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Abstract. Despite high potential benefits, the development
of seasonal forecasting tools in the water sector has been
slower than in other sectors. Here we assess the skill of
seasonal forecasting tools for lakes and reservoirs set up
at four sites in Australia and Europe. These tools consist
of coupled hydrological catchment and lake models forced
with seasonal meteorological forecast ensembles to provide
probabilistic predictions of seasonal anomalies in water dis-
charge, temperature and ice-off. Successful implementation
requires a rigorous assessment of the tools’ predictive skill
and an apportionment of the predictability between legacy ef-
fects and input forcing data. To this end, models were forced
with two meteorological datasets from the European Centre
for Medium-Range Weather Forecasts (ECMWF), the sea-
sonal forecasting system, SEAS5, with 3-month lead times
and the ERA5 reanalysis. Historical skill was assessed by
comparing both model outputs, i.e. seasonal lake hindcasts
(forced with SEAS5), and pseudo-observations (forced with
ERA5). The skill of the seasonal lake hindcasts was gen-
erally low although higher than the reference hindcasts, i.e.
pseudo-observations, at some sites for certain combinations

of season and variable. The SEAS5 meteorological predic-
tions showed less skill than the lake hindcasts. In fact, skilful
lake hindcasts identified for selected seasons and variables
were not always synchronous with skilful SEAS5 meteoro-
logical hindcasts, raising questions on the source of the pre-
dictability. A set of sensitivity analyses showed that most of
the forecasting skill originates from legacy effects, although
during winter and spring in Norway some skill was coming
from SEAS5 over the 3-month target season. When SEAS5
hindcasts were skilful, additional predictive skill originates
from the interaction between legacy and SEAS5 skill. We
conclude that lake forecasts forced with an ensemble of
boundary conditions resampled from historical meteorology
are currently likely to yield higher-quality forecasts in most
cases.
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1 Introduction

Freshwater provides essential services for food and energy
production, manufacturing, cultural heritage, and natural
habitats. However, it is threatened by more frequent extreme
events (Jeppesen et al., 2021), climate change (Labrousse
et al., 2020), anthropogenic water depletion (Yi et al., 2016)
and agricultural pressures (Wuijts et al., 2021). Implemen-
tation of mitigation measures can help preserve freshwa-
ter resources, although they come with trade-offs between
production from economic sectors with related social bene-
fits and availability of good-quality freshwater. Hence, suc-
cessful implementation of measures requires capacity at
the local–regional level for cross-sectoral decision-making
(Wuijts et al., 2021). Seasonal forecasting tools for water
quality can help facilitate the decision-making process by in-
forming optimal actions over the next season, for example,
magnitude and timing of reservoir drawdowns. Indeed, they
can supply knowledge on the impacts of future climatic con-
ditions on freshwater over a realistic time frame, enabling
implementation with reduced negative effects on economic
activities. Nevertheless, the use of and access to forecasting
tools are still very limited for water managers (Lopez and
Haines, 2017; Soares et al., 2018). The probabilistic nature
of seasonal forecasts can be a key barrier coupled with the
lack of reliability and credibility of these predictions in most
regions outside the tropics. Hence, better access to seasonal
forecasting tools, as well as increased comprehension and
description of these tools, is required prior to their success-
ful implementation in the decision-making process within the
water sector.

Seasonal meteorological predictions provide a probabilis-
tic description of the weather over the next few months,
for example, an 80 % chance of the weather being wetter
than normal. Seasonal climate predictability mainly origi-
nates from ocean–atmosphere interactions (Troccoli, 2010).
In fact, the ocean inertia, given its volume and the heat ca-
pacity of liquid water, exerts an influence on the atmosphere
on the scale of months, which allows us to estimate its fu-
ture effect on weather. Given that ocean–atmosphere interac-
tions are relatively strong in the equatorial region (Troccoli,
2010), seasonal meteorological predictions typically show
stronger predictive skill, or prediction performance, around
the tropics (Johnson et al., 2019; Manzanas et al., 2014). At
higher latitudes, skills from seasonal meteorological predic-
tions are patchy and less consistent among variables and sea-
sons. Hence, the boundary conditions, for example, seasonal
air temperature forecasts used to force a hydrological model,
are usually not the main source of predictability outside the
tropics, at least for streamflow (Greuell et al., 2019; Harri-
gan et al., 2018; Wood et al., 2016). Nevertheless, climate
models producing seasonal meteorological forecasts are con-
stantly improving, and it is reasonable to expect that forecast
opportunities will expand in the future (Mariotti et al., 2020).
Developing seasonal forecasting workflows, quantifying the

skill and investigating the source of predictability represent
a necessary and essential step towards reliable water quality
seasonal forecasting.

While some of the first forecasting tools were originally
developed for flood warnings (e.g. Pagano et al., 2014;
Werner et al., 2009), applications to other sectors are becom-
ing more frequent. In the agricultural sector, for example, a
recent study shows that flowering time can be reliably pre-
dicted from seasonal meteorological forecasts in central and
eastern Europe, enabling early variety selection and planning
of farm management (Ceglar and Toreti, 2021). Seasonal me-
teorological forecasts were also shown to provide useful in-
formation for the wind energy sector (Lledó et al., 2019) and
to avoid significant economic losses from hydropower gener-
ation during droughts (Portele et al., 2021). Nevertheless, the
use of seasonal meteorological forecasts for water tempera-
ture in lakes and reservoirs has been limited so far, where the
focus has been on water quantity (Arnal et al., 2018; Giu-
liani et al., 2020; Greuell et al., 2019; Pechlivanidis et al.,
2020). Studies forecasting water temperature, a fundamen-
tal water quality variable, are rare in the literature (though
see Mercado-Bettin et al., 2021; Zhu et al., 2020; Baracchini
et al., 2020), despite the diverse influence of this variable
on lake ecosystem structure and functioning (Dokulil et al.,
2021). Nevertheless, a simple lumped model (“air2water”;
Piccolroaz et al., 2013), previously developed to estimate sur-
face lake water temperature as a function of air temperature,
has been applied to predict water temperature in thousands of
lakes (Zhu et al., 2021). While this hybrid approach yielded
skilful surface lake water temperature forecasts (Piccolroaz
et al., 2018; Toffolon et al., 2014), it does not allow the fore-
casting of other lake variables, such as bottom temperature.

Research on seasonal forecasting in hydrology started
more than a decade ago (Troin et al., 2021) and now repre-
sents a source of knowledge for other research fields. When
forecasting river flow, for example, predictability can orig-
inate from two main sources: (i) initial conditions such as
catchment water stores of initial soil moisture, groundwater,
and snowpack, which are directly linked to the water resi-
dence time, and (ii) boundary conditions, i.e. meteorological
forecasts used to force the hydrological model (Greuell et al.,
2019). Throughout the many studies of river flow seasonal
forecasting in Europe, it appears that initial conditions form
the dominant source of skill in run-off (Greuell et al., 2019;
Harrigan et al., 2018; Wood et al., 2016), and predictabil-
ity can be extended up to a year ahead in the case of very
low flow as antecedent groundwater level is the key driver
(Staudinger and Seibert, 2014). When dealing with standing
water bodies, antecedent conditions are also likely to pro-
vide significant predictability, given that the water storage in
lakes and reservoirs is large compared to river channels, pro-
viding higher inertia. Water residence time is thus expected
to exert a strong influence on discharge predictability. Wa-
ter temperature, on the other hand, is influenced by multiple
meteorological variables, for example, wind, air temperature
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and radiation, in addition to water stores, which can affect
the source of its predictability.

Here, we further investigate the performance and in partic-
ular the source of this prediction performance, also referred
to as predictive or forecasting skill, of lake seasonal fore-
casting tools first described by Mercado-Bettin et al. (2021)
and Jackson-Blake et al. (2022). These tools integrate hy-
drological catchment and physical lake models forced with
seasonal meteorological forecasts with 3-month lead times
at four case study sites in Europe and Australia (Fig. 1). The
meteorological variables used to force the models as well as
output catchment and lake variables are a set of retrospec-
tive seasonal forecasts for past dates, hereafter referred to as
hindcasts, that can be compared to historical records. The
objective of this study is to assess whether seasonal meteoro-
logical hindcast ensembles with 3-month lead time, used as
inputs to catchment and lake process-based models, provide
some predictive skill to seasonal lake hindcasts. To this end,
the forecasting skill of the tools was assessed for combina-
tions of season and freshwater variables, i.e. discharge, water
temperature or ice-off, and for each tercile. Ice-off is defined
as the first ice-free day after an ice-covered period. In paral-
lel, we quantified the forecasting skill of each meteorologi-
cal variable of the seasonal meteorological prediction at each
site. Both assessments were carried out following aggrega-
tion of model outputs from daily to seasonal temporal resolu-
tion, i.e. seasonal means or sums. When a hindcast was found
to perform significantly better than a reference hindcast, for
example, climatology from pseudo-observations as defined
in the Methods section, for a combination of a given season,
variable and tercile, this latter combination was defined as
a “window of opportunity”. This terminology is introduced
to emphasize the fact that these forecasts can be used in the
decision-making processes by water managers but only for
a specific variable and season. A set of sensitivity analyses
were performed to identify input–output relationships and to
partition the source of the prediction skill for each window of
opportunity among warm-up, first lead month and seasonal
meteorological predictions. The comparison between hind-
casts, with the aim of isolating the contributions of different
sources of skill, has been applied before on streamflow hind-
casts (e.g. Arnal et al., 2018; Greuell et al., 2019). However,
this is, to our knowledge, the first study investigating the ori-
gin of seasonal hindcast ensemble skill on water discharge,
temperature and ice-off in lakes and reservoirs. The implica-
tions for lake forecasting tools are discussed.

2 Methods

2.1 Description of the forecasting tools

The forecasting tools consist of a catchment runoff model
coupled to a one-dimensional water column lake model,
forced by seasonal meteorological predictions, to simulate

three output variables at daily resolution: inflow discharge
and lake surface and bottom temperature. For Lake Vansjø
in Norway, the timing of ice melt (ice-off) was also included
in the output variables in spring. The workflow consisted in
running the catchment models first, providing inflow water
discharge and water temperature to the lake models.

2.1.1 Case study sites

Lake forecasting tools were developed for four regulated
water lakes/reservoirs in Europe and Australia, which have
been described earlier (Mercado-Bettin et al., 2021; Table 1;
Fig. 1). Briefly, Sau (Spain) and Mount Bold (Australia)
reservoirs are large water supplies for the cities of Barcelona
and Adelaide, respectively. Lake Vansjø (Norway) is a drink-
ing water source for three municipalities, and Wupper Reser-
voir (Germany) is used for flood control, environmental flows
and recreation.

2.1.2 Meteorological input data

We used two different meteorological datasets to force the
catchment hydrological and lake physical models in our
tools, a climate reanalysis (ERA5) and a seasonal fore-
casting product (SEAS5), which both offer global spatial
and continuous temporal coverage to ensure future trans-
ferability of our workflows and easy comparison between
our case studies (Johnson et al., 2019). ERA5 is the lat-
est reanalysis at 0.25◦ spatial resolution (Hersbach et al.,
2020) produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF; https://www.ecmwf.int, last
access: 23 March 2023) within the Copernicus Climate
Change Service (C3S; https://climate.copernicus.eu/, last ac-
cess: 23 March 2023). ERA5 data (1988–2016) were used
(i) to correct for bias in the SEAS5 data using the quantile
mapping technique as described below, (ii) to provide mete-
orological pseudo-observations for retrospective skill evalu-
ation of SEAS5 hindcasts, (iii) to force catchment hydrologi-
cal and lake physical models to produce pseudo-observations
of the output variables, and (iv) to force our catchment and
lake models to produce antecedent/warm-up period data pre-
ceding seasonal hindcast periods (i.e. combined first lead
month and 3-month target season). SEAS5 is the latest sea-
sonal forecasting system from the ECMWF at 1◦ spatial res-
olution and provides operational seasonal forecasts and ret-
rospective seasonal forecasts for past years (hindcasts). We
used hindcasts (1994–2016) in this study. A hindcast with
25 members was considered for the period 1994–2016 for
the 3-month boreal seasons (spring: March through May;
summer: June through August; autumn: September through
November; winter: December through February), with 1
month as the lead time. A dedicated R package (climate4R;
Iturbide et al., 2019) was used for ERA5 and SEAS5 me-
teorological data preprocessing. SEAS5 members were pre-
processed using the quantile mapping technique (Gutiér-
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Figure 1. Location of the four case studies in Europe and Australia, along with climate type and coordinates. Map has been modified from
Jackson-Blake et al. (2022). Detailed catchment maps are given in Jackson-Blake (2022).

Table 1. Characteristics of the study sites. Mixing timing refers to boreal seasons only.

Case study (country) Catchment Surface Volume Water retention Max. depth Mixing regime Mixing timing
area (km2) area (ha) (hm3) time (years) (m)

Sau (Spain) 1680 575 165 0.2 60 monomictic winter

Mt Bold (Australia) 357 254 46.4 0.2–0.6 44.5 monomictic summer

Vansjø (Norway) 690 3600 252 1.1 19 dimictic spring
autumn

Wupper (Germany) 215 211 26 0.2 31 dimictic spring
autumn

rez et al., 2019) to correct for systematic bias relative to
pseudo-observations (ERA5 reanalysis). We used the em-
pirical quantile mapping approach (EQM) due to its abil-
ity to deal with multivariate problems (Wilcke et al., 2013).
EQM adjusts 99th percentiles and linearly interpolates in-
side this range every two consecutive percentiles; outside this
range, a constant extrapolation (using the correction obtained

for the 1st or 99th percentile) is applied (Déqué, 2007). In
the case of precipitation, we applied the wet-day frequency
adaptation proposed by Themeßl et al. (2011). The result-
ing bias-corrected data were used for hydrologic and lake
models meteorological forcing, noting that we implemented
bias correction using leave-one-(year)-out cross-validation.
Therefore, for each year, seasonal climate hindcast member
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predictions were adjusted with the bias correction parame-
ters derived from training with all other years, after which
all bias-corrected data were appended to obtain a corrected
(i.e. locally calibrated) time series of seasonal meteorologi-
cal hindcasts for the full period for each case study. Finally,
to use the bias-corrected data as meteorological forcing for
hydrologic and lake models, we used bilinear interpolation
(Akima method), whereby we specified lake/reservoir coor-
dinates from which seasonal meteorological hindcast data
from surrounding pixels were interpolated.

Meteorological datasets include daily average 2 m air tem-
perature, u and v components of wind, surface air pressure,
relative humidity (or dewpoint temperature), cloud cover,
short-wave radiation, downwelling long-wave radiation, and
daily sum of precipitation.

2.1.3 Observations

Daily inflow discharge and daily to monthly lake water tem-
perature observations (Table S1 in the Supplement) were
used for catchment and lake model calibration and vali-
dation, as well as quantification of forecasting skills. For
Lake Vansjø, daily measurements of discharge over 1994–
2016 were taken from the gauging station at Høgfoss (Sta-
tion 3.22.0.1000.1; Norwegian Water Resources and Energy
Directorate). Lake temperature data were gathered from the
Vansjø-Hobøl monitoring programme dataset, conducted by
the Norwegian Institute for Bioeconomy Research and by
the Norwegian Institute for Water Research (Skarbøvik et al.,
2016). These data are available freely on the Norwegian na-
tional database (https://vannmiljo.miljodirektoratet.no, last
access: 23 March 2023). For Sau Reservoir, daily measure-
ments of discharge into Sau Reservoir were provided by
the Catalan water agency (Agència Catalana de l’Aigua,
ACA), while lake temperature and weather data are part of
a long-term monitoring programme (Marce et al., 2010).
Discharge, water temperature and weather observations at
the two other reservoir sites were collected from the wa-
ter reservoir operators (Wupperverband for Wupper and SA
Water for Mt Bold). Lake water temperature data are dis-
continuous and covered only part of the modelled time pe-
riod (1994–2016) because of limited funding for monitoring
programmes. In addition, precipitation, temperature, short-
wave radiation, humidity and wind daily records at nearby
meteorological stations were obtained for each case study
from the local meteorological institutes. For Lake Vansjø,
this included ice-off dates from the Norwegian Meteorologi-
cal Institute, station 1715 (Rygge), located on the lake shore
(59◦38′ N, 10◦79′ E).

2.1.4 Catchment–lake process-based model setup and
calibration

A catchment–lake process-based model chain was set up at
each site to predict daily inflow discharge into the lake/reser-

voir and daily lake water temperature. Given the specificity
of each catchment regarding flow dynamics and water man-
agement, different models were used at each site (Fig. 2).
While this disparity prevents us from an in-depth comparison
among case studies, the common methods and code estab-
lished to manipulate input and output data enable us to quan-
tify forecast performance and the source of the predictability
at each site in a consistent and comparable way.

Inflow water temperature and discharge for Sau and Vansjø
were modelled with the mesoscale Hydrologic Model (mHM
v5.9; http://www.ufz.de/mhm, last access: 23 March 2023)
and SimplyQ (hydrological module of SimplyP; Jackson-
Blake et al. 2017), respectively. Inflow water temperature
and discharge for Wupper and Mt Bold was modelled with
the “Génie Rural” (GR) suite of models implemented within
the R packages airGR (Coron et al., 2017), GR6J and GR4J,
respectively. mHM and SimplyQ hydrologic models were
forced with ERA5 daily precipitation and daily average
surface air temperature, and the GR models were forced
with daily precipitation and daily potential evapotranspira-
tion (Hargreaves–Samani potential evapotranspiration, de-
rived from daily minimum and maximum temperature, im-
plemented in drought4R; Iturbide et al., 2019). All hydrolog-
ical models were calibrated and validated against local obser-
vations using the Nash–Sutcliffe efficiency coefficient (NSE)
as the objective function.

The General Ocean Turbulence Model (GOTM; http://
gotm.net, last access: 23 March 2023) was used to simulate
the water temperature profile of Sau Reservoir and Lake Van-
sjø. The General Lake Model (GLM; Hipsey et al., 2019)
was used to simulate water temperature in the Mt Bold and
Wupper reservoirs. Lake models were forced with ERA5 sur-
face air temperature, u and v wind components, surface air
pressure, relative humidity (or dewpoint temperature), cloud
cover, short-wave radiation, precipitation, and, in some cases,
also downwelling long-wave radiation and calibrated and
validated against observations using the root-mean-square er-
ror (RMSE) and NSE as objective functions.

For Lake Vansjø, the water level was set to constant given
that observed fluctuations are < 1 m, which are not critical
for the lake heat and water budgets. The three reservoirs, on
the other hand, experience much larger water level fluctua-
tions because of complex water pumping patterns and/or wa-
ter scarcity. It was thus critical to allow for water level fluc-
tuations and parametrize the outflows to avoid dry-outs. For
Wupper Reservoir, a statistical model was developed to cal-
culate the reservoir’s outflow based on the inflow using the
time series over the warm-up period for each discharge sim-
ulation of the catchment model. Such an approach allowed
us to mimic the outflow decision and approximately resem-
ble the observed water level to avoid the cases of dry-outs
or exceedingly low volumes of water due to inflow/outflow
misestimation. More details on the performance of the lin-
ear regression are given in the Supplement. For Sau, histori-
cal observations of outflow and pumping volumes were used
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Figure 2. Description of the forecasting workflow. Calibrated hydrologic and lake models are used to produce seasonal lake hindcasts with
25 members.

to force the model. For Mt Bold Reservoir, an average an-
nual cycle was calculated from historical observations and
then replicated throughout the entire time series. While this
assumption does not allow for inter-annual variation, it al-
lowed for simulation of water level fluctuation each year that
represented the seasonal cycle apparent within Mt Bold and
avoided dry-outs.

The lake energy budget includes exchanges through the
air–water interface, i.e. downward short-wave radiation,
downward and upward long-wave radiation, and latent and
sensible heat fluxes, and through lateral fluxes of water,
i.e. inflow and outflow of water (Schmid and Read 2022).
The energy fluxes at the air–water interface are accounted
for in the GLM or GOTM; however, the lateral fluxes
caused by throughflow (inflow–outflow balance) need to be
parametrized through the addition of water temperature to
the inflow provided by the catchment model. Inflow temper-
ature was estimated based on the assumption that water tem-
peratures follow the air temperatures closely with some time
lag (Stefan and Preud’homme 1993; Ducharne 2008). Hence,
water temperature was predicted with a linear model of the
form A+B · airtemperature, where A and B were optimized
against local observations when available. At Sau Reservoir,
the values of A and B were 5.12 and 0.799, respectively,
while for Mt Bold Reservoir and Lake Vansjø, the values
of A and B were 5 and 0.75, respectively. The validation of
this model for Wupper Reservoir, as an example, is described
in the Supplement.

The most common verification statistics, for example,
Kling–Gupta efficiency (KGE), NSE and RMSE, for hydro-
logical and lake modelling were calculated. Details on cali-
bration and validation periods as well as statistics are shown
in Table 4 in the main paper and Table S2 in the Supplement.

2.1.5 Pseudo-observations (Lake_PO)

Following calibration, lake and hydrologic models were
forced with ERA5 over 1994–2016 to produce daily pseudo-
observations of river discharge, and daily surface and bottom
temperature, as well as the presence or absence of ice (for
Lake Vansjø only). The output of this simulation is hereafter
referred to as lake pseudo-observations (Lake_PO). The the-
oretical prediction skill of seasonal forecasts is commonly
evaluated against pseudo-observations (Greuell et al., 2019;
Harrigan et al., 2018; Wood et al., 2016). In contrast to real
lake observations, Lake_PO data have the advantages of be-
ing complete and allow us to disregard changes in skill re-
lated to model errors or biases (Harrigan et al., 2018) and
to focus on skill originating from initial and boundary con-
ditions. In contrast to the theoretical prediction skill, the to-
tal prediction skill includes any error or bias introduced by
the model. Here, the total prediction skill of seasonal lake
hindcasts (discharge, water temperature and ice-off) was also
evaluated against real observations, when those were avail-
able and covering a representative time period.

2.1.6 Seasonal forecasts (Lake_F)

For each of the 92 hindcast seasons lasting 3 months
(11/1993 to 11/2016), we simulated ensemble predictions of
daily river discharge and daily surface and bottom water tem-
perature, as well as the presence or absence of ice (for Lake
Vansjø only; Fig. 3). Catchment and lake models were forced
with ERA5 data over the 1-year warm-up period followed by
a set of 25 members of SEAS5 data covering the first lead
month (M0) and the 3-month-long target season (M1–M3).
The first lead month is defined in agreement with Greuell
et al. (2019) as the month following the date on which the
forecast would have been issued. Over the first lead month,
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Figure 3. Time series of the air temperature (a), precipitation (b), discharge (c), and surface (d) and bottom (e) water temperature over the
warm-up, first lead month (M0) and target season (M1–M3) for autumn 2000. The black lines indicate ERA5 (a, b) and Lake_PO (c–e) data;
the light- and dark-blue lines are, respectively, the 25 members and the mean of SEAS5 (a, b) and Lake_F (c–e).

the 25 members of SEAS5 progressively diverge from ERA5
to their respective SEAS5 member. Model outputs for the
final 3 months, i.e. the target season, were aggregated into 3-
month (M1–M3) seasonal averages or sums (i.e. average sur-
face and bottom water temperature and cumulative seasonal
inflow discharge). The output of this simulation is hereafter
referred to as lake forecasts (Lake_F).

2.2 Assessment of modelling performance and source
of forecasting skills

2.2.1 Model and forecast verification

A complete assessment of the modelling and forecasting
performance of our workflow was performed through sev-
eral verifications (Table 2). The first verification (verifica-
tion 1 in Table 2) consisted in evaluating the performance of
the models forced with ERA5 by comparing model outputs
(Lake_PO) to observations at daily temporal resolution, as
described in Sect. 2.1.4. This verification step included the
reporting of traditional verification statistics for modelling,

i.e. NSE, KGE and RMSE. The second and third verifica-
tions (verifications 2 and 3 in Table 2) consisted in quantify-
ing the lake forecast (Lake_F) performance compared to cli-
matology from pseudo-observations (Lake_PO) or from ob-
servations, respectively. These steps allowed u to quantify the
forecasting skill of a perfect model and the total forecasting
skill, respectively. Forecast verifications 2 and 3 were per-
formed using model output data at seasonal temporal resolu-
tion; i.e. daily model outputs over the target season (M1–
M3) were aggregated into seasonal averages or sums. For
forecast verifications 2 and 3, hindcast predictions are cat-
egorized into three terciles, where the upper tercile includes
data points falling in the percentile range 66 %–100 %, the
middle tercile includes data in the range 33 %–66 % and the
lower tercile includes data in the range 0 %–33 %.

Forecast performance was quantified with two skill scores:
the ranked probability skill score (RPSS) and the relative
operating characteristic skill score (ROCSS). Skill scores
are a measure of the relative improvement of the forecast
compared to a reference forecast, which here is the clima-
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Table 2. Comparison carried out to evaluate model and forecast performance.

Verification Outputs used Reference forecast data Purpose Statistics

1 Lake_PO Observations Assess lake model skill KGE
NSE
RMSE

2 Lake_F Lake_PO Assess the transfer of meteorological forecast
skill through process-based models – perfect model
forecasting skill

ROCSSoriginal

3 Lake_F Observations Assess total forecasting skill ROCSSObs

tology based on either Lake_PO or observations. ROCSS
values were calculated against climatology from real ob-
servations (ROCSSObs), in addition to pseudo-observations
(ROCSSoriginal), only when observations covered the whole
season. Indeed, ROCSSoriginal was calculated only if there
was at least one observation point in each month of the sea-
son and observations for at least 70 % of the seasons. Obser-
vations that met these criteria only included inflow discharge
at Vansjø, Sau and Wupper for all seasons; surface and bot-
tom temperature at Vansjø in summer only; surface and bot-
tom temperature at Wupper for all seasons; and surface tem-
perature at Sau for all seasons and ice-off at Vansjø.

The RPSS and ROCSS are commonly used as evalua-
tion measures of probabilistic forecasting skill (Jolliffe and
Stephenson, 2012; Müller et al., 2005). The visualizeR pack-
age (Frías et al., 2018) was used to compute the RPSS and
ROCSS for Lake_PO and Lake_F. Briefly, the RPSS pro-
vides a relative performance measure on how well the prob-
abilistic ensemble is distributed over the lower, middle and
upper terciles, while the ROCSS provides a relative measure
of discriminative skill for each category. A RPSS > 0 is as-
sociated with a better forecast than the reference (1 being
a perfect score), while a RPSS ≤ 0 indicates no improve-
ment compared to the reference. The ROCSS value ranges
from −1 (perfectly bad forecast) to 1 (perfect forecast), and
a zero value indicates no skill compared to the reference. The
RPSS has been shown to be sensitive to the ensemble size,
but this effect can be corrected for using the fair (or unbiased)
RPSS (Ferro, 2014). To allow for comparison with other
forecasting systems, we have used the fair RPSS (FRPSS)
forecast verification. In this study, the FRPSS is calculated
for tercile events. The statistical significance of the FRPSS
and ROCSS is computed based on the 95 % confidence level
from a one-tailed Z test. When a forecast for a given season,
variable and tercile was associated with a ROCSS value that
was statistically significant, we referred to it as a window of
opportunity (i.e. a combination of season, variable and ter-
cile for which forecast performance was significantly better
than the reference). In our case, the threshold values above
which a ROCSS was considered significant typically range
between 0.47 and 0.55.

2.2.2 Sensitivity analyses of initial conditions and
meteorological forcing

Several types of sensitivity analysis (SA), summarized in Ta-
ble 3, were performed to identify the origin of the forecasting
skill for a given window of opportunity, i.e. a combination of
season, variable and tercile for which forecast performance
was significantly better than the reference. Results of the SA
are only reported for sites having a substantial number of
windows of opportunity for conciseness. This SA allowed for
quantification of the sensitivity of the hindcast performance
to forcing data over specific periods: the target season (M1–
M3; SEAS5), the first lead month (M0) and the warm-up pe-
riod (ERA5). It was thus possible to quantify the proportion
of skills originating from each of these periods.

The SA consisted of replacing the forcing data of interest,
i.e. over the target season, the first lead month or the warm-
up period, with data from an equivalent season/period but
from a randomly selected year. For example, for the target
season SA (S-SA), the SEAS5 forcing data covering the 3-
month target season were replaced with SEAS5 data from
a randomly selected equivalent season. Furthermore, the SA
for the warm-up period (W-SA) consisted in replacing the
ERA5 data covering the warm-up period with ERA5 data
from a randomly selected equivalent time period. The last SA
covered the warm-up and the first lead month (W+M0-SA)
and consisted in replacing ERA5 data over the warm-up, as
in W-SA, but also SEAS5 data over the first lead month. To
ensure that the randomly sampled forcing data are represen-
tative of the whole SEAS5 or ERA5 datasets, we introduce
two levels of repetitions for all experiments. First, we ran-
domly selected a year for each of the 25 members of SEAS5,
meaning that the data selected to replace the original SEAS5
forcing data are extremely likely to be from a different year
for each SEAS5 member. Second, we repeated the analysis
25 times for each season. Sensitivity analyses were only car-
ried out for Spain and Norway because of the low number of
windows of opportunity at the two other sites and considering
the resources needed to execute these hindcast experiments.

The outputs of each of the sensitivity analysis were
used to calculate ROCSS values against the climatol-
ogy based on Lake_PO, as for Lake_F in verification
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Table 3. List of types of sensitivity analysis (SA) performed.

SA Forcing data to be replaced Model output Purpose Sensitivity index

Period Variable

S-SA Target season
(SEAS5)

All Lake_F Quantifying the proportion of forecasting
skill originating from SEAS5 data over
the target season

ROCSSS

W-SA Warm-up period
(ERA5)

All Lake_F Quantifying the proportion of forecasting
skill originating from ERA5 data over the
warm-up season – initial conditions

ROCSSW

W+M0-SA Warm-up period
(ERA5) and first
lead month (SEAS5)

All Lake_F Quantifying the proportion of forecasting
skill originating from SEAS5 data over
the first lead month

ROCSSW+M0

OAT-SA Target season
(ERA5)

One-at-a-time Lake_PO Quantifying the sensitivity of Lake_PO to
a specific forcing variable

1−R2

PPCC None None Lake_PO Quantifying the sensitivity of Lake_PO to
a specific forcing variable while removing
the effect of the remaining variables

PPCC

2 described above (Table 2). The ROCSS values ob-
tained through this procedure were, respectively, ROCSSS,
ROCSSW and ROCSSW+M0 for S-SA, W-SA and W+M0-
SA. The ROCSS values obtained for the various types of
SA were compared to the original Lake_F ROCSS values
(ROCSSoriginal) to investigate the sources of prediction skill.
An estimation of the proportion of prediction skill originat-
ing from the SEAS5 data over the target season (Pseason) was
expressed as follows:

Pseason = ROCSSoriginal−ROCSSS. (1)

Similarly, the proportions of prediction skill originating
from the ERA5 data over the warm-up (Pwarm-up) and from
the SEAS5 data over the first lead month (PM0) can be, re-
spectively, estimated as

Pwarm-up = ROCSSoriginal−ROCSSW (2)
PM0 = ROCSSW−ROCSSW+M0. (3)

In Eqs. (1)–(3), prediction skill was assumed to linearly
scale with ROCSS values and skill from any interaction ef-
fect was neglected. While we admit that Eqs. (1)–(3) are not
necessarily statistically correct, they are useful to quantify
the relative importance of the sources of skill. Hence, the val-
ues of Pseason, Pwarm-up and Ptransition should be interpreted
with care.

2.2.3 Sensitivity analyses of individual input variables

To further investigate through which process forecasting skill
is transferred from input to output variables, a one-at-a-time
sensitivity analysis (OAT-SA) was performed for Lake_PO
and the Pearson partial correlation coefficients (PPCCs) be-
tween each variable of Lake_PO; i.e. surface temperature,

bottom temperature, discharge, ice-off and a set of relevant
input variables were determined (Table 3). The OAT-SA con-
sisted in replacing the data for a specific input meteorological
variable with data from an equivalent target season but from
a randomly selected year. The seasonal means of OAT-SA
outputs were compared to default outputs (Lake_PO) with
the square of the Pearson correlation coefficient (R2). Higher
(1−R2) values indicate more influence of input variables
on Lake_PO.

PPCCs allowed for the quantification of the sensitivity of
model outputs to a given input variable, while removing the
effect of the remaining input variables. Note that PPCCs were
calculated on seasonally aggregated variables. To ensure that
PPCCs were statistically appropriate, i.e. only when a lin-
ear relationship exists between the seasonal means of input
factors and those of the output (Pianosi et al., 2016), the lin-
earity assumption was checked through visual inspection of
scatter plots between each input and output variable. Par-
tial correlation coefficients are a good alternative to “all-at-a-
time” (or global) SA when the latter is not possible because
of the lack of computing resources (Pianosi et al., 2016).
To avoid misleading conclusions, correlation between input
variables should be minimized (Marino et al., 2008). Hence,
only the most relevant input variables were included. Precipi-
tation and air temperature were retained for discharge, while
air temperature, precipitation, wind speed (wind speed cal-
culated from u and v components of wind) and short-wave
radiation were retained for surface and bottom temperature.
In fact, short-wave radiation was retained over relative hu-
midity, cloud cover and air pressure because it was respon-
sible for most of air–water heat fluxes (see the Supplement).
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Table 4. Verification statistics of the catchment and lake model for each case study.

Output variable Calibration Validation

Time NSE KGE RMSE Time NSE KGE RMSE

Norway Discharge 2005–2010 0.51 0.56 2011–2015 0.57 0.57
Temperature 2005–2010 0.92 1.12 2011–2015 0.93 1.10

Spain Discharge 1997–2007 0.60 0.66 2008–2018 0.54 0.63
Temperature 1997–2007 0.93 1.63 2008–2018 0.94 1.45

Germany Discharge 1991–2011 0.71 0.85 2012–2016 0.63 0.81
Temperature 1993–2010 0.93 1.31 2011–2016 0.91 1.53

Australia Discharge 2003–2007 0.64–0.80 0.70–0.84 2008–2013 0.65–0.80 0.54–0.75
Temperature 2014–2016 0.91 1.17 2016–2018 0.78 1.50

Wind was retained because of its impact on thermal stability
(Blottiere, 2015).

3 Results

3.1 Performance of the calibrated catchment and lake
models (Lake_PO)

Catchment and lake models calibrated against local obser-
vations performed reasonably well (Table 4). For river dis-
charge, NSE and KGE both ranged between 0.51 and 0.85
over the calibration and validation periods. For surface wa-
ter temperature, RMSE ranged from 1.10 to 1.63 and NSE
from 0.78 to 0.94 over the calibration and validation periods.
Over each season, however, Lake_PO showed a more het-
erogeneous performance (Table S2). Discharge simulations
were usually worse in summer, except in Australia, where
performance was poor for most seasons. Surface water tem-
perature modelling typically showed better performance dur-
ing spring and autumn than during summer or winter. There
is no clear pattern for bottom water temperature, but overall,
it seems more difficult to be accurately simulated compared
to surface temperature.

3.2 Skill of the seasonal meteorological (SEAS5) and
lake (Lake_F) hindcasts

Table 5 displays the ROCSS values for each combination
of Lake_F output variable, season and tercile, while Table 6
summarizes the windows of opportunity, i.e. a combination
of season, variable and tercile for which forecast perfor-
mance, or predictive skill, was significantly better than the
reference, for SEAS seasonal meteorological hindcasts as
well as for Lake_F hindcasts. These windows of opportu-
nity typically had ROCSS values larger than 0.47 to 0.55
(see Methods section for details). For SEAS5 seasonal me-
teorological hindcasts, only 3 to 10 windows of opportunity
were observed for each case study out of the 96 possibili-
ties, i.e. three terciles of eight variables over four seasons

(Table 6). Regarding Lake_F, larger proportions of the 36–
39 possible variable–tercile–season combinations were asso-
ciated with statistically significant ROCSS values (Table 6).
Winter and spring in Norway, as well as summer and au-
tumn in Spain, were the seasons associated with the most
skilful Lake_F hindcasts. Lake Vansjø in Norway was the
only case study where windows of opportunity for SEAS5
and Lake_F were consistently concentrated within the same
seasons, i.e. mostly in spring and to a lesser extent in win-
ter. For the other case studies, there were fewer windows of
opportunity for SEAS5, and those were more randomly dis-
tributed over the year. FRPSS values were typically reported
for surface water temperature in spring and autumn, except
for autumn in Spain. Norway and Germany also showed sig-
nificant fair RPSS values for bottom water temperature in
spring and autumn and in summer and autumn, respectively.
Note that neither river discharge nor any of the SEAS5 vari-
ables had FRPSS values in any case study. Windows of op-
portunity for bottom temperature represented more than half
of the total for all case studies and variables, while those for
surface temperature and discharge were more sporadic.

The comparison of SEAS5 and Lake_F skilful hindcasts
in Table 6 is already useful for identifying possible transfer
of forecasting skill from the SEAS5 seasonal meteorological
hindcasts to the catchment and lake models. SEAS5 meteo-
rological hindcasts are skilful over only a very limited num-
ber of seasons, variables and terciles (Table 6). However, for
Norway, there is a higher number of skilful meteorological
and lake hindcasts in spring than in the other seasons. For the
other case studies, such a clear connection between SEAS5
meteorological hindcasts and catchment/lake model outputs
is not as apparent. We can thus hypothesize that the skill of
catchment and lake model hindcasts in Norway is more in-
herited from the SEAS5 data than in other case studies. In
contrast, skill of the catchment and lake model hindcasts at
the other case studies is hypothesized to originate from the
legacy of the warm-up period or from the parametrization of
the inflow–outflow water balance.
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Table 5. ROCSSoriginal for each combination of season, variable and tercile of lake hindcasts (Lake_F). Colour scale ranges from dark
blue (ROCSS=−1, perfectly bad forecast) to dark red (ROCSS= 1, perfect forecast), with white in the middle (ROCSS= 0, no change
compared to reference forecast). Windows of opportunity are highlighted by bold, black numbers, i.e. a combination of season, variable and
tercile associated with a statistically significant ROCSS value.

Table 6. SEAS5 meteorological and Lake_F lake hindcasts associated with statistically significant FRPSS or ROCSS values in each case
study.

Site indexes Numbers of skilful hindcasts: windows of opportunity
Variable (tercile)

Winter Spring Summer Autumn Total

SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F SEAS5 Lake_F

N
or

w
ay FRPSS ST; BT ST; BT 0/32 4/12

ROCSS 3
cc (−)
sw (+)
lw (=)

3
ST (−)
BT (−,+)

7
airP(=,+)
airT (+)
cc (=)
hum (−)
U (+)
V (−)

8
Q (−,+)
ST (−,+)
BT (−,+)
Ice-off
(−,+)

0 0 0 0 10/96 11/39

A
us

tr
al

ia FRPSS ST ST 0/32 2/12
ROCSS 2

airP (+)
hum (+)

1
BT (−)

1
lw (+)

1
cc (=)

1
BT (−)

4
airP (+)
cc (+)
airT (=)
sw (+)

1
Q (−)

8/96 3/36

Sp
ai

n FRPSS ST 0/32 1/12
ROCSS 0 1

Q (=)
2
cc (+)
airP (+)

1
BT (+)

2
cc (+)
hum (+)

5
Q (−)
ST (+)
BT (−,+)

1
cc (+)

3
Q (+)
BT (−,+)

5/96 9/36

G
er

m
an

y FRPSS ST BT ST; BT 0/32 4/12
ROCSS 2

lw (=)
V (−)

0 1
hum (+)

2
BT (−,+)

0 2
BT (−,+)

0 0 3/96 4/36

Lake_F variable abbreviations: ST, BT and Q stand for surface temperature, bottom temperature and discharge, respectively. SEAS5 meteorological variable abbreviations: airT, airP, cc, hum, sw, lw, and
U and V stand for surface air temperature, air pressure, cloud cover, relative humidity (or dewpoint temperature), short-wave radiation, downwelling long-wave radiation, and u and v components of wind,
respectively. −, + and = stand for lower, upper and middle terciles, respectively.
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Table 7. Verification statistics (NSE, R2, RMSE, RMSE/SD, bias) for Lake_PO seasonal means (comparing Lake_PO to observations), as
well as comparison of the ROCSSoriginal (comparing Lake_F and Lake_PO) and ROCSSObs (comparing Lake_F and lake observations).

Site Variable Season Obs coverage NSE R2 RMSE RMSE/SD Bias ROCSSoriginal ROCSSObs

S M D lower middle upper lower middle upper

N
or

w
ay

Discharge Spring 100 96 93 0.72 0.80 2.0 0.52 −1.0 0.58∗ 0.54∗ 0.36 0.34
Surface temperature Winter 0 0 0 0.48∗ NA

Spring 48 58 5 0.75∗ 0.53∗ NA NA
Bottom temperature Winter 0 0 0 0.48∗ 0.53∗ NA NA

Spring 43 52 4 0.56∗ 0.68∗ NA NA
Ice-on 100 – – 0.97 0.99 2.2 0.16 1.8 a

Ice-off 100 – – 0.36 0.76 19.3 1.09 −14.7 0.69∗ 0.75∗ 0.55∗ 0.68∗

Sp
ai

n

Discharge Winter 100 100 99 0.88 0.89 3.9 0.34 −0.6 0.52∗ 0.18
Summer 100 100 98 0.51 0.62 3.5 0.69 −1.6 0.73∗ 0.40
Autumn 100 100 98 0.73 0.74 4.0 0.51 −0.8 0.47∗ 0.40

Surf. temp. Summer 78 78 3 0.12 0.40 1.1 0.87 −0.6 0.57∗ −0.08
Bottom temperature Spring 48 70 3 0.86∗ NA

Summer 48 67 2 0.53∗ 0.72∗ NA NA
Autumn 35 58 3 0.50∗ 0.64∗ NA NA

G
er

m
.

Bottom temperature Spring 100 96 6 −5.01 0.49 1.2 2.40 1.0 0.59∗ 0.60∗ 0.41 0.46∗

Summer 100 100 7 −8.63 0.26 3.8 3.04 3.6 0.48∗ 0.71∗ 0.51∗ 0.49∗

A
us

tr
al

. Discharge Autumn 43 100 100 −0.67 0.41 1.61 1.23 −1.27 0.48∗ NA
Bottom temperature Winter 23 100 82 −0.70 0.32 1.98 1.17 1.51 0.63∗ NA

Summer 17 75 46 0.60∗ NA

Only output variables associated with statistically significant ROCSS_original are included. Statistically significant ROCSS values are highlighted with an asterisk. “Obs coverage” is the percentage of seasons (S), months
(M) and days (D) covered by observations. Spring is March to May, summer is June to August, autumn is September to November and winter is December to February.
a Ice-on typically occurs between November and December, which is the autumn and winter boundary. Therefore, ROCSS values could not be calculated for ice-on.
NA: not available.

Verification statistics for Lake_PO seasonal means com-
pared to observations (Table 7) show that the catchment and
lake models performed well at the Norwegian and Spanish
sites in capturing interannual variability. In Germany and
Australia, performance was lower. Note that when observa-
tion coverage was below 50 %, no statistics were calculated
given the low number of seasons represented and the risk of
bias when computing seasonal averages. The difference be-
tween ROCSSoriginal (comparing Lake_F and Lake_PO) and
ROCSSObs (comparing Lake_F and lake observations) did
not necessarily scale inversely with the verification statistics
(Table 7). In fact, the ROCSSObs values reported for the Ger-
man site were slightly lower or even larger than their respec-
tive ROCSSoriginal with differences lower than 0.23, whereas,
for the Spanish site, three ROCSSObs values out of four
were significantly lower than the ROCSSoriginal, with a dif-
ference larger than 0.33. Nevertheless, several output vari-
ables, for example, bottom temperature in Germany and ice-
off in Norway, are associated with significant ROCSSoriginal
and ROCSSObs, which provides further confidence in model
calibration and low model error. In contrast, even if the ver-
ification statistics for discharge were not worse than for the
other variables, ROCSSObs values are all below the signif-
icance threshold, pointing towards some limitations in pre-
dicting hydrology.

3.3 Sensitivity analyses of initial conditions and
meteorological forcing

The ROCSSS, ROCSSW and ROCSSW+M0 values obtained
for each run of S-SA, W-SA and W+M0-SA, respectively,
are summarized in box plots in Fig. 4, together with the origi-
nal ROCSS value for each window of opportunity at the Nor-
wegian and Spanish sites. This sensitivity analysis (SA) was
performed to identify the origin of the forecasting skill for a
given window of opportunity and allowed for quantification
of the sensitivity of the hindcast performance to forcing data
over specific periods: the target season (M1–M3; SEAS5),
the first lead month (M0) and the warm-up period (ERA5).
In general, output variable sensitivity to SEAS5 data over the
target season (S-SA) is small relative to sensitivity to ERA5
data over the warm-up season and/or SEAS5 data over the
first lead month. In fact, at Sau, replacing SEAS5 data over
the target season with random data (S-SA) does not yield any
significant change in the ROCSS values, except for the sur-
face temperature upper tercile (Fig. 4 panel l). However, sig-
nificant changes in ROCSS values are seen for W-SA com-
pared to ROCSSoriginal, indicating high sensitivity to warm-
up. The similar ranges in ROCSSW and ROCSSW+M0 values
suggest limited or no impact of the SEAS5 data over the first
lead month on output variable forecasts.

At Vansjø in Norway, on the other hand, 8 out of 11 win-
dows of opportunity show significant changes in ROCSSS
values, indicating higher sensitivity to SEAS5 data over the
target season than at Sau. Furthermore, three windows of op-
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Figure 4. Box plots (n= 25) of ROCSSS, ROCSSW and ROCSSW+M0 from sensitivity analysis runs S-SA (replacing target season SEAS5
data with random data), W-SA (replacing warm-up ERA5 data with random data) and W+M0-SA (replacing warm-up period – ERA5
and first lead month – SEAS5 data with random data) for each window of opportunity at the Norwegian (a–k) and Spanish (l–q) sites.
ROCSSoriginal is given by the red line, so ROCSSS, ROCSSW and ROCSSW+M0 below the red line indicate a loss of skill, and values
above the line indicate higher skill than the original forecast. ∗∗∗, ∗∗ and ∗ indicate significant difference between a given group of ROCSSS,
ROCSSW and ROCSSW+M0 values and ROCSSoriginal following a Mann–Whitney rank sum test at a significance level of 0.001, 0.01
and 0.05, respectively. Note that the S-SA, W-SA and W+M0-SA were only performed for Sau Reservoir in Spain and Lake Vansjø in
Norway because of the significant resources needed to perform these hindcast experiments.
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portunity are associated with ROCSSS that are lower than
ROCSSoriginal (Fig. 4b, f and g), i.e. suggesting SEAS5 is
providing some skill, while five have ROCSSS that are higher
than ROCSSoriginal (Fig. 4a and h–k), suggesting the use of
SEAS5 is in fact reducing forecasting skill compared to a
random forecast. Then, a progressive decrease in ROCSS
values is typically observed for all windows of opportunity
following W-SA and W+M0-SA, indicating a progressive
loss of forecasting skill related to ERA5 data over the warm-
up and SEAS5 data over the first lead month.

3.4 Sensitivity analyses of specific input variables

Figures 5 and 6 summarize the results from the two sensitiv-
ity analyses of specific input variables: OAT-SA and PPCC.
Seasonal means of Lake_PO at Vansjø also showed higher
sensitivity to specific input variables than Lake_PO at Sau
(Fig. 5). In fact, surface temperature is highly sensitive to
surface air temperature over the year, while some other in-
put variables have more specific influence. Bottom temper-
ature is also highly sensitive to surface air temperature, but
wind also plays a large role, especially in summer, which is
consistent with its expected impact on lake thermal stabil-
ity (Blottiere, 2015). Finally, as expected, discharge at Van-
sjø is highly sensitive to precipitation and to a lesser degree
to surface air temperature, except in winter when surface air
temperature has a larger influence on discharge.

The PPCCs also show similar patterns regarding sensitiv-
ity (Fig. 6), where discharge is highly correlated with pre-
cipitation at the four sites and surface air temperature plays
a secondary role for specific seasons. Once again, surface
temperature and bottom temperature at Sau stand out due to
their limited sensitivity to input variables, while at the three
other sites, surface temperature and, to a lesser degree, bot-
tom temperature are generally strongly positively correlated
with surface air temperature. Others, like precipitation and
short-wave radiation, have more of an anecdotal influence on
lake temperature, while wind shows a more consistent neg-
ative impact on surface temperature at Vansjø, Wupper and
Mt Bold. Wind also shows some impact on bottom tempera-
ture though less consistent. At Vansjø and Mt Bold, following
the coldest season, wind is positively correlated with bottom
temperature, while at Wupper during the two coldest seasons,
wind is negatively correlated with bottom temperature. Fi-
nally, ice-off date in Vansjø shows a strong negative corre-
lation with surface air temperature (Fig. 6m), which can be
linked back to the snow content and the intensity of snowmelt
in the catchment (Fig. 6n and o).

Next, we use SA outputs to better describe the origin of
the prediction skill, considering inertia, time integration and
variable interactions. Assuming that climate signals in the
ERA5 and SEAS5 input data over the warm-up, first lead
month and target periods are additive sources of prediction
skill, we can use Eqs. (1)–(3) to partition the prediction
skill originating from those time periods, i.e. Pwarm-up, PM0

and Pseason, respectively. For Sau Reservoir, this calculation
yields a Pwarm-up value of 0.94 to 1.0, leaving only an non-
significant fraction of prediction skill to the forcing data over
the target season and the first lead month, as illustrated in
Fig. 4. At this site, the output variables show in parallel very
low sensitivity to input variables (Figs. 5 and 6), which sup-
ports the strong role of inertia or long-term time integration
in hindcast predictive skill. The fact that five out of the six
windows of opportunity are for bottom water is also consis-
tent with inertia as the main source of skill given the low
circulation rate and inertia of hypolimnia. For Lake Vansjø,
Eqs. (1)–(3) yielded a Pseason of 0.003 (range:−0.19 to 0.18),
a PM0 of 0.19 (0.04 to 0.37) and a Pwarm-up of 0.29 (0.09
to 0.60). Hence, a significant fraction of prediction skill is
originating from the SEAS5 boundary conditions, although
the largest source remains initial conditions through ERA5
data over the warm-up. Interestingly, the SEAS5 data over
the first lead month are also a significant source of predic-
tion skill. In fact, in decreasing order of importance, predic-
tion skill originates from the warm-up, the first lead month
and the target season. This progressive decrease in predic-
tion skill is only observed at Lake Vansjø and suggests that
across-variable integration of climate signals persists through
the first lead month and, in some cases, the target season,
but is progressively deteriorating as we move into the target
season. Indeed, there is additional consistency between the
SEAS5 input variables, showing some forecasting skill, and
the output variables. In fact, surface temperature and bottom
temperature in spring at Vansjø are sensitive to surface air
temperature and wind (Fig. 6b and c), and surface air tem-
perature and wind u and v components are associated with
some windows of opportunity in spring (Table 6). Similarly,
ice-off is sensitive to surface air temperature, as are snow
quantities and melt intensities in the catchment (Fig. 6m–o).
Hence, in contrast to Sau Reservoir, where most of the pre-
diction skill seems to originate from inertia, at Lake Vansjø,
across-variable integration contributes to predictive skills.

4 Discussion

4.1 Sources of skill

Our investigation into relationships between input and out-
put variables and the sensitivity of predictive skill to meteo-
rological data inputs over different time periods has yielded
important insights into the sources of seasonal lake forecast-
ing skill in our case study sites.

A key finding is that predictive skill is mostly sensitive to
meteorological inputs over the warm-up and first lead months
(Fig. 4, Sect. 3.4), although some specific windows of op-
portunity are also somewhat sensitive to the meteorological
data over the target season. Hence, integration of the cli-
mate signal over time or across variables by catchment hy-
drologic and physical processes, for example, snow accumu-
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Figure 5. Relative sensitivity expressed as 1−R2 of Lake_PO seasonal means to specific input variables estimated following the OAT-
SA (see Sect. 2.2.3 and Table 3 in the Methods section for details). Circle size represents relative sensitivity on a scale from 0 to 1; for
example, larger circle sizes, i.e. higher (1−R2) values, indicate more influence of input variables on Lake_PO. The meteorological variable
abbreviations, airT, P , wind, cc, hum and sw, stand for surface air temperature, precipitation, wind speed, cloud cover, relative humidity (or
dewpoint temperature) and short-wave radiation, respectively. Note that the relatively larger sensitivity of Lake_PO to specific input variables
over the whole year can be larger compared to over a given season because of the strong seasonal cyclicity. Note that the OAT-SA was only
performed for Sau Reservoir in Spain and Lake Vansjø in Norway.

lation (Harrigan et al., 2018) or heat accumulation in lakes,
is likely a key source of predictive skill. In fact, Mercado-
Bettin et al. (2021) already noted an increase in prediction
skill when moving from weather to discharge to lake tem-
perature, i.e. in an increasing order of time and with across-
variable integration of climate signals. Strong inertia is also
a potential source of prediction skill.

After accounting for forecasting skill from the forcing data
over various periods (Sect. 3.3), a large proportion of the
skill still remains unexplained, especially for some selected
windows of opportunity at Lake Vansjø in Norway. Bottom
water temperature at Lake Vansjø in spring shows the high-
est residual skill after removal of skill from warm-up and
first lead month (Fig. 4e and f). Surface temperature and bot-
tom temperature show a different degree of coupling with
air temperature. In fact, while surface temperature responds
tightly to changes in air temperature (Butcher et al., 2015;
Schmid et al., 2014), bottom temperature responds to a va-
riety of complex interactions influenced by lake character-
istics (e.g. fetch, surface area, depth and light penetration;
Butcher et al., 2015). Indeed, bottom temperature in spring
depends on preceding winter conditions but also on the in-
tensity and length of the spring mixing event. To fully cap-
ture the intensity of this event, the model requires good ini-

tial water temperature inherited from the previous winter but
also skilful weather forcings, especially for surface air tem-
perature and wind (Fig. 6c). In fact, for bottom temperature
in spring to be higher than normal, it requires surface wa-
ter to be heated up more than normal, mainly through heat
exchange with air temperature, but also the lake to remain
mixed for a longer time period than normal. The interaction
between skill from legacy and from weather forcing might
thus be another source of predictive skill. The fact that the
proportion of forecasting skill progressively decreases from
warm-up, through the first lead month and the target season
at Vansjø, suggests that the interactions between input vari-
ables, which are incorporated in the process representation
within the models, provide some skill but progressively de-
teriorate as we move forward in time. At Sau Reservoir in
Spain, on the other hand, all skill is lost at the sharp boundary
between the warm-up and the first lead month. This differ-
ence might be related to the presence of skill from the SEAS5
data at Vansjø (Table 6) and not at Sau. In other words, in the
absence of skill in SEAS5 data, no additional skill can origi-
nate from interaction effects.

Literature on streamflow hindcasts broadly shows that be-
yond the first lead month, hindcasts forced with an ensemble
of boundary conditions resampled from historical meteorol-
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Figure 6. Pearson partial correlation coefficients (PPCCs) between Lake_PO seasonal means and seasonal means of selected input variables.
Circle colour and size represent the PPCC value (from −1 to 1) and significance, respectively. The meteorological variable abbreviations,
airT, P , wind, cc, hum and sw, stand for surface air temperature, precipitation, wind speed, cloud cover, relative humidity (or dewpoint
temperature) and short-wave radiation, respectively. Only significance levels at 0.1 or below were considered in the interpretation.

ogy are typically more skilful than hindcasts driven by sea-
sonal meteorological predictions (Arnal et al., 2018; Bazile
et al., 2017; Greuell et al., 2019). Hence, better lake fore-
casting skills could likely be achieved by simply forcing our
models with climatology. Our results partly fit with these
findings, as the skill of S-SA hindcasts for selected windows
of opportunity was higher than the original hindcasts (Fig. 4a
and h–k). These S-SA hindcasts are similar to climatology-
driven hindcasts, although they are associated with higher
uncertainty since they are driven by random SEAS5 data and
should therefore be regarded as a minimum forecasting po-
tential. For some windows of opportunity, however, SEAS5
was a significant source of predictive skill (Fig. 4b, f, g and l).
In those cases, only an improvement in SEAS5 forecasting
skill is likely to improve lake forecasts. Improvement for
only selected variables in SEAS5 would likely be enough
to yield a significant increase in lake forecasting skill since

most of the output variables presented here showed sensitiv-
ity to one or two input variables (Fig. 6).

4.2 Limitations and implications for seasonal lake
forecasts

One apparent limitation of our study is the use of reanalysis
weather data and pseudo-observations as inputs and bench-
mark output variables. Using pseudo-observations for skill
assessment is a common methodology in streamflow fore-
casting studies (Alfieri et al., 2014; Wood et al., 2016), and it
offers the opportunity to investigate the relationship between
forecasting skills and initial and boundary conditions, while
putting less emphasis on model errors and biases (Harrigan
et al., 2018). Working with reanalysis weather data generates
a less site-specific workflow and removes difficulties associ-
ated with dealing with temporal and spatial heterogeneity in
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observed data. Nevertheless, here we also evaluate the fore-
casting skill against catchment and lake observations when
possible (Table 7) and show that most of the windows of op-
portunity reported for water temperature held, while those
for discharge are no longer significant compared to observa-
tions. This discrepancy between discharge and water temper-
ature can be related to the fact that discharge tends to be more
variable than water temperature, with short-lived high peaks
which are difficult to model. The catchment models there-
fore performed less well than the lake models. This further
suggests that evaluation against observations is likely more
important for discharge than for water temperature.

The prediction skill of the seasonal lake forecasts can be
influenced by multiple factors, including the catchment and
lake models used, the prediction skill of the forcing mete-
orological hindcasts, the quality and frequency of observa-
tions against which the models are calibrated, the nature of
the system (e.g. potential for inertia), and the model cali-
bration procedures. Given that we applied our workflow to
only four case study sites, unravelling the impact of all of
the above-mentioned factors is out of the scope of this study
and should be addressed through a more systematical ap-
plication of our workflow to a larger number of sites. Our
results rather highlight two opportunities for seasonal lake
forecasting. First, prediction skill of the forcing meteoro-
logical SEAS5 hindcasts, expected to be stronger around
the tropics, was the largest at the northernmost Norwegian
site (Table 6) and effectively transferred from meteorolog-
ical to lake hindcasts (Sect. 3.3). This highlights that, al-
though the prediction skill of the meteorological forecasts
is generally higher at the Equator, there is not a monotonic
decrease in skill with increasing latitude; rather there is high
spatial variability in skill. Potentially useful seasonal mete-
orological and lake forecasts can therefore still be obtained
at higher latitudes. Second, given that inertia and integration
over time were the dominant sources of predictive skill at
Sau Reservoir and Lake Vansjø, useful hindcasts could al-
ready be issued without the use of SEAS5 data. In fact, our
workflows show limited sensitivity to boundary conditions
over the target season. Hence, future workflows should use
selected climatology as forcing data over the target season,
in addition to (or instead of) seasonal meteorological predic-
tion. This benchmark forecasting workflow with climatology
will likely yield similar or more skilful forecasts, as well as
being less time-consuming to set up. Indeed, even with ran-
domly selected years from the SEAS5 data, which can be
seen as a highly uncertain climatology, some windows of op-
portunity are more skilful than with the correct SEAS5 data
(Fig. 4). Nevertheless, if seasonal meteorological prediction
products become more skilful, they will likely be a real as-
set for lake seasonal forecasting, enabling additional skills
through interactions over time.

State-of-the-art modelling practices typically involve cal-
ibrating hydrologic and lake models against daily observa-
tions. Nevertheless, daily observations of water quality are

often not available or only cover a fraction of the time of
interest. Table 7 illustrates the challenges related to data cov-
erage and model evaluation where many calibration and vali-
dation statistics could not be estimated because of the lack of
observations. In addition, calibrating to daily data prioritizes
model parametrizations which are able to capture daily vari-
ability but not necessarily seasonal variability or interannual
variability, which are both more relevant for seasonal fore-
casting. Calibrating the hydrologic and lake models using
seasonal means or medians, in combination with daily data,
could solve the observation coverage issue while improving
seasonal predictive skill but is then hampered by a low num-
ber of observed data points for calibration. Nevertheless, one
needs to ensure that the seasonal averages are calculated from
representative and well-distributed datasets. For Lake Van-
sjø, this would not have solved the lack of observations in
spring, for example, because observations only cover April
and May. For Sau and Wupper reservoirs, on the other hand,
this would have been possible and potentially improve pre-
dictive skills. In any case, having access to more complete,
long-term and systematic observations on water temperature
and inflow and outflow discharge, including abstraction and
overflows for reservoirs, would facilitate robust model cal-
ibration and validation and, likely, model predictive skills.
The skill of water quality forecasting tools heavily depends
on observation availability. Hence, continued efforts should
be put on ensuring that observational programmes are suited
to providing the information needed by our models (Robson,
2014).

5 Conclusion

Lake seasonal forecasts could provide valuable knowledge
for water managers to help protect drinking water reserves,
as well as ecological and recreational services under increas-
ing pressures from water demand, anthropogenic pollution
and climate change. Nevertheless, their use is still limited in
the water sector. Here we unravel the source of predictive
skill of lake seasonal hindcasts at four case studies across
Europe and in Australia, including inflow discharge, surface
and bottom water temperature, and ice-off dates. Through
sensitivity analyses, we contribute to the demystification of
lake forecasting tools with the long-term objective of facili-
tating their utilization in the water sector. In Spain, where the
seasonal meteorological predictions have negligible skill, the
source of predictive skill is mainly catchment and lake iner-
tia. In Norway, where some seasonal meteorological predic-
tions are skilful, predictive skill is coming from, in decreas-
ing order of importance, inertia, time- and across-variable in-
tegration of climate signals through catchment processes, and
seasonal meteorological predictions over the target season
(SEAS5). In Norway, skilful SEAS5 meteorological hind-
casts over specific seasons likely contribute to sustaining the
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predictive skill from antecedent conditions through to the tar-
get season.

Despite their central role in the probabilistic nature of the
forecasting workflow, SEAS5 meteorological forcing data
contribute little to the predictive skill and often reduce the
performance of the hindcasts. Hence, our findings suggest
that using a probabilistic-ensemble catchment–lake forecast
without SEAS5 forcing data is currently likely to yield
higher-quality forecasts in most cases, as demonstrated by
hindcasts driven with randomly selected SEAS5 data. Nev-
ertheless, upon improvement in the skill of the seasonal me-
teorological forecasts, only a small step would be needed to
provide more skilful lake forecasts for better water manage-
ment.

Appendix A: Index of abbreviations (in order of
appearance)

ECMWF European Centre for Medium-Range Weather Forecasts
SEAS5 Seasonal meteorological forecast dataset from the European Centre for Medium-Range Weather Forecasts
ERA5 Meteorological reanalysis dataset from the European Centre for Medium-Range Weather Forecasts
NSE Nash–Sutcliffe efficiency coefficient
KGE Kling–Gupta efficiency coefficient
RMSE Root mean square error
R2 Square of the Pearson correlation coefficient
Lake_PO Lake pseudo-observations of water temperature, inflow discharge and ice-off produced with coupled catch-

ment and lake models forced with ERA5 meteorological data
Lake_F Seasonal lake hindcasts of water temperature, inflow discharge and ice-off produced with coupled catchment

and lake models forced with SEAS5 meteorological data (25 members)
M0 First lead month
M1–M3 Month 1 to month 3 of the lake forecast, i.e. target season of the lake forecasts
ROCSS Relative operating characteristic skill score
RPSS Ranked probability skill score
FRPSS Fair (or unbiased) RPSS
ROCSSoriginal ROCSS for Lake_F as compared to reference forecast based on climatology from Lake_PO
ROCSSObs ROCSS for Lake_F as compared to reference forecast based on local observations
SA Sensitivity analysis
S-SA Sensitivity analysis of Lake_F to boundary conditions over the target season (M1–M3)
W-SA Sensitivity analysis of Lake_F to boundary conditions over the warm-up period
W+M0-SA Sensitivity analysis of Lake_F to boundary conditions over the period covering the warm-up and first lead

month
ROCSSS ROCSS for Lake_F following S-SA as compared to reference forecast based on climatology from Lake_PO
ROCSSW ROCSS for Lake_F following W-SA as compared to reference forecast based on climatology from Lake_PO
ROCSSW+M0 ROCSS for Lake_F following WM0-SA as compared to reference forecast based on climatology from

Lake_PO
OAT-SA One-at-a-time sensitivity analysis
PPCC Partial correlation coefficient
airT Surface air temperature
airP Surface air pressure
cc Cloud cover
hum Relative humidity (or dewpoint temperature)
sw Short-wave radiation
lw Downwelling long-wave radiation
u u component of wind speed
v v component of wind speed
P Precipitation
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