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Abstract. As a key component in the water and energy cycle,
estimates of precipitation with high resolution and accuracy
is of great significance for hydrological, meteorological, and
ecological studies. However, current satellite-based precipi-
tation products have a coarse spatial resolution (from 10 to
50 km) not meeting the needs of several applications (e.g.,
flash floods and landslides). The implementation of spatial
downscaling methods can be a suitable approach to overcome
this shortcoming. In this study, we developed a soil moisture-
based precipitation downscaling (SMPD) method for spa-
tially downscaling the integrated multisatellite retrievals for
global precipitation measurement (IMERG) V06B daily pre-
cipitation product over a complex topographic and climatic
area in southwestern Europe (Iberian Peninsula) in the pe-
riod 2016–2018. By exploiting the soil-water balance equa-
tion, high-resolution surface soil moisture (SSM) and nor-
malized difference vegetation index (NDVI) products were
used as auxiliary variables. The spatial resolution of the
IMERG daily precipitation product was downscaled from
10 to 1 km. An evaluation using 1027 rain gauge stations
highlighted the good performance of the downscaled 1 km
IMERG product compared to the original 10 km product,
with a correlation coefficient of 0.61, root mean square er-
ror (RMSE) of 4.83 mm and a relative bias of 5 %. Mean-
while, the 1 km downscaled results can also capture the typ-
ical temporal and spatial variation behaviors of precipitation
in the study area during dry and wet seasons. Overall, the
SMPD method greatly improves the spatial details of the
original 10 km IMERG product also with a slight enhance-
ment of accuracy. It shows good potential to be applied for

the development of high-quality and high-resolution precipi-
tation products in any region of interest.

1 Introduction

Precipitation, as a key driving force of the global water cycle
under climate change conditions, changes greatly in space
and time and is among the key factors affecting the hydrol-
ogy, water resources and ecosystem of a watershed (Salz-
mann, 2016; Spötl et al., 2021). Hence, accurate and reliable
spatiotemporal precipitation estimates are critical for the as-
sessment and understanding of climate change, hydrology,
climatology, and its impacts on the environment, ecosystem,
and human society (Xia et al., 2015; Wehbe et al., 2020; Wei
et al., 2020; Bezak et al., 2022; Ma et al., 2021; Yang and
Huang, 2021).

The most commonly used ground-based method for pre-
cipitation measurement relies on rain gauge observations. Al-
though rain gauges can provide accurate observations and
capture the temporal variability in precipitation within a cer-
tain radius, these measurements are known to be prone to
spatial representativeness issues due to the high spatiotempo-
ral heterogeneity of precipitation (Wehbe et al., 2017; Tang
et al., 2018). With the development of meteorological satel-
lites, remote sensing has become the main tool for estimat-
ing regional to global precipitation because of its wide spa-
tial coverage and continuous observation periods. These se-
ries of satellites include the Global Precipitation Climatology
Project (GPCP) (Huffman et al., 1997), the Tropical Rain-
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fall Measuring Mission (TRMM), multisatellite precipitation
analysis (TMPA) (Huffman et al., 2007), the NOAA Climate
Prediction Center (CPC) morphing technique (CMORPH)
(Joyce et al., 2004), precipitation estimation from remotely
sensed information using artificial neural networks (PER-
SIANN) (Sorooshian et al., 2000), global satellite mapping
of precipitation (GSMaP) (Kubota et al., 2007), and inte-
grated multisatellite retrievals for global precipitation mea-
surement (IMERG) (Hou et al., 2014). Although each prod-
uct has its strengths in the capture of precipitation spatial pat-
terns, there is a common issue, induced by its coarse spatial
resolution (e.g., 0.1–0.5◦), greatly blocking the application of
these products in hydrological and meteorological research
at the local scale (Lin and Wang, 2011; Prakash et al., 2016;
Chen et al., 2018).

To enhance the applications of current coarse-resolution
precipitation products, a procedure that involves spatially
downscaling these products to fine scales has become an im-
portant solution. In recent decades, many downscaling meth-
ods have been proposed with the use of different satellite
precipitation products. There are two major categories of
downscaling methods: statistical downscaling and dynamical
downscaling (Maraun et al., 2010; Tang et al., 2016). Statis-
tical downscaling methods are mainly conducted by build-
ing the explanatory ability of the precipitation spatial dis-
tribution with fine-scale predictors, including topographic,
geographic, atmospheric and vegetation variables, with the
use of traditional regression methods (Xu et al., 2015; Ma
et al., 2019b; Mei et al., 2020), optimal interpolation tech-
niques (Shen et al., 2014; Chao et al., 2018), multidata fusion
(Rozante et al., 2020; Ma et al., 2021), spatial data mining
algorithm (called cubist) (Ma et al., 2017a, b), geographi-
cal ratio analysis (Duan and Bastiaanssen, 2013; Ma et al.,
2019a) and machine learning algorithms (He et al., 2016;
Baez-Villanueva et al., 2020; Min et al., 2020). Due to their
convenience and efficiency, these approaches are dominant in
precipitation spatial downscaling research (Abdollahipour et
al., 2021). Comparatively, dynamical downscaling refers to
the use of regional climate models driven by global climate
model output or reanalysis data to generate regional precip-
itation information (Rockel, 2015), which requires more in-
formation on internal mechanisms related to complex phys-
ical processes of precipitation, such as atmospheric, oceanic
and surface information (Tang et al., 2016). Hence, spatial
downscaling is achieved by modeling the conditional distri-
bution of precipitation at a fine scale to characterize the spa-
tial structure of precipitation (Haylock et al., 2006; Munsi et
al., 2021).

Among the existing methods, due to the computational ef-
ficiency and the consideration of orography and vegetation in
precipitation distribution, the statistical downscaling meth-
ods have been widely used in recent years. Most of them
were conducted with the use of predictors, such as topo-
graphic and vegetation factors (Immerzeel et al., 2009; Jia
et al., 2011; Jing et al., 2016a; Zeng et al., 2021). However,

Figure 1. Time series of observed precipitation and satellite ob-
served SSM at station BRAGANCA, Portugal from 20 Decem-
ber 2017 to 15 January 2018.

these predictors do not have physical connections with pre-
cipitation but they act as important environmental variables
influencing precipitation distribution. Consequently, the lack
of the physical background of this type of method may intro-
duce high uncertainty into the downscaled results. Compara-
tively, surface soil moisture (SSM) presents an obvious and
strong physical connection with precipitation via the cou-
pling and feedback processes (Seneviratne et al., 2010). As
indicated by Brocca et al. (2014). Because precipitation is
the main driver of SSM temporal variability, a sudden in-
crease usually occurs in SSM after a rainfall pulse over a
period of time, followed by a smooth recession limb driven
by evapotranspiration and drainage. This relationship can be
well-reflected by an example of the time series of precipita-
tion and SSM from 20 December 2017 to 15 January 2018 at
station BRAGANCA, Portugal (Fig. 1). A rapid increase in
SSM occurs after these rainfall events and then the moisture
conditions gradually become drier when there is no further
rainfall.

According to this feature, SSM shows a big advantage in
estimating precipitation, and this connection was confirmed
by the SM2RAIN method proposed by Brocca et al. (2013).
Fan et al. (2021) also demonstrated the good performance
of the SM2RAIN products over the Tibetan Plateau (TP)
where the terrain is complex and the surface cover is het-
erogeneous. Additionally, the Soil Moisture Analysis Rain-
fall Tool (SMART) proposed by Chen et al. (2012) also im-
proved the sub-monthly scale accuracy of a multidecadal
global daily rainfall product with a lower RMSE (−13 %)
and a higher probability of detection (+5 %). Recent appli-
cations of this bottom-up approach further demonstrate the
success of using SSM in precipitation estimation at coarse-
resolution scales (Brocca et al., 2016, 2019; Ciabatta et al.,
2017, 2018; Wehbe et al., 2020). Although there is a lag
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effect of the changes in soil moisture to precipitation, the
rainfall-runoff experiment conducted by Song et al. (2020)
further confirmed that this effect becomes small with the in-
crease of the temporal aggregation interval and its impact is
relatively small at the daily time scale (Brocca et al., 2016).
Thus, it should be a very promising solution to improve the
accuracy of daily precipitation downscaling by introducing
daily SSM into current downscaling schemes. However, the
availability of high-resolution SSM data is very limited and
most of the current SSM products have a spatial resolution of
more than 10 km (Peng et al., 2021), placing significant re-
strictions on these applications. Furthermore, affected by the
indirect physical connection between topographic and vege-
tation factors and precipitation at a coarse temporal scale, a
large amount of downscaling works have been conducted at
monthly or annual scales (Abdollahipour et al., 2021). In ad-
dition, although daily high-resolution precipitation data have
been produced by different methods (Brocca et al., 2019;
Hong et al., 2021), the use of high-resolution SSM data to
improve the spatial resolution of satellite precipitation prod-
ucts for generating daily-scale high-resolution precipitation
data based on physical mechanisms is less studied.

In recent decades there has been substantial progress in
soil moisture downscaling studies (Merlin et al., 2008; Piles
et al., 2014; Peng et al., 2016; Tagesson et al., 2018; Long
et al., 2019; Sabaghy et al., 2020; Wen et al., 2020; Zhao
et al., 2021), which makes the availability of high-resolution
soil moisture data possible at a daily scale. Thus, the main
objective of this study is to establish a soil moisture-based
precipitation downscaling (SMPD) scheme as a novel way of
obtaining fine-scale precipitation by fragmenting the coarse-
pixel rainfall into fine-scale pixels. For this purpose, the
25 km European Space Agency (ESA) Climate Change Ini-
tiative (CCI) SSM product is used to derive 1 km SSM data
based on the seamless downscaling method proposed by
Zhao et al. (2021). Based on the inversion of the soil-water
balance equation, a simplified model for estimating precip-
itation is constructed with the use of the downscaled 1 km
seamless soil moisture data and the vegetation index de-
rived from the moderate resolution imaging spectroradiome-
ter (MODIS) observations and then applied to daily GPM
precipitation products to obtain the daily downscaled precip-
itation estimates.

2 Study area and datasets

2.1 Study area

The central part of the Iberian Peninsula was selected as the
study area (Fig. 2). It is located in southwestern Europe be-
tween 37.66–42.99◦ N and 8.30◦W–1.63◦ E. The region has
a distinctly seasonal mild climate, with hot and dry summers
inland, cooler summers along the coast, and cold and wet
winters. Precipitation presents a double peak pattern, typi-

Figure 2. Geolocation and land cover map of the study area. The
black triangles denote the meteorological stations included in this
study.

cal from the Mediterranean, with increased precipitation in
autumn and spring. The central part of the study area has a
temperate continental climate, while the southern part has a
Mediterranean climate, with warm and humid winters and
hot and dry summers. Generally, the south is dry and warm,
while the north is relatively wet and cool. Enhanced by the
complex topographic pattern and diverse land cover condi-
tions, this region has a highly heterogeneous spatial environ-
ment, which makes this region a satisfactory candidate for
precipitation downscaling. In addition, there are many me-
teorological stations with long-term precipitation measure-
ments in this area, which is an important prerequisite for this
study.

2.2 Datasets

2.2.1 GPM IMERG satellite precipitation data

As the successor of the successful Tropical Rainfall Mea-
suring Mission (TRMM), the global precipitation measure-
ment (GPM) not only expands the measurement range and
temporal and spatial resolution of the TRMM, but also es-
timates the instantaneous precipitation more accurately, es-
pecially light intensity precipitation (i.e., < 0.5 mm h−1) and
falling snow (Hou et al., 2014; Huffman et al., 2020a). In-
tegrated multisatellite retrievals for GPM (GPM-IMERG)
is the level 3 multisatellite precipitation algorithm of the
GPM, which combines precipitation information measured
from the microwave sensor and infrared sensors onboard
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GPM constellations and monthly gauge precipitation data,
and IMERG employs the 2014 version of the Goddard pro-
filing algorithm (GPROF2014) to compute precipitation esti-
mates from all passive microwave (PMW) sensors onboard
GPM satellites, which is a significant improvement com-
pared with TMPA (GPROF2010) (Huffman et al., 2020a, b).
Hence, it has attracted much attention in the satellite remote
sensing of precipitation.

Currently, the GPM product provides near-real-time prod-
ucts (early and late run) and post-real-time products (fi-
nal run) from sub-hourly to monthly resolution at a 0.1◦×
0.1◦ spatial scale. Owing to the infusion of multiple data,
such as microwave, infrared, radar, and Global Precipita-
tion Climatology Centre (GPCC) rain gauge data (Hou et
al., 2014), the GPM-IMERG final run product provides more
accurate estimates over the globe with a relatively long
time series (June 2000–present) with a minimum latency
of 3.5 months. In this study, the GPM-IMERG final run
daily precipitation product (downloaded from https://pmm.
nasa.gov/data-access/downloads/gpm, last access: 6 Jan-
uary 2023) was adopted as the downscaling object. A 3-year
period from 2016 to 2018 was selected to verify the perfor-
mance of the downscaling method based on the availability
of rain gauge data.

2.2.2 ESA CCI surface soil moisture data

The Soil Moisture CCI project is a part of ESA’s Pro-
gram on the Global Monitoring of Essential Climate Vari-
ables (ECV), which was initiated in 2010 and has produced
an updated SSM product annually since 1978 (Colliander et
al., 2017). The ESA CCI SSM series contains three separate
SSM datasets, which are derived from active and passive mi-
crowave remote missions as well as a combination of both,
and the combined ESA CCI SSM product (version 04.7) pro-
vides a spatial resolution of 0.25◦ and a temporal resolution
of 1 d on a global scale (http://www.esa-soilmoisture-cci.
org/, last access: 6 January 2023).

The combined ESA CCI SSM product provides the
amount of water in the surface soil (approximately the top
5 cm), which integrates observations derived from 11 mi-
crowave sensors including active sensors such as the ad-
vanced scatterometer-A/B (ASCAT-A/B) and the European
remote-sensing satellite-1/2 (ERS-1/2), and passive sen-
sors such as the special sensor microwave imager (SSM/I),
the scanning multichannel microwave radiometer (SMMR),
the TRMM microwave imager (TMI), AMSR-E, WindSAT,
AMSR2 and SMOS (Gruber et al., 2019). Previous evalua-
tion studies have demonstrated that ESA CCI SSM gener-
ally agrees well with the spatial and temporal patterns esti-
mated by land surface models and in situ observations (Mc-
Nally et al., 2016; Dorigo et al., 2017). Therefore, this com-
bined product was used in this study for the study period
from 1 January 2016 to 31 December 2018, to obtain fine-

resolution soil moisture to assist in precipitation downscal-
ing.

2.2.3 Normalized difference vegetation index (NDVI)

The NDVI is an important indicator of vegetation activ-
ity (Neinavaz et al., 2020; H. Zhang et al., 2020; Pan et
al., 2021), especially for surface evapotranspiration (Joiner
et al., 2018; Maselli et al., 2020). Therefore, it also rep-
resents a positive correlation with precipitation (Quiroz et
al., 2011; Birtwistle et al., 2016). The intuitive correlation
between rainfall and plant biomass represented by NDVI
would enhance the downscaling study with high-resolution
NDVI data. In this study, the NDVI data were obtained from
the MODIS/Terra 16 d vegetation index product (https://
lpdaac.usgs.gov/products/mod13a2v006/, last access: 6 Jan-
uary 2023). It is a 16 d composite product obtained by choos-
ing the best available pixel value from all the acquisitions
over 16 d with the spatial resolution of 1 km.

2.2.4 Rain gauge data

Daily precipitation data collected from 1027 rain gauge sta-
tions from 2016 to 2018 with different land cover properties
were used as the independent validation of the downscaled
results in this study. These data were provided by the Span-
ish State Meteorological Agency (AEMET). The distribution
of the selected stations is mapped in Fig. 2.

3 Methodology

3.1 Soil moisture-based precipitation estimation model

The soil water balance equation for a layer depth Z can be
described by the following expression:

Z
ds(t)

dt
= p(t)− g(t)− e(t)− r(t), (1)

where s(t) [–] is the relative saturation of the soil or rela-
tive SSM, t is the time and p(t), r(t), e(t) and g(t) are the
precipitation, runoff, evapotranspiration, and drainage rates,
respectively. By rearranging Eq. (1), precipitation can be de-
picted as a function of SSM, runoff, evapotranspiration, and
drainage rates. Based on this rule, Brocca et al. (2013) pro-
posed a bottom-up approach (SM2RAIN) by doing “hydrol-
ogy backward” to infer precipitation with the use of varia-
tions in SSM sensed by microwave satellite sensors. To per-
form this estimation, the model is simplified in different ways
by neglecting different components in Eq. (1) (Brocca et al.,
2014; Massari et al., 2014) and the comparison study in-
dicated that the average contribution of surface runoff and
evapotranspiration components amounted to less than 4 % of
the total rainfall, while the soil moisture variation (63 %) and
subsurface drainage (30 %) terms provided a much greater
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contribution (Brocca et al., 2015). Although the contribu-
tion of evapotranspiration is relatively small, the dry Mediter-
ranean climate in most of this region emphasizes its impor-
tance. Therefore, the precipitation estimation model was re-
organized by only neglecting the runoff component:

p(t)= Z
ds(t)

dt
+ g(t)+ e(t). (2)

In Eq. (2), the drainage rate is approximated by considering
the relation in Famiglietti and Wood (1994) to include the
contribution of both deep percolation and subsurface runoff
(interflow plus baseflow):

g(t)= as(t)b, (3)

where a and b are two parameters expressing the nonlin-
earity between drainage rate and soil saturation. Regarding
the evapotranspiration (ET) component, many methods have
been developed to estimate ET in natural ecosystems (Mu
et al., 2009; Sheffield et al., 2009; Carpintero et al., 2020).
For instance, the daily ET can be derived as a function of the
vegetation index (VI) and air temperature (Ta) (Nagler et al.,
2005a, b):

e(t)= a
(

1− e−bVI
)(
m/
(

1+ e−(Ta−d)/p
)
+ f

)
, (4)

where the coefficients (a, b,m, d , p, and f ) were determined
by conducting regression between ET and the independent
variables. Although there is a variable representing air tem-
perature in Eq. (4) to specify the impact of air temperature
difference within a wide range, this variable can be assumed
to be invariant when considering the pixels to a small extent.
Therefore, the term with the second brackets of Eq. (4) is
simplified to the coefficient c, and Eq. (4) is further rewritten
as follows by introducing NDVI to present the VI variable:

e(t)= c
(

1− e−kNDVI
)
. (5)

Based on the above approximation, the soil moisture-based
precipitation estimation model was finally expressed by the
following equation:

p(t)= Z
ds(t)

dt
+ as(t)b+ c

(
1− e−kNDVI

)
, (6)

where ds(t)/dt can be calculated as the difference between
the SSM estimates on nearby time steps.

3.2 Soil moisture-based precipitation
downscaling (SMPD) method

To perform precipitation downscaling, an important prereq-
uisite is an assumption of spatial invariancy in the precipi-
tation estimation model described in Eq. (6) at coarse and
fine scales, which is also the basis of many related down-
scaling studies aiming at other surface parameters, such as

soil moisture and temperature (Hutengs and Vohland, 2016;
Mishra et al., 2018; Zhao et al., 2018; Ebrahimy and Azad-
bakht, 2019). Therefore, the estimation model established at
the 10 km level is thought to be applicable at the 1 km level.
The estimated parameters Z, a, b, c and k at 10 km reso-
lution scale resolution are not scale-independent, which can
be used for the corresponding subpixel units (1 km). More-
over, because the downscaled model was constructed by us-
ing self-adaptive windows in different local regions on the
daily scale, these parameters vary in time and space. Thus,
they are also temporally independent. The fitted estimation
model at the 10 km scale was applied to the SSM and NDVI
data at the 1 km scale to obtain the estimated high-resolution
precipitation. Then, to preserve the mean rain rate over each
coarse-scale pixel, the bias was corrected by redistributing
the residual to each fine-scale pixel based on the kriging in-
terpolation method. Finally, the downscaled daily GPM pre-
cipitation products were obtained with the integration of the
estimated precipitation and the interpolated residual. Accord-
ing to the above principle, the downscaling method consists
of the following parts and the main procedures in the down-
scaling processes are shown in Fig. 3.

3.2.1 Generation of daily SSM at a fine resolution

As shown in Eq. (6), SSM is an important variable in the esti-
mation model. The ESA CCI SSM product can only provide
coarse-resolution SSM data with unexpected gaps. To obtain
daily SSM at a 1 km resolution, the seamless SSM down-
scaling method proposed by Zhao et al. (2021) is a good
choice to achieve this goal. In comparison to the REMED-
HUS (REd de MEDición de la HUmedad del Suelo) soil
moisture network, the downscaled SSM performs better in
terms of spatiotemporal coverage and evaluation metrics,
which indicated that this method could be successfully used
to produce high-resolution SSM data with no spatiotempo-
ral gaps. This downscaling method mainly includes three
steps: (1) filling gaps in the 25 km ESA CCI SSM maps
with neighborhood information based on a local linear re-
gression method, (2) estimating the 1 km regression SSM and
coarse-resolution residual with a geographically weighted re-
gression (GWR) method, and (3) downscaling the coarse-
resolution residual to 1 km spatial resolution with the area-
to-point kriging (ATPK) method and obtaining the fine-
resolution SSM. For details about the downscaling method,
please refer to Zhao et al. (2021).

3.2.2 Calibration of the precipitation estimation model
with an adaptive window method

Before model calibration, the 1 km downscaled SSM data
and the NDVI data were first aggregated into a 10 km scale
to spatially match the spatial resolution of the GPM-IMERG
product. Then, these data were applied to calibrate the coef-
ficients of the precipitation estimation model. As introduced
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Figure 3. Flowchart of the process for downscaling the GPM data from 2016 to 2018.

in Sect. 3.1, the application of this model requires a prereq-
uisite to work at a local extent because of the simplification
of the evapotranspiration estimation. Therefore, a local win-
dow with a radius from 3 to 7 cells was adopted in the fitting
process. Initialized from the size of 3 cells, the optimal win-
dow size was adaptively selected when the correlation coef-
ficient (CC) of the fitting result reached the maximum value.
This adaptive method was applied to each coarse-resolution
pixel with a sliding window, and the model coefficients of
this pixel were derived. During the model calibration, coarse
pixels with zero precipitation were excluded.

pm10 km(t)= Z(SSM10 km(t)−SSM10 km(t − 1))

+ aSSM10 km(t)
b
+ c

(
1− e−kNDVI10 km

)
. (7)

3.2.3 Residual correction and fine-scale precipitation
estimation

Based on the calibrated estimation model coefficients in
Eq. (7), the precipitation estimates determined with this
model can be calculated for each high-resolution pixel within
the corresponding coarse pixel:

pm1 km(t)= Z(SSM1 km(t)−SSM1 km(t − 1))

+ aSSM1 km(t)
b
+ c

(
1− e−kNDVI1 km

)
. (8)

However, there is a residual between the original precipita-
tion value of each coarse-resolution cell pixel and the mean
value of the estimated precipitation of all fine-resolution pix-
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els within this cell. For each coarse-resolution cell, the resid-
ual is expressed as follows:

R10 km = p
o
10 km−p

m
10 km. (9)

The kriging interpolation method was used here to interpo-
late residuals R10 km at coarse-resolution cells to obtain krig-
ing residuals fine-resolution scale (Wackernagel, 2003). The
high-resolution residual was expressed as a weighted inte-
gration of the residuals of the neighboring coarse-resolution
cells.

To meet the requirement of value preservation in the down-
scaling process, the kriging residuals should be corrected by
redistributing it to each fine-resolution pixel i, i.e., the ra-
tio of the ith high-resolution residual pixel in the j th coarse-
resolution cell to the sum of the precipitation in the j th coarse
pixel is used as the weight λij , and the residual R10 km is
multiplied by the weight λij to get the residual of each fine
resolution pixel i (R1 km,ij ). Based on the above process, the
kriging residuals were redistributed to each fine resolution to
achieve value preservation. This process can be expressed as
follows:

R1 km,ij = λijR10 km,ij , λij =
pm1 km,ij
n∑
i=1
pm1 km,ij

, (10)

where R1 km,ij represents the estimated precipitation of the
ith high-resolution residual pixel in the coarse-resolution
cell j , R10 km,ij represents the j th coarse-resolution cell
residual in the self-adaptive window, n is the number of high-
resolution residual pixels in the coarse-resolution cell, and
λij is the weight coefficient of the ith high-resolution resid-
ual pixel in the j th coarse-resolution cell. pm1 km,ij is the krig-
ing interpolated residual pm1 km,ij at the fine-scale pixel i in
the j th coarse-resolution cell.

Finally, the high-resolution precipitation was obtained by
integrating the fine-resolution estimates via Eq. (8) and the
residual term in Eq. (10):

p1 km = p
m
1 km+R1 km. (11)

3.3 Validation

To better assess the performance of the proposed downscal-
ing method, the downscaled GPM results were validated by
observations from the collected stations in the study area at
both daily and monthly scales. The evaluation metrics in-
clude the CC, RMSE, and the relative bias (BIAS). They are
defined as follows:

CC=

n∑
i=1

(
Si − S

)(
Pi −P

)
√

n∑
i=1

(
Si − S

)2(
Pi −P

)2 , (12)

RMSE=

√√√√√ n∑
i=1
(Si −Pi)

2

n
, (13)

BIAS=

n∑
i=1
(Si −Pi)

n∑
i=1
Pi

, (14)

where Pi and Si are the precipitation measured by the rain
gauge and satellite precipitation, respectively, i is the index
of the precipitation series, P is the mean value of all rain
gauge observations, S represents the mean value of the satel-
lite precipitation, and n represents the sample number of pre-
cipitation pairs.

Additionally, three metrics reflecting the capability of cap-
turing precipitation events were introduced in the assess-
ment: the probability of detection (POD), the false alarm
ratio (FAR) and the critical success index (CSI). The POD
refers to the ratio of rain occurrences correctly detected to
the total number of observed events and the optimum score
is 1. The FAR refers to the proportion of the precipitation
events that the satellite falsely detects and the rain gauges
do not recognize and the optimum score is 0. The CSI repre-
sents the fraction of precipitation events correctly detected by
satellites to the total number of observed or detected rainfall
events and the optimum score is 1. The definition of a rainfall
accumulation event is 1 d rainfall accumulation in excess of
a given threshold of 0.1 mm. These three terms are depicted
as

POD=
H

H +M
, (15)

FAR=
F

H +F
, (16)

CSI=
H

H +F +M
, (17)

where H indicates the precipitation events concurrently de-
tected by rain gauges and satellites, M indicates the precip-
itation events detected by rain gauges but not detected by
satellites, and F indicates the precipitation events detected
by satellites but not detected by rain gauges.

4 Results

4.1 Accuracy of the soil moisture-based precipitation
estimation model

Before the downscaling process, the performance of the soil
moisture-based precipitation estimation model was evaluated
first based on the calibrated estimation model in Eq. (7). Fig-
ure 4 shows the maps of the mean value of the daily CCs and
RMSEs during the period of 2016–2018 and their standard
deviation (SD) by comparing the precipitation estimated with
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Figure 4. (a) Maps of the mean value of the correlation coefficient (CC), (b) mean standard deviation of the CC (CC-SD), (c) mean root
mean square error (RMSE), and (d) mean standard deviation of the RMSE (RMSE-SD) between the precipitation estimated with the soil
moisture-based estimation model and the original GPM product during the period of 2016–2018. The y-axes represent the pixel number.

the proposed estimation model and the GPM precipitation
product at 10 km scale. Most of the CC values are above 0.70
with an average value of 0.71, and most of the RMSE val-
ues are within the range from 0.50 to 1.00 mm, with an av-
erage value of 1.00 mm. These results indicate the good con-
sistency and small error between the estimated precipitation
and the original precipitation product. Furthermore, in view
of the SD maps it represents the variability in CC and RMSE
during the period. The CC-SD values are within the range
from 0.18 to 0.28 with an average value of 0.23, most of the
RMSE-SD values are concentrated in the range of 0.50 to
1.50 mm, and only a few are in the range of more than 3 mm,
with an overall mean of 1.39 mm. Combined with the fre-
quency distributions of CC and CC-SD, RMSE, and RMSE-
SD, the proposed estimation model can generally capture the
precipitation with soil moisture variations and it has rela-
tively stable performance. According to the fitting perfor-
mance assessment with the original GPM product, the soil
moisture-based precipitation estimation model has been con-
firmed to be able to capture the variation of precipitation with
acceptable accuracy.

4.2 Overall performance of the downscaled
precipitation

4.2.1 Spatial distribution

To demonstrate the advantages of the downscaling results,
2 separate days (7 July 2017 and 25 November 2017) in
the dry season and the wet season were selected to com-
pare the original coarse-resolution precipitation data and the

downscaled high-resolution precipitation data (Fig. 5). From
the visual inspection the spatial distributions of the down-
scaled precipitation are highly consistent with those of the
original ones in both seasons, especially for the distribution
of the precipitation centers (> 50 mm d−1). The downscaled
results maintained the original precipitation pattern in the
GPM product, which is reflected well by the very similar his-
tograms of the original and downscaled precipitation on these
2 days, as shown in Fig. 4c and f. In addition to their consis-
tency, the downscaled results present higher spatial hetero-
geneity than the coarse-resolution product, which provides
much more detailed information on the precipitation distri-
bution within each coarse-resolution cell. More importantly,
the downscaled results remove the blocky appearance at the
edges of the coarse-scale pixels.

4.2.2 Temporal variability

In addition to the spatial distribution analysis, the temporal
variation in the downscaled precipitation was further evalu-
ated by introducing the downscaled results from 8 to 11 De-
cember 2017. Figure 6 shows the daily maps of the origi-
nal precipitation and downscaled precipitation. For the spa-
tial distribution, both the original GPM precipitation product
and the downscaled result have almost the same patterns on
different days. Not only heavy rainfall but also light rainfall
and no rain can also be captured by the proposed downscal-
ing method in most circumstances. Moreover, the temporal
variability in the daily precipitation was also preserved after
the downscaling, and some outliers in the coarse-resolution
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Figure 5. Original daily GPM precipitation products, downscaled results, and their frequency histograms on 7 July 2017 (a–c) and 25 Novem-
ber 2017 (d–f).

GPM product were effectively filled with valid values, as
shown by the downscaling results on 11 December in Fig. 6.

4.3 Validation with rain gauge measurements

4.3.1 Validation on a daily scale

To quantitatively evaluate the performances of the downscal-
ing results, the daily original scale GPM precipitation data
and the downscaled results were compared separately with
the precipitation measurements from all 1027 meteorological
stations in the period of 2016–2018. The three metrics (POD,
FAR, and CSI) for rainfall events, CC, RMSE and BIAS for
precipitation volumes, were used to make a comparison be-
tween the performances of both datasets. As shown by the
density plots in Fig. 7a, there is relatively high uncertainty
in the original GPM precipitation product compared with the
in situ observation with a CC of 0.60, an RMSE of 4.99 mm
and a BIAS of 9 %, which shows that the GPM product gen-
erally overestimated observed precipitation on a daily scale.
These differences may be attributed to the differences in the
spatial representativeness of both observations (one for the
average value over a grid cell and one for a single point).
Because of the value preservation during the downscaling

process, the downscaled results also have a validation ef-
fect similar to that of the original GPM precipitation product
(Fig. 7b). However, compared with the original GPM prod-
uct the downscaled results show an overall improvement in
terms of CC, RMSE, and BIAS. There is a slight increase
in CC, with its value increasing from 0.60 to 0.61. In con-
trast, both the RMSE and BIAS have a moderate reduction,
with decreases of 0.16 mm and 4 %, respectively. For rain-
fall event assessment the downscaled results remarkably en-
hanced the ability to identify rainfall events at every station
when compared with the original GPM product. Both the
POD, FAR and CSI were moderately enhanced relative to
those of the original GPM data, with an increase in POD
from 0.84 to 0.88, a decrease in FAR from 0.52 to 0.47 and an
increase in CSI from 0.44 to 0.48. The comparison showed
that the downscaled results could detect precipitation occur-
rence better than the original GPM product. The increase in
spatial heterogeneity in the downscaled results assists detec-
tion of rainfall events.

In addition to the validation during the period 2016–2018,
further investigation was performed for the downscaled re-
sults of individual months. Table 1 lists the evaluation met-
rics of the downscaled and original precipitation against rain
gauge observations at 1027 stations from 2016 to 2018. In
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Figure 6. Original daily GPM precipitation product and corresponding downscaled results from 8 to 11 December 2017.

Figure 7. Scatterplots of the original GPM precipitation product (a) and the downscaled results (b) plotted against daily precipitation recorded
by available meteorological stations over the study period. The red dotted line represents the 1 : 1 line and the blue solid line represents the
fitting line.

general, the downscaled results show similar accuracy per-
formance among different months to the detection accuracy
of precipitation events reflected by FAR and CSI. It is worth
noting that the POD decreased compared to the original pre-
cipitation product, which may be because compared with the
coarse pixel precipitation on the daily scale, the downscaled
products of the sub-pixels at the same station do not nec-
essarily have precipitation, resulting in fewer precipitation
events detected by the downscaled products. From the RMSE
values, seasonal differences can be detected. The dry sea-
son months from June to September have relatively smaller
RMSE values than other months. This is not because of the
better performance of the proposed method in these months
but the inherent small precipitation of these months results
in the low values for RMSE. This feature can also be de-

tected from the evaluation of the original data. Regarding the
downscaled results performance, the downscaled data have
better accuracy in detecting precipitation events according to
the improvement in FAR and CSI in each month. Compara-
tively, the correlation feature of the downscaled results shows
smaller improvements than the original data, represented by
the CC values every month. There were decreasing trends
in terms of all RMSE values and the improvements in the
wet seasons from October to May are relatively larger than
in the dry season months. For the BIAS values, the improve-
ments are also very clear with the increase from 3 % to 7 %.
The monthly comparison further indicated the improvement
of the downscaled results, which not only maintain the tem-
poral correlation characteristics of the original data with the
gauge-based observations but also improve the absolute ac-
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Table 1. Validation of the downscaled precipitation data and original GPM precipitation data with the daily precipitation measured from all
1027 stations in each month from 2016 to 2018. The values represent the average values of the validation metrics.

Month Original Downscaled

CC POD FAR CSI RMSE BIAS CC POD FAR CSI RMSE BIAS
(mm) (mm)

January 0.57 0.84 0.49 0.47 6.36 14 % 0.58 0.76 0.43 0.48 6.14 10 %
February 0.56 0.86 0.49 0.47 6.83 7 % 0.57 0.78 0.42 0.50 6.51 2 %
March 0.66 0.89 0.45 0.52 6.27 −3 % 0.66 0.83 0.40 0.54 6.10 −6 %
April 0.60 0.89 0.45 0.51 5.67 9 % 0.60 0.85 0.41 0.53 5.44 5 %
May 0.60 0.90 0.46 0.50 4.78 5 % 0.61 0.86 0.42 0.53 4.59 1 %
June 0.55 0.90 0.48 0.49 3.31 15 % 0.56 0.86 0.43 0.52 3.18 11 %
July 0.63 0.90 0.49 0.48 2.72 24 % 0.63 0.86 0.44 0.52 2.64 19 %
August 0.61 0.90 0.50 0.48 2.05 14 % 0.60 0.86 0.44 0.51 2.04 9 %
September 0.50 0.90 0.51 0.47 2.74 34 % 0.50 0.86 0.45 0.50 2.69 27 %
October 0.57 0.89 0.51 0.46 4.34 12 % 0.58 0.86 0.45 0.50 4.22 8 %
November 0.59 0.89 0.50 0.47 6.18 10 % 0.60 0.85 0.45 0.50 5.99 6 %
December 0.59 0.88 0.51 0.46 5.66 14 % 0.58 0.84 0.45 0.50 5.57 11 %

curacy according to the refinement of CC, POD, CSI, FAR,
RMSE, and BIAS via introducing more detailed information
in the downscaling scheme.

4.3.2 Spatial distribution of the daily validation with in
situ measurements

In addition to the general evaluation with the measurements
from all stations, the downscaled results are separately vali-
dated by the observations from each station, and the results
are illustrated in Fig. 8. In general, the downscaled precipita-
tion estimates produce less error than the original GPM pre-
cipitation products with respect to the overall error statistics
from 2016 to 2018, with an increase of CC values from 0.62
to 0.63, a decrease of RMSE values from 4.80 to 4.63 mm,
a decrease of BIAS values from 17 % to 13 %, a decrease of
FAR values from 0.50 to 0.45, an increase of POD values
from 0.83 to 0.87 and an increase of CSI values from 0.47
to 0.50, which show moderate improvement compared to
that of the original GPM products. Moreover, from the fre-
quency histogram of the validation indicators at 1027 sta-
tions, the downscaled results present a better correlation with
rain gauge observations with most of the CC values being
above 0.71 in the central and northwestern regions. Regard-
ing RMSE values of the downscaled results the validation
at 728 shows a lower RMSE than the original product. This
improvement can be reflected by the skew of the histogram
to the low value region as shown in Fig. 8f. These stations
are mainly located in the central and southeastern regions. In
comparison, the validation with high RMSE mostly occurred
in the northwest regions due to the originally greater annual
mean precipitation. For BIAS, there is a relatively wide range
from −72 % to 99 % in the whole region, systematic overes-
timation was observed at 685 stations, and underestimation
was also observed at 342 stations. After downscaling, the

overestimation was reduced. About the rainfall event assess-
ment, most of the CSI values are higher than 0.48 at these
stations and the FAR values are generally lower than 0.46,
the POD values are generally higher than 0.81, as shown in
Fig. 8j–r. It can also be seen that the detection accuracy of
precipitation events in the humid northern region is better
than that in the southern region with less precipitation. These
results indicate that the fitting relationship between observed
precipitation and downscaled GPM products is good in the
northwest region, while the errors in precipitation volumes
are also large in this region due to rich precipitation, which is
consistent with the performance of the original GPM precip-
itation product, while the accuracy was slightly better than
that of the original precipitation product in the central and
southeast regions. This proves that the improvement in rain-
fall events introduced by the downscaling method is not lim-
ited to specific locations and covers the whole area and the
downscaled results are more accurate in describing spatial
precipitation details.

Generally, the improvement of the overall performance for
the downscaled results in Fig. 8 is attributed to the num-
ber of improvements in the validation site indicators that
occur between the original GPM product, the downscaled
results and the observation stations on the daily scale. The
downscaled results outperformed the original product in the
detection accuracy of rainfall events and precipitation vol-
umes, and the improvements in CSI and FAR were found at
1008 and 1026 stations, respectively. Similarly, the number
of improvements of CC, RMSE, and BIAS were 765, 886,
and 884, respectively. The downscaled results were more ac-
curate than the original product when they were validated
by field measurements at most stations. In summary, the im-
provement in the precipitation downscaled by the SMPD
method occurred at most rain gauge stations. The evaluation
demonstrates the ability of this method to increase spatial
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Figure 8. CC (a, b), RMSE (d, e), BIAS (g, h), POD (j, k), FAR (m, n), CSI (p, q) and corresponding frequency distributions for daily
precipitation of original and downscaled GPM precipitation estimates at 1027 stations during 2016–2018. The background value represents
the original GPM annual average precipitation value from 2016 to 2018.
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Table 2. CC, RMSE, BIAS, POD, FAR and CSI values for the different precipitation intensities for original and downscaled GPM products
from 2016 to 2018 for 1027 rain gauge stations.

Intensity Original Downscaled

(mm d−1) CC RMSE BIAS POD FAR CSI CC RMSE BIAS POD FAR CSI
(mm) (%) (mm) (%)

0 – 1.83 – 0.93 0.34 0.63 – 1.73 – 0.94 0.26 0.70
0–10 0.30 6.39 27.00 0.69 0.65 0.31 0.30 5.98 23.00 0.73 0.60 0.34
10–20 0.15 11.85 −20.00 0.26 0.75 0.15 0.15 11.50 −22.00 0.25 0.74 0.15
20–40 0.15 18.41 −33.00 0.25 0.78 0.13 0.14 18.31 −36.00 0.26 0.77 0.14
> 40 0.28 39.53 −47.00 0.23 0.84 0.11 0.28 39.33 −50.00 0.25 0.82 0.12

heterogeneity to enhance the correlation with field measure-
ments while also retaining the original GPM spatial distribu-
tion pattern. All these results clearly prove the effectiveness
of the downscaling method, which enhances daily GPM pre-
cipitation in both spatial information and accuracy.

4.3.3 Evaluation of precipitation intensities

To assess the performance of downscaled GPM products at
different precipitation intensity intervals the daily precipita-
tion intensity is classified into 5 categories based on the rain-
fall thresholds (0, 10, 20, and 40 mm) Zambrano-Bigiarini
et al. (2017). The performance metrics for the 5 daily pre-
cipitation intensity classes from 2016 to 2018 are listed in
Table 2. In summary, original and downscaled GPM prod-
ucts performed the best in terms of all performance metrics
for the no rain events, while performing the worst for the
violent rain events (> 40 mm d−1). All precipitation prod-
ucts indicated that FAR values continuously performed the
worst for the violent rain intensities, which showed that the
products are still unable to accurately capture high precipita-
tion values. Due to the reduced FAR values, the CSI values
performed the best for no rain events, followed by the light
rain (0–10 mm d−1), moderate rain (10–20 mm d−1), heavy
rain (20–40 mm d−1) and violent rain events (> 40 mm d−1),
respectively. Additionally, the BIAS values showed that all
precipitation products overestimated the number of light rain
and underestimated moderate rain, heavy rain, and violent
rain events. Most importantly, the performance of the down-
scaled precipitation product was slightly better than the origi-
nal precipitation product for different rainfall intensity events
in terms of CC, RMSE, POD, FAR and CSI values, indicat-
ing the improved reliability and accuracy of the downscaled
products in capturing different rainfall intensity events com-
pared to the original precipitation products.

4.3.4 Validation on the monthly scale

In addition to the validation on the daily scale, the downscal-
ing results were further evaluated on the monthly scale by
integrating the daily results into the monthly amount. Fig-
ure 8 shows the multiannual average maps of the monthly

precipitation from 2016 to 2018, including the original GPM
product and the downscaled results. Similar to the daily com-
parison, the monthly distributions of both datasets have simi-
lar patterns over different months. The northern part of the
study area has more precipitation than the southern part.
The downscaled results maintain the precipitation centers in
each month and provide a good depiction of the distributions
around the centers. The downscaled results can provide more
detailed information regarding spatial distribution.

By collecting the monthly precipitation of 1027 stations
from 2016 to 2018, the accuracy of the monthly precipitation
from the original and downscaled data was further quantita-
tively assessed. As shown in Fig. 10a, after temporal inte-
gration, the uncertainty in the daily observation was greatly
reduced in the monthly precipitation of the original GPM
product. There is a significant increase in CC from 0.60 in
Fig. 6a to 0.83 in Fig. 10a. However, systematic overestima-
tion still occurs. After spatial downscaling, although there is
no big change in terms of CC, both the RMSE and BIAS
are clearly improved based on a comparison of the density
plots in Fig. 9a and b. For the analysis of the improvement ra-
tio, only the performances of CC, RMSE, and BIAS are ana-
lyzed because the POD, FAR and CSI mainly reflect the rain-
fall events on the daily scale. Among the 1027 stations, the
numbers of stations with improvements during the validation
in terms of CC, RMSE, and BIAS were 734, 587, and 912,
respectively. Combined with the overall validation and in-
dividual validation, the downscaled results on the monthly
scale outperformed the original GPM product. The evalua-
tion shows that the downscaling method also presents good
accuracy in the downscaling results and high robustness at
the monthly scale.

5 Discussion

In this study a spatial downscaling method for coarse-
resolution precipitation products was proposed to produce
high spatial resolution precipitation data at a 1 km scale with
the use of 1 km SSM data downscaled from microwave re-
mote sensing estimations. To establish the connection be-
tween SSM and precipitation, a simplified precipitation es-
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Figure 9. Spatial distribution of the multiannual mean value of monthly precipitation for the original GPM product (first panel) and the
downscaled results (second panel) from 2016 to 2018.

Figure 10. Scatterplots of the original GPM precipitation product (a) and the downscaled precipitation data (b) plotted against the monthly
precipitation measured by the meteorological stations during the period from 2016 to 2018.

timation model based on the surface water balance equa-
tion was developed with inspiration from the SM2RAIN
model proposed by Brocca et al. (2014). By calibrating the
model coefficients with a self-adaptive window at the coarse-
resolution scale, the precipitation model was applied to high-
resolution variables to obtain the high-resolution estimates.
Compared with previous downscaling methods that mainly
established empirical relationships with surface variables,
such as NDVI and topographic factors, this method intro-
duces the physical relationship between SSM and precipi-
tation via the water balance equation and has a solid physical
basis. Therefore, the validation analysis conducted at both
daily and monthly scales indicated that the downscaled pre-
cipitation data outperformed the original precipitation prod-
uct in most circumstances and presented high robustness over
3 years with different rainfall intensities.

5.1 Advantages of the downscaling method

In general, the SMPD method adopted the bottom-up ap-
proach in precipitation estimation, in which the variations
in SSM sensed by microwave satellite sensors have a strong
connection with rainfall amounts according to the princi-
ple of water balance (Brocca et al., 2014, 2016; Mao et al.,
2019). After a sudden increase in soil moisture induced by
rainfall events, the moisture condition gradually becomes
drier when there is no further rainfall. Therefore, this method
has a clear physical mechanism and is the only downscaling
method using SSM as the key driving factor. Comparatively,
the traditional statistical downscaling methods were estab-
lished based on the statistical relationship between environ-
mental factors and precipitation. Taking the spatial interpo-
lation method as an example, although the application of this
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Table 3. List of the performance of downscaling procedures to improve the spatial resolution of satellite precipitation products at different
temporal scales. The italic letters represent the proposed method in this study.

Original Downscaled Auxiliary Temporal Downscaled products Reference

products algorithm variables resolution Spatial CC RMSE
resolution (mm)

TRMM (25 km) RF DEM, NDVI Monthly 1 km 0.86 15.70 Jing et al. (2016b)

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 20.94 Lu et al. (2019)

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 27.23 Zhan et al. (2018)

TRMM (25 km) GWR DEM, Rain gauge Monthly 1 km 0.87 46.14 Chen et al. (2018)
data

TRMM (25 km) GWR DEM, NDVI Monthly 1 km 0.82 25.10 Xu et al. (2015)

GPM (10 km) RF DEM, NDVI, LST Daily 1 km 0.64 6.06 Yan et al. (2021)

TRMM (25 km) Multivariate DEM, Climate data Daily 1 km – 2.71 Long et al. (2016)
regression model

GPM (10 km) LPVIAL NDVI 16 d 1 km 0.81 46.77 Zeng et al. (2021)

CMORPH (8 km) GWR DEM, NDVI 30 min 1 km 0.86 7.27 Chao et al. (2018)

GPM (10 km) AMCN, GDA LST, EVI, LSR Monthly 1 km 0.83 30.88 Jing et al. (2022)

GPM (10 km) GMWWDA Cloud Property Hourly 1 km 0.53 5.16 Ma et al. (2020a)
Data

GPM (10 km) SVM Atmospheric, Daily 1 km 0.78 12.55 Min et al. (2020)
variables, DEM

GPM (10 km) SMPD SSM, NDVI Daily 1 km 0.61 4.83 Proposed method

method is convenient the accuracy of the interpolated pre-
cipitation data is limited by the rainfall gauge density, espe-
cially in mountainous watersheds with complex topography
(L. Zhang et al., 2020; Guo et al., 2021). The high depen-
dency on in situ measurements constrains its applications in
areas with few observations. In contrast, the SMPD method
removes the limitation caused by the rainfall gauge density
and has a broader prospective range of applications.

To further demonstrate the advantage of the SMPD
method, it is beneficial to compare the validation accuracy of
this method with the validation accuracies of existing down-
scaled approaches, as shown in Table 3. In current existing
downscaling studies, the involvement of daily SSM ensures
that downscaling at a daily scale is rarely considered. How-
ever, the relationship between SSM and precipitation ensures
the daily downscaling in the proposed SMPD method. Com-
paratively, although Yan et al. (2021) conducted daily pre-
cipitation downscaling with the use of the random forest (RF)
method, the RMSE value was considerably lower than that of
the SMPD method. Moreover, this machine learning method
is highly dependent on the available training dataset. Com-
paratively, the daily or sub-daily downscaling studies con-
ducted by Long et al. (2016) and Chao et al. (2018) have rela-
tively better performances in terms of RMSE and CC, respec-

tively. However, the incorporation of gauge precipitation data
in the downscaling process partly enhances the estimation ac-
curacy. These methods greatly rely on in situ measurements
without the independence of rain gauge measurements. In
a recent hour scale downscaling study conducted by Ma et
al. (2020a), a geographically moving window weight dis-
aggregation analysis (GMWWDA) method was developed
by introducing cloud properties as covariates to downscale
GPM precipitation products. Although it provided estimates
at a very high temporal frequency, the limited rainfall-related
environmental variables at the 0.01◦ per hourly scale con-
strained its application.

For the intercomparison of the monthly accuracy, the daily
downscaled results of the proposed method outperformed
most of the previous monthly downscaling studies using ei-
ther RF or GWR algorithms (Jia et al., 2011; Xu et al., 2015;
Jing et al., 2016b; Chen et al., 2018; Zhan et al., 2018). As
shown in Fig. 10b, the CC value was higher than most of
them in the abovementioned studies. Although the RF-based
downscaling method in Jing et al. (2016b) has a relatively
low RMSE, the measurements from in situ stations were used
to train the downscaling model which greatly reduced the de-
pendence of the downscaling process on field observations.
A similar requirement was also presented in Lu et al. (2019)
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and Long et al. (2016), and the GWR and multivariate regres-
sion models were largely dependent on the number of avail-
able training stations and variables related to the geophysi-
cal mechanisms of precipitation. The independence of field
observations in the SMPD method shows a large advantage,
especially for regions with sparse meteorological stations.
Zeng et al. (2021) also proposed an independent downscaling
approach considering temporal lag from vegetation changes
to precipitation. However, the relationship shows high vari-
ability which may result in a negative correlation within a
short time. Therefore, both the CC and RMSE of this method
have worse performances than those of the proposed method.
In general, according to the methodology comparison, the
proposed SMPD method exhibits good performance in terms
of both CC and RMSE. Unlike using the empirical regres-
sion method to build the relationship between precipitation
and other surface variables, the SMPD method demonstrated
high effectiveness, independence, and robustness.

5.2 Limitations and prospects

Despite the superior performance of the SMPD method,
some issues still need to be considered in practical appli-
cations. The first issue should relate to the accuracy of the
original GPM precipitation data. Due to the limitation of the
inherent accuracy of original GPM precipitation data, which
are mainly manifested in two aspects, firstly the IMERG
final products are corrected on a monthly scale using the
interpolated precipitation product of the Global Precipita-
tion Climatology Centre (GPCC, 1.0◦ per month) based on
ground observations. However, there is no mature calibra-
tion algorithm for calibrating the daily satellite-based pre-
cipitation estimates (Ma et al., 2020b). Second, the prior
databases of cloud cover and precipitation profiles for retriev-
ing passive microwave-based satellite precipitation estimates
are not sufficiently robust due to the lack of ground-based
radar observations. In addition, as passive microwave remote
sensing-based precipitation retrieval is the primary input to
the IMERG final products, it may lead to poor performance
of the satellite-based product in winter and high-latitude re-
gions (Xu et al., 2022). Therefore, the improvement in the ac-
curacy of downscaling results is limited because of the value
preservation during the downscaling process. The downscal-
ing performance is highly dependent on the accuracy of the
original GPM products. The multisource data fusion model
based on observed rain gauge stations and reanalysis data
proposed by Ma et al. (2021) and Li and Long (2020) could
increase its ability to describe the daily precipitation fluctua-
tions and would help to provide more accurate downscaling
precipitation values. Given the spatial inconsistency of the
point measurement and grid-scale estimation, this may lead
to some uncertainty in the evaluation results. Thus, more at-
tention should be paid to the difference in spatial scale be-
tween satellite and gauge-based precipitation measurements

in future comparisons based on reanalysis-based precipita-
tion with high spatial resolution.

In addition, the uncertainty of SSM and the sensitivity re-
lationship between SSM and precipitation under continuous
rainfall conditions may introduce uncertainty in the down-
scaling precipitation results. First, the responses of SSM with
different land cover conditions and vegetation coverage to
precipitation are relatively different (Fan et al., 2021), and to-
pographic factors such as depressions and slopes also affect
the uncertainty of SSM. Therefore, it is necessary to establish
the relationship between SSM and precipitation for different
land cover types or different terrain types. The establishment
of a more reliable fitting relationship based on precipitation
data with different land cover properties or topographic fac-
tors would be helpful to enhance the accuracy of the down-
scaling results (Chen et al., 2020; Senanayake et al., 2021;
Zhao et al., 2021). Second, although the relationship between
SSM and precipitation has been well demonstrated in many
previous studies, the sensitivity of SSM to precipitation may
decrease when soil water storage becomes saturated after re-
peated precipitation (Song et al., 2020). Therefore, it is nec-
essary to further improve the relationship by considering the
soil water threshold saturation in future studies. Moreover,
this downscaling method was based on the surface water bal-
ance principle, and the runoff factor under heavy precipita-
tion conditions at a certain time was not considered because
of the inherent scarcity of high-resolution runoff datasets
from in situ measurements. Some studies have provided good
alternatives to obtain runoff data with high spatiotemporal
resolution (Jadidoleslam et al., 2019; Muelchi et al., 2022).
Hence, the use of this runoff factor in the water balance equa-
tion for heavy precipitation will assist in improving down-
scaling accuracy.

Most importantly, many previous studies have success-
fully generated fine precipitation data at hourly or half hourly
scales (Ma et al., 2020a, b, 2022; Lu et al., 2022). Neverthe-
less, these studies lacked physical mechanisms in the down-
scaling process and did not use surface soil moisture covari-
ates that respond in real-time to precipitation. In the proposed
method, the key inputs of the downscaling process are sur-
face soil moisture and precipitation data. Even on hourly or
half hourly scales, the soil moisture exhibits an instantaneous
response to collocated precipitation. Then, the soil moisture
estimation method achieved seamless downscaling for high-
resolution soil moisture generation under cloudy conditions.
Therefore, it would be able to obtain real-time soil mois-
ture from microwave satellite observations combined with
surface temperature and vegetation index derived from op-
tical and thermal infrared remote sensing. Therefore, this ap-
proach has the potential for generating high spatial resolution
precipitation data on an hourly or half hourly scale.
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6 Conclusions

In this paper, by introducing high-resolution SSM data and
the NDVI as independent variables, a novel physical down-
scaling approach based on the principle of surface water bal-
ance is developed to obtain high-resolution (1 km× 1 km)
daily precipitation estimations. On both daily and monthly
scales, the downscaled precipitation presents a similar spa-
tial and temporal distribution pattern as the original GPM
product. Furthermore, a systematic evaluation of the down-
scaled GPM data was conducted on multiple time scales
at the station level. The downscaled precipitation showed a
good correlation with the observed measurements at each sta-
tion on the daily scale, with POD, FAR, CSI, CC, RMSE,
and BIAS values of 0.88, 0.47, 0.48, 0.61, 4.83 mm, and
5 %, respectively, and the evaluation results outperformed the
original GPM product. For monthly scale comparisons, the
downscaled data also presented a strong correlation with the
observed precipitation, with CC, RMSE, and BIAS values
of 0.84, 30.88 mm, and 5 %, respectively. With the increase
in spatial heterogeneity in the downscaled results there is also
an increasing trend in the improvements in the precipitation
accuracy through the comparison at most stations.

In summary, the proposed method with the use of the sur-
face water balance principle has a more solid physical basis
than previous downscaling methods. By introducing SSM as
an auxiliary variable, the impact of inherent bias in satellite
estimates on the downscaled results can be moderately re-
duced compared to the conventional statistical method. The
validation with rain gauge data highlights the importance of
SSM as a fully independent source of information that can be
effectively used for downscaling coarse-resolution precipita-
tion on a daily scale, which was rarely conducted in current
related studies. Therefore, this method is a promising way to
derive high-resolution precipitation data and shows good po-
tential for real-time precipitation data downscaling with the
provision of SSM data, which will assist further applications
in related fields, such as hydrology, agriculture, natural haz-
ards, water resources, and climate change.

Code and data availability. The high-resolution SSM data
used in this study are available at the Zenodo data survey
portal (https://doi.org/10.5281/zenodo.7451422; He, 2022).
A part of the field observation data is collected from the
website (https://www.ncei.noaa.gov/access/search/data-search/
global-summary-of-the-day; NOAA, 2023). The Matlab codes can
be obtained on request from the corresponding author.
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