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Abstract. Variably saturated subsurface flow models require
knowledge of the soil hydraulic parameters. However, the de-
termination of these parameters in heterogeneous soils is not
easily feasible and subject to large uncertainties. As the mod-
eled soil moisture is very sensitive to these parameters, espe-
cially the saturated hydraulic conductivity, porosity, and the
parameters describing the retention and relative permeability
functions, it is likewise highly uncertain. Data assimilation
can be used to handle and reduce both the state and parame-
ter uncertainty. In this work, we apply the ensemble Kalman
filter (EnKF) to a three-dimensional heterogeneous hillslope
model and investigate the influence of updating the different
soil hydraulic parameters on the accuracy of the estimated
soil moisture. We further examine the usage of a simplified
layered soil structure instead of the fully resolved heteroge-
neous soil structure in the ensemble. It is shown that the best
estimates are obtained when performing a joint update of
porosity and the van Genuchten parameters and (optionally)
the saturated hydraulic conductivity. The usage of a simpli-
fied soil structure gave decent estimates of spatially averaged
soil moisture in combination with parameter updates but led
to a failure of the EnKF and very poor soil moisture estimates
at non-observed locations.

1 Introduction

Numerical models of the unsaturated zone are very sensi-
tive to the soil hydraulic parameters (Vereecken et al., 1992;
Christiaens and Feyen, 2001). Baroni et al. (2010) found this
sensitivity to be larger for the more complex but widely used
models that solve the Richards equation compared to simpler
conceptual models. Therefore, knowledge of these parame-

ters is crucial for obtaining reliable model output, e.g., soil
moisture or streamflow estimates if the unsaturated zone is
part of a hydrological model.

However, the quantification of these parameters is very
difficult (Kool et al., 1987). Direct measurements offer the
most exact determination. As applications for unsaturated
zone models often involve large areas with considerable spa-
tial variability, it is impossible to obtain enough measure-
ments for a decent determination of the soil hydraulic param-
eters at the required scale (Schaap et al., 2001; Baroni et al.,
2010). Therefore, the soil hydraulic parameters are com-
monly estimated by indirect methods, in particular by pedo-
transfer functions (PTFs). These calculate the soil hydraulic
parameters based on the information of surrogate data which
are easier to be measured, such as soil texture. The draw-
back of PTFs is that usually a large amount of specific input
data is required that are often not fully available, and they are
very empirical, which leads to poor estimates with high un-
certainty (Schaap et al., 2001; Christiaens and Feyen, 2001;
Baroni et al., 2010). Both Christiaens and Feyen (2001) and
Baroni et al. (2010), who compared different techniques of
estimating the soil hydraulic parameters, found that espe-
cially the estimates of the saturated hydraulic conductivity
are affected by large uncertainties.

Another possibility for the quantification of the soil hy-
draulic parameters is to solve the inverse problem (i.e., find-
ing an adequate set of parameters that best reproduces given
observations for a quantity of interest, such as the soil mois-
ture). This is an optimization problem and can be done by
applying one of the manifold of existing optimization algo-
rithms. The advantage of this method is that the optimiza-
tion can be applied directly for the given initial and bound-
ary conditions. The disadvantage is that the parameter esti-
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mation problem is often ill-posed; this is caused by either
non-uniqueness or instability (Yeh, 1986). The problem is
non-unique when multiple parameter sets that produce a sim-
ilar value of the objective function in the optimization exist.
This can be caused by correlations among parameters, when
changes in one parameter can be compensated by changes in
another parameter, or there is either an insufficient number of
observations or insufficient information in the observations.
The problem is unstable when the parameters are very sen-
sitive to the observed data, such that a small measurement
error could cause large changes in the parameter estimates
(Kool et al., 1987). The predominant problem when estimat-
ing the soil hydraulic parameters is the non-uniqueness due
to insufficient observations. Hornung (1983) and Kool et al.
(1985) both conducted column drainage experiments to de-
termine α and n of van Genuchten’s model and both encoun-
tered the non-uniqueness of the parameters. While Hornung
(1983) could address the problem by taking into account ad-
ditional observations of the pressure head, Kool et al. (1985)
found that the uniqueness of these parameters depends on the
water content coverage of the observations. The difficulty in
estimating a subset of the soil hydraulic parameters in such a
simple setup under controlled laboratory conditions hints at
the impossibility of estimating these parameters fairly in the
field.

It is thus clear that the parameter uncertainty cannot be
eliminated and needs to be taken into account in the mod-
eling process. According to Liu and Gupta (2007), when
dealing with uncertainty, one has to address three aspects,
namely understanding, quantification, and reduction in the
uncertainty. A tool for that purpose that has been given in-
creasing attention in the past few decades is data assimila-
tion. It uses a probabilistic approach to quantify model states
and reduces the related uncertainty by the integration of ob-
servations aiming for improved estimates of the model states.
A big advantage of data assimilation is that all sources of
uncertainty can be incorporated, e.g., parameter, model, or
input uncertainty. The disadvantage is that the updated state
and parameter estimates can lead to unphysical combinations
that may cause numerical issues.

A very popular data assimilation method is the ensem-
ble Kalman filter (EnKF). Evensen (1994) developed it as
a modification of the Kalman filter (KF) for application to
nonlinear models. Here, the probabilistic model description
is accomplished by using an ensemble of model realizations
that are propagated in time according to the nonlinear nu-
merical model. Even though it is derived only for states and
parameters that are Gaussian distributed, it has been applied
successfully to hydrologic models with non-Gaussian prob-
ability density functions by, e.g., Moradkhani et al. (2005b),
De Lannoy et al. (2007), and Erdal et al. (2014).

Another data assimilation method used to account for pa-
rameter uncertainty is the particle filter. Although the particle
filter is better suited for nonlinear models and does not re-
quire Gaussian distributions, its high computational demand

rather limits its application to conceptual models (Morad-
khani et al., 2005a; Salamon and Feyen, 2009) or models
with reduced dimensionality (Montzka et al., 2011).

Many studies put their focus on the accurate estimation of
the soil hydraulic parameters, like Li and Ren (2011), Shi
et al. (2015), Chaudhuri et al. (2018), and Zha et al. (2019).
Even though these studies aim for parameter estimation in
one-dimensional models only, they encountered problems in
reproducing the true parameter sets. Li and Ren (2011) were
able to achieve good estimates of the saturated hydraulic
conductivity Ks and the van Genuchten model parameter α,
while the estimates of the remaining soil hydraulic param-
eters were poor. Shi et al. (2015) found that parameter es-
timates can be improved by assimilating different types of
observations, i.e., soil water content and groundwater level
data, but they restricted the estimation to three parameters,
namely Ks and the van Genuchten parameters α and n. In
a similar study, Zha et al. (2019) identified pressure head
observations as being the most valuable observations for es-
timating these three parameters. However, in field applica-
tions, such observations are often not available because the
required measurement devices are less robust, and one has
to resort to measurements of soil water content, groundwa-
ter level, or streamflow. Chaudhuri et al. (2018) were able to
estimate three-dimensional fields ofKs, α, and nwith an iter-
ative ensemble Kalman filter. Unfortunately, iterative filters
are computationally quite expensive and therefore less suited
for large-scale models or real-time predictions.

From these studies it can be established that parameter up-
dates in filters can hardly be used to estimate the soil hy-
draulic parameters under field conditions. Regardless, the pa-
rameter updates can have a positive impact on the state esti-
mates when making predictions. This was shown by Montzka
et al. (2011), Wu and Margulis (2011), and Brandhorst et al.
(2017) for one-dimensional cases, where fluxes are verti-
cal. However, it is questionable whether this also holds for
three-dimensional models with heterogeneous soils, where
the augmented state vector approach can mean a significant
increase in the computational burden and the estimated pa-
rameter fields are expected to differ clearly from the true pa-
rameter fields. In 3D models, the uncertainty in model pa-
rameters is only one part of the question, while the question
of the heterogeneity of soil parameters and related uncer-
tainty is an additional part. Yet, 3D fully coupled subsurface
models are used more and more (Goderniaux et al., 2009;
Maxwell et al., 2015).

While parameter updates have been applied to land sur-
face models (Shi et al., 2014; Zhang et al., 2017) or con-
ceptual models (Moradkhani et al., 2005b), their applica-
tion to physically based, three-dimensional subsurface mod-
els is still limited. In fact, the updating of the parameters
regarding groundwater, like transmissivity or saturated hy-
draulic conductivity, is commonly included in the parame-
ter update (Hendricks Franssen and Kinzelbach, 2008; Ras-
mussen et al., 2015). On the other hand, the soil hydraulic
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parameters affecting flow in the vadose zone are often either
updated in a simplified manner by the application of Miller
scaling (Bauser et al., 2020) or the global calibration coeffi-
cients (Shi et al., 2014) or are sometimes even excluded from
the updates as they are prone to cause numerical instabilities
(Rasmussen et al., 2015).

To the best of our knowledge, there are no studies on
how to treat the uncertain soil hydraulic parameters in three-
dimensional heterogeneous subsurface models in data assim-
ilation. The parameters are either excluded entirely from the
update or a (sub)set of the parameters is included (whose
choice is not further motivated). The effect of updating dif-
ferent combinations of parameters on the soil moisture esti-
mates is not analyzed. In Brandhorst et al. (2017), the joint
update of all sensitive parameters, i.e., Ks, φ, α, and n in
a van Genuchten parameterization, was found to lead to the
best predictions of soil moisture in a one-dimensional model
with either a homogeneous or a layered soil structure. Con-
sequently, in this work, we want to investigate the effect of
updating the soil hydraulic parameters on the soil moisture
estimates in a heterogeneous three-dimensional model. This
comprises the question (1) of which parameters should be
updated and (2) if and how the heterogeneous soil structure
should be accounted for. We look at a small and steep do-
main in which lateral fluxes in the unsaturated zone are ex-
pected and a one-dimensional representation would be too
simplified. For this purpose, we set up a numerical model
of a hillslope with heterogeneous soil layers. We assimilate
synthetic observations of soil moisture obtained from a ref-
erence model run using the ensemble Kalman filter. The ob-
servations shall be representative of continuous sensor data
that one would obtain from field measurements. The aim of
the filter is to make decent predictions of soil moisture from
these observations. Therefore, different combinations of the
soil hydraulic parameters are included in the joint update, and
the results are compared regarding the accuracy of the soil
moisture estimates. The runs are repeated with an ensemble
with homogeneous soil layers to investigate the effect of ap-
plying a simplified soil structure. The focus is on flow in the
subsurface and the handling of parameter uncertainty. The
coupling to neighboring compartments and the usage of real
observations introduce additional error sources and require
special treatment, which would impede a thorough analysis
of the effect of the parameter updates. For this reason, the as-
similation is performed using synthetic data, and parameter
uncertainty is the only error source.

The remainder of this paper is structured as follows: the
next section explicates the governing equations of the hydro-
logical model and the ensemble Kalman filter. Additionally,
details are given on the specific implementation of the EnKF
required for our simulations. Section 3 describes the differ-
ent scenarios and the EnKF setup. Afterwards, we present
the results of the data assimilation experiments and discuss
the influence of the parameter updates. The paper ends with
a summary and the conclusions of this work.

2 Methods

2.1 Hydrological model

2.1.1 Subsurface flow

The flow problem is solved with the software ParFlow (Kol-
let and Maxwell, 2006), which models fully coupled subsur-
face and overland flow. Variably saturated flow in the subsur-
face is represented by the mixed form of the Richards equa-
tion, as follows:
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where S (–) is saturation, hp (L) is pressure head, Ss (L−1)

is specific storage, t (T) is time, φ (–) is porosity, K (L T−1)
is the unsaturated hydraulic conductivity tensor, z (L) is the
geodetic height, and Q (T−1) is a source or sink term. The
specific storage is defined as Ss =
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The van Genuchten–Mualem model (Van Genuchten,

1980) is used to describe the relation between pressure head,
saturation, and unsaturated hydraulic conductivity as fol-
lows:
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where

Se =
S− Sr

Ssat− Sr
(4)

Se (–) is the effective saturation, and the model parameter
m (–) is given here by m= 1− 1/n. The model parameters
α (L−1) and n (–) are related to the pore size distribution,
and Ssat and Sr (–) are the saturated and residual saturation,
respectively.

2.1.2 Overland flow

If the water level rises above the land surface, then the kine-
matic wave equation is solved to model overland flow as fol-
lows:
∂hs

∂t
=∇ · (v (hs)hs)+ qr, (5)

where hs (L) is the surface ponding depth, v (L T−1) is
the depth-averaged two-dimensional velocity vector, and
qr (L T−1) is a source or sink term. The velocity is related
to the ponding depth with Manning’s equation as follows:

v (hs)=−

√
Sf

nf
h

2/3
s , (6)
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with Sf (–) being the friction slope and nf (L−1/3 T−1) Man-
ning’s roughness coefficient. The two domains are coupled
by adding a flux for subsurface exchanges qe (L T−1) to
Eq. (5) and assuming that hp = hs at the top soil cell. A more
detailed description of the governing equations and their cou-
pling can be found in Kollet and Maxwell (2006) and the
ParFlow user manual (Maxwell et al., 2009). The equations
are solved using an implicit Euler scheme for the discretiza-
tion in time and a cell-centered finite-difference scheme and
an upwind finite-volume scheme for the discretization in
space for Eqs. (1) and (5), respectively.

2.2 Ensemble Kalman filter

2.2.1 Analysis scheme

We use the ensemble Kalman filter (EnKF) introduced by
Evensen (1994) to handle the uncertainties associated with
the hydrological model presented in the previous section. The
EnKF uses an ensemble of model realizations to present the
prior probability density functions (pdf’s) of the uncertain
model components. These uncertainties are then reduced by
sequentially integrating information gained from (likewise
uncertain) observations whenever these become available.

First, we need to define our model system, which con-
sists of the model states x, boundary xb and initial condi-
tions x0, time-invariant parameters p, and observations y.
In our case, model states and observations are water content
θ = S(hp) ·φ (–) in the entire domain and at the predefined
observation locations, respectively. The model parameters
are the chosen (sub)set of the soil hydraulic parameters Ks,
φ, α, and n. We apply the augmented state vector approach
(Evensen, 2009a); i.e., we join all uncertain model quanti-
ties into one augmented state vector ψ . Since we assume our
boundary conditions to be perfectly known, our augmented
state vector consists of the following states and parameters:
ψT = [xT , pT ]. As mentioned above, the probabilistic rep-
resentation of the uncertain states and parameters is achieved
by using an ensemble of size N , where the realizations are
samples of the state and parameter pdf’s, as follows:

9 =
(
ψ1, ψ2, . . ., ψN

)
. (7)

An underlying assumption of the EnKF is that all pdf’s are
Gaussian and can be fully described by the mean value µ and
standard variation σ , which can be easily calculated from the
ensemble. For the generation of the initial ensemble at the
starting time t0, the prior pdf’s have to be prescribed, while
the pdf’s at later times are obtained by propagating the en-
semble forward in time, according to the forward model F ,
as follows:

9k = F (9k−1) . (8)

Here, k denotes the time index, F is given by the equations
in Sect. 2.1, and unity is used for the parameters.

States, parameters, and observations are linked via the
measurement operator M as follows:

Yk =M(9k) , (9)

which, in our case, returns the water content (state) values at
the observation locations and is thus a linear operator. These
simulated observations are not to be mistaken for the real ob-
servations yobs

k obtained from measurements. However, these
real observations are also uncertain, as they are affected by
measurement errors. To account for that, an ensemble of ob-
servations is generated by perturbing the measured observa-
tions with noise terms ε drawn from N (0,ε2), as follows:

Yobs
k =

(
yobs
k + ε
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k + ε

2, . . ., yobs
k + ε

N
)
, (10)

where ε is the measurement error.
The model and the observations are merged in the so-

called analysis step, which is performed at every observation
time at which an observation is available. An analysis step is
preceded by a forecast step, which integrates the augmented
state ensemble from the previous to the current observation
time, according to Eq. (8). During the analysis step, the fore-
casted ensemble is updated to the following:

9a
k =9

f
k +Kk

(
Yobs
k −Yk

)
, (11)
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k−1), Yf
k =M(9f

k), and Yobs
k −Yk being the

innovation, i.e., the difference between measured and simu-
lated observations. The superscripts a and f denote the en-
semble after the analysis and after the forecast step, respec-
tively. The Kalman gain is as follows:
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)−1
, (12)

and relates the covariances of states, parameters, and mea-
surements stored in Cf

ψy,k to the covariances of the simulated
observations Cf

yy,k and the covariances of the measurement
error Cεε . The covariance matrices Cf

ψy,k and Cf
yy,k can be

easily calculated from the ensemble as follows:
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with the overbar denoting the ensemble mean.
Equations (11) and (12) are obtained by maximizing the

likelihood function of the model states and parameters con-
ditioned on the given observations, assuming Gaussian dis-
tributions. As shown in Evensen (2009b), this is equivalent
to minimizing the model uncertainty represented by the state
and parameter variance Cψψ , which is defined analogously
to Eqs. (13) and (14).
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2.2.2 Technical specifications

The update of the forecasted ensemble in Eq. (11) adds the
difference between measured and simulated observations,
projected onto the augmented state vector space by the state–
observation covariance matrix, to the ensemble. This differ-
ence is further scaled by the summed uncertainty in observed
and measured observations. Thus, the increment is large for
the following:

– states and parameters that show strong correlations to
the observations;

– ensemble members whose simulated observations differ
significantly from the measured value; and

– the entire ensemble when the measurement error is
small.

Due to the usage of an ensemble of finite-sized N ,
Eqs. (13) and (14) give only approximations of the real co-
variances, which can cause spurious correlations. These may
result in a wrong update of the ensemble, which can lead to
filter divergence over a longer term. Furthermore, at every
analysis step, the spread of the ensemble is reduced as a con-
sequence of the uncertainty minimization. Thus, the covari-
ances may become underestimated, allowing only for small
increments even though the simulated observations may be
far off the measured ones.

There exist different approaches to handle these issues.
The problem of spurious correlations can be helped by either
using a large-enough ensemble or by applying localization.
Localization reduces or eliminates entries in the covariance
matrix, where only small or no correlations are to be expected
(e.g., when the spatial distance to the observation location is
too large). As we did not encounter spurious correlations or a
positive effect of localization, we assume the ensemble size
in our experiments to be large enough so that localization is
not needed.

However, we already noticed a strong reduction in the en-
semble spread during the first analysis steps, especially when
performing parameter estimates. While the application of in-
flation, where the ensemble perturbations are artificially in-
creased by a small factor (usually 1.01) after every analysis
step, led to instabilities in our ensemble, we achieved bet-
ter results by applying a dampening factor β, as described in
Hendricks Franssen and Kinzelbach (2008), as follows:

9a
k =9

f
k +βKk

(
Yobs
k −Yk

)
, (15)

with β ∈ [0,1]. In Eq. (15), the dampening factor is applied
directly to the augmented state ensemble, which in our case
holds water content and the soil hydraulic parameters. The
forward model (Eq. 1), however, depends strongly on the
pressure head values hp. Before each forecast step, the pres-
sure heads need to be calculated out of the updated water con-
tents by applying the inverse of Eq. (2). Close to the residual

water content θr ≈ Sr ·φ, the pressure head is very sensitive to
changes in water content. Thus, small updates of water con-
tent may result in large updates in the pressure head that can
cause numerical problems during the next forecast step. Be-
cause of that, we apply the dampening directly to the pres-
sure head values (comprised in the pressure head ensemble
matrix Hp) instead of the water content, as follows:

Ha
p =Hf

p+β · S
−1 (2a) . (16)

Note that the inverse of Eq. (2) (S−1) is only defined for
unsaturated conditions θ < Ss ·φ. This means that the up-
date is restricted to unsaturated areas, while saturated areas
(e.g., groundwater) can only be affected by the updates indi-
rectly during the subsequent model integration or by the pa-
rameter updates. Alternatively, one can use the pressure head
instead of water content as a model state, as done for sim-
pler one-dimensional setups, e.g., in Erdal et al. (2014) and
Brandhorst et al. (2017). However, this results in a nonlinear
measurement operator and caused numerical problems in our
more complex three-dimensional model.

Nevertheless, we had to deal with non-converging ensem-
ble members during our simulations (i.e., ensemble members
for which the numerical flow simulation to the next time step
did not converge after the update). This issue is specific for
soil models and has been seen very often in data assimilation
with soils (Camporese et al., 2009; Rasmussen et al., 2015).
The reason is most probably that the updates create states that
could hardly develop with the given parameters and bound-
ary conditions. Such members were eliminated from the en-
semble and replaced by converging members before the next
analysis step to keep the ensemble size constant.

The Parallel Data Assimilation Framework (PDAF;
Nerger and Hiller, 2013), developed at the Alfred Wegener
Institute, is used for the filter. The framework provides all re-
quired routines for the application of a large choice of data
assimilation methods, like the EnKF. It also includes generic
interfaces that allow for a coupling to any numerical forward
model. The coupling to ParFlow was implemented by Kurtz
et al. (2016), within the TerrSysMP-PDAF modeling plat-
form. All simulations were performed on the JUWELS su-
percomputer at the Jülich Research Centre, which provides
2567 computer nodes with Intel Dual-Xeon CPUs. Nine
cores were used for the ensemble runs, and the run times var-
ied between several hours and 2 d. The different data assimi-
lation strategies were tested with a hillslope model, which is
described below.
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Figure 1. Dimensions and topography of the hillslope model. The
blue line denotes the outlet.

Figure 2. Net precipitation (negative) and evaporation (positive)
time series.

3 Setup

3.1 Numerical model

We investigate the effect of parameter updates on soil mois-
ture estimates in a three-dimensional hydrologic hillslope
model, as shown in Fig. 1. It covers an area of 50 m× 50 m
and has a depth of 20 m. The hillslope is rather steep, with
Sf,x = 0.1, causing lateral fluxes in the saturated and the un-
saturated zone. At the bottom of the hillslope, the water dis-
charges into a small creek, with Sf,y = 0.01 that directs the
water towards the outlet. All lateral boundaries and the bot-
tom boundary are closed so that water can leave the domain
only via the outlet or through evaporation. A flux boundary
condition corresponding to the hourly varying net flux of pre-
cipitation and evaporation (P −E; Fig. 2) is imposed on the
surface.

It shall be pointed out that imposing such a moisture-
independent flux on the surface (especially in the case of
evaporation) is not realistic and may cause numerical issues.
Yet, as already mentioned in Sect. 2.2.2, such numerical in-
stabilities are hardly avoidable in data assimilation with soils
as they are mainly caused by the parameter and state up-
dates. To dampen the possibly large infiltration or exfiltra-
tion fluxes, overland flow is included in the model. It works
as a buffer on the surface, avoiding a situation in which fluxes
that are too large are forced into or out of the uppermost cells,
while it is assumed to have minor influence on the assimila-

tion. A small sensitivity analysis revealed no sensitivity of
soil moisture to Manning’s coefficient, which is the main pa-
rameter describing overland flow. Still, we want to emphasize
that the usage of a moisture-dependent boundary condition is
preferable for other applications.

The subsurface is divided into different layers. The lower
18.6 m of the subsurface consists of low-permeability ho-
mogeneous bedrock, while the upper 1.4 m comprises either
one or two (Hlower = 1.31 m andHupper = 0.09 m) loamy soil
layers, depending on the test case. The soil hydraulic pa-
rameter values are listed in Table 1. Manning’s coefficient
is nf = 4.2× 10−6 m−1/3 h for the entire land surface, which
has no vegetation.

The domain is discretized horizontally into a 50×50 grid,
with 1x =1y = 1 m. The vertical grid size is variable, with
1zmax = 1.2 m at the bottom and 1zmin = 0.01 m at the sur-
face. The total number of cells in the vertical direction is
nz = 50. The total simulation time is 181 d, from 1 January
to 30 June. As will become evident in Sect. 4, this time series
is long enough to allow the filter to converge and to detect a
potential subsequent filter divergence. The time step size is
adaptive, with a base value of 1t = 0.1 h.

3.1.1 Reference parameter fields

The observations needed for the data assimilation are ob-
tained from reference runs with the same numerical model
and a deterministic set of parameters. The usage of synthetic
observations instead of field data allows the elimination of
all unwanted sources of uncertainty, like model error, struc-
tural error, and uncertain forcing, that most probably would
strongly impact the state estimates. Furthermore, it offers full
knowledge of all state and parameter values at each point in
the domain and of the measurement error. To run the numer-
ical reference model, we need to define a deterministic set of
parameters which we deem the true parameters.

We set up two reference models for our experiments. The
first model considers a homogeneous soil layer above the
bedrock. Its values are given in Table 1. The homogeneous
model is used to test whether the parameter updates work
properly. For the main experiments, a setup with two hetero-
geneous soil layers is chosen. The lower layer, with a thick-
ness of Hlower = 1.31 m, exhibits a stronger heterogeneity,
while the heterogeneity of the upper layer (Hupper = 0.09 m)
is reduced to avoid numerical convergence issues. The mean
values and standard deviations (in parentheses) of the param-
eter fields are listed in Table 1. Note that only the saturated
hydraulic conductivity, porosity, and the van Genuchten pa-
rameters are spatially distributed. This is because a previous
sensitivity analysis showed the negligible influence of the re-
maining parameters on the soil moisture, which is in agree-
ment with the findings of Brandhorst et al. (2017) and Bo
et al. (2020) for one-dimensional unsaturated flow problems.
Besides, Ks and α follow a lognormal distribution, as sug-
gested by Carsel and Parrish (1988). The generation of the
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Table 1. Values of the soil hydraulic parameters for the different models. The values in parentheses are the standard deviations of the
parameter distributions.

Ks (m h−1) φ (–) α (m−1) n (–) Sr Ssat Ss
(–) (–) (m−1)

All cases

Bedrock 10−4 0.3 1 1.4 0.1 1 10−4

Homogeneous reference mode

Soil 0.02 0.42 3.5 2 0.1 1 10−4

Heterogeneous reference model

Upper soil 0.015 (0.11a) 0.39 (5× 10−4) 4.26 (0.05a) 2.25 (0.005) 0.1 1 10−4

Lower soil 0.02 (1.01a) 0.42 (0.002) 3.5 (0.5a) 2 (0.05) 0.1 1 10−4

Homogeneous ensemble

Soil 0.02 (1a) 0.4 (0.07) 2.8 (0.6a) 2 (0.18) 0.1 1 10−4

Heterogeneous ensembleb

Upper soil 0.014 (0.32a) 0.34 (0.02) 2.64 (0.22a) 1.85 (0.07) 0.1 1 10−4

Lower soil 0.008 (0.71a) 0.45 (0.03) 3.67 (0.34a) 1.8 (0.1) 0.1 1 10−4

Layered ensemble

Upper soil 0.021 (0.09a) 0.42 (0.001) 3.28 (0.05a) 2 (0.005) 0.1 1 10−4

Lower soil 0.021 (1.12a) 0.4 (0.01) 8.44 (0.5a) 2.04 (0.05) 0.1 1 10−4

a Assuming lognormal distributions. b Statistics of individual parameter fields.

Table 2. Correlation coefficients of the soil hydraulic parameters.

log(Ks) φ log(α) n

log(Ks) 1 −0.4 0.8 0.4
φ 1 −0.2 −0.6
log(α) 1 0.5
n 1

heterogeneous fields is constrained by the correlation coeffi-
cients of the parameters, based on Carsel and Parrish (1988),
given in Table 2, and it is ensured that all parameters lie
within their physically plausible limits.

The initial conditions for both reference models are gener-
ated by spin-up runs by repeatedly applying the same forcing
(Fig. 2) until a dynamic steady state is reached.

3.2 EnKF

An ensemble consisting of 100 members is used for the data
assimilation. Each ensemble member is an identical copy of
the reference run, with only the soil hydraulic parametersKs,
φ, α, and n of the soil layer(s) being changed. The other pa-
rameters were found to be non-sensitive and are therefore
assumed to be perfectly known. Since the initial condition is
generated by a spin-up run, the different parameter sets lead

to different initial conditions of the model states for the indi-
vidual ensemble members. Thus, in addition to the parameter
uncertainty, there is a model error caused by an uncertain ini-
tial condition.

The observations are obtained from the reference model
runs described in the previous section. We use observations
of soil moisture, which are taken hourly at four measure-
ment locations, as shown in Fig. 3. Two locations are situ-
ated downhill (1 and 2), and two are situated uphill (3 and 4).
Additionally, the soil moisture is measured at two validation
locations in the center of the hillslope (5) and at its upper cor-
ner (6). These measurements are only used for the evaluation
of the filter performance and not for the analysis step in the
filter. At each of the six locations, the soil moisture is taken
at three depths, z1 = 0.33 m, z2 = 0.75 m, and z3 = 0.95 m,
below the surface, summing up to a total of 12 measurement
locations and 6 validation locations. Even though hourly ob-
servations are available, the updates are performed only daily
to increase the computational efficiency and because it has
been shown that higher assimilation frequencies have a neg-
ative impact on the soil moisture estimates (Valdes-Abellan
et al., 2019). The soil moisture values from the reference runs
are perturbed with random white noise with a standard devi-
ation of ε = 0.01 to account for the measurement error. In
Sect. 4, we will only show soil moisture for one observation
borehole (no. 1) and one validation borehole (no. 5) to avoid
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Figure 3. Observation (1–4) and validation (5 and 6) locations. The
creek is plotted in blue.

too many plots. The findings would not change if the other
boreholes were shown. It should, however, be noted that the
values from all boreholes are included in the error calcula-
tions.

The analysis step is performed according to Eqs. (15)
and (16). A preliminary investigation suggested the use of
a dampening factor β = 0.1 for states and parameters. Non-
convergent ensemble members are eliminated from the en-
semble and replaced by randomly chosen converging mem-
bers. Note that we replace only the values contained in the
augmented state vector, while all other parameters remain at
their original values to maintain the ensemble diversity.

3.2.1 Parameter ensembles

We generate three ensembles that differ in terms of their soil
setup. The first one considers one homogeneous soil layer
that is similar to the homogeneous reference model. The en-
semble mean and standard deviation (in parentheses) for each
parameter are listed in Table 1. The initial guesses of Ks and
n correspond almost to the true values, while the other two
have a bias (φ and α). This allows the investigation of how
the parameter ensembles behave when the initial guess is cor-
rect and when it is wrong. The large ensemble spreads ac-
count for a large initial parameter uncertainty and shall coun-
teract a decrease that is too fast in the ensemble spread.

The second ensemble is based on the heterogeneous ref-
erence model with two heterogeneous soil layers. Each pa-
rameter field is generated with a random field generator con-
strained by the mean and standard deviation (in parenthe-
ses) given in Table 1 and the correlations given in Table 2.
Here again, the parameter values in the initial fields are con-
strained to physically plausible values. It should be noted,
though, that these parameter ranges can be violated by the

EnKF updates. However, such extreme parameter values usu-
ally lead to numerical instabilities, and the affected ensemble
members are thus replaced. One has to keep in mind that the
statistics of the individual parameter fields are not identical
to those of the estimated parameter field (ensemble mean).
While the correlation coefficients and the mean value are
very similar, the standard deviation is much smaller. Thus,
the initial guesses of the soil layers are almost homogeneous.
Besides, there is a large bias in the initial parameter guesses
at the grid points. It should be noted that, using this ensem-
ble, the EnKF implies that all parameters in the field (no. of
grid nodes× no. of parameters) are updated in the augmented
state vector. We suspect that this will not lead to good esti-
mates of the parameter fields but are interested in its impact
on the soil moisture estimates.

It should also be noted that we consider only well-
behaving heterogeneity, so this includes multi-Gaussian
fields with the horizontal correlation length LH = 2 m being
much smaller than the domain size. The vertical correlation
length was chosen as LV = 4 m, such that the vertical vari-
ability is negligible inside a soil layer. We are aware that het-
erogeneous structures in real soils are much more complex
(Schlüter et al., 2012), but we are confident that our findings
are general for the applied method and not bound to the spe-
cific soil structure of this test case.

In the third ensemble, two soil layers are again considered.
While the depth of the layers is the same as in the heteroge-
neous reference model, the soil layers are homogeneous in
this case. The parameter values are sampled from Gaussian
distributions, with the mean and standard deviation (in paren-
theses) as given in Table 1. The values are chosen to create
a biased initial ensemble with a spread that is large enough
to give a realistic estimate of the parameter uncertainty and
small enough to prevent major numerical problems.

We assume the depth of the layers to be known. This is
a reasonable assumption, since this information can be ob-
tained from a borehole sample and is not expected to vary
significantly within such a small domain. Nevertheless, we
are aware that this can be a relevant source of uncertainty,
especially for large-scale models. Yet, this is not part of this
work, and we refer to existing studies on this subject (e.g.,
Erdal et al., 2014).

3.3 Test series

We perform three test series with the described reference
models and ensembles. The first test series involves the ho-
mogeneous reference model and the homogeneous ensem-
ble. It serves as a test bed for the implemented parameter
updates and analyzes the impact of parameter updates un-
der two-dimensional flow conditions in the absence of soil
heterogeneities. Even though the model is three-dimensional,
the topography and the homogeneity of the subsurface cause
a quasi-two-dimensional flow field.
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Real soils are certainly not homogeneous but heteroge-
neous. As outlined in the introduction of this work, this leads
to model uncertainty. We want to investigate how to deal with
this uncertainty when the goal is to obtain decent predictions
of soil moisture. Hence, for the other test series, the heteroge-
neous model is used as a reference. Often, the heterogeneity
is neglected. We compare this approach to resolving the het-
erogeneity. This will most probably lead to wrong estimates
of the parameter fields, yet fields with a similar heteroge-
neous structure. Therefore, in the second test series, the het-
erogeneous ensemble is used. With these experiments, on the
one hand, we want to investigate how different parameter up-
dating strategies could improve soil moisture estimates in a
three-dimensional heterogeneous model, which would be the
case for any field application. On the other hand, we want to
compare the estimates to those obtained when the heteroge-
neous structure is neglected. These are the results of the third
test series, where we use a simplified (layered) soil struc-
ture in the ensemble and try to represent the soil moisture of
the heterogeneous reference model. Using a layered structure
with homogeneous layers would significantly reduce the size
of the augmented state vector but may lead to less accurate
state estimates.

As we want to identify the parameters which lead to the
best soil moisture estimates when included in the update, we
perform joint updates of soil moisture θ and all possible com-
binations of the sensitive soil hydraulic parameters of Ks,
φ, α, and n. The results are compared to those of an open-
loop (OL) run, where the ensemble is propagated forward in
time without any updates, and a run where only θ is updated.
To reduce the total number of model runs, we treat the van
Genuchten model parameters of α and n as a unit and update
either both or neither of these two.

3.4 Performance metrics

The results of the data assimilation runs are compared with
regard to the soil moisture estimates by means of the spatially
and temporally averaged root mean square error RMSE (–)
at the observation and validation locations, respectively, as
follows:

RMSE=
1
nt

nt∑
k=1

√√√√√ ni∑
i=1

(
θk,i − θ

ref
k,i

)2

ni
, (17)

with nt = 362 being the number of output time steps (twice
a day; not to be mistaken with the assimilation frequency,
which is once a day), ni is the number of grid cells at the
observation (12) or validation (6) locations, respectively, θ is
the soil moisture estimate (ensemble mean), and θ ref is the
soil moisture in the reference model. Furthermore, we com-
pare the number of converging ensemble members as a crite-
rion for the numerical stability. As was already mentioned in
the introduction, the updates can lead to unphysical parame-
ter state combinations and thus to convergence problems and

long run times. Therefore, the numerical stability of the en-
semble is an important factor in the evaluation. One has to
keep in mind that the non-converging members are replaced
during the assimilation. Hence, we only consider the non-
converging members in the time after the last update, when
the ensemble has reached its final state. Note that the states
are always included in the update, even though we will not
always explicitly mention this.

We also look into the parameter estimates. These can help
us understand the performance of the filter with regard to
the soil moisture estimation, as they can be, e.g., a reason
for filter divergence. The estimated parameter fields of the
heterogeneous test case are compared at the point scale and
at the field scale. At the point scale, the normalized mean
deviation, NMD (–), which is a measure of the discrepancy
between reference and estimated fields at each grid point, is
used for comparison as follows:

NMD=

ni∑
i=1
|pi −p

ref
i |

|

ni∑
i=1
pref
i |

. (18)

Here, ni is the number of grid points in the current soil layer,
p is the ensemble mean parameter value, and pref is the true
parameter value used for the reference model run.

At the field scale, the reference and estimated parameter
fields are compared in terms of their statistics. For this pur-
pose, the normalized mean value, NMV (–), is as follows:

NMV=

ni∑
i=1
pi

ni∑
i=1
pref
i

, (19)

and its standard deviation indicating the spatial variability in
the field is calculated. For the reference field, the NMV is
therefore equal to 1.

4 Results and discussion

4.1 Results of the homogeneous test case

Figure 4 shows the soil moisture over time at two boreholes
(one observation location and one validation location) and
z1 = 0.33 m below the surface, exemplarily for the data as-
similation runs without parameter updates (Fig. 4a and b)
and when updating all parameters (Fig. 4c and d). Loose
ends of the ensemble members (gray lines) are caused by the
resampling of non-converging realizations, as explained in
Sect. 2.2.2. It can be seen that, in both cases, the data assim-
ilation improves the soil moisture estimates at the observa-
tion location compared to those of the open-loop run. Indeed,
the reference soil moisture is perfectly matched after some
time. This happens faster for the joint update, converging to
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Figure 4. Soil moisture over time for the homogeneous scenario. Values are taken at one observation and one validation location, each at
z1 = 0.33 m below the surface. (a, b) Updates of soil moisture only. (c, d) Joint updates of soil moisture and all parameters.

the reference soil moisture after ≈ 40 d, compared to ≈ 80 d
without parameter updates. The parameter updates cause a
significant decrease in the ensemble spread. The spread can
be expressed in terms of the standard deviation of the en-
semble σe. While σe = 0.027 without parameter updates, it is
only σe = 0.001 for the joint update of all parameters. These
values refer to the soil moisture at the last time step at the
shown observation location. This means that, in this case in
Eq. (11), the ensemble estimates are deemed more certain
than the measurements, and correlations are very small, thus
impeding further updates.

At the validation location (Fig. 4b and d), the estimates are
improved in the first half of the time series, but towards the
end of the simulation, the open-loop estimates are closer to
the reference soil moisture, although the difference is small.
Again, the strong reduction in the ensemble spread for the
joint update is obvious. This can be the reason why the es-
timates towards the end of the time series are worse. As the
estimates of the run without parameter updates are of com-
parable accuracy, even though the ensemble spread is still
large, it seems more likely that there is another reason for
the deviations. This could be the small difference between
estimated and measured soil moisture at the observation lo-
cations, which is an important factor in the update equation
(Eq. 11).

To evaluate the overall performance of the different param-
eter updates, the mean RMSE values, as given by Eq. (17),
are plotted in Fig. 5 for the observation and validation loca-
tions, respectively. The measurement error and the RMSE of
the open-loop run are plotted with the dotted and dashed line,
respectively, for comparison. The large markers denote the
combination that led to the best result. Here, this is the com-
bination of jointly updating soil moisture θ , porosity φ. and
the van Genuchten model parameters α and n. For this run,
the RMSE is close to the measurement error at all considered

Figure 5. Spatially and temporally averaged RMSE values at the
observation and validation locations for the homogeneous scenario
and the different parameter update combinations. The first entry (–)
denotes the data assimilation run, where only soil moisture is up-
dated. The lower plot gives the number of converging ensemble
members. The best values are highlighted by larger markers.

locations. The second-best result was achieved by including
all parameters in the updates. Generally, it can be seen that
the data assimilation improves the soil moisture estimates
compared to the open-loop run (even though we have seen
that, at some locations and time steps, it can be the opposite
case) and that the parameter updates improve the estimates
compared to updating only states.

The lower plot of Fig. 5 gives the number of converging
ensemble members. There are two runs where the entire en-
semble converges, namely when updating the van Genuchten
parameters with or without porosity. Besides, for the combi-
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Figure 6. Probability density functions (pdf’s) of the parameters for
the homogeneous scenario and the joint update of all parameters.

nation Ks–α–n, we obtain 99 converging members and for
Ks–φ–α–n 98 members. This leads to the conclusion that
updating the van Genuchten model parameters is crucial for
the numerical stability of the ensemble. On the other hand,
when only the saturated hydraulic conductivity and porosity
are updated, almost half of the ensemble fails.

The probability density functions (pdf’s) of the soil hy-
draulic parameters are shown in Fig. 6. The dashed line in-
dicates the initial ensemble, while the solid line represents
the pdf at the end of the assimilation run updating all pa-
rameters. The reference value is plotted in red. The initial
pdf’s have a large spread and a small bias. The final pdf’s
have a very small spread, which is consistent with the small
ensemble spread for the soil moisture. Except for n, the pa-
rameter estimates of all other parameters are closer to the
reference value than their initial guesses. One has to keep in
mind that the small deviations in the lognormal distributions
of Ks and α correspond to larger deviations in the ensemble
that is not log-transformed. For n, the final guess is slightly
worse, even though the initial guess was almost equal to the
reference value.

From this simple test scenario, we can draw the following
conclusions:

1. The implemented parameter updates and the data assim-
ilation work properly.

2. Even in such a simple scenario with a few biased initial
guesses, the parameters do not fully converge to their
true values.

3. Small parameter errors already lead to visible deviations
of the soil moisture estimates.

The last point can be seen in Fig. 4d. Reference and esti-
mated soil moisture coincide well during the first part of the
time series and start to deviate in the second half. Due to the
small ensemble spreads, which only allow for small changes
during the analysis step, this deviation cannot be caused by
the filter updates but has to be due to the parameters differ-
ing slightly from their reference values. This effect can also

be seen at other locations, which are not shown here. Conclu-
sions on the performance of the different parameter updates
are discussed in Sect. 4.4, taking into account the results of
all three test series.

4.2 Results of the heterogeneous test case

The heterogeneous test case is discussed next. With this, we
want to test the transferability of the findings in simple, ho-
mogeneous settings to more realistic, heterogeneous ones.
The soil moisture over the time of this test case is plotted
for one observation and one validation location in Figs. 7
and 8, respectively. The plots on the left correspond to the
run with state updates only, while the plots on the right are
obtained by jointly updating all parameters. The values are
taken at the three measurement depths, namely z1 = 0.33 m
(a and b), z2 = 0.75 m (c and d), and z3 = 0.95 m (e and f)
below the surface. Again, the data assimilation positively in-
fluences the soil moisture estimates compared to those of the
open-loop run. However, if the soil is saturated, the state up-
dates have no effect, as the update is limited to the unsat-
urated zone (see Sect. 2.2.2). An indirect influence of the
updated unsaturated parts on the saturated zone during the
model forecast cannot be seen. At locations that are – tem-
porarily – below the groundwater level (Fig. 7c and e), the
open-loop and data assimilation estimates coincide. On the
other hand, when the parameters are updated, especially the
porosity, since φ = θsat in our case, the estimates match the
observations, even when the soil is saturated. Under unsatu-
rated conditions (Fig. 7a and b), the estimates for the joint up-
date are more accurate too, although the difference is smaller.
Just like for the homogeneous test case, the parameter up-
dates cause a significant decrease in the ensemble spread at
the observation locations, which can be either good or prob-
lematic, as will be discussed in Sect. 4.4.

At the validation locations (Fig. 8), though, the ensemble
spread is hardly reduced for both assimilation runs. The pa-
rameter spread at the end of the simulation time is still large
at the validation locations (see Fig. 9), which causes the large
spread in soil moisture. This means that the correlations be-
tween parameters and states at the validation locations and
the observations are too small to induce an update of the for-
mer. Thus, the parameter and state uncertainty at those loca-
tions is still large after the assimilation. Actually, the refer-
ence soil moisture is predominantly not enclosed by the en-
semble, indicating that the ensemble spread is still too small
to correctly represent the model error. Nevertheless, there is
an improvement by the data assimilation compared to the
open-loop run, and the joint update of all parameters (right
plots of Fig. 8) further clearly improves the estimates. This
is, however, too small to draw conclusions about the filter
strategy.
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Figure 7. Soil moisture over time for the heterogeneous scenario at one observation location. Values are taken at z1 = 0.33 m, z2 = 0.75 m,
and z3 = 0.95 m below the surface, from top to bottom. (a, c, e) Updates of soil moisture only. (b, d, f) Joint updates of soil moisture and all
parameters.

Figure 8. Soil moisture over time for the heterogeneous scenario at one validation location. Values are taken at z1 = 0.33 m, z2 = 0.75 m,
and z3 = 0.95 m below the surface from top to bottom. (a, c, e) Updates of soil moisture only. (b, d, f) Joint updates of soil moisture and all
parameters.
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Figure 9. Estimated probability density functions (pdf’s) of the four
parameters for the heterogeneous scenario at one observation and
one validation location and z2 = 0.75 m below the surface after the
last update. The reference values are plotted in red.

Comparing all parameter update combinations based on
the averaged RMSE values (Fig. 10), the difference in accu-
racy at the observation and validation locations becomes evi-
dent. The RMSE is roughly 4 times higher at the latter for all
runs. This illustrates the strong influence of the soil hetero-
geneity on local estimates. Similar to the first test series, the
data assimilation improves the estimates, although the im-
provement is small at the validation locations. Parameter up-
dates further reduce the RMSE at all locations, except for
when updatingKs and the van Genuchten model parameters.
Also, for this combination, the number of non-converging en-
semble members is 22 and thus the highest for this test series.
This assimilation run is a good example for the failure of
unsaturated zone parameter updates. The updates cause non-
physical parameter state combinations, which lead to numer-
ical problems and, eventually, to worse estimates. The best
results regarding the estimates at the observation locations
and the numerical stability are obtained when updating all
four parameters. Yet, the differences among the parameter
update combinations are small.

The results at the validation locations in comparison to
those of the homogeneous test case show that the soil het-
erogeneity has a large impact on the filter performance at lo-
cations far from the observations. The heterogeneity is char-
acterized by the correlation lengths of the parameter fields.
In this case, the distance of the validation locations to the ob-
servations (≥ 10.6 m) is much larger than the horizontal cor-
relation length LH = 2 m. The upper plot of Fig. 11 shows
the spatially and temporally averaged RMSE values at all
grid points with horizontal distance d to the observation lo-
cations at the same depth (z= zobs). For simplicity, they are
plotted only for the open-loop run and the assimilation runs
with no parameter updates and updates of all four param-
eters. The red line marks the horizontal correlation length.
It can be seen that the RMSE values at the observation loca-

Figure 10. Spatially and temporally averaged RMSE values at the
observation and validation locations for the heterogeneous scenario
and the different parameter update combinations. The first entry (–)
denotes the data assimilation run where only soil moisture is up-
dated. The lower plot gives the number of converging ensemble
members. The best values are highlighted by larger markers.

tions (d = 0 m) are significantly smaller than at the other con-
sidered distances. Overall, the performance is better when
all parameters are updated, although the difference is small.
Thus, it seems that a notable positive impact of the data as-
similation is mainly limited to a range that is significantly
smaller than the correlation length.

Due to the grid resolution (1x =1y = 1 m), no more data
points between d = 0 m and d = LH m are available. There-
fore, this analysis is repeated in the vertical direction, where
the spatially and temporally averaged RMSE values are cal-
culated at the observation locations (in the x and y direc-
tions), depending on the vertical distance d (lower plot of
Fig. 11). All observations are located in the lower soil layer.
Since the vertical correlation length of the parameter fields
is LV = 4 m and thus clearly larger than the thickness of the
lower soil layer (1.31 m), all cells within this layer are ex-
pected to be within the radius of influence of the observa-
tions. On the contrary, all cells in the upper layer are not
correlated with the observations and are comprised into one
RMSE value for simplicity. While there is – as expected –
no trend in the RMSE values of the open-loop run, it can
be seen that, for d � LV, the soil moisture estimates of the
assimilation runs have a high accuracy. Again, the estimates
when performing parameter updates are better than without
parameter updates. In the upper soil layer, however, which is
not correlated with the soil layer containing the observations
and is thus equivalent to d > LV, the performance is clearly
worse, especially with parameter updates (but also without
parameter updates), although this is less visible due to over-
lap with the marker belonging to the open-loop run. For both
runs the estimates are even worse than in the open-loop run.
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Figure 11. Spatially and temporally averaged RMSE values at horizontal distance d from the observation locations for the heterogeneous
scenario. In panel (a), d is the horizontal distance and is the vertical distance in panel (b). The red line indicates the correlation length of the
parameter fields.

Thus, the results of this small analysis suggest that the assim-
ilation can improve the estimates at d � L, while at larger
distances the influence of the assimilation decreases notably.
It shall be pointed out, though, that this analysis is based on
one test case only, and more tests with heterogeneous fields
considering different correlation lengths are required for re-
liable statements regarding the radius of influence of the as-
similation.

In the following, we look into the estimated parameter
fields. Figure 12 shows the NMD of the estimated param-
eter fields for the two soil layers. The estimated parameter
fields are calculated as the ensemble mean. Note that the ini-
tial guess of the parameter fields does not change in the open-
loop run and when updating only soil moisture. The error
bars in Fig. 12 illustrate the standard deviation of the NMD.
Only the data assimilation run updating all four parameters
is considered in the following analysis, which allows us to
look into the estimated fields of all uncertain parameters. An
analysis of the parameter estimates for all update combina-
tions would be confusing and is out of the scope of this work,
where the focus is on the soil moisture estimates. In Fig. 12,
it becomes evident that the estimated parameter fields are not
improved by the parameter updates at the point scale. Mostly,
the NMD is equal to or higher than that of the initial guess.
The standard deviation of the NMD makes clear that there
can be large deviations at some locations, especially for the
van Genuchten parameter α in the lower soil layer. This con-
firms the hypothesis made in Sect. 3.2.1 that it is not possible
to retrieve the heterogeneous reference parameter field by the
assimilation.

Nevertheless, the updates are able to recover some fea-
tures of the reference parameter field, which can be seen
in Figs. 13 and 14. The two figures show a horizontal and
a vertical cut through the reference, initial, and estimated

Figure 12. Normalized mean deviation (NMD) of the estimated pa-
rameter fields compared to the reference field for the two soil layers
of the heterogeneous scenario. The error bars denote the standard
deviation.

Ks field, respectively. While the initial guess of the field
is rather smooth, caused by the averaging of the initial en-
semble realizations, the structure of the estimated Ks field
is clearly more similar to that of the reference field. The re-
gions of high or low values do not necessarily coincide with
the reference, but the frequency distribution of the parame-
ter values is similar. Furthermore, the layered structure of the
soil is maintained during the updates (see Fig. 14). We see
the same behavior for the fields of the other three parame-
ters. The plots of the reference parameter field also illustrate
the strong correlations in the vertical direction within one soil
layer, which is in contrast to the limited horizontal correla-
tions that result from the horizontal correlation length being
only 2 times the horizontal grid size (LH = 2 ·1x = 2 ·1y).
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There, parameter values can differ notably between two ad-
jacent cells. These explain that the RMSE values depend on
the distance to the observation locations shown in Fig. 11, es-
pecially with respect to the poor performance at a horizontal
distance of 1≤ d < 2 m.

Hence, we now compare the reference and the estimated
parameter fields in terms of their statistics. Figure 15 shows
the NMV and the standard deviation of the four parameter
fields for the two soil layers, respectively. While the mean
values are generally not improved by the update, the stan-
dard deviation, which is systematically too small in the initial
guess, is increased significantly for all parameters approxi-
mating its reference value. Regarding the statistics, we obtain
a decent estimate of the saturated hydraulic conductivities,
while the estimates of the van Genuchten α, on the contrary,
are improved but still rather poor.

Such a large uncertainty in the parameter estimates should
be represented by a large ensemble spread. The ensemble
spread can be illustrated by the cumulative density func-
tions (cdf’s) of all parameter values in the ensemble, which
are shown in Fig. 16 for each of the two soil layers. For the
ensembles, two lines are plotted, with one indicating the min-
imum values and the other the maximum values. The area be-
tween those lines thus represents the parameter values con-
tained in the ensemble. The cdf of the reference field is plot-
ted with a single solid line for comparison. For all parameters
and layers, we see a reduction in the ensemble spread com-
pared to the initial guess. However, compared to the posterior
pdf’s of the homogeneous test scenario (Fig. 6), the spreads
are clearly higher in this case. The parameter values of the
reference run are mostly enclosed by the final ensemble. One
exception is the porosity of the upper soil layer, where we
have already seen (in Fig. 15) that the estimated mean value
is too high. Yet, for the van Genuchten parameter α, where
the estimates have a large bias too, the ensemble spread is
still just large enough to contain the reference values. For the
lower soil layer, we even see an approximation towards the
extreme values compared to the initial ensemble, although
these remain outside of the ensemble spread.

In addition to the conclusions of the test series with the ho-
mogeneous scenario, we can now further summarize as fol-
lows:

1. Small correlations of the observations to parameters at
other locations cause only small updates of the latter,
thus maintaining a high uncertainty in the soil moisture
estimates there.

2. Consequently, in the presence of soil heterogeneities,
soil moisture estimates are less accurate far from the
observation locations and a surrounding area, depend-
ing on the correlation length of the parameter fields.

3. Generally, the parameter estimates are better in the
lower soil layer that contains the observations. This does
not refer to point values but rather to the field statistics.

4. Point values of the parameter fields differ clearly from
the values of the reference field.

5. The representative variability in the parameter fields is
improved by the data assimilation updating the soil pa-
rameters.

4.3 Results applying a simplified soil structure

In the third test series, the soil moisture of the heterogeneous
reference run is represented by an ensemble that consists of
two homogeneous soil layers. The reason behind this is that,
as shown before, heterogeneous fields cannot be retrieved, so
the missing information shall not be included in the model.
Based on the results of the heterogeneous scenario, for this
test series, only two data assimilation runs were performed,
i.e., one without parameter updates and one updating all four
parameters. Figures 17 and 18 show the corresponding soil
moisture over time at one observation and one validation
location, respectively. The values are taken at three depths,
z1 = 0.33 m, z2 = 0.75 m, and z3 = 0.95 m, below the sur-
face. In Fig. 17, the positive influence of the data assimila-
tion can be seen. The estimated soil moisture is clearly closer
to the reference soil moisture, as in the open-loop run. Nev-
ertheless, there remains a deviation from the reference soil
moisture. Furthermore, this deviation is not reduced by the
parameter updates (Fig. 17b, d and f).

At the validation location shown in Fig. 18, we see a fail-
ure of the data assimilation. The estimated soil moisture is
further away from the reference soil moisture than when per-
forming an open-loop run without updates. Again, there is no
improvement from updating the soil hydraulic parameters. In
contrast to the results of the heterogeneous ensemble (Fig. 8),
the ensemble spread is reduced significantly by the parame-
ter updates. Due to the homogeneity of the soil layers, the
parameters at the validation locations and the observations
are fully correlated, and the parameter ensemble is updated
within the entire soil. Since the parameters at the observation
and validation locations differ in the reference model, this
means that the updated values at the validation locations are
a bad representation of the reference values, leading to poor
soil moisture estimates.

As a consequence, the estimated soil moisture when up-
dating the parameters is even less accurate than when updat-
ing only the states which becomes evident in Fig. 19. The
averaged RMSE values at the observation and validation lo-
cations are plotted in Fig. 19, along with the corresponding
values when using a heterogeneous ensemble (second test se-
ries). At the observation locations, the data assimilation is
successful, reducing the RMSE compared to the open-loop
run, even though the estimates are not as accurate as when
applying a heterogeneous ensemble. At the validation loca-
tions, the soil moisture estimates are comparable when up-
dating only soil moisture and clearly better for the heteroge-
neous ensemble when including parameter updates, despite
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Figure 13. Horizontal cut of the saturated hydraulic conductivity field at z2 = 0.75 m below the surface for the reference run, the initial
ensemble, and the estimated field when updating all parameters. The crosses denote the locations of the observation and validation boreholes.
Note that panels (b) and (c) are ensemble means.

Figure 14. Vertical cut of the saturated hydraulic conductivity field at y = 25 m for the reference run, the initial ensemble, and the estimated
field when updating all parameters. The z axis is scaled for better visibility. Note that panels (b) and (c) are ensemble means.

the fact that the open-loop RMSE is much smaller for the lay-
ered ensemble. The wrong correlations generated by the ho-
mogeneous soil layers lead to wrong updates and thus worse
soil moisture estimates.

On the other hand, the layered ensemble is numerically
more stable, with 97 and 100 converging ensemble members
for the two data assimilation runs, respectively (see the lower
plot of Fig. 19).

The third plot from the top in Fig. 19 shows the spatially
averaged RMSE values for the root zone soil moisture. The
root zone soil moisture is defined as the spatially averaged
soil moisture in the lower soil layer. It is an important quan-
tity regarding the water supply for potential plants growing
on the hillslope. Here, it shall be used as a criterion to evalu-
ate the ability of the different soil structures in the ensemble
to represent the mean behavior of the reference run in con-
trast to the point values analyzed above. Figure 20 shows the
results for the data assimilation runs using the heterogeneous
ensemble and the runs using the layered ensemble when up-
dating the states only or when updating the states and all

four parameters, respectively. First of all, it can be seen that,
here, the data assimilation is successful for all cases, lead-
ing to better results than the corresponding open-loop runs,
especially for the layered ensemble where the open-loop es-
timates are pretty poor. Besides, the RMSE values are further
reduced by the parameter updates in which the improvement
is more distinct for the layered soil structure. When updating
all parameters (Fig. 19c and d), the accuracy of both runs is
comparable. However, the spread in the layered ensemble is
much smaller than in the heterogeneous ensemble and does
not comprise the true state at the end of the simulation. The
model uncertainty is thus underestimated in this case.

The (only temporally) averaged RMSE values for the root
zone soil moisture in Fig. 19 show that the accuracy of the
estimates of the layered ensemble approaches those of the
heterogeneous ensemble by the updates. While the RMSE
of the layered ensemble is much higher than that of the het-
erogeneous ensemble for the open-loop run, the difference is
already smaller when performing state updates and becomes
very small when including parameter updates.
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Figure 15. Statistics (mean and standard deviation) of the parameter fields of the two heterogeneous soil layers. All values are normalized
by the mean value of the reference field. The statistics of the ensemble runs refer to the estimated parameter field (ensemble mean).

Figure 16. Cumulative density functions (cdf’s) of the parameter values for the two heterogeneous soil layers. The solid line denotes the cdf
of the reference parameter field. For the initial (dashed) and estimated (dash-dotted) ensemble, two lines are plotted to indicate the minimum
and the maximum values of the ensemble.

4.4 Discussion

The experiments demonstrate the strong influence of the soil
hydraulic parameters on the soil moisture estimates. The en-
semble spread of soil moisture depends mainly on the pa-
rameter spread and cannot be reduced by state updates only.
Thus, if there is a large uncertainty in the parameters, the
estimated soil moisture will be uncertain as well. The aim
of the data assimilation is to reduce the uncertainties in the
model. However, the updates can cause a reduction that is
too strong in the ensemble spread, which means that the ac-
tual uncertainty is underestimated. If the estimates match the
true states, then this is not a problem, since the model un-
certainty is truly very small. This is, e.g., the case in the
homogeneous test case when performing parameter updates

(Fig. 4c). Otherwise, the small spread can lead to filter diver-
gence, as can be seen in Fig. 18b, d, and f. This is unfavor-
able for two reasons. First, the small spread impedes further
updates, as the simulated observations are given too much
weight in Eq. (11). Therefore, the filter is not able to correct
the states towards the observations once the ensemble spread
has become too small. Second, the estimates seem more re-
liable than they actually are, which may lead to misinterpre-
tations. At locations where one has no knowledge about the
true state, it is then not possible to assess whether the states
have taken a reliable value or not.

Therefore, it is important to prevent an ensemble spread
that is too small. This can be achieved by the thorough tun-
ing of the filter properties, especially the dampening factor,

https://doi.org/10.5194/hess-27-1301-2023 Hydrol. Earth Syst. Sci., 27, 1301–1323, 2023



1318 N. Brandhorst and I. Neuweiler: Impact of parameter updates on soil moisture assimilation

Figure 17. Soil moisture over time for the heterogeneous scenario with a simplified layered soil in the ensemble runs at one observation
location. Values are taken at z1 = 0.33 m, z2 = 0.75 m, and z3 = 0.95 m below the surface from top to bottom. (a, c, e) Updates of soil
moisture only. (b, d, f) Joint updates of soil moisture and all parameters.

Figure 18. Soil moisture over time for the heterogeneous scenario with a simplified layered soil in the ensemble runs at one validation
location. Values are taken at z1 = 0.33 m, z2 = 0.75 m, and z3 = 0.95 m below the surface from top to bottom. (a, c, e) Updates of soil
moisture only. (b, d, f) Joint updates of soil moisture and all parameters.
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Figure 19. Spatially and temporally averaged RMSE values at the
observation and validation locations and for the averaged root zone
soil moisture for the heterogeneous scenario using a heterogeneous
and a simplified layered structure in the ensemble. The first en-
try (–) denotes the data assimilation run where only soil moisture
is updated. The lower plot gives the number of converging ensem-
ble members.

the assimilation frequency, and inflation. For test series in-
volving multiple data assimilation runs, this is not feasible,
as these settings would have to be optimized for each indi-
vidual run. Aside from that, different filter settings may de-
crease the comparability of the different assimilation runs.
An optimized filter setup that would, e.g., impede a strong
spread reduction would not change the conclusions of these
experiments but would make it difficult to identify true and
spurious correlations, which are relevant for the analysis of
the different methods. Hence, we keep the same settings for
all runs, even though they may not be optimal in some cases.
Yet, we want to stress that this applies only to the testing of
data assimilation, while a rigorous tuning for the assimilation
in operational models is indispensable.

One concern when performing parameter updates, and in
particular when including the parameter values of each grid
cell in the augmented state vector to resolve the heteroge-
neous structure, is that this increases the required computa-
tional resources. This is only partly true. Of course, larger
matrices need to be handled, which can either be accom-
plished by using more workspace (if available) or by a par-
allelization on multiple cores. As the large number of model
realizations in the ensemble is often run in parallel mode in
any case, the latter option of handling the matrices would

not require any additional resources here. In terms of run
times, the parameter updates have revealed a positive influ-
ence. For unsaturated flow problems, convergence issues in
single members of the ensemble are the main cause for long
run times. As we have seen throughout our experiments, the
parameter updates increase the numerical stability of the en-
semble, which actually reduces the run times.

Thus, there is no real drawback of applying parameter up-
dates. Instead, it is quite the contrary, as updating the soil
hydraulic parameters notably improves the soil moisture es-
timates not only in the homogeneous case but also in the het-
erogeneous case. In the homogeneous scenario, the update of
the van Genuchten model parameters turned out to be crucial
for the numerical stability. In the heterogeneous test case, this
trend could not be confirmed. In Brandhorst et al. (2017), it
was shown for the one-dimensional case that the influence
of updating the individual parameters depends on the soil
type and flow conditions. For example, porosity is particu-
larly important when the soil is (almost) saturated and the
observed soil moisture is θ ≈ θsat ≈ φ. As the heterogeneous
subsurface contains a larger spectrum of parameter values,
a distinct influence of a specific parameter is therefore not
to be expected, which is confirmed by the evaluation of the
RMSE of soil moisture shown in Fig. 10. For both compar-
isons (test series one and two), updating multiple parameters
leads to the best soil moisture estimates, both at the observa-
tion and at the validation locations. According to our results,
the updating of porosity and the van Genuchten model pa-
rameters has the strongest impact on improving predictions
of soil moisture. If the soil was drier, e.g., as a result of us-
ing different forcing data, the sensitivity towards the individ-
ual parameter updates, especially porosity, may change. Yet,
in Brandhorst et al. (2017), where different flow conditions
were tested, updating all four parameters led to the best re-
sults – without exception. In the 3D heterogeneous setting
considered here, this conclusion cannot be drawn so strictly.
There were exceptions. However, updating all parameters al-
ways led to the best or second-best results, such that it is
advisable to include all parameters in the updates. In doing
so, one may include a parameter that has little impact, but on
the other hand, one cannot miss a parameter with large influ-
ence, which is the greater risk, especially in heterogeneous
soils that always cover a larger range of the soil moisture
curve and are therefore sensitive to more parameters unless
potentially under very dry or very wet conditions.

In the heterogeneous test case, the importance of using a
stochastic model becomes apparent. Due to the small corre-
lations of parameters and states at locations other than the
observation locations, the former are hardly updated, and the
initial ensemble spread is mostly maintained. The estimates
at those locations are therefore rather poor, even though an
idealized setup was used in which all other unwanted sources
of uncertainty were eliminated. This reflects, however, the re-
ality, as at these locations, there is really no information, and
they differ from the locations where observations are avail-
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Figure 20. Root zone soil moisture over time for the heterogeneous scenario. (a, c) Results using a heterogeneous structure in the ensemble.
(b, d) Results using a simplified layered soil in the ensemble. (a, b) Updates of soil moisture only. (c, d) Joint updates of soil moisture and
all parameters.

able. The large ensemble spread indicates the high uncer-
tainty at these locations, making it clear that the estimates
there are not reliable. A deterministic model does not quan-
tify the model uncertainty and would claim the wrong esti-
mates to be correct. The small analysis on the radius of the
positive influence of the data assimilation suggests that im-
proved estimates can only be expected at distances smaller
than the correlation lengths of the parameter fields. To im-
prove the estimates, more information for the assimilation
would be needed, e.g., in terms of more observations or re-
mote sensing data.

Given the spatially very limited effect of the assimilation
in heterogeneous soils, performing simplified parameter up-
dates by, e.g., Miller scaling, as in Bauser et al. (2020), or
by global calibration coefficients, as in Shi et al. (2014), can
be an alternative. Yet, such methods impose additional arti-
ficial constraints on the assimilation. These may hinder the
assimilation from reaching its optimal solution. In this work,
we tested the usage of a simplified layered soil structure in
the ensemble which can be regarded as an extreme exam-
ple of such simplified approaches. In this case (test series
three), the data assimilation fails entirely to improve the es-
timates far from the observation locations and leads to filter
divergence. The ensemble spread is reduced a lot, leaving the
model overconfident, whereas less accurate estimates in the
heterogeneous ensemble setting go along with larger ensem-
ble spreads that properly account for the remaining model
uncertainty. At the observation locations, the estimates for
the layered ensemble setting are also not as accurate as when
the heterogeneous structure is resolved. As already men-
tioned, this is a very simplified approach, but we would ex-
pect a similar behavior when applying other simplification
methods, although they are less pronounced.

However, when estimating a spatially averaged quantity, in
this case the spatially averaged root zone soil moisture, the
accuracy when using the simplified soil structure is almost
as good as when the fully heterogeneous structure is used.
This applies only when the parameters are updated. Updating
only the states, the accuracy of the heterogeneous ensemble
is clearly better.

From this, one can summarize that one cannot obtain de-
cent estimates of point values when applying a simplified
soil structure, but it is possible to give decent estimates of
spatially cumulative values, as, e.g., spatial means. In this
case, again, the importance of parameter updates becomes
evident. Yet, this is supposed to work only if the observa-
tions are taken at locations where the parameter values are
somewhat representative of the mean parameter value of the
domain. If the parameter values at these locations are in the
extreme ranges of the parameter distributions, then the es-
timation of such cumulative values may fail too. Here, we
need to point out that the soil structure in the heterogeneous
ensemble is also not exactly resolved. While the position of
the interface between the layers is assumed to be known, the
structure within the layers is not prescribed. The informa-
tion is contained indirectly in the ensemble, as the parameter
fields of the individual ensemble members are created using
the true correlation lengths and correct correlations among
the parameters. Yet, the correct spatial structure is contained
neither in the individual parameter fields nor in the initial
guesses. This can be interpreted as applying a finer resolu-
tion of the heterogeneous layers with more degrees of free-
dom than in the reference soil, whereas assigning a layered
soil structure means the contrary. Prescribing the correct soil
structure could possibly improve the estimates even more. As
it is hard to obtain this information in the field, such a setting
would be rather unrealistic. On the other hand, prescribing a
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wrong soil structure could lead to worse estimates, as Erdal
et al. (2014) found out for one-dimensional flow problems.
Resolving heterogeneity in the ensemble used for data assim-
ilation is thus recommended, by assigning information about
the statistical properties of the heterogeneity that is available.

5 Conclusions

In this study, the ensemble Kalman filter was applied to a
three-dimensional hillslope model to assimilate soil mois-
ture. The augmented state vector approach was used to inves-
tigate the influence of parameter updates on the soil moisture
estimates. To this end, two reference models were created,
namely one with a homogeneous soil and the other one with
two heterogeneous soil layers. These models provided syn-
thetic observations for the assimilation and validation of the
data assimilation runs.

A previous sensitivity analysis revealed the saturated hy-
draulic conductivity, porosity, and the van Genuchten model
parameters α and n to be the most sensitive parameters with
respect to soil moisture, while the remaining parameters had
a negligible influence. An ensemble was generated for each
reference model by perturbing the four sensitive parameters
representing the uncertainty in these parameters. Then, a data
assimilation run was performed for each possible combina-
tion of the parameter updates to investigate the impact of
the individual parameter updates on the soil moisture esti-
mates. It was shown that, for both homogeneous and hetero-
geneous scenarios, the joint update of states (soil moisture)
and the uncertain parameters improved the soil moisture es-
timates compared to runs without parameter updates. Under
the present flow conditions, updating the saturated hydraulic
conductivity turned out to be less important, while the updat-
ing of porosity and the van Genuchten model parameters was
essential. Furthermore, the parameter updates improved the
numerical stability of the ensemble, resulting in a reduction
in run time and consumed computational resources. It was
further shown that a simplified representation of the hetero-
geneous soil structure leads to significantly worse estimates
of local soil moisture values and filter divergence, while it
gave comparable results for estimates of averaged soil mois-
ture when including parameter updates. Ignoring heteroge-
neous structures in data assimilation is therefore only rec-
ommended if the aim of the model is to estimate spatially
cumulative quantities.

One issue that we encountered is that the improvement by
the filter updates in heterogeneous soils is mostly limited to
the observation locations and a small area around them that
depends on the correlation lengths of the parameter fields.
Estimates at more distant locations are still highly uncertain
after the assimilation. More information is needed to over-
come this problem. This can be achieved by using a denser
measurement network. However, given the very small radius
of influence of point-scale soil moisture observations, it is

hardly feasible to install a monitoring network with the re-
quired density in a real field application. Instead, the addi-
tional assimilation of soil moisture observations from remote
sensing and cosmic ray neutron probes can be an option. Be-
sides, the studies by, e.g., Shi et al. (2015) and Zhang et al.
(2018) indicate that additional measurements of the ground-
water level may help improve the soil moisture estimates.
Here, one has to keep in mind that additional error sources
that appear in real-world applications and that are neglected
here would most likely lead to even worse estimates than en-
countered in the present experiments.

Generally, the present study has shown that, whenever the
soil structure can be represented accurately in the ensemble
(as e.g., in homogeneous soils), parameter updates are able to
improve state estimates, with optimally conditioned param-
eter estimates reducing the model error caused by parame-
ter uncertainty significantly. Yet, soil heterogeneity produces
additional uncertainty in the model which needs to be ac-
counted for. In this work, this was done by updating the fully
heterogeneous parameter fields. Thus, the assimilation can
reduce the model error caused by the soil heterogeneity as
much as the observations allow. By applying a simplified soil
structure, this error can only be reduced to a very limited ex-
tent due to the insufficient degrees of freedom in the ensem-
ble. Besides, at some point, this reduction can most likely not
be further improved by assimilating more observations. Lo-
calization of the parameter updates, which in principle adds
soil heterogeneity to the ensemble, may be beneficial in such
cases.

Another open question remains that is related to other error
sources in the model. The key message of this work regarding
parameter uncertainty is to take the whole lot, i.e., all sen-
sitive parameters and the full heterogeneous soil structure.
When using real data, uncertainties may also arise from the
boundary conditions and the model error. How to optimally
handle these errors and uncertainties is not yet thoroughly
examined.
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