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Abstract. An accurate and rapid urban flood prediction
model is essential to support decision-making for flood man-
agement. This study developed a deep-learning-technique-
based data-driven model for flood predictions in both tempo-
ral and spatial dimensions, based on an integration of long
short-term memory (LSTM) network, Bayesian optimiza-
tion, and transfer learning techniques. A case study in north-
ern China was applied to test the model performance, and
the results clearly showed that the model can accurately pre-
dict the maximum water depths and flood time series for
various hyetograph inputs, with substantial improvements
in the computation time. The model predicted flood maps
19 585 times faster than the physically based hydrodynamic
model and achieved a mean relative error of 9.5 %. For re-
trieving the spatial patterns of water depths, the degree of
similarity of the flood maps was very high. In a best case
scenario, the difference between the ground truth and model
prediction was only 0.76 %, and the spatial distributions of
inundated paths and areas were almost identical. With the
adoption of transfer learning, the proposed model was well
applied to a new case study and showed robust compatibil-
ity and generalization ability. Our model was further com-
pared with two baseline prediction algorithms (artificial neu-
ral network and convolutional neural network) to validate
the model superiority. The proposed model can potentially
replace and/or complement the conventional hydrodynamic
model for urban flood assessment and management, partic-
ularly in applications of real-time control, optimization, and
emergency design and planning.

1 Introduction

Flooding has been one of the most frequent and disturbing
disasters in many urban areas, especially under impacts of
climate change and urbanization (Arnone et al., 2018; Zhou
et al., 2019; Kaspersen et al., 2017; Mahmoud and Gan,
2018). The prediction of flooding plays a key role in urban
flood evaluation and management and can provide effective
decision aid tools to reduce flooding impacts on both soci-
ety and environment (Lowe et al., 2017; Xie et al., 2017;
Hou et al., 2021a). Establishing rapid and accurate flood pre-
diction methods is thus essential; however, it is a compli-
cated and challenging task (Guo et al., 2021). Convention-
ally, hydrodynamic models have been employed for appli-
cations such as flood inundation simulations, the assessment
of mitigation, and adaptation measures (Wolfs and Willems,
2013; Wang et al., 2021; Li et al., 2019). Despite the fact that
the physically based models can simulate the drainage and
surface flooding processes well, they usually require a large
number of inputs to describe the model structure and pa-
rameters and are often computationally intensive, especially
with the adoption of two-dimensional calculations (Yin et al.,
2020; Jamali et al., 2018; Ziliani et al., 2019; Hou et al.,
2021b). Meanwhile, there is an inevitable need for concep-
tualization and simplification in the physical model, and the
relevant calibration and validation procedures are also quite
challenging (Davidsen et al., 2017; Coulthard et al., 2013;
Wu et al., 2018).

Machine learning (ML) provides a potential detection tool
for the above challenges. A number of scholars have explored
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the performance of ML-based models in urban flood map-
ping since its inception. Berkhahn et al. (2019) applied an
artificial neural network (ANN) to predict the maximum wa-
ter levels during a flash flood event and used a growth algo-
rithm to find the suitable topology of ANN. Lin et al. (2020)
tested different neural network algorithms and found that the
elastic back-propagation network performed the best with the
introduction of clustering to preprocess the discharge curves
to improve the predictions. Hou et al. (2021a) combined the
random forest (RF) and K nearest-neighbor (KNN) machine
learning algorithms with a hydrodynamic model to develop
a fast urban flood inundation forecasting model. Although
these ML algorithms achieved relatively satisfactory results,
their detection efficiencies were still poor. In particular, the
generalization ability of the models was weak, which limited
their applications in practical prediction tasks.

To solve the bottlenecking problems in the complex model
construction and the high computational cost of the hy-
drodynamic models, the potential of novel deep learning
(DL) techniques in capturing and predicting flooding pro-
cesses have been increasingly explored in recent years to al-
leviate the burden on physical modeling (Han et al., 2021;
Guo et al., 2021; Hou et al., 2021a). The DL methods har-
bor intelligent learning mechanisms and can extract learning
data features from historical knowledge. The methods can
find the relationships between input and output data with
a much lower computational cost, in particular with high-
performance computers. It has been demonstrated that these
deep learning techniques (DLTs) have excellent generaliza-
tion capabilities so that even complex data features (e.g.,
flood pattern and tendency) could be automatically learned
with a high prediction accuracy and computation efficiency
(Lecun and Bengio, 1995; Rawat and Wang, 2017; Guo et al.,
2021; Yosinski et al., 2014). With the proper data provided,
the methods can learn the flood patterns through data features
and eliminate the analysis of the actual physical processes.
The high computational efficiency is essential, especially for
flooding impact modeling in urban areas with complex local
conditions and high spatial resolutions.

A number of attempts to use DL applications are found
in the field of drainage and flood condition detection and as-
sessment. Moy De Vitry et al. (2019) used a deep convolu-
tional neural network (DCNN) approach for scalable flood
level trend monitoring with data from surveillance camera
systems. Han et al. (2021) proposed a “you only look once”
(YOLO)-based DL framework to automatically monitor the
urban road inundation under dry and wet conditions. Hou
et al. (2021c) performed an experimental flooding test using
surveillance cameras to obtain flood images and employed a
Mask R-CNN (mask region-based convolutional neural net-
work) to detect and segment the inundated areas in river
channels. Guo et al. (2021) adopted a DCNN-based approach
for urban flood predictions and achieved satisfying predic-
tion accuracy and computation efficiency. Löwe et al. (2021)
further proposed a CNN with U-Net architecture to predict

urban flood hazards at a high resolution and short timescales,
by taking into account multiple spatial and rainfall variables
as input datasets. Hofmann and Schüttrumpf (2021) intro-
duced a DL model, floodGAN, to predict 2D flood inunda-
tion, and an image-to-image-based translation method was
used to convert flood hazard maps directly from raw rain-
fall images. These studies have shown the potential of DL
techniques in a wide range of flow-related problems, with
promising accuracy and low computational cost. Neverthe-
less, the previous studies have been focused on the prediction
of maximum flood maps, and research on time series predic-
tions has been lacking.

Different from other popular DL algorithms, the long
short-term memory (LSTM) network allows inputs of un-
equal dimensions/lengths, which is especially suitable for
processing time series data, such as traffic flow (Xia et al.,
2021) and power systems (Ciechulski and Osowski, 2021).
All of these studies have demonstrated the remarkable ca-
pabilities of LSTM in data feature learning in the time di-
mension. Zhu et al. (2020) developed a probabilistic LSTM
network coupled with Gaussian process (GP) to improve the
streamflow forecasting in the upper Yangtze River, despite
the advances of the studies, most of which focused on a large
spatial scale and required several types of input data (e.g.,
rainfall, terrain, and flow depth) for model predictions. So
far, no study has explored the LSTM performance on an au-
tomated prediction of urban-scale flood inundation at high
resolution or the combination of optimization algorithms and
transfer learning methods to enhance the model performance,
generalization, and compatibility.

The goal of this study is to provide a novel end-to-end
method for a dynamic, rapid, and accurate urban flood pre-
diction for real-time evaluation and emergency decision-
making. Given the uncertainty/unknown aspect of rainfall
events and the advantages of LSTM, we present a DL-
based technique with the integration of a LSTM network, a
Bayesian optimization, and transfer learning methods. The
inundation areas and water depths can be forecasted in both
temporal and spatial dimensions with only rainfall inputs.
Both the maximum water depths and flood time series can
be predicted. The method was first tested in a case study in
northern China with various rainfall conditions. Another case
study was used to test the compatibility and generalization
ability of the developed model. Finally, two classical flood
prediction algorithms (ANN and CNN) were considered to
be the baseline models to confirm the effectiveness of the
proposed method.

2 Methodology and data

To examine the performance of the proposed approach, we
first selected two case studies and obtained the relevant data
describing the rainfall inputs, local topography, and drainage
systems. A coupled 1D–2D hydrodynamic model was em-
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Figure 1. Case study (a) land use and (b) drainage system, with digital elevation model (DEM) descriptions.

ployed to simulate the inundation areas and water depths at
different time steps under various designs of rainfall events.
Then the DL-technique-based prediction model was estab-
lished and trained based on the simulated flood maps and
tested with random rainfall inputs to examine the relevant
prediction accuracy and computational cost. The Bayesian
optimization and transfer learning techniques were adopted
to enhance the detection performance and generalization
ability of the developed model.

2.1 Case study areas

A portion of the city Hohhot, the capital of the Inner Mon-
golia Autonomous Region, was used as the case study to
test the performance of the proposed method. The city is
located in northern China and within a cold, semi-arid cli-
mate zone. The winters are dry, but the summers can be very
hot and rainy. The average annual rainfall was approximately
396 mm, the majority of which concentrated from July to Au-
gust (Zhou et al., 2018, 2016). The detailed land use (Fig. 1a)
mainly consists of residential areas, commercial districts, in-
stitutes, green spaces, and other land use. The terrain is high
in the north and lower in the south (Fig. 1b), and thus, the
runoffs generally flow in a north to south direction. The ser-
vice level of the drainage system was rather low, and the
original design return period of the system was below once
a year (Zhou et al., 2018). In recent years, the flooding has
occurred more frequently in the area. Nevertheless, there is
a lack of accurate historical data on flood areas and depths,
and thus, simulations of flood events were performed with
a 1D–2D coupled hydrodynamic model (to be introduced in
the following sections) under various designs of rainfall.

The input rainfall hydrographs for model training and vali-
dation were calculated using the regional storm intensity for-

mula (SIF) (q = 635× (1+ 0.841× lg(P ))/t0.61, where q is
the storm intensity ((Ls−1)hm−2), p is the design return
period (a), and t is the rainfall duration (minutes), respec-
tively; Zhang and Guan, 2012; Zhou et al., 2016). The rain-
fall calculation followed the national code for design of out-
door drainage (Mohurd, 2016) and the design principles of
Chicago Design Storms (CDSs; Berggren et al., 2014; Pan-
thou et al., 2014; Zhou et al., 2012). The detailed procedures
for applying the regional SIF to obtain CDSs are outlined
in the national Technical Guidelines for Establishment of
Intensity–Duration–Frequency Curve and Design Rainstorm
Profiles (Mohurd, 2014).

In this case study, we investigated the DL-based model
ability for predicting both maximum water depth and flood
time series during the entire rainfall period. Two types of
datasets were established. The first is (1) the maxH dataset,
i.e., the maximum flood depth. There were in total 90 rain-
fall events adopted, with return periods ranging from 1 to
100 years and a rainfall duration of 2, 4, or 6 h, respec-
tively. Meanwhile, three types of rain peak position coeffi-
cients were tested, including 0.3, 0.5, and 0.7. All rainfall
inputs were generated with a temporal resolution of 10 min.
The details on the return period, rainfall duration, and peak
position of the input rainfall events are provided in the Sup-
plement (Sect. S1). Among the 90 flood maps, 90 % were
randomly selected for model training and validation, and the
rest 10 % were for testing. The second is the (2) time se-
ries dataset. We adopted 11 rainfall events and recorded the
flooded water depths every 10 min for the entire case study
under each rainfall period. Among those chosen, nine rainfall
events were used for training and the other two for testing.
Furthermore, a second study was adopted to test the capa-
bility of the developed model to generalize to different case
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Figure 2. (a) Land use and (b) drainage system and DEM of the second case study.

studies or contexts. The area is in a relatively remote loca-
tion in the Hohhot city, and Fig. 2 shows the main land use,
drainage system, and surface elevation of the case study. In
this case study, the DL-based model was mainly tested on the
basis of maxH predictions.

2.2 Physically based hydrodynamic model

All the overland flooding maps and time series were sim-
ulated using the 1D–2D coupled hydrodynamic model,
namely MIKE URBAN (Mike by Dhi, 2016). The hydro-
logical inputs and pipe flows were simulated using the
1D MOUSE model, and the overland flows were calculated
using the MIKE 21 model. With the precipitation inputs, the
runoff model was characterized by the general catchment
data, such as locations, areas, imperviousness, and time of
concentration. The shape of the runoff hydrograph was com-
puted by the time–area method (Mike by Dhi, 2016). The
calculation of unsteady flow in the pipe network was con-
ducted by solving the Saint–Venant equations, which are the
vertically integrated equations for the conservation of con-
tinuity (i.e., continuity equation) and momentum (i.e., mo-
mentum equation). The surface inundation model was estab-
lished by the MIKE 21 rectangular grid component, and the
links between the 1D and 2D models were established to sim-
ulate the flow interactions between the pipeline and overland
flows. The flow in the links was governed by an orifice equa-
tion (Mike by Dhi, 2016). When the underground drainage
was surcharged, the excess water flowed to the surface and
conducted surface inundation calculations in the context of
extreme precipitation. On the surface, the water typically
flowed along buildings or streets based, on a description of
the local digital elevation or topography (Mark et al., 2004;
Leandro et al., 2009).

The model outputs include the overland flow paths, ex-
tents, depths, and velocities at different time steps. One of
the most commonly used outputs is flood maps describing
the maximum water depths caused by the given rainfall in-
puts (Kaspersen et al., 2017; Mike by Dhi, 2016; Zhou et al.,
2012). These flood maps can be further integrated with vul-
nerability data for an assessment of flood risk levels at dif-
ferent spatial scales (Sampson et al., 2014; de Moel et al.,
2009; Ashley et al., 2007). In doing so, the critical areas with
higher levels of flood risks can be identified and allocated
with varying degrees of priority in the mitigation and adapta-
tion plans (de Moel et al., 2015; Zhou et al., 2012). Taking the
first case study as an example, as shown in Fig. 3, changes in
input rainfalls lead to variations in the simulated flood maps.
Increases in flood extents and depths are seen with rainfall
that has larger return periods. Note that this study aimed to
develop a flood prediction model that is applicable to various
types of case studies and is not just intended to be a surrogate
model of the physical model. The physical model was used
to provide training samples for the DL model to learn the
flood feature extraction ability. That means that all the tested
hyetographs were the inputs and all the simulated flood maps
were the ground truth (GT) data to train the model network.
After the training, the randomly sampled 10 % flood maps
were used to test the model prediction performances.

2.3 Deep learning model for flood prediction

2.3.1 LSTM (long short-term memory) network

The LSTM network has advantages when processing time
series data, especially for the long-term time-varying data.
As shown in Fig. 4, the LSTM network is used to predict the
flood maps. Ideally, the network can predict the flood depth
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Figure 3. Maximum flood maps simulated using the hydrodynamic model for four types of return periods. The unit of T is given in years.

Figure 4. Method implementation steps.
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distributions in the region as accurately as the real values/-
ground truth (GT) values can. The relative error between the
output and GT values is calculated and used as an a priori
condition for the Bayesian optimization (BO). This a priori
probability is then used as the basis for selecting the network
structure and hyperparameter combinations in the next itera-
tion. Finally, an optimal network model (e.g., with an appro-
priate number of layers) and the corresponding hyperparam-
eters are obtained through the iterative BO process.

The LSTM network requires only rainfall intensity as the
input, and the output is the water depth of all grid points all
at once. That means that LSTM outputs a 2D map directly,
which describes the water depth of the entire site. A regres-
sion algorithm is used for the LSTM model. Specifically, the
input rainfall intensity is processed through multiple LSTM
layers and activation layers, and finally, a regression layer
outputs the water depth of all grid points. In other words, the
process is akin to a fitting process in which different rain-
fall intensities are matched nonlinearly to the water depth of
the grid points. The number of output grids can be set during
LSTM modeling so that the output grid can be specified for
different sites.

It is noted that the terrain feature (e.g., digital elevation
model or DEM) is a key factor in implementing flood predic-
tion tasks. Besides, catchment hydrological properties (e.g.,
land use, area, and imperviousness) and network parameters
(pipeline distribution and capacity) also have essential im-
pacts on flood conditions. When designing the method, we
considered the impacts of all influencing factors in the net-
work training but without specifying/demanding them in the
model input. There are two main reasons. (1) The site in-
formation contains a vast amount of data. Although com-
puter technology has made significant progress, DL algo-
rithms still face significant challenges in processing high-
dimensional data. Such data can significantly decrease the
prediction efficiency, particularly when applied to large-scale
areas. The method proposed mitigates the impacts of the
high-dimensional sites’ data on the prediction efficiency.
(2) Neural network technology involves learning and creat-
ing a mapped relationship between the input and output data.
The function of the LSTM model is to establish the nonlin-
ear mapping relationships between the input rainfall inten-
sity, the implicit influence conditions, and the output flood
depth to reflect the impact of these factors.

A benchmark LSTM network structure is shown in Fig. 5.
With the input data (rainfall intensity), the LSTM obtains the
output (water depth) through a series of functional layers, in-
cluding a LSTM layer (containing N neural units), a Leaky
rectified linear unit (ReLU) activation function (Eq. 1), and a
fully connected (FC) layer. In the LSTM layer, the rainfall is
input to the N neural units to obtain the N outputs (i.e., h0,
h1, h2,. . . , hN ). The outputs of these neural units are then
transformed nonlinearly by the Leaky ReLU activation func-
tion and enter the FC layer. Eventually, the FC layer delivers
the output of the network. Specifically, the LSTM network is

Figure 5. Framework of the LSTM network.

trained through the adaptive moment estimation (Adam) op-
timizer (Eqs. 2–4). Meanwhile, two performance indicators
are used to reflect the network training, which are the loss
(Eq. 5) and root mean square error (RMSE; Eq. 6), respec-
tively.

f (x)=

{
x, x ≥ 0

scale× x, x < 0
(1)

ml = β1ml + (1−β1)∇E(θl) (2)

vl = β2vl−1+ (1−β2)[∇E(θl)]
2 (3)

θl+1 = θl +
αml
√
vl + ε

(4)

Loss=
1
n

∑n

i=1
(yi − ŷi) (5)

RMSE=

√
1
n

∑n

i=1
(yi − ŷi), (6)

where x and scale are the input and scale factor (0.01), re-
ceptively. Any input value that is less than zero is multiplied
by a fixed-scale factor. β1 and β2 are the gradient decay fac-
tor (0.9) and squared gradient decay factor (0.999), respec-
tively. E(θ) is the loss function, m and v are the momentum
terms, and ε= 10−8. n is the number of samples, and yi and
ŷi are the predicted and real results, respectively.

The neural unit is a key component of the LSTM network,
and the structure of a single neural unit is shown in Fig. 6,
including a forget gate (Eq. 7), an input gate (Eqs. 8–10),
and an output gate (Eqs. 11 and 12). The forget gate deter-
mines how many unit states are retained from time (t − 1)
until time (t). The input gate determines the update of the
unit states. The output of the LSTM neural unit state is de-
termined by the nonlinear activation function (sigmoid in
Eq. 13) and the output gate. In general, an input (x) passes
through a neural unit to obtain an output (h). Specifically, the
calculation process of a single LSTM neural unit is shown as
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Figure 6. The structure of single neural unit.

follows:

ft = σ(Wf[ht−1xt ] + bf)

= σ(Wf hht−1+Wf xxt + bf) (7)
it = σ(Wi[ht−1xt ] + bi) (8)
c′t = tanh(Wc[ht−1xt ] + bc) (9)
ct = ftct−1+ itc

′
t (10)

ot = σ(Wo[ht−1xt ] + bo) (11)
ht = ot × tanh(ct ) (12)

σ(x)=
1

1+ e−x
, (13)

where ft is the output of the forget gate, Wf and bf are the
weight matrix and bias of the forget gate, and ht−1 and xt are
the output of the previous neural unit (time t−1) and the cur-
rent input (time t), respectively. it is the output of the input
gate, and c′t and ct are the unit state of the current input and
current time, respectively. ot is the output of the output gate,
and ht is the neural unit output of time (t).

In this paper, the LSTM network was built in the MAT-
LAB 2021a (MathWorks Inc, Natick, MA, US). The input
was the rainfall intensity varying with time, and the output
was the maxH flood maps or water depths at different time
steps of the case study sites. The training platform was per-
formed on a computer with an NVIDIA GeForce RTX 2060
GPU, using an Intel Core i7-4790 at 3.60 GHz CPU for Win-
dows 10.

Furthermore, to validate the performance of the developed
LSTM model, two additional baseline models were adopted
for comparison, namely the artificial neural network (ANN)
and the convolutional neural network (CNN). The ANN
is a fully connected network (back-propagation neural net-
work, BPNN) that included one input layer, one hidden layer
(including 170 connection nodes/neurons), and one output
layer. The ANN network has played an important role in the
early research of artificial intelligence (Sudheer et al., 2002),
as it has performed well in certain simple regression tasks.
However, the fully connected structure has significantly in-
creased the computing cost of the network and limited its

further application in the big data field. On the other hand,
the CNN network adopted included two convolution layers,
one pooling layer, two activation layers, and a fully connec-
tion layer. The CNN has significantly reduced the network
computing cost through weight sharing and the sparse con-
nection. It has a strong feature extraction capability (Hin-
ton and Salakhutdinov, 2006) and showed a stronger perfor-
mance than the BPNN in related research (Teng et al., 2022).
In this paper, we compared the classic and popular ANN and
CNN as baseline networks with the developed LSTM to clar-
ify the effectiveness and novelty of the method proposed.

2.3.2 Bayesian optimization

One problem with the aforementioned LSTM network is that
its structure layers, learning rate, number of training epochs,
mini-batch size, and number of neural units were all un-
known. When starting from scratch, it can be very difficult
and time-consuming to manually select and fine-tune these
hyperparameters. Bayesian optimization (BO) is an algo-
rithm that can automatically search for the optimal hyper-
parameter combinations. The BO is a continuously updated
probability model (Eq. 14) and assumes that the probabil-
ity of occurrence of Event A under the a priori condition of
Event B is directly proportional to the probability of occur-
rence of the a posteriori condition of Event B. That is, for
successively occurring events, the latter events are related
to all previous events. It is a potential hyperparametric op-
timization scheme, which means that the most likely para-
metric combination is inferred through a number of a priori
attempts (i.e., training network models with different struc-
tures).

The posterior probability of the optimization function is
updated through a number of evaluations of the objective
function to obtain the optimal parameter combination. It
can provide a reference for the subsequent models tried, ac-
cording to the a priori conditions (i.e., historical evaluation
records, which are the mean relative errors in the tried net-
work model in this paper). When selecting the next group of
parameter combinations, the algorithm made full use of the
previous evaluation information to reduce the search time of
the parameters. Specifically, we designed a variety of search
ranges of the hyperparameters, and the BO algorithm auto-
matically took the values from the search ranges, constantly
tried the network models with different structures, and then
recorded the errors. In this paper, the hyperparameters to
be optimized included the number of LSTM layer,learning
rate, epoch, mini-batch size, and number of hidden units.
The search ranges of these five parameters were set to [1–5],
[10−4–1], [0–600], [0–100], and [0–100], respectively. Fi-
nally, BO inferred the possible optimal network combination
according to the historical error information. The selection
process is shown in Eq. (15).

P(A|B)∝ P(B|A)P (A) (14)
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Figure 7. The Bayesian optimization workflow.

x∗ = argmin
x∈χ

f (x), (15)

where P(A|B) and P(A) are the posterior and prior prob-
abilities of Event A, respectively, and P(B|A) is the obser-
vation point probability obtained from the previous events.
f (x) is the objective function (i.e., the mean relative error
(Eq. 16); see the next section), x∗ is the optimal parametric
combination, and χ is the value range of parameters.

Specifically, the optimization workflow with regard to
deep learning model is implemented, following Fig. 7. (1) A
group with a hyperparameter combination x0 (e.g., MaxE-
pochs and learning rates) is randomly selected within the
value ranges of the hyperparameters. (2) The x0 is input to
the network for training to obtain the corresponding objec-
tive function f (x0). (3) The probability distribution of f (x)
corresponding to x is calculated and predicted through the
Gaussian process using all the inputs (x,f (x)). (4) The opti-
mal x is determined by the acquisition function in the proba-
bility distribution. (5) The x obtained from step (4) is taken as
the hyperparameter combination of the network to train and
calculate the objective function f (x). (6) Before reaching the
maximum iteration number, the (x,f (x)) obtained in step (5)
is used as the input of the Gaussian process to continuously
update the probability model to obtain a new (x,f (x)). Once
the maximum iteration number is reached, the x correspond-
ing to the minimum value of f (x) is taken as the optimal
hyperparameter combination x∗.

2.3.3 Transfer learning (TL)

One of the main challenges of data-driven models is their
compatibility, as it appears that, in this study, the model
established is only applicable to the investigated site. This

problem can be solved by using transfer learning (TL) tech-
nology to implement flood prediction for new sites. The
TL, namely to learn from experience, can significantly im-
prove the application field of intelligent algorithms. The TL
is a DL method to transfer the knowledge from one do-
main (source domain) to another domain (target domain; see
Fig. 8). Through the training of a source model (pre-trained
network) using the source data (Site A), the pre-trained net-
work can gain a strong ability of feature extraction in the sim-
ilar tasks. Subsequently, with the fine-tuning (transfer learn-
ing) of the new data (Site B), the pre-trained network can
quickly adapt to the new site under different scenarios. With
this method, a lot of training time can be saved for the tar-
get domain (the new site), and better training effects can be
achieved, especially when there are limited training samples
in the target domain. In this paper, we used TL to transfer the
LSTM network obtained from the current site (Site A) to the
second case study site (Site B) with data from the new site,
so as to expand the compatibility and generalization ability
of the proposed method.

2.3.4 Performance indicators

In order to evaluate the reliability of the proposed method,
five indicators were employed to evaluate the prediction re-
sults, focusing on estimating the differences in flood depths
and the spatial patterns of the flood distributions. First of all,
the mean relative error (Mre) was used to calculate the depth
error between the prediction results (PR) and the ground
truths (GT). Next, the 2-D correlation coefficient (2D-CC)
and structural similarity (SS) were used to evaluate the cor-
relation and similarity of images (distributions of flood ar-
eas), respectively. The Bhattacharyya distance (BD) and his-
togram intersection distance (HID) measure the similarity
of two discrete or continuous probability distributions. They
were adopted to evaluate the amount of overlap between two
statistical samples or images (i.e., flood maps).

Mre=
∑ |(PR−GT)|

GT
(16)

2D−CC(I,J)=∑
m

∑
n(Imn− I )(Jmn− J )√(∑

m

∑
n(Imn− I )

2
)(∑

m

∑
n(Jmn− J )

2
) (17)

SS(I,J)=
(2µIµJ +C1)(2σIJ +C2)(
µ2
I +µ

2
J +C1

)(
σ 2
I + σ

2
J +C2

) (18)

BD(I,J)=− ln
(∑

x∈X

√
p(x)q(x)

)
(19)

HID(I,J)=
∑
x∈Xmin(p(x),q(x))∑

x∈Xp(x)
, (20)

where I and J are the average pixel values of images I
and J , respectively, µI , µJ , σI , σJ , and σIJ are the pixel
local mean, standard deviation, and cross covariance of im-
ages I and J , respectively. C1 and C2 were 6.5 and 58.5,
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Figure 8. Transfer learning technology.

respectively. p(x) and q(x) are the probability distributions
of pixels of Images I and J , respectively. X is the domain
of p(x) and q(x).

3 Results and discussion

An illustration of the mean relative error in the testing dataset
obtained from the 170 Bayesian optimizations is shown in
Fig. 9a. The range of the mean error is between 0.095
and 44.13, and the size and color of the bubble chart rep-
resents the value of the mean error. It is clear that the er-
ror gradually decreased along with the iteration thanks to the
optimization process. One of the networks, with a mean rel-
ative error value of 0.095, worked best in learning the flood
map features. Figure 9b shows the RMSE and loss of the
model accuracy, with the best performance identified from
the Bayesian optimization. It is shown that the loss curve
stably decreased along the network training and the model
achieved a convergence status after the 100 iterations, with
a small loss value. This implies that the DL network is very
robust and trained well with the input data.

We further analyzed the influence of network parameters
on the prediction results (Fig. 10). The results show the fol-
lowing. (1) There were large errors when the values of the
MaxEpochs (i.e., maximum number of epochs) were set too
low. Increasing the number of training epochs could avoid
adverse events. (2) The MiniBatchSize had little influence on
the prediction results, but it was not appropriate to take too
large or small values. In this case, the MiniBatchSize of 20–
70 could ensure an ideal prediction effect. (3) It is recom-
mended to set a low learning rate. When the value was low,
the achieved error was small and close to 0. (4) A deeper
network layer could obtain a smaller prediction error. With
the parameterization analysis, the best design scheme (net-
work structure and hyperparameters) of the LSTM can be
determined through the Bayesian optimization. The detailed

network structure is shown in Fig. 11. The learning rate,
MaxEpochs, MiniBatchSize, and number of hidden units
were 0.0146, 385, 59, and 94, respectively.

The statistics of the performance indicators of the best-
performing model are analyzed in Fig. 12. First of all, the
specific value of relative error in each testing flood map
was summarized in the box plot in Fig. 12a. As reported
previously, the LSTM model obtained satisfying results,
with a mean relative error (RE) of 9.5 %. Among those re-
sults, the achieved minimum RE of a single prediction was
only 0.76 %, which implies that the predicted flood map
(both the inundation locations and depths) was very close to
the ground truth map for validation. The degree of similar-
ity is illustrated by the four types of indicators in Fig. 12b.
The Bhattacharyya distances of the testing dataset were all
close to zero, which meant that the spatial distributions of the
ground truth and predicted flood hazard maps were very sim-
ilar, and a majority of the two map populations overlapped.
The ideal results were further validated by the histogram in-
tersection distance, structural similarity, and 2D-CC, as their
values were all close to 1. This implies that the spatial simi-
larity of the predicted maps was very high. On the whole, the
model proved to be superior in learning and predicting the
flood maps with different hyetographs.

The computational times of the hydrodynamic model and
the DL model are compared in Fig. 12c. The average compu-
tational time of the hydrodynamic model was 153.2 s, while
the mean time of the prediction model was significantly re-
duced, with a value of 0.038 s. It is shown in Fig. 12d that the
hydrodynamic model took almost 19 585 times (i.e., mean
value) the simulation time of the DL model. In the worst case,
the hydrodynamic model simulated the flood map more than
36 600 times slower. Note that the computation time of the
hydrodynamic model was in fact even longer, as the model
needed to run the hydrological and pipe network+ 2-D sim-
ulations separately, and a manual integration of the two sim-
ulations was not taken into account. The results showed that,
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Figure 9. (a) Mean relative errors along with the Bayesian optimization process and (b) the RMSE and loss achieved by the model with the
best performance.

with proper model training, the LSTM model was accurate
and much more computationally efficient, which can provide
important support tools for real-time or rapid forecasting of
urban flooding and emergency decision-making.

Figure 13 illustrated the inundated areas of the ground
truth and the predicted flood maps with the best model per-
formance (i.e., with a minimum relative error). In total, there
were 27 183 grids in each flood map. It is seen that the LSTM
model successfully retrieved the depths and spatial patterns
of the inundated areas. The two maps were almost identical,
and it was very difficult to tell the difference without look-
ing into further statistical details. Figure 14a shows the spa-
tial distributions of the relative errors in the best-performing
map. The differences between the two maps were almost neg-
ligible, except for the small regions near the waterbodies. The
predicted flood map could identify all the flow paths and lo-
cal depressions in the ground truth map. Moreover, the spa-
tial distributions of the mean and maximum relative errors
in the testing dataset are shown in Fig. 14b and c. Statistics
(Fig. 14d) showed that, in all cases, the mean values were be-
low 1 %, indicating a good agreement between the series of
predictions and the ground truth maps. The errors were much
higher in the worst case, where there were a small number of
cells associated with relative errors greater than 20 %. Gen-
erally, the errors were greater where there were higher wa-

ter depths and more flow volumes. Therefore, the high-error
cells were mainly located in or near the waterbodies.

The prediction accuracies of the deep learning model were
further examined as a function of water depth in Fig. 15.
Results show that the flood map dataset was imbalanced,
as a majority of the results contain no and shallow water.
Results show that, for water depths below 3 m, the model
performed well, and most errors were below 2 %. The er-
rors tended to increase under extreme conditions, with water
depths above 3.5 m. Figure 15b shows that the predicted wa-
ter depths are basically consistent with the ground truth water
depths. These results clearly indicated that the deep learning
model generalized well with the different hyetograph vari-
ations and could produce very accurate flood results, even
with only rainfall inputs.

Figure 16 shows the sample comparison between ground
truths and model predictions of flood maps in the time di-
mension. It was clear that our model could predict the flood
variations at different time steps well. Following a visual in-
spection, the predicted flood maps were in a good agreement
with ground truths at all time steps. The overall prediction
effects (based on the relative error) and the evaluation indi-
cators in terms of the degree of similarity are summarized
in Fig. 17a and b for the time series predictions. Larger er-
rors may occur in the early stage of rainfall, which could be
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Figure 10. Influence of four types of network parameters on model prediction performance.

Figure 11. The optimized model structure of the LSTM network. Batchnorm_# is the batch normalization layer that will normalize the
network training data (mapping raw data to [0, 1]) and increase the training speed.

due to the impacts of the drainage system on urban floods.
Nevertheless, all the indicators further validated the model
performance, which was also satisfying for predicting flood
maps in that time dimension.

Figure 18 tested the performance of the established LSTM
in the second case study. Results showed that, with transfer
learning, the proposed model was applicable and generaliz-
able to other cases, and the predicted flood maps were con-
sistent and similar to the ground truths. Specifically, Table 1
shows the achieved performance indicators of all tested rain-

fall events. The obtained BD was close to 0, and HID, SS,
and 2D-CC were close to 1, which meant that the model pre-
dictions were highly similar to the ground truth results. This
proved that the flood prediction of the new site could be re-
alized through transfer learning technology.

Last, the proposed LSTM model was compared with the
two baseline models (i.e., ANN and CNN) in Fig. 19. Our
model outperformed the baseline models in terms of the eval-
uation indicators on both the relative error and the degree
of similarity. This confirmed the excellent performance of
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Figure 12. (a) Relative error, (b) degree of similarity, (c) computation time, and (d) deep learning (DL) efficiency (i.e., computation time of
DL model divided by computation time of hydrodynamic model) achieved with the testing datasets.

Figure 13. Sample comparison of the flood maps between the ground truth and model prediction in the best-case scenario.

LSTM in flood predictions for water depth and spatial dis-
tribution. The ANN performed poorly in predicting water
depths, and there were a large number of cells associated with
large errors. Regarding the BD, HID, and SS, the CNN was
the least ideal for predicting the spatial distributions. One
possible reason could be that the convolution operation of
CNN filtered part of the feature information of the flood dis-
tribution. Note that the ANN’s prediction based on the 2D-

CC indicator was the worst. This could be due to fact that
the fully connected network structure of ANN was prone to
overfitting and may also have interference from some redun-
dant information. Furthermore, a sample illustration of the
predicted flood maps by the three types of models is shown
in Fig. 20. It is clear that our proposed model was more com-
petitive in flood predictions than the other two classical meth-
ods.
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Figure 14. Relative error in the (a) best- (i.e., minimum), (b) mean-, and (c) worst- (i.e., maximum) case scenarios, respectively. (d) Summary
of the relative error data in box plots for the three types of scenarios.

Figure 15. (a) Relative errors in the predicted flood maps as a function of water depths and (b) ground truth water depths as a function of
predicted water depths.

4 Conclusions

A rapid, accurate, and dynamic flood prediction tool is of
great significance for urban water management to protect
people, social assets, and the environment from flood haz-
ards. This study proposed a DL-technique-based data-driven
flood prediction approach, employing an integration of the
LSTM technique, Bayesian optimization, and transfer learn-
ing approach. The results clearly showed that the model
could accurately produce both the maximum water depths

and the time series flood maps for various hyetograph in-
puts with much lower computational costs. Such types of
predictions of dynamic changes on both the temporal and
spatial scales are of great interest. By exploring the role
of the Bayesian optimization algorithm in the LSTM net-
work, the best design scheme of the network was determined.
The results of our testing site showed that the LSTM could
quickly adapt to the prediction task in the new site, and the
transferred LSTM performed accurate flood predictions. The
transfer learning method required less time, had lower re-
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Figure 16. Sample comparison of flood maps between ground truths and model predictions at different time steps in the first case study.

Figure 17. (a) Relative error (RE) and (b) degree of similarity (BD,
HID, SS, and 2D-CC) of the flood predictions when testing rainfall
at different time steps.

source costs, and delivered a better real-time performance,
especially when dealing with large-scale site information.

The predicted flood maps were 19 585 times faster than
the hydrodynamic model. The achieved mean relative error
in water depths is 9.5 %, and the degree of similarity of the
flood maps was very high. Specifically, in a best case, the dif-

Table 1. The performance indicators of the tested rainfall in the
second case study.

Rainfall events Performance indicators

BD HID SS 2D-CC

A 0.003167 0.999400 0.999810 0.997707
B 0.003961 0.999227 0.999950 0.999361
C 0.010744 0.996130 0.997472 0.929869
D 0.003279 0.999480 0.999982 0.999637
E 0.009604 0.996510 0.997349 0.927005
F 0.003337 0.999381 0.999960 0.999301

ference between the ground truth and model prediction was
only 0.76 %, and the spatial patterns of the two types of maps
were almost identical. Meanwhile, the transfer learning tech-
nology has greatly improved the compatibility and general-
ization ability of the proposed method. The superior model
performance was further validated by comparing it with the
two baseline models. In conclusion, the accuracy and effi-
ciency of the proposed method is satisfying.

We now acknowledge some limitations in this study and
discuss directions of future work. First of all, the current
training and testing data were obtained from hydrodynamic
modeling due to a lack of detailed field site data. In future
work, we consider adopting image-capturing techniques to
supplement the data, such as DL techniques for the auto-
mated detection, acquisition, and evaluation of water depths
from camera images. In doing so, there will be more real-
case or field survey datasets for model training and testing.
Meanwhile, the data augmentation is useful for enhancing
the quantity and quality of input data, which will be tested in
future investigations.
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Figure 18. Sample comparison of the flood map of the (a) ground truth and (b) model prediction in the second case study under a 50-year
event.

Figure 19. (a) The mean relative error and (b) degree of similarity indicators of the proposed LSTM and two baseline models (ANN and
CNN), respectively.

Despite these limitations, this work with its advances can
contribute well to having a better understanding of the deep
learning techniques for urban flood mapping. The proposed
methodology predicts temporal and spatial water depths with
only rainfall inputs and without further requirements of, e.g.,
local terrains and geographical conditions. The approach can
be easily adjusted or adopted for other types of applications

in the water management field. In summary, the method pro-
posed represents a solution in the form of a compromise that
takes into account prediction efficiency, accuracy, and adapt-
ability. More importantly, the proposed method can poten-
tially replace and/or complement the conventional detailed
hydrodynamic model for urban flood assessment and man-
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Figure 20. A sample comparison of the flood inundation maps of ground truth, LSTM, ANN, and CNN models under an 85-year rainfall
event.

agement, particularly in applications of real-time control, op-
timization, and emergency design and planning.
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