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Abstract. The Nash–Sutcliffe efficiency (NSE) is a widely
used score in hydrology, but it is not common in the other
environmental sciences. One of the reasons for its unpop-
ularity is that its scientific meaning is somehow unclear in
the literature. This study attempts to establish a solid foun-
dation for the NSE from the viewpoint of signal progressing.
Thus, a simulation is viewed as a received signal containing
a wanted signal (observations) contaminated by an unwanted
signal (noise). This view underlines an important role of the
error model between simulations and observations.

By assuming an additive error model, it is easy to point out
that the NSE is equivalent to an important quantity in signal
processing: the signal-to-noise ratio. Moreover, the NSE and
the Kling–Gupta efficiency (KGE) are shown to be equiva-
lent, at least when there are no biases, in the sense that they
measure the relative magnitude of the power of noise to the
power of the variation in observations. The scientific mean-
ing of the NSE suggests a natural way to define NSE= 0 as
the threshold for good or bad model distinction, and this has
no relation to the benchmark simulation that is equal to the
observed mean. Corresponding to NSE= 0, the threshold of
the KGE is given by approximately 0.5.

In the general cases, when the additive error model is re-
placed by a mixed additive–multiplicative error model, the
traditional NSE is shown to be prone to contradiction in
model evaluations. Therefore, an extension of the NSE is de-
rived, which only requires one to divide the traditional noise-
to-signal ratio by the multiplicative bias. This has a practical
implication: if the multiplicative bias is not considered, the
traditional NSE and KGE underestimate or overestimate the
generalized NSE and KGE when the multiplicative bias is

greater or smaller than one, respectively. In particular, the
observed mean turns out to be the worst simulation from the
viewpoint of the generalized NSE.

1 Introduction

In hydrology, the Nash–Sutcliffe efficiency (NSE) is one of
the most widely used similarity measures for calibration,
model comparison, and verification (ASCE, 1993; Legates
and McCabe, 1999; Moriasi et al., 2007; Pushpalatha et
al., 2012; Todini and Biondi, 2017). However, Schaefli and
Gupta (2007) pointed out the noticeable fact that the NSE
is not commonly used in other environmental science fields,
despite the fact that calibration, model comparison, and veri-
fication are also employed in such fields. Does this mean that
the NSE is a special metric that is only relevant for hydrolog-
ical processes? If this is not the case, what causes this limited
use outside of hydrology? One of the reasons for the limited
use of the NSE outside of hydrology can be traced back to
the lack of a consensual scientific meaning in the literature.

The NSE was first proposed by Nash and Sutcliffe (1970),
who approached calibration from a linear regression view-
point (Murphy et al., 1989).

NSE= 1−
∑
(oi − si)

2∑
(oi −µo)2

= 1−
(o− s)2

(o−µo)2
, (1)

where si and oi denote simulations and observations, respec-
tively; ( ) denotes the expectation; and µo = o is the observed
mean. The authors noted the analogy between the NSE and
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the coefficient of determination (R2) in linear regression. As
R2 measures the goodness of fit in linear regression, the NSE
should yield a similarity measure for our calibration problem.
This use of R2 implies that the NSE regresses observations
on simulations:

o= as+ b, (2)

where a and b are the linear regression coefficients. Then the
residual sum

∑
(oi−si)

2, which they called the residual vari-
ance, and the total sum

∑
(oi −µo)

2, which they called the
initial variance, are used in the definition of the NSE. In gen-
eral cases, the residual sum should be

∑
(oi−asi−b)

2. This
points out that the underlying regression model implicitly as-
sumes an unbiased regression line (a = 1,b = 0), which is
rarely satisfied in reality.

A similar efficiency was introduced in Ding (1974),
4 years after the introduction of the NSE. We call this effi-
ciency the Nash–Ding efficiency (NDE):

NDE= 1−
∑
(si − oi)

2∑
(si −µo)2

= 1−
(s− o)2

(s−µo)2
. (3)

Like the NSE, the NDE can also be explained from the view-
point of linear regression by switching the roles of o and s in
Eq. (2) (i.e., by regressing simulations on observations):

s = ao+ b. (4)

Using this regression equation, the coefficient of determina-
tion (R2) will take the form shown in Eq. (3) if we again
assume an unbiased regression line (a = 1,b = 0), as in the
case of the NSE. Note that, in this case, the total sum is given
by
∑
(si − s)

2; because of the no bias assumption s = o, this
becomes

∑
(si −µo)

2 in Eq. (3). It is interesting to see that
the hydrology community have preferred the use of the NSE
in calibration, even though the regression of observations on
simulations does not show any advantage over the regression
of simulations on observations.

Identifying the NSE asR2 in linear regression was soon re-
placed by identifying the NSE as skill scores in verification
(ASCE, 1993; Moriasi et al., 2007; Schaefli and Gupta, 2007;
Ritter and Munoz-Carpena, 2013). Here, a skill score mea-
sures the relative performance between a score and its bench-
mark or baseline (Murphy, 1988). This benchmark score is
obtained by using a benchmark simulation, which is usually
an easily accessible simulation that does not require com-
plicated computation. The most common benchmarks are
long-term or climatological means. Thus, with respect to the
NSE, the numerator

∑
(oi−fi)

2 is simply the familiar mean-
squared error (MSE) score, and the denominator

∑
(oi−µo)

2

is now reinterpreted as the MSE of the benchmark given by
the observed mean fi = µo. Equivalently, the NSE can also
be viewed as a normalized MSE with the normalizing factor∑
(oi−µo)

2 (Moriasi et al., 2007; Lamontagne et al., 2020).
However, when applied to forecast verification, in which

simulations are replaced by forecasts, the special choice of

µo as the benchmark does not conform to the purpose of us-
ing skill scores. Here, the problem is that the observed mean
can only be accessed after all observations are realized; it
is not available at the time that we issue forecasts and, there-
fore, cannot be compared with our forecasts at that time. This
subtle problem has been noticed by several authors (Legates
and McCabe, 1999; Seibert, 2001), and seasonal or clima-
tological means have been suggested as benchmarks instead
of the observed mean. However, Legates and McCabe (2012)
showed that the appropriate choice of benchmark depends on
the hydrological regime, leading to a more complicated use
of the NSE in verification. Therefore, they suggested sticking
with the original NSE.

In recent years, starting with the work of Gupta and
Kling (2011), the NSE has been recognized as a compromise
between different criteria that measures overall performance
by combining different scores for means, variances, and cor-
relations. The decomposed form of the NSE in terms of the
correlation ρ, the ratio of standard deviations α = σs/σo, and
the ratio of means β = µs/µo is given by

NSE= 2αρ−α2
−
(β − 1)2

(σo/µo)2
. (5)

Given this unintuitive form of the NSE, Gupta et al. (2009)
suggested a more intuitive score called the Kling–Gupta effi-
ciency (KGE):

KGE= 1−
√
wρ(ρ− 1)2+wα(α− 1)2+wβ(β − 1)2, (6)

where wρ,wα , and wβ are weights for individual scores and
are usually set to one. Note that this mathematical form
(Eq. 6) is only one of many potential combinations of ρ,α,
and β that yield an appropriate verification score. In this
multiple-criteria framework, the scientific meaning of the
KGE depends on the weights that we assign to individual
scores. However, unlike the KGE, the NSE defined by Eq. (5)
is not a linear combination of the individual scores related to
ρ,α, and β; therefore, the scientific meaning of the NSE is
even more obscure in this context. In other words, we can
simply explain that the NSE measures overall performance,
but we cannot separate the contribution from each individual
score.

One of weak points of the multiple-criteria viewpoint is
that it explains the elegant form (Eq. 1) using the unintuitive
form (Eq. 5). We suspect that a more profound explanation
for the elegant form (Eq. 1) exists that also gives us the sci-
entific meaning of the NSE. In pursuing this explanation, we
will come back to the insight of Nash and Sutcliffe (1970)
when they first proposed the NSE as a measure. This insight
was expressed clearly in Moriasi et al. (2007), who under-
stood the NSE as the relative magnitude of the variances in
noise and the variances in informative signals. This encour-
aged us to approach the NSE from the perspective of sig-
nal processing. We will show that the NSE is indeed a well-
known quantity in signal processing.
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This paper is organized as follows. In Sect. 2, we revisit
the traditional NSE from the viewpoint of signal processing
of simulations and observations. In practice, the nature and
behavior of the NSE can only be established with an addi-
tive error model imposing on simulations and observations.
As the additive error model implies that the variances in sim-
ulations are greater than variances in observations, Sect. 3
extends the error model from Sect. 2 by introducing multi-
plicative biases in addition to additive biases in order to cover
other cases. An extension of the NSE in these general cases
is then derived. Finally, Sect. 4 summarizes the main find-
ings of this study and discusses some implications of using
the NSE in practice.

2 Specific cases: additive error models

2.1 The scientific meaning of the NSE

From now on, we will consider simulations and observa-
tions from the perspective of signal processing. According
to this view, observations form a desired signal that we wish
to faithfully reproduce whenever we run a model to simulate
such observations. This simulation introduces another signal
known as the received signal in signal processing, and it is
assumed to be the wanted signal (the observations) contam-
inated by a certain unwanted signal (noise). This means that
we will have a good simulation whenever model errors, as
represented by the noise, are small. In this section, we as-
sume a simple additive error model for simulations:

s = o+ b+ ε, (7)

where b denotes constant systematic errors and ε ∼N (0,σ 2
e )

denotes random errors with the error variance σ 2
e . The two

random variables o and ε are assumed to be uncorrelated.
Using the error model shown in Eq. (7), it is easy to calcu-

late two expectations in the formula of the NSE,

MSE= (s− o)2 = b2
+ σ 2

e and (8)

(o−µo)2 = σ
2
o , (9)

leading to the following form of the NSE:

NSE= 1−
b2
+ σ 2

e

σ 2
o

. (10)

The reciprocal of the ratio (b2
+σ 2

e )/σ
2
o in Eq. (10) represents

the signal-to-noise ratio (SNR) in signal processing:

SNR=
Psignal

Pnoise
=

o2

(b+ ε)2

=
(µo+ o−µo)2

(b+ ε)2
=
µ2
o+ σ

2
o

b2+ σ 2
e

, (11)

where Psignal and Pnoise are the power of the desired signal
and noise, respectively. The greater the SNR, the better the
received signal.

In order to examine the relationship between the NSE and
SNR, we note that the error model shown in Eq. (7) is pre-
served in the translations (s,o)→ (s+1,o+1), where 1
is an arbitrary real number. This is easy to verify, as the same
error model is obtained when we add the same value 1 to s
and o on both sides of Eq. (7). A robust score should reflect
this invariance and, therefore, is required to be invariant in
those translations. If this condition is not satisfied, we will
get a different score every time that we change the base in
calculating water levels, for example. It is clear that the NSE
is translation invariant, whereas the SNR is not. Indeed, we
can easily increase the SNR by simply increasing µo:

SNR(1)=
(µo+1)

2
+ σ 2

o

b2+ σ 2
e

. (12)

This is because the magnitude of the desired signal is almost
dominated by1 and the noise magnitude becomes negligible
when a large 1 is added to the desired signal. This suggests
that we can use the lower bound of the SNR(1), i.e., the
SNR in the worst case, as a score to impose the translation-
invariant condition:

SNRl =
σ 2
o

b2+ σ 2
e

. (13)

This value is attained when 1=−µo, which indicates the
ratio of the power of the variation o−µo to the power of
noise. It is worth noting that the translational invariance is
violated in the case of the KGE, as the ratio (µs +1)/(µo+
1) can vary considerably with 1.

Because the reciprocal of SNRl determines the NSE in
Eq. (10), it is more appropriate to define the NSE in terms
of the noise-to-signal ratio (NSR= Pnoise/Psignal):

NSE= 1−
1

SNRl
= 1−NSRu, (14)

where we add the subscript “u” to the NSR to emphasize
that this is the upper bound of the NSR corresponding to
the lower bound of the SNR. Thus, using our additive error
model, Eq. (14) points out that the NSE is equivalent to the
upper bound of the NSR. More exactly, the NSE measures
the relative magnitude of the power of noise (the unwanted
signal) and the power of the variation in observations (the
wanted signal with its mean removed). Similarly, it is easy to
show that the NDE (Eq. 3) is also a simple function of NSRu:

NDE= 1−
b2
+ σ 2

e

σ 2
o + b

2+ σ 2
e

=
σ 2
o

σ 2
o + b

2+ σ 2
e

=
1

1+NSRu
. (15)

Again, the NSE and NDE are shown to be equivalent, al-
though this time from the perspective of signal processing.
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This new interpretation of the NSE has two important im-
plications for the use of the NSE in practice. Firstly, note that
the NSR depends not only on the power of noise but also on
the power of the signals under consideration. Thus, the NSE
should not be used as a performance measure when compar-
ing two different kinds of signals. We may commit a possibly
erroneous assessment by considering that our model is bet-
ter for flow regime A than for flow regime B, when this may
be the consequence of the simple fact that the signals in case
A are stronger than those in case B. From its mathematical
form, it is clear that the NSR favors high-power signals (i.e.,
strong signals always result in a small NSR); therefore, it is
easy to get high NSE values for strong signals. Such NSE
values may be wrongly identified as an indicator of good
performance, resulting in misleading evaluations of model
performance.

Secondly, as a ratio of the power of noise to the power
of the variation in observations, the NSRu suggests a natu-
ral way to define an NSE threshold that divides simulations
into “good” and “bad” simulations. Note that NSRu = 0 for
perfect simulations and increases with increasing power of
noise. At NSRu = 1, the noise has the same power as the
variation in the desired signal and, consequently, corrupts the
desired signal. In other words, we cannot distinguish varia-
tion in observations from noise, and the model simulations
are therefore useless. Corresponding to NSRu = 1, we have
the two thresholds NSE= 0 and NDE= 1/2. In the context
of skill scores, an NSE of zero is also chosen as the bound-
ary between good and bad simulations by requiring that good
simulations have MSE values smaller than the MSE of the
observed mean s = µo. Clearly, the two interpretations are
very different, even though they give the same benchmark,
NSE= 0. Whereas the choice of the observed mean as the
benchmark simulation is quite arbitrary in the latter interpre-
tation, such a benchmark is not needed in the former inter-
pretation. In fact, many models yielding the value NSE= 0
exist that are not necessarily the observed mean. A further
argument supporting the former approach is the failure of
the latter approach when applied to the case of the NDE.
For the benchmark model s = µo, the NDE becomes −∞,
which means that all other simulations are always better than
this benchmark as measured by the NDE.

2.2 Random noise-to-signal ratio

Recall that the NSE is invariant in the translations along the
vector (1,1)T(f,o)→ (f +1,o+1). However, for general
translations (f,o)→ (f+1f ,o+1o), where the translation
vector (1f ,1o)T is an arbitrary vector, the NSE can take any
value:

NSE= 1−
(b+1f −1o)

2
+ σ 2

e

σ 2
o

. (16)

Consequently, we can increase the NSE simply by choos-
ing an appropriate 1f and 1o. In practice, this approach is

known as bias correction, with the choice of 1f ≈−b and
1o = 0. As the NSE is not invariant in the general transla-
tions, misinterpretation of model performance can be easily
committed. For example, let us consider two simulations: one
with a systematic error and one with a random error:

s1 = o+ b, (17a)
s2 = o+ ε. (17b)

Here, we assume σo = b = σe. Thus, both s1 and s2 have
NSE1 = NSE2 = 0, indicating that both simulations are cor-
rupted by model errors. However, it is clear that two simu-
lations are not equal. From experience, modelers know that
the first simulation is better, as an almost perfect simulation
can be easily obtained from s1 just by subtracting the bias
estimated from observations from s1. In contrast, the perfor-
mance of s2 cannot be improved by any translation.

In order to avoid the abovementioned misjudgment, it is
desirable to have a score that is invariant in any translation.
From Eq. (16), it is easy to see that the bias term causes the
NSE to vary with different displacements of f and o. This
motivates us to decompose NSRu into two components:

NSRu =
b2
+ σ 2

e

σ 2
o

=
b2

σ 2
o

+
σ 2
e

σ 2
o

= SNSRu+RNSRu, (18)

where SNSRu denotes the systematic NSRu, which changes
with the general translations, and RNSRu denotes the ran-
dom NSRu, which remains constant regardless of transla-
tions. Thus, RNSRu is an irreducible component of NSRu
in any translation and acts as a lower bound of NSRu. Simi-
lar to Eq. (14), we define a generally invariant version of the
NSE in terms of RNSRu:

NSEu = 1−
σ 2
e

σ 2
o

= 1−RNSRu. (19)

Here, the subscript “u” is added to emphasize that this NSE
is indeed the upper bound of the original NSE (i.e., the high-
est NSE can be reached just by translations). The NSEu is
identical to the NSE when there are no biases in simulations.
For the two simulations s1 and s2 in Eqs. (17a) and (17b), re-
spectively, the new score yields NSEu1 = 1 and NSEu2 = 0,
respectively, which reflect our subjective evaluation. As we
shall see shortly, RNSRu will help to ease our analysis on the
behavior of the NSE considerably.

Similar to NSEu, we define NDEu in terms of RNSRu:

NDEu =
1

1+RNSRu
. (20)

We now prove an interesting fact: that NDEu is indeed a more
familiar quantity in statistics, namely the correlation coeffi-
cient ρ. This is easy to prove by making use of Eq. (7) in the

Hydrol. Earth Syst. Sci., 27, 1827–1839, 2023 https://doi.org/10.5194/hess-27-1827-2023



L. Duc and Y. Sawada: A signal-processing-based interpretation of the Nash–Sutcliffe efficiency 1831

definition of ρ,

ρ =
(s−µs)(o−µo)

σsσo
=
(o−µo+ ε)(o−µo)

σsσo

=
σ 2
o

σsσo
=
σo

σs
> 0, (21)

and in the definition of σ 2
f ,

σ 2
s = (s−µs)

2 = (o−µo+ ε)2 = σ
2
o + σ

2
e . (22)

By plugging Eq. (22) into Eq. (21), we obtain a one-to-one
map between ρ2 and RNSRu:

ρ2
=
σ 2
o

σ 2
s

=
σ 2
o

σ 2
o + σ

2
e

=
1

1+RNSRu
= NDEu. (23)

This reveals a profound understanding of ρ, i.e., the corre-
lation reflects noisiness in the error model shown in Eq. (7).
This is illustrated in Fig. 1 with the joint probability distri-
butions of s and o for different values of ρ. From Eq. (23), it
is easy to find the lowest correlation at which a simulation is
still considered to be good:

NDEu = ρ
2
≥ NDE≥

1
2
↔ ρ ≥

1
√

2
≈ 0.7. (24)

It is worth noting that this critical value of ρ is unknown in
the literature.

2.3 Relationships between the NSE, NDE, and KGE

In the previous section, we showed that the four variables
NSEu, NDEu, ρ, and RNSRu are equivalent in the sense that
they reflect noise levels in simulations. As the correlation (ρ)
is a more popular variable, with its support on the finite in-
terval [0,1], we will use ρ as the main independent variable
and view all scores as functions of ρ in this section. Thus, the
expression of NSEu in terms of ρ is given by

NSEu = 1−RNSRu = 2−
1
ρ2 . (25)

Similarly, we disregard the contribution from the means µs
and µo to the KGE in Eq. (6) and define its upper bound by
setting all of the weights to 1.0:

KGEu = 1−

√
(ρ− 1)2+

(
σs

σo
− 1

)2

= 1−

√
(ρ− 1)2+

(
1
ρ
− 1

)2

, (26)

where we have made use of Eq. (17) to get the last expres-
sion. Recall that, although the KGE is not invariant in the
translations (s,o)→ (s+1,o+1), when excluding the bias
term, the KGE upper bound KGEu becomes invariant in any

translation. It is usually accepted that the NSE and KGE do
not have a unique relationship and, therefore, are not com-
parable (Konner et al., 2019). However, by focusing on their
upper bounds, we can easily compare the two scores on the
same plot, as depicted in Fig. 2 (which also plots the NDE
for completeness). Several important findings can be drawn
from Fig. 2.

Firstly, the three scores are monotonic functions of ρ. This
is a consequence of the fact that their functional forms are
one-to-one maps from ρ to these scores. These bijections en-
sure that any score (NSEu, NDEu or KGEu) can be used as
an indirect measure of RNSRu. In this sense, NSEu, NDEu,
and KGEu are only different sides of the same RNSRu (i.e.,
they are interchangeable in measuring noisiness in simula-
tions). This highlights that the KGE has the same scientific
meaning as the NSE, which indicates the relative magnitude
of the power of noise to the power of the variation in obser-
vations. This fact has been demonstrated in several studies
(e.g., Yassin et al., 2019). Although the KGE has been pro-
posed in the multiple-criteria framework, it is interesting to
see that the signal processing approach reveals its unexpect-
edly scientific meaning.

As we can make any new score by simply assigning any
monotonic function of ρ to a score, we illustrate this pro-
cess by re-deriving the NDE pretending that we do not know
its mathematical form (Eq. 4). For this purpose, we develop
a new score from scratch, called the correlation efficiency
(CE), by first defining its upper bound as

CEu = ρ
2. (27)

Using Eq. (23), we rewrite Eq. (27) as

CEu =
1

1+RNSRu
. (28)

Then, by replacing RNSRu with NSRu, we reintroduce the
bias term back into Eq. (28) and get the final version, which
turns out to be the NDE:

CE=
1

1+NSRu
=

σ 2
o

σ 2
o + b

2+ σ 2
e

= NDE. (29)

Similarly, we can deduce the translation-invariant form of the
KGE from Eq. (26) by writing ρ in terms of RNSRu, and we
can then replace RNSRu with NSRu:

KGE=

1−

√(
1

√
1+NSRu

− 1
)2

+
(√

1+NSRu− 1
)2
. (30)

Recall that the original KGE (Eq. 4) is not invariant in the
special translations (s,o)→ (s+1,o+1). With the new
KGE (Eq. 30), the translational invariance is satisfied. How-
ever, replacing RNSRu with NSRu is not the only way to
enforce translational invariance; adding a new bias term such
as b2/σ 2

o under the square root in Eq. (26) also works here.
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Figure 1. Joint probability distributions of simulations and observations with different values of ρ in the additive error model. Here, we
assume b = 0 and o∼N (0,1); thus, the error model yields σe =

√
1/ρ2− 1σo.

Figure 2. The upper bounds of the NSE, NDE, and KGE as func-
tions of ρ. The solid line without symbols marks the boundary be-
tween bad simulations (on the left) and good simulations (on the
right) if simulations have no biases. If biases in simulations exist,
this boundary will shift to the right.

Secondly, in practice, the choice of an appropriate score
can be determined by its magnitude and sensitivity. In this
sense, Fig. 2 explains why modelers tend to favor the KGE
in practice. This is because the KGEu is always greater than
the NSEu; moreover, the KGEu is concurrently less sensitive
to ρ than the NSEu, as the derivatives of the KGEu are always
smaller than the derivatives of the NSEu. The NDEu is also
a good candidate in terms of the magnitude and sensitivity
when the NDEu is only slightly smaller than the KGEu.

Thirdly, the smaller the correlation, the more sensitive the
NSE and KGE. This is the consequence of the non-linear
dependence of RNSRu on ρ, as expressed in Eq. (23). As
a result, estimations of the KGE and NSE are expected to
have high uncertainties when correlations decrease. In con-
trast, the NDE is less sensitive with decreasing ρ.

Finally, at the threshold ρ = 1/
√

2, the value of the
KGEu is approximately 0.5 (the exact value is 1−√
(1/
√

2− 1)2+ (
√

2− 1)2), which is the lowest KGEu at
which unbiased simulations are still considered to be good. It
is also the lower bound for the modified KGE (Eq. 30), which
considers all simulations, whether they are biased or not, due
to the way it is constructed (NSRu ≤ 1 entails KGE≥ 0.5).
For the traditional KGE (Eq. 5), the lower bound for good
simulations is not a well-defined concept because this KGE
is not just determined by NSRu. This threshold KGE∗, if it
exists, has to be equal to or greater than 0.5; if it is not,
we get a contradiction for unbiased simulations satisfying
KGE∗ < KGEu < 0.5. As a result, we come to conclusion
that the necessary condition for a good simulation is that
KGE≥ 0.5 for any form of the KGE.

Similar to the threshold of ρ = 1/
√

2 for a good simu-
lation, this KGE threshold is unknown in the literature. In
particular, this value is much greater than the corresponding
threshold of NSEu, which is zero. In practice, this relatively
large gap can lead to the misjudgment of model performance,
as (similar to the NSE) modelers tend to consider KGE= 0
as the threshold for good vs. bad model distinction (Ander-
son et al., 2017; Fowler et al., 2018; Siqueira et al., 2018; Su-
tanudjaja et al., 2018; Towner et al., 2019). Thus, all models
with a KGE between 0 and 0.5 are wrongly classified as hav-
ing good performance when they are actually “bad” models.
It is worth noting that Rogelis et al. (2016) assigned the value
of KGE= 0.5 as the threshold below which simulations are
considered to be “poor”.
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The threshold of KGE= 0.5 is much larger than the KGE
value calculated for the benchmark model when the sim-
ulation is equal to the observed mean, which is approxi-
mately −0.41 (as shown in Knoben et al., 2019). Knoben
et al. (2019) guessed that −0.41 is the lower bound of the
KGE for a good model. However, we have already seen that
both the observed mean s = µo and the simulations with
NSRu = 1 agree on the same value of NSE= 0. How can
we explain the different values of −0.41 and 0.5 in the case
of the KGE? The reason for this is that the benchmark simu-
lation does not follow the model error (Eq. 7). It is clear that
the regression line s = o, dictated by Eq. (7), is very different
from the regression line s = µo in the case of the benchmark.
Furthermore, Eq. (7) entails that σs is always greater than σo,
as shown in Eq. (22), which is not the case for s = µo. As a
result, the error model shown in Eq. (7) cannot describe sim-
ulations with variances smaller than their observation vari-
ances, which is expected to commonly occur in practice. This
raises the question of whether the additive error model holds
in reality. If this error model is not followed in reality, can
we still use the NSE? Another important question is how we
introduce the benchmark model s = µo into the framework
developed so far to examine the NSE and KGE. These prob-
lems require an extension of the error model shown in Eq. (7)
and will be further pursued in next section.

3 General cases: mixed additive–multiplicative error
models

3.1 Validity of the traditional NSE

In order to extend the additive error model to the general
cases, we first note that the error model shown in Eq. (7)
indeed gives us the conditional distribution of simulations on
observations. As all of the information on simulations and
observations is encapsulated in their joint probability distri-
bution, we can seek the general form of this conditional dis-
tribution from their joint distribution in the general cases. For
this purpose, we will assume that this joint probability distri-
bution is a bivariate normal distribution:

p
(
s

o

)
=N

[(
µs
µo

)
,

(
σ 2
s ρσsσo

ρσsσo σ 2
o

)]
. (31)

If the joint distribution is not Gaussian, we need to ap-
ply some suitable transformations to s,o, such as the root-
squared transformation (s,o)→ (

√
s,
√
o), the log transfor-

mation (s,o)→ (log(s), log(o)), or the inverse transforma-
tion (s,o)→ (1/s,1/o) (Pushpalatha et al., 2012). When the
joint distribution has a Gaussian form, the conditional dis-
tribution also has a Gaussian form (see Chap. 2 in Bishop,
2006, for the proof):

p(s|o)=N
[
µs +

ρσs

σo
(o−µo), (1− ρ2)σ 2

s

]
. (32)

This implies the following form of the error model:

s =
ρσs

σo
o+

(
µs −

ρσs

σo
µo

)
+ ε = ao+ b+ ε. (33)

Here, a = ρσs/σo; b = µs−(ρσs/σo)µo; and ε ∼N (0,σ 2
e ),

with σ 2
e = (1−ρ

2)σ 2
s . In other words, simulations in the gen-

eral cases contain both multiplicative and additive biases as
well as additive random errors. It is easy to verify that Eq. (7)
is a special case of Eq. (33) when a = 1.

It is worth noticing that the nature and behavior of the NSE
in Sect. 2 is constructed solely relying on the additive error
model without any assumption on the joint probability dis-
tribution of s,o. Therefore, in this section, we again only
assume that the error model is described by Eq. (33), i.e.,
a mixed additive–multiplicative error model. The joint distri-
bution is no longer assumed to be a bivariate normal distribu-
tion, although Eq. (33) is derived from this assumption. This
means that the marginal distribution of observations is not re-
stricted to a Gaussian distribution and can be any probability
distribution. However, two important identities obtained with
the Gaussian assumption still hold:

ρ =
(s−µs)(o−µo)

σsσo
=
(ao− aµo+ ε)(o−µo)

σsσo

=
aσ 2

o

σsσo
=
aσo

σs
, (34)

σ 2
s = (s−µs)

2 = (ao− aµo+ ε)2

= a2σ 2
o + σ

2
e → σ 2

e = (1− ρ
2)σ 2

s . (35)

Can we now proceed by plugging the error model shown in
Eq. (33) into the formula shown in Eq. (1) for the NSE, as in
Sect. 2? The answer is definitely no, as it makes no sense to
plug Eq. (33) into Eq. (1) without first verifying the relevance
of the traditional NSE in the error model shown in Eq. (33).
Using a simple example, we now demonstrate the failure of
the three traditional scores, the NSE, NDE, and KGE, when
they are applied outside of the additive error model. Let us
consider a model simulation with an additive random error:

s1 = o+ ε, (36)

where we assume µs1 = µo = 0 and σo = σe. This simula-
tion indeed gives us the thresholds NSE1 = 0, NDE1 = 0.5,
and KGE1 = 0.5 that distinguish good simulations from bad
ones, as we have examined in Sect. 2. It is very clear that
we cannot improve this simulation, as the power of random
noise is equal to the power of observations. However, this is
not true if we measure performance with the NSE, NDE, and
KGE by constructing a new simulation that is half of s1:

s2 = 0.5s1 = 0.5o+ 0.5ε. (37)

https://doi.org/10.5194/hess-27-1827-2023 Hydrol. Earth Syst. Sci., 27, 1827–1839, 2023



1834 L. Duc and Y. Sawada: A signal-processing-based interpretation of the Nash–Sutcliffe efficiency

Calculating its NSE, NDE, and KGE, we obtain the follow-
ing:

NSE2 = 1−
(o− s2)2

σ 2
o

= 1−
(0.5o− 0.5ε)2

σ 2
o

= 1−
0.5σ 2

o

σ 2
o

= 0.5, (38a)

NDE2 = 1−
(s2− o)2

s2
2

= 1−
(0.5ε− 0.5o)2

(0.5o+ 0.5ε)2

= 1−
0.5σ 2

o

0.5σ 2
o

= 0, (38b)

KGE2 = 1−
√
(ρ− 1)2+ (σ2/σo− 1)2

= 1−

√(
1/
√

2− 1
)2
+

(
1/
√

2− 1
)2

= 2−
√

2≈ 0.6. (38c)

Suddenly, the NSE and KGE indicate that s2 is consider-
ably better than s1, although all that we did was halve s1.
In contrast, the NDE gives a very different evaluation: s2 is
much worse than s1. However, by nature, Eq. (37) is equiv-
alent to Eq. (36), and we should not make any simulation
better or worse by just scaling the observations and the ran-
dom error. This simple example is enough to show that the
scientific meaning of the traditional scores (like the NSE)
becomes questionable when we introduce multiplicative bi-
ases into the error model. This can be traced back to a similar
problem with the MSE score, as demonstrated in Wang and
Bovik (2009).

We show a further argument for the irrelevance of the tra-
ditional NSE in the error model shown in Eq. (33) by proving
that the NSE (Eq. 1) is not invariant in the translations that
preserve the error model in Eq. (33). In the case of the error
model shown in Eq. (7), we have shown that this additive er-
ror model is preserved in the translations (s,o)→ (s+1,o+

1). Geometrically, these translations move the joint distribu-
tion along the regression line s = o+ b. In the general cases
(Eq. 33), the regression line becomes s = ao+ b. This sug-
gests that the error model shown in Eq. (33) is preserved in
the translations (s,o)→ (s+a1,o+1), which indeed holds
because

s+ a1= a(o+1)+ b+ ε. (39)

When a 6= 1, these transformations cause the NSE (Eq. 1)
to vary with 1; therefore, the traditional NSE is no longer a
robust score in the error model shown in Eq. (33).

3.2 An extension of the traditional NSE

In order to seek an appropriate form of the NSE in the gen-
eral cases, we rely on the nature and behavior of the tra-
ditional NSE examined in Sect. 2 by imposing three con-
ditions on the generalized NSE: (1) it measures the noise

level in simulations; (2) it is invariant in the translations
(s,o)→ (s+ a1,o+1); and (3) its random component,
equivalently its upper bound, is invariant in all affine trans-
formations (s,o)→ (αss+1s,αoo+1o), where αs,1s,αo,
and 1o are arbitrary real numbers. Note that we use affine
transformations here due to the presence of both multiplica-
tive and additive biases in the error model shown in Eq. (33).
We proceed by choosing a special transformation, i.e., the
bias-corrected transformation (s,o)→ ((s− b)/a,o). This
results in an additive error model without biases:

sbc =
s− b

a
= o+

ε

a
. (40)

This suggests that we can define a new NSE in terms of the
following upper bound of RNSR:

RNSRu =
σ 2
e

a2σ 2
o

. (41)

We now prove that Eq. (41) is indeed invariant in the trans-
formations (s,o)→ (s̃ = αss+1s, õ= αoo+1o). In terms
of s̃, õ, the error model shown in Eq. (33) becomes

s̃ = αss+1s = αs

(
a
õ−1o

αo
+ b+ ε

)
+1s

=
αsa

αo
õ+αs

(
b−

a1o

αo

)
+1s +αsε. (42)

Denoting ã = αsa/αo and ε̃ = αsε, we recalculate Eq. (41)
for the updated error model shown in Eq. (42) with the
updated parameters σ̃ 2

e = α
2
s σ

2
e , ã2

= α2
s a

2/α2
o , and σ̃ 2

o =

α2
oσ

2
o :

RNSRu =
σ̃ 2
e

ã2σ̃ 2
o

=
σ 2
e

a2σ 2
o

. (43)

Thus, Eq. (41) is invariant in any affine transformation, which
enables us to define the upper bound of the generalized NSE
similar to Eq. (19):

NSEu = 1−RNSRu = 1−
σ 2
e

a2σ 2
o

. (44)

This upper bound entails the desired form of the generalized
NSE:

NSE= 1−
b2
+ σ 2

e

a2σ 2
o

= 1−
(
o

σo
−

1
ρ

s

σs

)2

, (45)

where the last expression shows its practical form in com-
parison with the traditional form (Eq. 1). We only need to
check the invariant property of Eq. (45) in the translations
(s,o)→ (s+ a1,o+1). As these translations do not alter
the bias term b and are a subset of the affine transformations
(s,o)→ (αss+1s,αoo+1o), they preserve Eq. (45).

In Sect. 1, we noted that the decomposed form (Eq. 5) of
the NSE is relatively unintuitive, even though it is derived
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from the elegant form (Eq. 1). From Sect. 3.1, we know that
Eq. (1) is indeed only relevant in the additive error model
shown in Eq. (7). It becomes irrelevant when multiplicative
biases are introduced into Eq. (7). Therefore, if we continue
to use the traditional NSE in the general cases, an unintuitive
form of the NSE will be expected, as verified by Eq. (5).
The appropriate NSE in such cases is the generalized NSE
(Eq. 45).

What is the scientific meaning of the generalized NSE
(Eq. 45)? Clearly, it measures the relative magnitude of the
power of noise to the power of the variation in observations
when the multiplicative factor is removed. Thus, similar to
the traditional NSE, the NSE value of zero still marks the
threshold between good and bad simulations. It also attains
a maximum equal to one when models do not have additive
biases and random errors. However, a subtle difference exists
in the general cases: the perfect score NSE= 1 includes not
only the perfect simulation s = o but also all simulations with
only multiplicative biases s = ao. This means that this gen-
eralized score does not measure the impact of multiplicative
biases. Therefore, when evaluating model performance, we
should consider both the NSE (Eq. 45) and the multiplicative
factor a, although the NSE should have a higher priority.

3.3 Behavior of the generalized NSE

We now prove a surprising result: the upper bound of the
NSE in the general cases is the same as in the cases of the
additive error model, which is given by Eq. (25). By making
use of the two identities obtained with Eqs. (34) and (35) in
Eq. (44), we have

NSEu = 1−
σ 2
e

a2σ 2
o

= 1−
(1− ρ2)σ 2

f

ρ2σ 2
f

= 2−
1
ρ2 . (46)

Thus, in the general cases, correlations still reflect noisiness
in simulations. This is illustrated again in Fig. 3 for the joint
probability distributions of s and owith the same ρ = 0.9 and
different multiplicative factors (a). From Fig. 3, it is seem-
ingly counterintuitive to realize that the noise levels are the
same among all simulations given the same correlations of
0.9. Clearly, all of the points (s,o) tend to spread wider when
a is increased, which implies that the noisiness increases.
However, this misinterpretation results from our implicit as-
sumption on the additive error model (Eq. 7) for all of the
simulations (i.e., a = 1 for all of the cases).

A further simple argument will show why the noise levels
are the same in Fig. 3. Let us consider a simulation s = o+ε.
In this case, the simplest way to reduce the magnitude of the
random error ε is to multiply s by a very small multiplica-
tive factor a. By doing this, we have a new simulation s̃ = as
with a new random error ε̃ = aε. Does this mean that s̃ is
less noisy than s? Of course, this is not true at all, as the
noisiness is measured by the relative magnitude between the
power of noise and the power of the variation in observations

but not by the absolute magnitude of noise. When we multi-
ply s by a, we concurrently multiply o by a; as a result, the
relative magnitude is unaltered. This further emphasizes that
noisiness of all simulations s = ao+ aε for any value of a
should be considered to be equivalent. The generalized NSE
(Eq. 45) just reflects this fact.

As the upper bound of the generalized NSE is invari-
ant when we introduce multiplicative biases into the addi-
tive error model (Eq. 7), all conclusions in Sect. 2.3 still
hold. Thus, it is legitimate to use the upper bounds of the
NDE and KGE, as expressed by Eqs. (23) and (26), re-
spectively, in the general cases. This implies that the values
NDE= 0.5 and KGE≈ 0.5 remain to indicate the thresh-
olds below which all simulations are considered to be poor.
The generalized NDE and KGE can be derived using the
same procedure to obtain Eqs. (29) and (30) with the gen-
eralized NSRu = (b

2
+ σ 2

e )/a
2σ 2
o in place of the traditional

NSRu = (b
2
+ σ 2

e )/σ
2
o . We derive the generalized NDE for

illustration:

NDE=
1

1+NSRu
=

a2σ 2
o

a2σ 2
o + b

2+ σ 2
e

. (47)

It is worth noting that, when rewritten using the error model
shown in Eq. (33), the variance term (σs/σo− 1)2 will be
replaced by (σs/aσo−1)2 in the form (Eq. 26) of the KGEu:

KGEu = 1−

√
(ρ− 1)2+

(
1
ρ
− 1

)2

= 1−

√
(ρ− 1)2+

(
σs

aσo
− 1

)2

. (48)

Combined with the generalized NSEu (Eq. 46), we see that,
in practice, if a is not taken into account (i.e., the traditional
NSE and KGE are still used), we underestimate or overes-
timate the generalized NSE and KGE when a is smaller or
greater than one, respectively.

In order to check the work of the generalized versions of
the NSE, NDE, and KGE, we re-evaluate the performance
of the two simulations in Eqs. (36) and (37). In the case of
s1, as the multiplicative bias a = 1, the generalized efficien-
cies are identical to the traditional ones; therefore, we still
have NSE1 = 0, NDE1 = 0.5, and KGE1 = 0.5. As s2 does
not have any additive bias, its generalized NSE, NDE, and
KGE are identical to its corresponding upper bounds:

NSE2 = 1−
σ 2
e

a2σ 2
o

= 1−
(0.5ε)2

0.52σ 2
o

= 1−
0.52σ 2

o

0.52σ 2
o

= 0, (49a)

NDE2 =
a2σ 2

o

a2σ 2
o + σ

2
e

=
0.52σ 2

o

0.52σ 2
o + (0.5ε)2

=
0.5σ 2

o

0.5σ 2
o + 0.5σ 2

o

= 0.5, (49b)
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Figure 3. Joint probability distributions of simulations and observations with the same ρ = 0.9 and different values of a in the mixed
additive–multiplicative error model. Here, we assume b = 0 and o∼N (0,1); thus, the error model yields σe =

√
1/ρ2− 1aσo. The noise

levels, as measured by the generalized NSE, indicate the same noisiness for all forecasts, even though the noisiness seemingly increases with
increasing a.

KGE2 = 1−

√
(ρ− 1)2+

(
σ2

aσo
− 1

)2

= 1−

√√√√( 0.5σo
0.5
√

2σo
− 1

)2

+

(
0.5
√

2σo
0.5σo

− 1

)2

≈ 0.5. (49c)

Thus, we obtain the same results as s1, showing consistency
between the two simulations, as expected.

With the generalized NSE, it is now possible to deal with
the benchmark model s = µo. We exclude the trivial case o=
s = µo and always assume σo 6= 0. This special simulation is
equivalent to the following model error:

s = 0 · o+µo+ 0. (50)

This implies a = 0, b = µo, and σe = 0 in Eq. (33). This spe-
cific error model highlights a problem that we have omitted
when defining the generalized NSE: RNSRu (Eq. 41), and
therefore the NSE (Eq. 45), can only be defined for the cases
a 6= 0. When a = 0, simulations and observations are two un-
correlated signals (ρ = 0) and it makes no sense to state that
the received signal (simulations) is the true signal (observa-
tions) contaminated by noise.

In order to assign an appropriate value of the NSE for the
cases ρ = 0, we rely on the continuity of the NSEu with re-
spect to ρ, as shown in Eq. (46). Let ρ approach zero in
Eq. (46), and we get the limit NSEu =−∞. As the NSEu
is the upper bound of the NSE, this entails NSE=−∞.
The same argument yields NDE= 0 and KGE=−∞ under
the limit ρ→ 0. In other words, all simulations uncorrelated
with observations (which include the observed mean) should
be classified as the worst simulations with NSE=−∞. This
can be justified by noting that information on the variation in
observations is totally unknown if only an uncorrelated sim-

ulation is available. Therefore, the generalized NSE provides
a new interpretation of the benchmark simulation s = µo.
Rather than a benchmark marking the boundary between
good and bad simulations, the observed mean is indeed the
worst simulation, which can be beat by any simulations cor-
related with observations.

In order to clarify the aforementioned sophisticated prob-
lem, we summarize our arguments as follows:

– In the perspective of signal processing, the additive error
model cannot deal with the benchmark model s = µo.

– In the additive error model, NSE= 0 means that noise
dominates informative signals, which is unrelated to the
observed mean.

– The mixed additive–multiplicative model enables us to
interpret the case of the observed mean when the multi-
plicative bias a = 0.

– However, the traditional NSE is not robust to multiplica-
tive biases. When we design a new score robust to mul-
tiplicative biases, the observed mean should be inter-
preted as the worst simulation which gives us no infor-
mation on observation variability.

– Although the observed mean can be easily obtained in
hydrological model calibration and seems to be reason-
able as a benchmark, it makes no sense to choose the ob-
served mean as a benchmark simulation from the signal-
processing viewpoint of the NSE.

4 Conclusion

The Nash–Sutcliffe efficiency (NSE) is a widely used score
in hydrology, but it is not common in the other environmen-
tal sciences. One of the reasons for its unpopularity is that its
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scientific meaning is somehow unclear in the literature. Many
attempts to establish a solid foundation for the NSE from sev-
eral viewpoints, such as linear regression, skill scores, and
multiple-criteria scores, exist This study contributes to these
previous works by approaching the NSE from the viewpoint
of signal progressing. Thus, a simulation is viewed as a re-
ceived signal containing a wanted signal (observations) con-
taminated by an unwanted signal (noise). This view under-
lines the important role of the error model between simula-
tions and observations, which is usually implicit in our as-
sumption. Thus, our approach follows Bayesian inference, in
which an error model is formally defined and a goodness-
of-fit measure is then derived (Mantovan and Todini, 2006;
Vrugt et al., 2008). The rational is to avoid the use of the NSE
as a predefined measure without an explicit error model, like
in generalized likelihood uncertainty estimation (Beven and
Binley, 1992), which has caused a long debate in the hydrol-
ogy community (Mantovan and Todini, 2006; Stedinger et
al., 2008).

By assuming an additive error model, it is easy to point
out that the NSE is equivalent to an important quantity in sig-
nal processing: the signal-to-noise ratio. More precisely, the
NSE measures the relative magnitude of the power of noise
to the power of the variation in observations. Therefore, the
NSE is a universal metric that should be applicable in any sci-
entific field. However, due to its dependence on the power of
the variation in observations, the NSE should not be used as
a performance measure to compare different signals. Its sci-
entific meaning suggests a natural way to choose NSE= 0
as the threshold to distinguish between good and bad simu-
lations in practice. This is because the power of noise starts
dominating the power of the variation in observations when
the NSE goes below zero, meaning that noise distorts the de-
sired signal and makes it difficult to extract the useful infor-
mation. This choice has no relation to the interpretation that
NSE= 0 corresponds to the benchmark simulation equal to
the observed mean, and all good simulations need be better
than this benchmark.

As the NSE can be easily increased simply by adding ap-
propriate constants to simulations and observations, we seek
its upper bound NSEu using all such additions. The NSEu
is seen to correspond to the random component of the NSR
and is a useful concept in analyzing the behavior of not only
the NSE but also the NDE and KGE. It turns out that the
NSEu, NDEu, and KGEu are different measures of noisiness,
which can be mapped one-to-one between any two scores.
More surprisingly, it is found that these scores, in turn, can
be expressed in terms of a more familiar quantity: the cor-
relation coefficient. This implies that they do not introduce
any new score and can equivalently be replaced by ρ. In this
sense, any new score can be constructed from ρ with any
monotonic function of ρ. This leads to an important finding:
corresponding to NSE= 0, we have NDE= 0.5, KGE≈ 0.5
(not KGE= 0), and ρ ≈ 0.7, which mark the thresholds for
good vs. bad model distinction. This has an important prac-

tical implication for the use of the KGE, as modelers usu-
ally identify KGE= 0 for this threshold, similar to NSE= 0.
Thus, in practice, models with a KGE between 0 and 0.5 can
be wrongly classified as showing good performance.

As the additive error model cannot describe the simula-
tions that have variances smaller than the observation vari-
ances, we need to work with a more general error model to
deal with such cases. By assuming a bivariate normal distri-
bution between simulations and observations, the general er-
ror model is found to be the mixed additive–multiplicative er-
ror model. In the general cases, the traditional NSE is shown
to be prone to contradictions: different evaluations of model
performance can be drawn from a simulation by just scaling
this simulation. Therefore, an extension of the NSE needs
to be derived. By requiring that the generalized NSE is in-
variant in affine transformations of simulations and obser-
vations induced by the general error model, which helps to
avoid any contradiction, the most appropriate form is found
to be the traditional one adjusted by the multiplicative bias.
Again, this has a practical implication on the use of the NSE
and KGE: if the multiplicative factor is not taken into account
and the traditional ones are used instead, both the scores are
underestimated or overestimated when the multiplicative bias
is greater than or smaller than one, respectively. The thresh-
old values of NSE= 0, NDE= 0.5, KGE≈ 0.5, and ρ ≈ 0.7
still hold with the generalized scores.

Finally, we summarize some profound explanations that
the signal processing approach to the NSE proposes:

– Despite their different forms, the NSE, NDE, KGE, and
the correlation coefficient are equivalent, at least when
there are no biases, in the sense that they measure the
noise-to-signal ratio between the power of noise and the
power of the variation in observations.

– The threshold NSE= 0 for good vs. bad model distinc-
tion follows naturally from the fact that the power of
noise starts dominating the power of the variation in
observations at this value. The choice of a benchmark
model like the observed mean required in the interpre-
tation of such a threshold in the traditional approach is
no longer needed in the context of signal processing.

– Furthermore, the signal-processing-based approach
seamlessly enables us to derive the corresponding
thresholds for other scores (like the NDE and KGE) in
the same manner, a problem which is not well defined if
the benchmark approach is still followed. Correspond-
ing to NSE= 0, the thresholds of the KGE and the cor-
relation coefficient are given by approximately 0.5 and
0.7, respectively.

– The traditional form of the NSE only reflects the noise-
to-signal ratio in the additive error model. It no longer
reflects this when multiplicative biases are introduced;
as a result, it has an unintuitive form in the general
cases.
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– It is necessary to adjust the traditional NSE in the gen-
eral cases to avoid potential contradictions in model
evaluations. If the effect of multiplicative biases on the
noise-to-signal ratio is not considered and the traditional
NSE continues to be used, the NSE is underestimated
or overestimated when the multiplicative bias is greater
than or smaller than one, respectively.

– All simulations that are uncorrelated with observations
are considered to be the worst simulations when mea-
sured by the NSE or KGE, as no information on the vari-
ation in observations can be retrieved in these cases. The
constant simulation given by the observed mean s = µo
belongs to this class of simulations. Therefore, in the
view of signal processing, the observed mean should not
be used as a benchmark model.
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