conditioning a data-driven model with dynamical
weather, climate, or Earth system model (ESM) predictions (e.g. Vecchi et al., 2011; Slater and Villarini,
2018). Both expressions, statistical–dynamical and dynamical–statistical, are used, depending on the focus
of the research or the field of study. This approach is also referred to as informed-parameter (e.g. Schlef
et al., 2021) or physical–statistical (e.g. AghaKouchak et al., 2022) prediction.

(ii) Serial A serial structure combines the dynamical and data-driven models sequentially and may include additional
models such as a hydrological model. For instance, one could pre-/post-process the output of a dynamical
model using a data-driven approach (e.g. Glahn and Lowry, 1972) and use those predictions as input to
a conceptual or physics-based model. In Bennett et al. (2016), post-processed general circulation model
(GCM) forecasts are used to force a monthly rainfall–runoff model. In Richardson et al. (2020), weather
patterns are identified in an ensemble prediction system and subsequently used to forecast threshold ex-
ceedance probabilities of extreme precipitation and flooding.

(iii) Coupled or parallel In a coupled hybrid structure, the data-driven and dynamical models are combined in parallel. This may
involve, for instance, replacing a component of a dynamical model with a data-driven model, e.g. to create
a machine-learning-corrected GCM (e.g. Watt-Meyer et al., 2021). Alternatively, it is possible to combine
outputs from an ensemble of dynamical and statistical predictions run in parallel (e.g. Madadgar et al.,
2016). A data-driven model may also be employed to combine dynamical predictions from both meteoro-
logical and hydrological models (e.g. Bogner et al., 2019).

Figure 1. Defining hybrid hydroclimate forecasting and prediction. The term “hydroclimate” refers to a range of variables defined in the
text, including streamflow. The top row indicates the traditional dynamical hydroclimate predictions (blue), the middle row is data-driven
(DD) predictions (yellow), and the bottom row represents hybrid predictions (red), which combine dynamical and data-driven approaches. In
the last row, three examples of a hybrid structure are shown from top to bottom, namely (i) statistical–dynamical (Stat-dyn), (ii) serial, and
(iii) coupled, as described in Table 1. The figure provides simple examples, but other schemes are possible, including, for example, a mix of
observations and predictions in the left column.

Hybrid forecasts benefit from combining the ability of
physical models to predict and explain large-scale phenom-
ena (i.e. through NWPs or climate model predictions) with
the ability of data-driven models to efficiently estimate the
characteristics of events from observed data and account for
bias or anomalies in the data. Many current examples of hy-

brid prediction build on traditional forecast workflows by us-
ing an ML algorithm in sequence with or alongside a concep-
tual or physics-based hydrological model (World Meteoro-
logical Organization, 2021; Fig. 1). Some notable examples
of operational hybrid prediction include the objective con-
sensus climate forecast (i.e. derived objectively from mul-
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Table 2. Examples of hybrid forecasts of different hydroclimate variables and model types. Each example includes both a data-driven model
and a dynamical weather or climate model. Examples are sorted by increasing time horizon. Hybrid model types are defined in Table 1, and
the acronyms are defined in Table 3.

Predictand Data-driven model Dynamical model Hybrid type Time horizon Citation

River stage and inundation LSTM ECMWF HRES Stat-dyn 1–6 d Nevo et al. (2022)

Daily streamflow BNN, SVR, GP, MLR NOAA GFS Stat-dyn 1–7 d Rasouli et al. (2012)

Precipitation RF FV3GFS Coupled 1–10 d Watt-Meyer et al. (2021)

Precipitation extremes and
flooding

Probability of exceeding
thresholds

UKMO GloSea5, ECMWF Serial 15 d Richardson et al. (2020)

Biweekly temperature and
precipitation

PLSR CFSv2 Serial 2–3 and 3–4 weeks Baker et al. (2020)

Seasonal streamflow PCR and CCA CFSv2 and ECHAM4.5 Stat-dyn 1 month Sahu et al. (2017)

Monthly reservoir inflow RF, GBM, ELM,
M5 cubist, elastic net

FLOR Stat-dyn 1 month Tian et al. (2022)

Drought – seasonal SPI Dynamic-LSTM ECMWF SEAS5 Stat-dyn 3 months Wu et al. (2022)

Seasonal tropical storm
frequency

MLR UKMO GloSea5 Stat-dyn 3 months Kang and Elsner (2020)

Seasonal rainfall ANN, MLR UKMO GloSea5, ECMWF
SEAS5

Stat-dyn 1–4 months Golian et al. (2022)

Drought Bayesian model based on
copula functions

NMME (eight models) Coupled 3–5 months Madadgar et al. (2016)

Accumulated seasonal
reservoir inflow

SVR, GP, LSTM, NLANN,
DL

CMCC Serial + stat-dyn 1–6 months Essenfelder et al. (2020)

River discharge and surface
water levels

MLR, LR, DT, RF, LSTM ECMWF SEAS5; EFAS
hydrological forecasts

Stat-dyn 1–7 months Hauswirth et al. (2022)

Hurricane frequency and
intensity

GAMLSS NMME (six models) Stat-dyn 1–9 months Villarini et al. (2019)

Seasonal runoff PCR NMME (seven models);
ECWMF SEAS4

Stat-dyn 4–9 months Lehner et al. (2017)

Hurricane frequency Statistical emulator of dy-
namical atmospheric model

GFDL–CM2.1;
NCEP–CFS

Stat-dyn 1–10 months Vecchi et al. (2011)

Seasonal streamflow GAMLSS NMME (eight models) Stat-dyn 1–10 months Slater and Villarini (2018)

Monthly streamflow FoGSS, CBaM POAMA-M2.4 Serial 1–11 months Bennett et al. (2016)

Seasonal flood magnitude GAMLSS 5/8 CMIP5/6 GCMs Stat-dyn. 2–5 years Moulds et al. (2023)

Seasonal flood counts Poisson regression 9/14 CMIP5 GCMs Stat-dyn 1–10 years Neri et al. (2019)

Daily streamflow TCNN (and others) 4 GCMs from LOCA
(CMIP5)

Serial + stat-dyn Decades Duan et al. (2020)

Flood magnitude LSTM (+5 GHMs) 5 GCMs from ISIMIP-FT
(CMIP5–6)

Serial Decades Liu et al. (2021)

Daily streamflow DNN-PCE 10 GCMs (CMIP5) Serial Decades Zhang et al. (2022)

tiple models) at the U.S. Climate Prediction Center, which
uses ensemble regression (e.g. Unger et al., 2009) to combine
multiple dynamical and statistical forecasts into one. The In-
ternational Research Institute for Climate and Society (IRI)
has a multi-model-calibrated prediction based on three Sub-
seasonal Experiment (SubX) models (Pegion et al., 2019).
The UK Met Office uses a tool called Decider, which assigns
medium-range precipitation forecast ensemble members to a
set of 30 probabilistic weather patterns (Neal et al., 2016) and
then feeds several downstream forecasting applications, such

as for coastal flooding (Neal et al., 2018) and fluvial flooding
(Richardson et al., 2020). Last, the Google flood forecast-
ing model (https://sites.research.google/floods/, last access:
6 May 2023) produces operational, public-facing forecasts
of water levels up to 6 d ahead (Nevo et al., 2022), using
ML models forced with operational, real-time weather fore-
casts from the ECMWF Atmospheric Model high-resolution
10 d forecast (ECMWF HRES) as inputs. Broadly speaking,
many hydroclimate projection systems are now hybrid, as per
the serial definition in Table 1, because some kind of statisti-

Hydrol. Earth Syst. Sci., 27, 1865–1889, 2023 https://doi.org/10.5194/hess-27-1865-2023

https://sites.research.google/floods/


L. J. Slater et al.: Hybrid forecasting 1869

cal processing is applied to generate a final information prod-
uct from an ensemble of climate model outputs. Dynamical
modelling centres often lack the resources or scope to tailor
outputs to particular stakeholder needs (adding value with
data-driven methods), leading to the implementation of such
processing by the end-users themselves. These predictions
are not always visible as hybrid activity but are operational
nonetheless. These examples show the general evolution of
the field from traditional forecasting (Cohen et al., 2019) to-
ward hybrid prediction.

The diversity of approaches for hybrid forecasting and pre-
diction is evident from the sample of studies listed in Table 2.
The scope of hybrid models can vary widely, encompassing
different forecast units (e.g. hourly or seasonal mean fore-
casts), lead times (from the next hour to next decade; e.g.
Ravuri et al., 2021; Neri et al., 2019), and geographical do-
mains (from point to street level; from a single river catch-
ment through to global approaches). Hybrid models have
been applied to predict a variety of hydrometeorological vari-
ables, including extreme heat and precipitation (Najafi et al.,
2021; Miao et al., 2019; Ma et al., 2022), seasonal climate
variables (Golian et al., 2022; Baker et al., 2020), tropical cy-
clones/hurricanes (Vecchi et al., 2011; Murakami et al., 2016;
Kang and Elsner, 2020; Klotzbach et al., 2020), streamflow
(Wood and Schaake, 2008; Mendoza et al., 2017; Rasouli
et al., 2012; Duan et al., 2020), flooding (Slater and Villar-
ini, 2018), drought (Madadgar et al., 2016; Wu et al., 2022),
sea level (Khouakhi et al., 2019), and reservoir levels (Tian
et al., 2022), over a range of timescales (Table 2). Certain
other examples discussed in this review are not fully hybrid
(e.g. ML models that are not driven by weather/ESM pre-
dictions) but serve to illustrate the possibilities of future hy-
brid systems. Many types of data-driven models have been
used (Tables 2 and 3), including simple regression meth-
ods, principal components, distributional regression frame-
works, such as the generalized additive models for location,
scale, and shape (GAMLSS), and various types of deep learn-
ing approaches, including artificial neural networks (ANNs)
and long short-term memory (LSTM) models. The atmo-
spheric and climate models employed for hybrid forecast-
ing can range from single models to large multi-model en-
sembles. For example, there are the North American Multi-
Model Ensemble (NMME; Kirtman et al., 2014) and the
Copernicus Climate Change Service (C3S) seasonal fore-
casting systems over subseasonal to seasonal timescales or
the Coupled Model Intercomparison Project (e.g. CMIP5–6)
over decadal timescales. The dynamical predictors may in-
clude various model outputs such as meteorological forecasts
with lead times of up to 14 d, initialized climate predictions
with subseasonal to decadal lead times, subseasonal runoff
predictions, and/or land surface or ocean state fields from
the reanalyses used to initialize the climate system. Predic-
tors are not only selected based on their ability to enhance
hybrid forecast skill, such as traditional hydroclimate vari-
ables (e.g. precipitation, temperature, and evapotranspira-

tion) but also large-scale climate indices and teleconnections
(e.g. DelSole and Shukla, 2009). Hybrid hydroclimatic fore-
casts and predictions have numerous operational and strate-
gic applications, including water resources planning, reser-
voir inflow management (Tian et al., 2022; Essenfelder et al.,
2020), surface water flooding (Rözer et al., 2021), flood risk
mitigation, navigation (Meißner et al., 2017), and agricul-
tural crop forecasting (Cao et al., 2022; Slater et al., 2022).

This paper provides an overview of recent developments
and ongoing challenges in hybrid hydroclimatic forecasting.
We seek to highlight the benefits of employing hybrid meth-
ods alongside or within traditional forecasting systems. Ac-
cordingly, in Sect. 2, we provide several in-depth examples
of different approaches to hybrid hydroclimatic forecasting.
In Sect. 3, we discuss the key strengths of hybrid models,
followed by ongoing challenges and future research opportu-
nities in Sect. 4. We close with some concluding remarks in
Sect. 5.

2 Hybrid forecasting examples

Here we provide examples of the statistical–dynamical, se-
rial, and coupled approaches outlined in Fig. 1 and Table 1.

2.1 Statistical–dynamical hybrid forecasts

In the case of short-term hybrid forecasts, which focus on
outlook horizons of hours to weeks driven by dynamical me-
teorological models, hybrid approaches offer the potential
to address the challenge of forecasting extreme events, such
as floods, from convective rainfall (Speight et al., 2021). In
these situations, the time taken to transfer data between me-
teorological and hydrological organizations and the run time
of the physics-based models can be restrictive. In contrast,
the strengths of ML are the small number of input param-
eters making the models easy to develop, quick to run, and
accurate for short lead time events (Piadeh et al., 2022). In re-
gions where access to hydrological and inundation forecasts
is limited, data-driven models offer promising alternatives
for flood forecasting (e.g. Nevo et al., 2022) and show the
potential to overcome limitations of data scarcity (Kratzert
et al., 2019a; Feng et al., 2021). At 1–7 d lead times, Ra-
souli et al. (2012) found that ML models outperform MLR
(Tables 2 and 3). At the shortest lead times, their hybrid
approach worked best when it was driven by observations
and the National Oceanic and Atmospheric Administration
(NOAA) Global Forecast System (GFS) model output and
at longer lead times when driven by a combination of lo-
cal observations and climate indices. The potential of ML
as a means to post-process dynamical forecasts and produce
warning scenarios for convective weather is also emerging
(e.g. Moon et al., 2019; Flora et al., 2021) but has not yet
been widely utilized as input to hydrological models. For hy-
drologic forecasts, ML is highly successful in assimilating
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Table 3. Modelling acronyms referred to in the paper. The top section includes data-driven models and approaches; the bottom section
includes other acronyms used.

Acronym Full name

ANN Artificial neural network
BAMLSS Bayesian additive models for location, scale, and shape
BMA Bayesian model averaging
BNN Bayesian neural network
CBaM Calibration, bridging, and merging
CCA Canonical correlation analysis
DL Deep learning
DLNN Deep learning neural network
DNN-PCE Deep neural network-based polynomial chaos expansion
DT Decision tree
ELM Extreme learning machine
FoGSS Forecast-guided stochastic scenarios
GAMLSS Generalized additive models for location, scale, and shape
GAN Generative adversarial network
GBM Gradient-boosting machine
GP Gaussian process
LR Lasso regression
LSTM Long short-term memory
ML Machine learning
MLR Multiple linear regression
NLANN Nonlinear autoregressive neural network
PCR Principal component regression
PLSR Partial least squares regression
RF Random forest
SVM Support vector machine
SVR Support vector regression
TCNN Temporal convolutional neural network

CMCC Euro-Mediterranean Center on Climate Change
CMIP5 and 6 Coupled Model Intercomparison Project phases 5 and 6
ECMWF European Centre for Medium-Range Weather Forecasts
ECMWF SEAS5 Seasonal Forecast System version 5
FLOR Forecast-oriented Low Ocean Resolution model
FV3GFS Finite-Volume Cubed-Sphere Global Forecast System (global atmospheric model)
GCM Global climate model
GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory Coupled Model
GHM Global hydrological model
ISIMIP Inter-Sectoral Impact Model Intercomparison Project
LOCA Localized Constructed Analogue
PREVAH PREcipitation–Runoff–EVApotranspiration HRU-related model
RCP8.5 Representative Concentration Pathway 8.5 (high-emission warming scenario)
UKMO GloSea5 UK Met Office Global Seasonal Forecasting System version 5

recent observations of streamflow to improve near-term daily
forecasts of streamflow (Feng et al., 2020) and soil mois-
ture (Fang and Shen, 2020b). In some cases, machine learn-
ing can ingest near-real-time data without the need for back-
wards methods like data assimilation, since any data stream
can be fed directly into the model as input, as long as at least
some samples from each input data stream are available dur-
ing training. It is also possible to perform more traditional
types of data assimilation on or with ML models – for ex-
ample, variational assimilation can be done by leveraging

the same partial gradients in the models that are required for
backpropagation (Nearing et al., 2022).

At the subseasonal to decadal timescale, climate model
predictions are often used to drive statistical or ML models.
A simple example of a hybrid statistical–dynamical model is
one that employs the predictions of precipitation or temper-
ature from a climate model as predictors within a regression
model, where the predictand can be a hydroclimatic variable
such as streamflow magnitude (e.g. Slater et al., 2019) or
flood duration (Neri et al., 2020). Schlef et al. (2021) describe
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Figure 2. Example of a seasonal hybrid forecasting system for maximum summer discharge at one stream gauge, using seasonal climate
forecasts from eight climate models (94 members) of the NMME to drive a distributional regression model of streamflow. The maximum
summer discharge is the largest of the 92 daily values in the summer (June–August, JJA) period. The time series shows the model fit (1980–
2000) and forecast (2001–2015) against the observations of maximum summer daily streamflow (grey circles). Initialization times are 0.5,
5.5, and 9.5 months ahead of the summer season. For example, the initialization in June uses climate forecasts with a 0.5-month lead for June,
1.5-month lead for July, and 2.5-month lead for August to compute the summer streamflow, while the initialization in September includes
forecasts initialized 9.5, 10.5, and 11.5 months ahead in the previous year. Adapted from Slater et al. (2019).

this approach as an informed-parameter approach in which
the parameters of the flood distribution can be conditioned on
time-varying covariates such as time, climate indices, infras-
tructure development indices, or land use indices. For exam-
ple, distributional regression models can be used to predict
seasonal discharge. To illustrate the approach, we consider a
9000 km2 catchment that has experienced a rapid expansion
of the agricultural land area over the 20th century (Fig. 2).
Two lumped covariates are employed to predict the seasonal
maximum of the mean daily streamflow in each year, namely
the basin-averaged total seasonal precipitation and the har-
vested corn and soybean acreage in the same season. The
model employs a two-parameter gamma distribution, and the
entire streamflow distribution is computed for each time step.
The model is trained over the historical period using climate
observations or forecasts, model parameters are extracted,
and the streamflow forecast is based on those parameters and
the dynamical predictions of the covariates obtained from an
ensemble of climate models. Once new observations become
available, the model can be retrained, updating the model pa-
rameters. A different model can be developed for each sea-
son, initialization time (e.g. 0.5, 5.5, and 9.5 months ahead of
a given season), and quantile of the predicted discharge dis-
tribution. This example shows how a simple statistical model
can be used to produce subseasonal to seasonal streamflow
forecasts. The skill of such a scheme might be improved by
post-processing the ensemble of climate predictions used to
drive the model.

Seasonal forecasts of diverse hydroclimatic variables such
as SSTs, sea level pressure, or large-scale climate indices
have also been used in hybrid models to predict variables
such as precipitation (Madadgar et al., 2016) and tropical
cyclone activity (Sabeerali et al., 2022; Murakami et al.,
2016). For instance, atmosphere–ocean teleconnections ob-
tained from the NMME – including the Pacific Decadal

Oscillation (PDO), Multi-variate ENSO Index (MEI), and
Atlantic Multi-decadal Oscillation (AMO) – were used to
successfully predict seasonal precipitation anomalies in the
southwestern USA using a statistical Bayesian-based model
(Madadgar et al., 2016). Hybrid methods can also be trained
on large model ensembles to capture nonlinear interactions
between predictor variables. For instance, Gibson et al.
(2021) trained ML models for seasonal precipitation fore-
casts in the western USA on a large historical climate model
ensemble of atmospheric and oceanic conditions (i.e. on
thousands of seasons of simulations from the Community
Earth System Model Large Ensemble, CESM-LENS). The
same trained models were then tested by using observa-
tional data over 1980–2020. The resulting ML-based ap-
proach performed as well as, if not better than, seasonal
NMME forecasts, and the physical processes could be in-
terpreted using ML interpretability plots, highlighting the
most important variables influencing a given forecast. For
Ireland, Golian et al. (2022) found that MLR and ANN mod-
els applied to hindcasts of mean sea level pressure from
GloSea5 and SEAS5 produced skilful forecasts of the win-
ter (December–February, DJF) and summer (June–August,
JJA) precipitation for lead times of up to 4 months, with
the ANN outperforming MLR for both seasons and all lead
times. A study over the Netherlands using streamflow, pre-
cipitation, and evaporation found that the hybrid ML ap-
proach outperformed climatological reference forecasts by
approximately 60 % and 80 % for streamflow and surface wa-
ter level, respectively, using various machine learning models
(Hauswirth et al., 2022). Another study showed that predic-
tions of large-scale indices by NCEP CFSv2 (National Cen-
ters for Environmental Prediction Coupled Forecast System
model version 2) could be used to successfully predict the
frequency of tropical cyclones in the Bay of Bengal using
principal component regression (Sabeerali et al., 2022).
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Statistical–dynamical approaches can also be deployed for
longer horizons, such as decadal streamflow predictions (e.g.
Neri et al., 2019), and data-driven techniques are proving
successful for enhancing the skill of the decadal climate pre-
dictions, with consequent benefits for climate-linked vari-
ables such as streamflow. Decadal forecast skill can be in-
creased by mode-matching, which consists of sub-selecting
the individual members from a large climate model ensem-
ble of decadal predictions that best represent the multi-year
temporal variability in a relevant large-scale mode of climate
variability (Smith et al., 2020; Moulds et al., 2023). Large
climate ensembles can be pre-processed to select members
which are skilful at a given time, and the improved predic-
tions can then be supplied to a statistical modelling frame-
work to predict seasonal streamflow quantiles (Moulds et al.,
2023).

2.2 Serial hybrid forecasts

2.2.1 Serial pre- and post-processing of hydroclimate
predictions using data-driven approaches

Hybrid approaches often include pre-/post-processing of in-
puts and outputs at different stages of the predictive model.
Pre-processing refers to techniques for enhancing the signal
and removing the systematic biases of the data inputs, such
as the dynamical climate simulations, while post-processing
refers to techniques for refining and correcting model out-
puts. Depending on the point of reference, the same tech-
nique can be considered to be either pre- or post-processing.
These techniques are often used as a routine add-on to tradi-
tional forecasting systems (e.g. driving a hydrological model
with pre-processed climate predictions), and here we focus
principally on approaches that go beyond the traditional set-
up. The strength of hybrid approaches lies in their ability
to incorporate such corrections directly within hybrid mod-
elling frameworks.

Hybrid models often include a data-driven component
which downscales low-resolution climate model simulations
to reduce bias and make the outputs more skilful at the local
scale. For instance, generative adversarial networks (GANs)
have been used to spatially downscale precipitation forecasts
(Harris et al., 2022; Pan et al., 2022) to capture the com-
plex joint distributions between precipitation and initial cli-
mate conditions from climate simulations. At the decadal
timescale, linear and kernel regression can be used to en-
hance climate predictions (Salvi et al., 2017a, b). Random
forest (RF) models can be trained to map the low-resolution
climate model predictions to high-resolution values (Ander-
son and Lucas, 2018). Regardless of the algorithm used, once
the mapping from low-resolution to high-resolution values
has been learnt, data-driven models can be applied to a much
larger number of model simulations to produce an ensem-
ble of high-resolution outputs at a much lower computational
cost than running a dynamical model at an equivalent res-

olution. Another example is the use of data-driven meth-
ods to reduce the degrees of freedom in data, for instance,
through discrete or empirical wavelet transforms (Mosavi
et al., 2018).

Data-driven approaches can also be applied directly
to post-process the hydrological forecasts. Bennett et al.
(2021a) deployed an ERRIS (error reduction and represen-
tation in stages) model to directly correct errors in stream-
flow prediction up to 168 h ahead (i.e. maximum lead time
of 7 d). Such approaches can be especially beneficial for
longer forecast horizons. For instance, a Gaussian process
(GP) model was trained to post-process weekly tercile fore-
casts of runoff and soil moisture from a Swiss concep-
tual hydrological model PREVAH (PREcipitation–Runoff–
EVApotranspiration HRU-related model) and showed im-
provements in the forecast skill up to 4 weeks ahead (Bogner
et al., 2022). McInerney et al. (2022) developed a daily
Multi-Temporal Hydrological Residual Error (MuTHRE)
statistical model to seamlessly transform daily streamflow
forecasts to timescales ranging from daily, weekly, and fort-
nightly to monthly. This one-model-for-all-scales approach
is a novel take on the potential of the hybrid forecast-
ing system. LSTMs can also be used to post-process out-
puts from physics-based models, such as long-term stream-
flow projections (Liu et al., 2021) and streamflow simula-
tions (Frame et al., 2021) to make them more realistic. Liu
et al. (2021) implemented a physics-informed approach to
post-process the streamflow projections from GCMs, GHMs,
and the Catchment-based Macro-scale Floodplain (CaMa-
Flood) model. The LSTMs were trained to learn a relation-
ship between simulated streamflow (from the physics-based
model GHMs–CaMa-Flood), basin-averaged daily precipi-
tation, temperature, wind speed, and observed streamflow.
The LSTM model can thus be perceived as a post-processor
which aims to constrain (i.e. reduce the uncertainty of) the
streamflow simulations from the physics-based model. This
post-processing approach improved the simulations for the
reference period and was then successfully applied to project
streamflow over the future period. However, the authors con-
cede that this LSTM-based post-processor is still subject
to the same limitations as other post-processing methods,
such as the assumption of stationarity in the parameters of
the post-processing method. Frame et al. (2021) similarly
employed an LSTM to post-process the outputs from the
physics-based U.S. National Water Model (NWM). They im-
plemented two variants of the post-processing method along-
side an LSTM forced with atmospheric inputs only (i.e. with-
out any NWM inputs). The authors showed that the routing
scheme and the land surface component of the NWM in-
troduced timing and mass balance errors in the simulations.
Thus, in some cases, it would be preferable to simply use an
LSTM model that can simulate streamflow from atmospheric
forcings only (without any NWM inputs) to avoid propagat-
ing errors from the NWM to the streamflow prediction.

Hydrol. Earth Syst. Sci., 27, 1865–1889, 2023 https://doi.org/10.5194/hess-27-1865-2023



L. J. Slater et al.: Hybrid forecasting 1873

Data-driven models can enhance the signal of predictors
by generating an ensemble (by pooling) of different climate
model predictions (Troin et al., 2021). A common approach
to incorporating an ensemble of climate model predictions
(within a statistical, ML, or hydrological model) is to assume
that predictions from each ensemble member are equally
likely. However, owing to varying model skill, and a lack
of independence amongst some models, the assumption of
equal likelihood can be compromised. Hence, hybrid fore-
casting can be used to combine ensembles in more intelli-
gent ways by accounting for the varying information con-
tent of the ensemble members. Statistical ensembling/post-
processing of climate model ensemble outputs can improve
forecast skill at relatively low computational cost. For in-
stance, Grönquist et al. (2021) applied a deep neural net-
work to ensemble predictions to improve the forecast skill
and reduce the computational requirements of the forecast
system. Massoud et al. (2020) applied Bayesian model aver-
aging (BMA) to weight models according to their skill at re-
producing observations. They show that the weighted ensem-
ble average skill for the contiguous United States exceeds
that of the conventional ensemble average, with better con-
strained uncertainty estimates. Bayesian updating can also
be applied to enhance the skill of a multi-model ensemble of
GCMs, such as the NMME for different seasons or lead times
(e.g. Slater et al., 2017). Bayesian updating provides the best
results when the raw GCM predictions have high skill to be-
gin with, such as SST-based ENSO forecasts (Zhang et al.,
2017). Post-processing hydrological forecasts (instead of cli-
mate forecasts) is another application of BMA. Hemri et al.
(2013) demonstrated how such an approach can be deployed
to improve the skill of a conceptual runoff forecast by pool-
ing four separate runoff forecasts forced with different lead
times (24, 72, 120, and 240 h) and ensemble members (1, 1,
16, and 51, respectively) in a Swiss catchment.

2.2.2 Serial hybrid forecasts that include a hydrological
model

Hybrid forecasting systems that include a conceptual hydro-
logical model try to combine the strengths of data-driven
and conceptual models, driven with dynamical predictions.
For instance, Humphrey et al. (2016) used a combination of
historical observations and downscaled dynamical forecasts
of rainfall and potential evapotranspiration in southern Aus-
tralia from POAMA (Predictive Ocean Atmosphere Model
for Australia) to drive the conceptual rainfall–runoff model
GR4J (Perrin et al., 2003). The simulated soil moisture from
GR4J was separately used to drive a Bayesian ANN model to
predict streamflow (hybrid approach). They showed that the
hybrid model performed better than either the GR4J model or
the Bayesian neural network alone. A number of studies have
coupled conceptual models and data-driven models but with-
out necessarily integrating dynamical weather or climate pre-
dictions (this would be the next step in developing a hybrid

forecasting system). Both Anctil et al. (2004) and Kumanli-
oglu and Fistikoglu (2019) replaced the routing component
of the GR4J model with an ANN to predict streamflow in
catchments in France, the USA, and the Republic of Türkiye.
These studies concluded that the hybrid model was superior
to a purely ML model. Other conceptual hydrological mod-
els have also been used in hybrid frameworks. For exam-
ple, Mohammadi et al. (2021) used two conceptual models,
HBV (Bergström, 1976) and NRECA (Crawford and Thurin,
1981), to provide inputs to support vector machines (SVMs)
and an adaptive neuro-fuzzy inference system (ANFIS), to
build seven variants of hybrid models. They tested and com-
pared the hybrids and the individual models (HBV, NRECA,
SVMs, and ANFIS) on four subbasins of the Pemali–Comal
River basin, Indonesia, and again found the hybrid models
performed best in terms of RMSE, R2, and MAE. Other stud-
ies on hybrid modelling using the HBV model include Nils-
son et al. (2006) and Ren et al. (2018). They both used dif-
ferent variables computed by HBV (e.g. soil moisture and
snowmelt) as inputs to ANNs. Okkan et al. (2021) outline
that, in most hybrid modelling frameworks, variables com-
puted by the conceptual model are used as inputs to a data-
driven model, which necessarily increases computation time.
They also note that although there could potentially be inter-
actions between the parameters of the conceptual models and
those of the data-driven model, those interactions often go
unaccounted for because the two models are calibrated sep-
arately. In the context of monthly rainfall–runoff modelling,
they proposed to address these two common shortcomings of
hybrid models by coupling the two models and performing
their calibration jointly.

2.3 Coupled or parallel hybrid models

In the case of coupled hybrid models, a data-driven model
and a physics-based model can be run in parallel, sometimes
replacing a component of the dynamical model with a data-
driven model or combining different types of model predic-
tions. Madadgar et al. (2016) combined the seasonal precip-
itation predictions from an ensemble of dynamical models
(99 members from the NMME) with the precipitation pre-
dictions from a statistical model (using copulas to describe
the relationship between three large-scale climate indices and
precipitation). They used an Expert Advice algorithm to link
the dynamical and statistical predictions to obtain improved
precipitation predictions over the southwestern USA, as il-
lustrated in Fig. 3.

Coupled hybrid models can also employ a data-driven
model to combine other types of dynamical predictions in
parallel, such as dynamical meteorological and hydrologi-
cal predictions. In southern Switzerland, five ML models
were trained to predict monthly total hydropower production
by combining precipitation, temperature, radiation, and wind
speed forecasts from a dynamical meteorological model with
runoff from a conceptual hydrological model (Bogner et al.,
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Figure 3. Example of a coupled hybrid system for predicting seasonal precipitation several months ahead. (a) Ensemble of precipitation
predictions from a dynamical multi-model ensemble such as the NMME. The ribbon indicates the full distribution of model members, and
the dark line indicates the mean prediction. (b) Ensemble of statistical precipitation predictions. (c) Both ensembles are overlaid. (d) The two
ensembles are blended using a data-driven approach, such as an Expert Advice algorithm, which assigns weights to the different ensemble
members based on their performance during training and computes the weighted average prediction. The resulting ensemble mean (orange
line) outperforms that of the separate dynamical and statistical predictions. Adapted from Madadgar et al. (2016).

2019). Day of the week and holiday information were pro-
vided to the ML models as additional information to further
enhance the prediction.

A third example of a coupled hybrid approach is when
data-driven models are employed during the dynamical cli-
mate model simulations to correct model biases (e.g. Watt-
Meyer et al., 2021). A RF model coupled to an atmospheric
model (FV3GFS) can correct temperature, specific humidity,
and horizontal winds at each time step, bringing the coupled
model in line with observations. This was shown to reduce
annual mean precipitation biases by around 20 %, with par-
ticular improvements in the simulation of rainfall over high
mountains (Watt-Meyer et al., 2021). A similar approach was
used by Bretherton et al. (2022) to nudge the output of a low-
resolution climate model towards the coarsened output of a
high-resolution climate model.

3 Strengths of hybrid forecasting

Hybrid methods offer various strengths, as summarized in
Fig. 4. These strengths include the higher performance of
ML models (in terms of bias and error minimization) and
the ability to easily blend outputs from climate multi-model
ensembles, integrate large datasets, and combine multiple
sources of predictability, as well as improved speed and op-
erational convenience. These strengths are discussed in more
detail below.

3.1 ML model performance and bias minimization

Recent work has demonstrated the ability of ML models to
outperform traditional hydrological models (e.g. Fang et al.,
2017; Kratzert et al., 2019b; Feng et al., 2020; Fang and
Shen, 2020a; Lees et al., 2021). In one of the most compre-
hensive studies to date, Mai et al. (2022) compared 13 locally
and globally calibrated models (including ML, lumped, and
gridded models) in terms of their ability to simulate stream-
flow, actual evapotranspiration, surface soil moisture, and
snow water equivalent in the Great Lakes region. They found
that the ML model outperformed the traditional hydrologi-
cal models in all experiments. This finding extends to un-
gauged catchments. Kratzert et al. (2019a) found that an out-
of-sample LSTM performed better than the calibrated SAC-
SMA (the conceptual model used by the U.S. River Fore-
cast Centers) and the NWM, which is less calibrated. Golian
et al. (2021) found that RFs worked best at regionalizing the
parameters of the GR6J conceptual model for low-flow pre-
diction in ungauged Irish catchments. Such work has shown
the potential of hybrid methods to address the long-standing
hydrological challenge of prediction in ungauged basins (e.g.
Sivapalan, 2003). The next step is to move from simulation
to prediction.

Hybrid models combining ML and climate predictions
also tend to outperform the raw dynamical forecasts from
climate models. Wu et al. (2022), for instance, developed
a hybrid drought-forecasting model of the 3-month Stan-
dardized Precipitation Index (SPI). They used RF models
to post-process ECMWF SEAS5 predictions of geopoten-
tial height, sea level pressure, and air temperature and sup-
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Figure 4. Strengths, challenges, and opportunities of hybrid hydroclimate prediction systems, as discussed in Sects. 3 and 4.

plied the output to an LSTM model to predict the 3-month
SPI. They found that the SPI predictions from these hybrid
models outperformed the predictions of SPI obtained from
the raw model outputs. For prediction purposes, hybrid mod-
els have the advantage of being able to minimize biases that
exist within GCM outputs or that might be otherwise intro-
duced within a hydrological modelling chain. By training a
hybrid model directly on the climate model forecasts, rather
than on observations, the biases are automatically accounted
for within the model (e.g. Slater and Villarini, 2018). This
approach is similar to that of model output statistics (MOSs)
long used by the weather forecasting community (Glahn
and Lowry, 1972) and in seasonal hydrological predictions
(Schick et al., 2018). For instance, if a climate model tends
to overpredict winter rainfall, then this bias is accounted for
directly in the streamflow predictions, given that the model
is trained using the same winter rainfall forecasts (assuming
a constant bias).

Hybrid models may benefit from a wide range of statisti-
cal advances for enhancing the skill of hydroclimate predic-
tions. Since a hybrid system is based on a data-driven model,
it is straightforward to incorporate statistical upgrades, such
as ensembling the outputs of multiple climate or Earth sys-
tem models (Duan et al., 2019). One such example is the
addition of an error model onto Ensemble Streamflow Pre-
diction (ESP) forecasts to enable prediction in ephemeral
rivers (Bennett et al., 2021b). In a hybrid system, one may
easily integrate the predictions from multi-model ensembles
with over 50 or 100 model members as covariates (Gibson
et al., 2021; Slater and Villarini, 2018). Increasing the num-
ber and diversity of climate models included within a hy-
drological predictive model enhances confidence in the hy-
drological model spread. By blending multi-model ensem-
bles intelligently, one can further reduce uncertainty. In a hy-

brid system, for instance, one can incorporate time-varying
weights for the dynamical predictions, such as Bayesian up-
dating, which varies the model weight per month and lead
time (Slater et al., 2017). ML models especially can learn
space–time variable input weighting directly (Kratzert et al.,
2021). Similarly, many post-processing methods can be ap-
plied to weather and climate inputs or the hydrological out-
puts to enhance skill (Monhart et al., 2019; Bogner et al.,
2022).

3.2 Combining local and remote sources of
predictability with varying time horizons

One under-researched but promising aspect of hybrid models
is their ability to combine different sources of predictability
over a continuum of time horizons. Hybrid models can eas-
ily make use of different predictors chosen on a sound physi-
cal basis (such as climate indices, precipitation, air pressure,
and snowfall) without explicitly describing the processes and
equations. This makes it much easier to explore information
from new sources and improve models and has the poten-
tial to widen information access to climate-affected popula-
tions. Including additional inputs can also produce marked
improvements in model quality. Chang et al. (2022, under
review) used seven weather regime indices (based on the
500 hPa geopotential height) with a Gaussian process ML
model to post-process subseasonal hydrological forecasts,
alongside runoff, soil moisture, baseflow, and snowmelt in
Switzerland. The results showed that the additional input
of weather regime indices improved the forecast skill, es-
pecially in the mountainous catchments and over longer
lead times, where skill was difficult to improve without any
additional information. The conceptual hydrological model
would not have been able to take weather regime indices
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as input, but by including them in the post-processing ML
model as part of the hybrid set-up, it was possible to explore
the connection between large-scale weather regimes and lo-
cal hydrological conditions to improve the forecast skill.

As multiple predictor variables can be included within a
statistical or ML model, it is feasible to combine predictors
that have very different time-varying impacts, such as reser-
voir management decisions or initial hydrological conditions
impacting the short term, versus annual-to-multi-decadal
climate oscillations for longer-term predictability. For in-
stance, Tian et al. (2022) present a reservoir inflow fore-
casting framework combining a suite of different ML mod-
els (including gradient-boosting machine, random forests,
and elastic net) with climate model outputs from the FLOR
model for reservoirs in the Upper Colorado River basin. They
also included soil moisture and evaporation to represent an-
tecedent conditions, which significantly improved the fore-
casts of reservoir inflow. Ouyang et al. (2021) used a dataset
of > 3000 basins across the USA and found that basins with
small and medium reservoirs behaved differently from the
reference basins but could be well simulated by a LSTM
model with input attributes describing basin-lumped reser-
voir statistics.

Large-scale climate indices or modes can also be com-
bined with other predictors. For instance, Madadgar et al.
(2016) predicted seasonal precipitation using large-scale cli-
mate indices, namely the PDO, the MEI, and the AMO,
computed from outputs of the 99 ensemble members of
the NMME. The approach enhanced the skill of the sea-
sonal forecasts by 5 %–60 % in comparison with the raw
NMME precipitation forecasts, especially for negative rain-
fall anomalies. Similarly, Rasouli et al. (2012) forecasted
daily streamflow in a river catchment 1–7 d ahead by employ-
ing weather forecasts from the NOAA GFS model within a
variety of machine learning models. They combined obser-
vations with the model outputs and a range of large-scale cli-
mate indices representing ENSO, the Pacific–North Amer-
ican teleconnection pattern (PNA), the Arctic Oscillation
(AO), and the North Atlantic Oscillation (NAO). Last, Li
et al. (2022) used forecasts of the intraseasonal oscillation
(ISO), an important mode of subseasonal predictability for
seasonal rainfall, to force a Bayesian hierarchical model pre-
dicting subseasonal precipitation during the boreal summer
monsoon season in different regions of China.

Given the diversity of potential inputs to hybrid forecast-
ing systems, exploratory data analysis to identify correlations
between hydrologic variables and climate patterns over dif-
ferent time horizons is an important step during model de-
velopment. Hagen et al. (2021) employed ML to identify the
most relevant large-scale climate indices for daily stream-
flow forecasting. They provided an overview of studies that
have employed large-scale climate indices and climate vari-
ables (such as sea level pressure, sea surface temperature,
and specific and relative humidity) within ML models for
daily, monthly, and seasonal streamflow modelling. Beyond

the use of pre-defined climate indices, it is possible to iden-
tify tailored, site-specific climate indices from big data and
incorporate them in the modelling chain. For instance, Re-
nard and Thyer (2019) described a method that avoids re-
lying on standard climate indices and instead suggests that
the most relevant climate indices in a given location are ef-
fectively unknown (they are hidden) and can be estimated
directly from observations. The authors used a Bayesian hi-
erarchical model for flood occurrence, with hidden climate
indices treated as latent variables. They identified the hidden
climate indices and then showed their correlation with atmo-
spheric climate variables (geopotential height, zonal westerly
wind, and also more distant teleconnections using convec-
tive available potential energy and meridional wind). These
indices explain the occurrence of flood-rich and flood-poor
periods in the historical record. Such an approach could be
employed using climate model outputs to develop skilful hy-
brid forecasts.

Related to the different time horizons of the predictors is
also the ability to design hybrid forecasting systems which
dynamically update when new information (e.g. observa-
tions or climate hindcasts) becomes available. For instance,
a statistical model can be updated iteratively over time to
track the evolution of nonstationary predictor–predictand re-
lationships. Such approaches incorporate new observations
as they become available and update the model parameters
(e.g. Slater et al., 2019). Nearing et al. (2022) developed a
data assimilation approach for LSTM models that leverages
tensor network gradients to assimilate real-time observation
data. To date, very little has been published using such meth-
ods.

3.3 Integrating large datasets

One perceived challenge of hybrid approaches is the require-
ment for large numbers of training data to constrain models
compared with physics-based or conceptual models. Previ-
ously, it was felt that the information requirement of data-
driven approaches might hinder their applicability in catch-
ments with limited data (e.g. ungauged basins). Although this
might have been true in the past, the increasing availability
of large-scale hydroclimatic datasets, such as remote sensing
data, is turning this potential challenge into a new opportu-
nity. A data-driven model can be trained on the same data as a
conceptual model and will tend to outperform physics-based
models, on average (and even more so with large datasets;
see Fang et al., 2022). This advantage is partly due to the fact
that data-driven models are unconstrained by mass and en-
ergy balance rules that force process models to compensate
for erroneous inputs, which data-driven models can instead
optimize against. Data-driven models learn process relation-
ships and model structures rather than enforce prescribed
ones, which may make them more flexible and generalizable.
Large training datasets tend to be useful for ML but less so
for physics-based models, for these reasons. The ability to
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leverage large datasets effectively is a strength of ML and
in particular for ungauged basins, where several studies have
shown that ML models tend to have higher accuracy, on av-
erage, than physics-based models calibrated in gauged basins
(e.g. Kratzert et al., 2019a). There is, in fact, a data synergy
effect, where data of greater diversity lead to better models,
according to a systematic study of LSTM models for either
streamflow or soil moisture (Fang et al., 2022). With concep-
tual and process-based models, accuracy can be lost when
performing regional (as opposed to basin-specific) calibra-
tion, and the lack of calibration data typically results in poor-
quality predictions (training on longer periods leads to supe-
rior results; see Bogner et al., 2022). In contrast, with hybrid
models, strong performance can be achieved when training
the models on global datasets, and accuracy is gained when
performing regional calibration.

Since long (50 year +) hydroclimatic time series data are
not available everywhere (Krabbenhoft, 2022), methods are
required that can draw on pooled multi-site approaches with
similar catchment and climate characteristics (Kratzert et al.,
2019a). For instance, Nearing et al. (2021) show a compari-
son using pooled vs. unpooled data for streamflow estimation
and found that the former was better, even for gauged catch-
ments, and allowed for prediction in ungauged catchments.
There are, however, few studies combining LSTM meth-
ods with climate model forecasts for long-term (subseasonal
to decadal) prediction, especially in ungauged catchments.
Such models may start to emerge with the growing avail-
ability of observational training datasets, such as the national
CAMELS datasets (available for the USA, United Kingdom,
Chile, Brazil, Australia, and soon France and Switzerland;
e.g. Newman et al., 2015; Addor et al., 2017; Coxon et al.,
2020) and international Caravan streamflow dataset (Kratzert
et al., 2023). However, real-time data are currently still diffi-
cult to access for developing predictive models.

One way to circumvent the lack of observational training
data and the low predictability of GCMs is by integrating
a range of other types of predictors in hybrid models. This
may include sources of remotely sensed measurements such
as snow, soil moisture, land cover, surface water extent, wa-
ter storage, or evapotranspiration to provide better informa-
tion about the initial states (e.g. Jörg-Hess et al., 2015). There
are many different global datasets now available that can be
drawn on using cloud-based geospatial analysis platforms
such as the Google Earth Engine, as was the case for the
creation of an open-source community streamflow dataset
(Kratzert et al., 2023). Overall, the forecasting landscape is
becoming increasingly complex, with a growing number of
forecasting systems and datasets potentially overwhelming
users. Hybrid forecasting could help to address this chal-
lenge, with hybrid workflows providing a set of tools and
data that forecasters could mix and match to address their
own forecasting needs.

3.4 Speed and operational convenience

A key advantage of statistical or hybrid methods is their
speed and computational efficiency. For instance, the calibra-
tion of the GloFAS system with an Evolutionary Algorithm
(EA) in 2018 required approximately 6 h to calibrate each
one of thousands of streamflow stations on a 12-core PC,
depending on the number of generations needed before the
improvement criterion was met (Hirpa et al., 2018). Train-
ing deep learning (DL) models is now orders of magnitude
cheaper in terms of the computational expense. For exam-
ple, it took about 10 h in 2021 to train an ensemble of long
short-term memory (LSTM) networks on a single NVIDIA
V100 graphics processing unit (GPU) using 2 decades of
daily data from 518 basins in the CAMELS-GB dataset (Lees
et al., 2021; i.e. about 70 s per basin). This means that train-
ing a high-quality DL model for hundreds of basins is fea-
sible using a standard workstation (or even a GPU-enabled
laptop with sufficient memory), while calibrating a concep-
tual or process-based model over hundreds of basins requires
either months of runtime or a high-performance computer
(HPC) facility. The training time depends on the comput-
ing power, number of locations and volume of data involved,
compiler, and optimization. While deep learning methods
such as LSTMs can take several hours to train (e.g. Lees
et al., 2021), they have the significant advantage that one
model is trained on multiple sites (although the fitted model
can then be fine-tuned to a specific site). A differentiable ML-
based parameter learning scheme can be trained on satellite-
based soil moisture observations for the entire continental
USA with one GPU in under 1 h, but the conventional ap-
proach would take a cluster machine of 100 central process-
ing units (CPUs) 2–3 d to calibrate the model (Tsai et al.,
2021).

This efficiency has advantages for water managers. In a
traditional setting with limited computational resources, wa-
ter managers need to quickly run different scenarios (Scher
et al., 2021). For instance, the UK Met Office Flood Forecast-
ing Centre will produce a reasonable worst case and a best
estimate based on the most likely scenario (see Met Office,
Environment Agency and Flood Forecasting Centre, 2013)
ahead of a flood event (Arnal et al., 2020). Using all avail-
able deterministic and ensemble forecast products alongside
expert assessment from the chief forecaster, they will decide
what the reasonable worst case is likely to be. These out-
puts are used to inform the flood guidance statement and
the Environment Agency then uses these scenarios to run
their catchment models (Pilling et al., 2016). The speed of
data-driven approaches in comparison with these more tradi-
tional, physics-based modelling approaches could prove ben-
eficial for users wishing to run multiple scenarios quickly.
Hybrid methods may shorten the traditional forecasting ap-
proach by going end to end, potentially skipping out some
of the intermediary steps in a conventional modelling chain,
such as downscaling, bias correction, and hydrological mod-
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elling. This offers significant potential for applications where
the run time of physically based models limits the ability to
provide forecasts with a useful lead time for action – such as
forecasts of pluvial floods Rözer et al. (2021) or flash floods.

The efficiency of hybrid models may also be helpful in
generating faster research cycles for model improvements
(i.e. setting up an upgraded system and releasing hindcasts
for testing) relative to traditional approaches. Model up-
grades for dynamical systems usually take a very long time
because the model has to be recalibrated and a set of x

(e.g. 30) years of hindcast data must be produced to quan-
tify the impact of the changes to the system.

Last, hybrid systems can be used to develop customized
climate services. For instance, Essenfelder et al. (2020) use
data-driven methods to predict seasonal reservoir inflows for
hydropower plants. The information is made easily accessi-
ble online to support decision-makers in hydropower pro-
duction. Such approaches can be designed to be replicated
globally as a climate service, provided there are suitable data
for training, and by developing transferable rule sets. Bennett
et al. (2016, p. 8239) also highlight the importance of opera-
tional convenience and the advantages of combining the con-
venience of stochastic scenarios with the skill of a modern
forecasting system. Their method enhances the precipitation
forecasts necessary for streamflow forecasting through post-
processing – by reducing the biases, correcting the reliability,
and maximizing the forecast signal.

4 Key challenges and opportunities of hybrid
forecasting

Beside the strengths of hybrid methods, there are challenges
and research priorities to be tackled. As hybrid forecasts and
predictions rely on data-driven models, they inevitably in-
herit some of the limitations of these techniques. Frequently
cited limitations of ML models include the requirement for
large datasets and issues associated with the curse of di-
mensionality, namely data sparsity (i.e. when there are too
few data points relative to the number of dimensions), multi-
collinearity of the variables, multiple testing (leading to an
increased number of false positives), and overfitting (Alt-
man and Krzywinski, 2018). There is also the difficulty of
obtaining physically plausible results for previously unseen
extremes that are larger than those seen in the observa-
tional record; however, new research suggests that ML mod-
els may provide results that are more physically plausible
than physics-based and conceptual models when data are bi-
ased (Frame et al., 2022b). Further challenges for improving
the skill of hybrid models include data assimilation, physics-
guided ML designs, assimilation of human influences, model
optimization, ensembling, and hybridization, where models
are merged with other methods (including simulations and
physical models; e.g. Mosavi et al., 2018). While some of
the difficulties associated with large sample sizes apply less

for seasonal to decadal hybrid forecasting, where the sam-
ple sizes can be much smaller (often near 100 values) than
the sample sizes for shorter ranges (thousands or more), the
small sample sizes present a challenge for model training.
Thus, a range of different challenges may apply, depending
on the forecasting horizon and data required.

4.1 Obtaining physically realistic results

One important challenge of hybrid models is the need to pro-
duce physically plausible or explainable forecasts in unseen
extreme conditions such as severe floods, droughts, intense
heatwaves, and tropical storms. This is particularly impor-
tant as new weather records are being set in different parts
of the world, and models must produce credible predictions
under extreme forcing conditions. Although it has sometimes
been suggested that data-driven models might be less suited
to extrapolation to out-of-sample conditions than physics-
based models due to the lack of physical understanding (e.g.
Reichstein et al., 2019), recent work tackled the question
of whether modern LSTMs could predict events larger than
those seen in the training data for a particular catchment. The
authors found that the LSTM could predict unseen stream-
flow extremes and did this better than the physics-based mod-
els that were used in the study (Frame et al., 2022a). It is now
increasingly recognized that one of the advantages of data-
driven models is their flexibility, allowing them to find unex-
pected patterns in the data. Thus, there are emerging syn-
ergies between data-driven and physics-based approaches,
since the former can enhance the performance of the latter,
e.g. by learning the parameterizations required for the phys-
ical models from large datasets or analysing the patterns of
error from the physical models (Reichstein et al., 2019).

One emerging route for hybrid models is to employ
physics-guided or theory-guided ML designs that explic-
itly observe the law of conservation of mass. Such ap-
proaches seek to integrate physical knowledge within the
data-driven models to take advantage of the strengths of
both. For instance, Hoedt et al. (2021) created an LSTM ar-
chitecture that obeys conservation laws, and these laws can
also be used to guide physical interpretation of model out-
comes. Although there have been considerable methodolog-
ical advances in interpreting neural networks (e.g. Wilby
et al., 2003; Toms et al., 2020; Lees et al., 2022), physics-
guided ML approaches (also referred to as physics-informed,
physics-aware, or theory-guided approaches) still require fur-
ther development. As alluded to earlier, the presence of data
errors in observed hydroclimate records means that an un-
constrained ML performs better than a physics-guided ML
model because of the ability to learn and account for data
errors (Beven, 2020; Frame et al., 2022b), including het-
eroscedastic and nonstationary data errors (Kratzert et al.,
2021).

Another new development is differentiable, learnable,
physics-based models that can not only approach the per-
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formance of ML models but also output internal physi-
cal variables such as evapotranspiration and soil moisture
(Feng et al., 2022b; Shen et al., 2023). Tsai et al. (2021)
first demonstrated the ability of connected neural networks
to provide physical parameter sets to process-based mod-
els. They showed the efficiency and generalizability of this
paradigm for untrained variables, spatial extrapolation, and
interpretability. In data-sparse regions, this approach can
even produce better daily metrics and future trends than
LSTM (Feng et al., 2022a) and can be used to improve flood
routing (Bindas et al., 2022). These models seek to com-
bine the power of both ML and physics and have the poten-
tial to alleviate data demand, extrapolate better in space and
for more extreme conditions, and be constrained by multi-
variate observations to enable better forecasts. Furthermore,
they provide a systematic pathway for asking scientific ques-
tions and obtaining answers from big data.

Explainability is sometimes useful to help develop trust in
model predictions. Forecasting agencies frequently engage in
a form of story-telling, both for internal and external commu-
nication. One reason for providing explainable predictions is
that, when the forecasts evolve for a given variable, such as
spring runoff, users often wish to understand why (i.e. what
has changed in the predictors or other factors to explain the
change in the predictions). One way to achieve explainabil-
ity is by providing storylines or narratives around the hybrid
forecasts which demonstrate the geophysical credibility of
the results. Differentiable modelling can also provide diverse
physical variable outputs, trained or untrained, which help
develop a narrative (Feng et al., 2022b). Fleming et al. (2021)
showed how hydroclimatic storylines can be produced for
clients to make the forecast interpretable in terms of under-
standable geophysical processes. They used pragmatic meth-
ods such as popular votes for the candidate predictors cast by
a genetic algorithm. The approach revealed how the values
of predictors such as antecedent flow and snow water equiv-
alent could help explain the ensemble-mean-predicted vol-
ume. However, there are also limitations to such approaches.
Although narratives may help with stakeholder acceptance of
hybrid forecasting systems, they can also form a constraint
on the forecasting approach, by enforcing consistency of a
given prediction method.

4.2 Assimilating human influences

Another emerging challenge is assimilating human influ-
ences on the water cycle to obtain better predictions of hydro-
climate variables, especially droughts (Brunner et al., 2021;
Van Loon et al., 2022). Limited data exist on human impacts
such as water storage, groundwater depletion, irrigation, land
cover changes, and water transfers. Therefore, how can hu-
man decisions, such as the management of reservoir levels or
flow abstraction, be integrated within hydrological forecasts?
This question is especially relevant over longer timescales,
and for hydrological forecasting in general, as access to such

data is limited (e.g. only very limited information on reser-
voir operations is included in GloFAS). One option is to de-
velop proxies to detect and model human influence. For in-
stance, census information on the number of households has
be used to extend UK urbanization records (Han et al., 2022).
Population density data have also been used as a proxy for ur-
banization, to assess the extent to which seasonal streamflow
predictability might benefit from anthropogenic predictors
such as land cover change alongside seasonal climate fore-
casts (Slater and Villarini, 2018). López and Francés (2013)
supplied a dynamic reservoir index alongside climate in-
dices to predict historical annual maximum peak discharge
in Spanish rivers. In a large-scale study it was found that
reservoir operations could be implicitly simulated by ML
approaches that learn from past operations (Ouyang et al.,
2021). Last, information on the day of the week and on local
festivities has been used successfully as a proxy for differ-
ence in energy demand (Bogner et al., 2019). Such proxies
might also inform a hybrid system on hydro-peaking in rivers
downstream of dams.

The lack of accurate predictions of future human activi-
ties at the catchment scale is also a major limitation for hy-
drological forecasting over longer timescales. Here, the in-
creasing coverage and resolution of satellite data may help
to provide relevant inputs to hybrid forecasting models such
as future predictions of land use change (e.g. Moulds et al.,
2015). Emerging satellite altimetry products (e.g. SWOT)
may enable a better understanding of reservoir operations,
which can be used to constrain hydrological forecasts. Sim-
ilarly, ML could potentially be used to translate major so-
cioeconomic drivers into land cover change. Overall, we sug-
gest that the main bottleneck to integrating human activities
in hybrid forecasting systems is not the model algorithms,
which can be adapted to any potential predictors, but rather
the lack of consistent historical and future time series data
on these activities. Unfortunately, this is likely to be a vex-
ing challenge for automated representation. In many reser-
voir systems, for instance, operations are determined through
unpredictable human interactions and negotiations and may
depend on time-varying legal, institutional, ecological, and
economic factors, such as agricultural markets influencing ir-
rigation practice, or fisheries health directing environmental
releases.

4.3 Developing predictive skill

Dynamical forecasts and predictions tend to have low skill
over long lead times. The skill of short-term hydroclimato-
logical forecasts is constrained by the skill of meteorological
forecasts, which is currently in the range of 3 to 10 d ahead
but has been advancing by about 1 d per decade, such that
“today’s 6 d forecast is as accurate as the 5 d forecast 10 years
ago” (Bauer et al., 2015, p. 47). Low flows may have skill up
to 20 d in the case of Fundel et al. (2013) and even longer
in other cases, especially with good information on initial
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Figure 5. Hybrid models could be a promising route for seam-
lessly linking initialized predictions from seasonal and decadal fore-
casts to scenario-based projections across timescales. Different ML-
based bias correction approaches could be explored for merging or
concatenating the covariate time series (e.g. Befort et al., 2022) be-
fore using them to drive a hybrid hydroclimate prediction model
(e.g. for streamflow). Such an approach is likely to be more chal-
lenging for extremes such as floods and droughts and remains an
open research question.

conditions and/or the memory effect of catchment storage.
Seasonal climate forecasts also have low predictive skill be-
yond a couple of months, while both seasonal and decadal
predictions suffer from the underestimation of atmospheric
circulation in climate models, a phenomenon known as the
signal-to-noise paradox (e.g. Smith et al., 2020).

One of the advantages of hybrid predictions is that the
data-driven methods can be used to enhance predictive skill
of the dynamical meteorological or climate forecasts. For in-
stance, decadal predictions are skilful over multi-year fore-
cast periods but have too much uncertainty to provide useful
information on interannual variability. Although the CMIP5–
6 models can skilfully reproduce certain large-scale cir-
culation patterns, the magnitude of teleconnections tends
to be underestimated. Statistical approaches such as NAO-
matching attempt to resolve this by selecting members based
on their ability to reproduce climate indices and their tele-
connections (Smith et al., 2020). Such methods have been
employed to enhance decadal streamflow prediction (Moulds
et al., 2023) and condition seasonal hydrological forecasts
(Donegan et al., 2021). However, further work is still needed
to interpret multi-year forecasts to provide actionable infor-
mation. Given a skilful multi-year forecast, it should be pos-
sible to estimate the increased flood or drought risk (for in-
stance) in each year of the forecast period. Data-driven tech-
niques may aid in future developments by trying to draw
out the climate model members that perform well in given
months or lead times (e.g. Slater et al., 2017).

4.4 Seamless forecasting: merging forecasts,
predictions, and projections

The utility of hybrid models for seamless hydroclimatic pre-
diction systems spanning weeks to decades is an open re-
search question (Fig. 5). There is a growing need for reli-
able long-term predictions of climate change impacts on the
risk of floods and droughts over the coming decades (i.e. 1–

40 years ahead), yet reliable information does not exist over
such timescales. The lack of seamless climate information
is explained by the fact that different scientific weather and
climate products have been developed for different applica-
tions. Short-term predictions (fewer than 5 years ahead) tend
to rely more on correct initial conditions, while long-term
predictions and projections (> 10 years ahead) rely more
on correct external forcings such as greenhouse gases (Boer
et al., 2016).

One way to provide longer-term climate impacts informa-
tion over the coming decades is to constrain uninitialized
climate model projections (e.g. climate simulations for the
RCP4.5 or RCP8.5 scenarios) using initialized decadal pre-
dictions (such as the CMIP6 decadal hindcasts), which tend
to better reflect observed climate variability. Befort et al.
(2020) developed a method that does this by selecting the
climate projections that best match the mean of the decadal
predictions over the next 10 years. They showed that the con-
strained ensemble, which consisted of uninitialized projec-
tions for the upcoming 50 years, had higher skill than the
full projection ensemble, even after the 10-year period, once
decadal prediction information was no longer available. A
hybrid system for enhanced prediction of hydroclimatic im-
pacts (e.g. flood risk) could integrate the outputs of such a
constrained ensemble.

Beyond the use of uninitialized projections by themselves
(covering the whole 1–50-year period), temporally concate-
nating a bias-corrected time series of decadal climate predic-
tions and climate projections is also possible. Befort et al.
(2022) assessed different types of bias correction and found
that the variance inflation (VINF) method could reduce in-
consistencies between the decadal- and century-scale time
series, especially for central quantiles of the climate time
series (close to the multi-model ensemble median). How-
ever, the method could not eliminate all inconsistencies, no-
tably those for extreme quantiles. A seamless hybrid method
would therefore be more difficult to generate for hydrocli-
mate extremes such as floods and droughts. However, these
two papers (Befort et al., 2020, 2022) open the way for novel
research on the merging of decadal predictions and uninitial-
ized projections as input to seamless prediction schemes for
hydroclimate impacts using hybrid ML-based approaches.

4.5 Incorporating spatial variability

The data employed in many hybrid hydrological models
are often lumped, i.e. spatially averaged at the catchment
scale, ignoring spatial variability in landscape and atmo-
spheric forcing. Lumped models are challenging for the pre-
diction of hydroclimate in complex environments such as
snow-dominated watersheds, which may have karst conduits,
or the spatiotemporal variation in snow accumulation and
snowmelt processes. However, new approaches exist to over-
come this limitation in statistical/machine learning models.
For instance, Shi et al. (2015) developed a convolutional
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LSTM, termed convLSTM, which is able to capture spa-
tiotemporal correlations, considering both the input and the
prediction target as spatiotemporal sequences. One example
is the use of past and future radar maps as input and out-
put; such spatiotemporal sequences have high dimensional-
ity and, until recently, could not be included in hydrocli-
mate prediction schemes. Similarly, Gupta et al. (2021) de-
veloped a spatial variability aware neural network, termed
SVANN-E, in which the architecture of the neural network
varied spatially across geographic locations. They evaluated
the approach using high-resolution imagery for wetland map-
ping. Such novel spatiotemporal prediction approaches are
just starting to be used for hydroclimate prediction. Xu et al.
(2022) used a hybrid approach to predict streamflow in a wa-
tershed with spatially variable karst carbonate bedrock. They
combined a spatially distributed snow model with a deep
learning karst model based on convLSTM, which simulated
the effect of surface and subsurface properties on the stream-
flow. This approach allowed the authors to better include the
spatial variability in the input variables to their prediction
scheme.

4.6 Interpretability, usability, and uptake of hybrid
forecasts

Hybrid approaches for hydroclimate prediction over subsea-
sonal to decadal lead times face several challenges to their
continued uptake by various communities. One issue that is
critical to making hybrid schemes more widely accepted is
determining whether the improvement in forecast skill ob-
tained by building a hybrid model is worth the extra effort.
In other words, it can be difficult to determine a priori how
much added value can be obtained without first developing
the hybrid model and benchmarking the results against a
more traditional approach. Despite a commitment to devel-
oping the use of ML within operational hydrology (e.g. En-
vironment Agency, 2022), close co-operation is needed be-
tween the hydrology, forecasting, and ML communities to
explore their potential either alone or in hybrid frameworks
(Mosavi et al., 2018), build trust (Haupt et al., 2022), com-
municate skill (Thielen-del Pozo and Bruen, 2019), and over-
come barriers to operational uptake (Speight et al., 2021).
The benchmarking study of Mai et al. (2022) provided a
detailed intercomparison of modelling approaches over the
Great Lakes region (USA and Canada), suggesting that the
effort related to ML is justifiable. However, this work was for
retrospective simulation, rather than forecasting (for which
there are more steps needed), and research is still needed to
assess ML’s potential for improving prediction skill, particu-
larly over seasonal to decadal horizons, for which studies are
lacking. In the hybrid set-up of Humphrey et al. (2016), for
instance, which required the development of both an ML and
a conceptual model for three gauges in southern Australia,
the authors found that the hybrid model was more skilful
than either the conceptual or the data-driven models alone.

However, the increase in skill was only marginal for one of
the three study locations. They concluded that for this given
station, the extra time and effort required to implement the
hybrid model was not worth the small gains. Implementing
an operational hybrid framework for hydroclimatic forecast-
ing often requires extensive time and expertise, given that
two completely different types of models must be developed
in parallel. These requirements would also likely require a
shift in the expertise of the organization in addition to an
upgrade in the computing architecture in the case of GPU-
requiring hybrid and data-driven approaches. Overall, the op-
erational uptake of hybrid models is expected to be faster in
cases where there is no existing forecasting capability (re-
quiring modification) or where complex physical processes
make traditional approaches challenging.

5 Conclusions and remaining research areas in hybrid
forecasting

Hybrid forecasting is emerging as a powerful enhancement
to traditional hydroclimatic forecasting techniques, but im-
portant questions remain regarding their place in the pan-
theon of methods. We lay out some of the most important
research possibilities. First are questions about the evaluation
of hybrid methods. How well do dynamical-statistical meth-
ods perform when compared with more traditional, opera-
tional approaches? What benchmarks should be used? How
reliable are these models, and over what lead times can they
be trusted? As far as we are aware, there have been very few
papers (if any) comparing the skill of hybrid models with op-
erational systems. One systematic comparison of 13 differ-
ent models (including machine-learning-based, basin-wise,
subbasin-based, and gridded models) revealed the superiority
of the data-driven LSTM-lumped model in all experiments
(e.g. Mai et al., 2022), suggesting that hybrid LSTM-based
prediction systems would be a promising route for daily sim-
ulation and potentially for applications such as forecasting.

Second are questions about the potential for seamless pre-
diction. To what extent can hybrid approaches be employed
to meld historical trends, near-term, and decadal predictions
of hydroclimate variables from atmospheric forecasts, cli-
mate model predictions, and projections? How would such
a system be used operationally? Seamless hybrid predic-
tion may provide better insights into long-term hydroclimatic
trends, but merging across timescales can lead to inconsisten-
cies in the time series (i.e. jumps or step changes) between,
for example, decadal climate predictions and the climate pro-
jections (Befort et al., 2022). Third are questions about us-
ing data-driven models to detect and attribute the drivers of
hydrologic change (Slater et al., 2021), and then integrat-
ing such knowledge within a predictive framework. How can
data-driven approaches be employed to understand the rel-
ative contributions of different predictors, including human
impacts such as the effects of reservoir regulation on stream-
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flow (Brunner and Naveau, 2023)? To what extent can hybrid
models uncover hidden large-scale climatic or anthropogenic
drivers of change (Renard et al., 2022; Lees et al., 2022)?

An important step forward would be the development of
consistent global datasets of climate hindcasts at various
timescales at the catchment level. Similar datasets developed
for large sample hydrological analyses, such as CAMELS
(e.g. Addor et al., 2017; Coxon et al., 2020) and Caravan
(Kratzert et al., 2023), have driven rapid progress in ML
methods for simulating daily streamflow using observed cli-
mate inputs. Such datasets drive progress towards operational
hybrid systems by making it easier for model developers to
train and test potential methods in a pseudo-operational con-
text. Moreover, they could integrate consistent estimates of
other potential drivers – including streamflow signatures and
local characteristics related to topography, geology, and land
cover (as in the CAMELS datasets) – enabling forecasters to
understand the contribution of different drivers to streamflow
predictability across timescales.

Finally, there are questions about the acceptance and vi-
ability of hybrid models in operational contexts, given the
dominance, familiarity with, and deep embedding of physics-
based forecasting and prediction methods (Cohen et al.,
2019). In what ways could hybrid approaches complement,
support, or replace conventional physically based systems?
The pace of change in such settings is often constrained by
practicalities, institutional resistance (Arnal et al., 2020), or
the requirement for decision-relevant evidence of skill. Ac-
ceptance might be advanced by systematically comparing
the outputs from hybrid models with operational models un-
der identical forcings to assess the physical interpretation of
model results (e.g. Mai et al., 2022). To convince operational
forecasters that hybrid models may add value alongside more
traditional approaches requires rigorous benchmarking by
the community alongside established approaches. It may also
require more extensive changes to the education and prepara-
tion of the workforce that is needed to staff operational cen-
tres.

There are several possible paths forward. One of these
frames hybrid models not as replacing current operational
systems but as a complementary tool, extension, or enhance-
ment, helping on different levels and likely within existing
systems. Another path forward is to recognize the difference
in skill between hybrid models vs. traditional models and to
start to develop future replacements for current operational
models. These replacements should be based fundamentally
on data-driven (ML, DL, and even AI) principles but with
the ability to incorporate elements of traditional hydrologi-
cal and climate science where these are beneficial. Further-
more, hybrid models could be developed to estimate both
impacts and mitigation measures based on past events. All
of these approaches make sense for different reasons and in
different scenarios, and various agencies and organizations
are pursuing both these and other strategies for incorporating
data-driven methods into operational workflows. Overall, the

utility of hybrid models is not only for enhancing forecasting
and prediction but also for allowing deeper interrogation of
diverse data, revealing sometimes hidden or obscure hydro-
climatological processes.
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