

Supplement of

Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools

François Clayer et al.

Correspondence to: François Clayer (françois.clayer@niva.no)

The copyright of individual parts of the supplement might differ from the article licence.

You can find all the codes and data files related to this manuscript at: <u>https://github.com/NIVANorge/seasonal_forecasting_watexr</u>

Table S1: Time series of observations available at each case-study. Note: 1	Femperature is lake water
temperature and N is the number of seasons with data (out of 91 seasons).	-

Site	Variable	Start	End	S	Sampling season	Frequency
Norway	Discharge	1994	2016	91	Year-round	Daily
	Temperature	2005	2015	33	Apr-Oct	Monthly
Spain	Discharge	1994	2016	91	Year-round	Daily
-	Temperature	1997	2016	72	Year-round	Weekly-
						Monthly
Australia	Discharge	2003	2013	43	Year-round	Daily
	Temperature	2006	2016	20	Year-round	Daily (irregular)
Germany	Discharge	1994	2016	91	Year-round	Daily
-	Temperature	1994	2016	90	Year-round	Weekly-
						biweekly

Table S2: Verification statistics (NSE, R², RMSE/sd, bias) for Lake_PO for each case-study for each season. The percentage of seasons (S), months (M) and days (D) covered by observations is also given as "Obs coverage". Statistics are calculated on daily data. RMSE/sd is the root-mean squared error divided by one standard deviation.

		Obs coverage		NGE	D ²		hina		
		S	М	D	INSE	K-	KIVISE/SO	DIGS	
Discharge Surface Temperatur	a : 1	WI	100	100	93	0.46	0.47	0.73	0.15
		SP	100	96	93	0.40	0.41	0.77	-1.02
	Discharge	SU	100	100	96	0.05	0.43	0.97	2.75
		AU	100	100	95	0.57	0.66	0.66	-3.13
		WI	0			-	-	-	-
	Surface	SP	48	48	5	0.87	0.92	0.36	0.53
	Temperature	SU	48	48	11	0.67	0.81	0.57	0.38
Non		AU	48	48	5	0.81	0.99	0.43	-1.03
-		WI	0			-	-	-	-
	Bottom	SP	43	39	4	0.53	0.7	0.68	-0.65
	Temperature	SU	43	39	10	0.37	0.60	0.79	0.84
		AU	43	39	5	0.80	0.92	0.44	-0.58
	lce-on		100	-	-	0.97	0.99	0.16	1.8
	Ice-off		100	-	-	0.36	0.76	1.09	-14.7
		WI	100	100	99	0.69	0.69	0.56	-0.63
		SP	100	100	99	0.54	0.57	0.38	-3.15
	Discharge	SU	100	100	98	0.37	0.40	0.80	-1.53
		AU	100	100	98	0.60	0.63	0.63	-0.73
		WI	77	45	3	0.76	0.77	0.48	0.12
. <u>e</u>	Surface	SP	83	65	4	0.81	0.88	0.43	-0.90
Spa	Temperature	SU	78	30	3	0.60	0.66	0.62	-0.45
		AU	87	70	4	0.82	0.92	0.42	-1.28
		WI	27	5	2	0.38	0.40	0.76	0.06
	Bottom	SP	48	17	3	-0.27	0.26	1.10	0.07
	Temperature	SU	48	4	2	0.48	0.55	0.70	-0.25
		AU	35	4	3	-0.72	0.00	1 27	-0.38
		WI	100	100	100	0.62	0.63	0.62	0.04
		SP	100	100	100	0.61	0.68	0.62	-1.08
	Discharge	SU	100	100	100	-0.06	0.35	1.03	-0.51
		AU	100	100	100	0.35	0.58	0.80	1.00
		WI	95	41	3	-0.22	0.50	1 09	-0.36
h	Surface	SP	100	96	6	0.22	0.95	0.28	0.50
erm	Temperature	SU	100	100	7	0.52	0.89	0.20	1 24
Ō		AU	100	96	6	0.92	0.05	0.70	-0.24
	Bottom Temperature	WI	95	41	3	0.52	0.66	0.64	0.15
		SP	100	96	6	-0.46	0.72	1 20	1 28
		SU	100	100	7	-1 04	0.75	1 42	3 54
		AU	100	96	5	0.50	0.90	0.70	1.01
Discharge Surface Temperature Bottom Temperature		WI	50	47	97	_1 60	0.01	1 6/	-1.02
		SP	48	48	100	-1.09	0.01	2.60	-1.02
	Discharge	SU	48	43	93	-0.22	0.04	1.05	-0.10
			43	43	100	-0.12	0.15	1.00	1.26
		W/I	23	23	82	-0.04	0.54	1.02	-1.20
	C F	SP	22	13	57	-0.04	0.55	1.02	0.02
	Surface Temperature	SU	17	9	47	0.90	0.94	0.31	0.15
			26	13	57	0.88	0.89	0.34	0.10
		\A/I	23	23	82	0.42	0.89	0.34	1.25
	Datta	SP	22	13	57	0.12	0.40	1.01	1.25
	Temperature	SU	17	9	46	-0.02	0.28	1.01	0.04
		ALI	26	13	48	0.46	0.87	0.00	0.10
				L		0.10	0.42	0.92	0.10

Text S1: Inflow-outflow linear regression for Wupper Reservoir (Germany)

For each simulation at Wupper Reservoir (Germany), a linear regression was trained to obtain the best possible linear model to predict outflow from inflow. For Lake pseudo-observations, i.e., when models were forced with ERA5 meteorological data, over the training (1994-2016) and validation (2017-2019) periods the linear model had performance measures as follow:

Training period – Nash-Sutcliffe efficiency: 0.67 and Kling-Gupta efficiency: 0.79

Validation period – Nash-Sutcliffe efficiency: 0.78 and Kling-Gupta efficiency 0.82

Outflow model training

Figure S1: Comparison of modeled (red) and observed (black) outflow over the model training period.

Outflow model validation

Figure S2: Comparison of modeled (blue) and observed (black) outflow over the model validation period.

Text S2: Validation of inflow water temperature model at Wupper Reservoir (Germany)

The linear model of the form (A +B*AirTemperature) used to predict inflow water temperature at Wupper Reservoir was validated against observation over 2004-2014 (Figure S3) with performance measures as follow: Nash-Sutcliffe efficiency: 0.97, Kling-Gupta efficiency: 0.79 and Pearson's correlation of 0.98.

Figure S3: Comparison of modelled and observed inflow temperature and residuals. Text S3: Lake seasonal heat budget at the four case studies.

The lake energy budget includes exchanges through the air-water interface, i.e., downward shortwave radiation, downward and upward long-wave radiation, latent and sensible heat fluxes, and by lateral fluxes of water, i.e., inflow and outflow of water (Schmid & Read, 2022). The energy fluxes at the air-water interface were calculated with the HeatFluxAnalyzer (Woolway et al., 2015). The net heat flux HF (W m⁻²) caused by an inflow with discharge Q_{in} and temperature T_{in} is given by Livingstone & Imboden (1989):

$$H_F = \frac{C_p \rho}{A} Q_{in} (T_{in} - T_{Lake})$$

where C_p and ρ are the heat capacity and density of water, respectively; and T_{Lake} is the outflow temperature, which is assumed to be the lake surface temperature (Schmid and Read 2022).

Table S3 below displays the contribution of each heat flux to the total heat fluxes for each casestudy and each season.

Table S3: Contr	ibutions (%) of e	ach discrete heat fl	ux to the total lake h	eat fluxes at each c	ase study by
season.					

		Spring	Summer	Autumn	Winter
		Mar-May	Jun-Aug	Sep-Nov	Dec-Feb
Lake Vansjø	Short-wave	77	60	56	30
Norway	Long-wave	8	9	10	18
	Latent	13	21	23	18
	Sensible	2	5	7	17
	Throughflow	0	5	4	17
Sau Reservoir	Short-wave	62	66	47	42
Spain	Long-wave	22	23	31	38
	Latent	5	8	12	8
	Sensible	1	1	4	4
	Throughflow	10	2	6	7
Wupper Reservoir Germany	Short-wave	55	45	34	25
	Long-wave	25	21	28	35
	Latent	14	19	20	10
	Sensible	4	6	8	5
	Throughflow	2	9	10	25
Mt Bold Reservoir Australia	Short-wave	50	44	60	54
	Long-wave	22	25	20	15
	Latent	20	13	17	23
	Sensible	5	2	3	5
	Throughflow	3	16	0	2

References:

- Livingstone, D. M., & Imboden, D. M. (1989). Annual heat balance and equilibrium temperature of Lake Aegeri, Switzerland. *Aquatic Sciences*, *51*(4), 351–369. https://doi.org/10.1007/BF00877177
- Schmid, M., & Read, J. (2022). Heat Budget of Lakes. In T. Mehner & K. Tockner (Eds.), *Encyclopedia of Inland Waters (Second Edition)* (pp. 467–473). Elsevier. https://doi.org/10.1016/B978-0-12-819166-8.00011-6
- Woolway, R. I., Jones, I. D., Hamilton, D. P., Maberly, S. C., Muraoka, K., Read, J. S., Smyth, R. L., & Winslow, L. A. (2015). Automated calculation of surface energy fluxes with high-frequency lake buoy data. *Environmental Modelling & Software*, *70*, 191–198. https://doi.org/10.1016/j.envsoft.2015.04.013