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Abstract. In the gravity-driven free infiltration of a wetting
liquid into a homogeneous unsaturated porous medium, the
flow pattern is known to depend significantly on the initial
saturation. Point source infiltration of a liquid into an initially
dry porous medium produces a single finger with an over-
saturated tip and an undersaturated tail. In an initially wet
medium, a diffusion-like plume is produced with a mono-
tonic saturation profile. We present a semi-continuum model,
based on a proper scaling of the retention curve, which is dis-
crete in space and continuous in time. We show that the semi-
continuum model is able to describe this transition and to
capture the experimentally observed dependence of the satu-
ration overshoot and the finger velocity on the initial satura-
tion.

1 Introduction

The infiltration of rainwater into soil forms an essential part
of the hydrological cycle. Therefore, research on the move-
ment of water in soil has long been a focus of attention.
The origins of infiltration research were substantially influ-
enced by the idea to describe the movement of water in soil
by diffusion-like models (Richards, 1931). Later, it was dis-
covered that – even in homogeneous porous materials – flow
may become spatially very inhomogeneous. Most of the in-
filtrating water flows through preferential pathways, leaving
islands of dry material behind (Glass et al., 1988). This type
of flow is well described by a semi-continuum model intro-
duced in Vodák et al. (2022). In this paper, we demonstrate

that this semi-continuum model captures infiltration into an
unsaturated homogeneous porous medium comprehensively,
in the sense that it correctly describes the experimentally ob-
served complicated transition between the preferential and
diffusion-like flow regimes.

There are three types of preferential flow (Nimmo, 2021),
namely macropore flow, funnel flow, and finger flow. Macro-
pore flow proceeds through individual large pores that are
highly conductive. The funnel flow is the result of hetero-
geneity of soil or rock hydraulic properties. Both macrop-
ore flow and funnel flow are features of non-homogeneous
porous media. However, preferential flow (also known as fin-
ger flow) also occurs in a homogeneous medium and is be-
lieved to be caused by the wetting front instability (Glass
et al., 1989a; Bauters et al., 2000; Sililo and Tellam, 2005;
Aminzadeh and DiCarlo, 2010; DiCarlo, 2013; Wei et al.,
2014; Cremer et al., 2017; Pales et al., 2018). A finger con-
sists of two parts, namely an oversaturated finger tip fol-
lowed by a less saturated finger tail. It is widely accepted
that this non-monotonicity of the saturation profile (i.e., sat-
uration overshoot) is a necessary and sufficient condition of
finger flow (DiCarlo, 2004; Rezanezhad et al., 2006).

It was experimentally observed that the magnitude of the
saturation overshoot (i.e., the saturation difference between
the finger tip and tail) depends on the infiltration rate (Di-
Carlo, 2004). For low influx, a stable wetting front forms
without a saturation overshoot. For a larger flux, the satu-
ration overshoot appears, and its magnitude increases with
increasing flux up to a certain point, beyond which the mag-
nitude of the overshoot decreases again. For high flow rates,
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the saturation overshoot disappears completely. There is also
a strong dependence of the flow regime on the initial satu-
ration of the porous medium (Bauters et al., 2000). For an
initially dry medium, finger flow accompanied by saturation
overshoot is observed. However, at a sufficiently high ini-
tial saturation (close to the saturated moisture limit), fingers
do not form, and a stable front dominates with no satura-
tion overshoot (see Fig. 3 in Bauters et al., 2000). Moreover,
a non-monotonic dependence of the wetting front velocity
and finger width on the initial saturation was reported. With
increasing initial saturation, the fingers first become more
narrow and faster, but a further increase in initial saturation
makes them slow down, become thicker, and more irregular,
before gradually disappearing completely and giving way to
diffusion-like plumes with no saturation overshoot. This is
counterintuitive because one would expect the finger veloc-
ity to increase with increasing initial saturation. We call this
complicated transition from a finger-like regime to diffusion-
like regime the Bauters’ paradox, honoring the first author of
the seminal article Bauters et al. (2000). Note that the prefer-
ential flow occurs also in a highly saturated porous medium
that is super-hydrophilic (Chen et al., 2022b). This complex
behavior is not consistent with the standard theory which (1)
does not allow for saturation overshoot behavior (Fürst et al.,
2009), (2) predicts an increase in wetting front velocity with
increasing initial saturation (Bear, 1972), and (3) does not
allow for preferential flow in a homogeneous medium.

The standard model for unsaturated porous media flow
is the Richards’ equation (RE; Richards, 1931). RE is a
combination of a mass balance equation and the Darcy–
Buckingham law (Bear, 1972). It was shown, by means of
a mathematical proof, that in the case of a constant influx
into an initially dry homogeneous porous medium, RE is in-
compatible with saturation overshoot because the RE is un-
conditionally stable (Fürst et al., 2009). The solution of the
RE is stable in this case, regardless of whether the hysteresis
of the retention curve is included, because the hysteresis of
the retention curve never comes into action. Thus, RE is not
able to capture finger flow. There have been many attempts
to model the flow in porous media differently; in principle,
these attempts can be divided into continuum models (Has-
sanizadeh et al., 2002; Eliassi and Glass, 2002; Schneider
et al., 2017; Brindt and Wallach, 2020; Beljadid et al., 2020;
Cueto-Felgueroso et al., 2020; Ommi et al., 2022a, b), and
pore-scale (discrete) models (Lenormand et al., 1988; Blunt
and Scher, 1995; Primkulov et al., 2018, 2019; Wei et al.,
2022). Another approach is to combine the advantages of
continuous and discrete modeling (Glass et al., 2001; Glass
and Yarrington, 2003; Liu et al., 2005; Liu, 2017). Liu et al.
(2005) and Liu (2017) developed an active region model in
which fractal flow patterns are incorporated into the con-
tinuum approach. Glass et al. (2001); Glass and Yarrington
(2003) proposed a unique macro modified invasion percola-
tion (MMIP) model, which is – in a single framework – able
to capture finger flow, buoyancy-driven migration of gases

through porous media, and rough surface flow. However, sat-
uration is not treated as a continuous quantity in the MMIP
model; thus, the model cannot reproduce the saturation over-
shoot or its dependence on initial saturation or influx rate.
For a detailed review of the different types of modeling see,
e.g., Rooij (2000), DiCarlo (2010), Xiong (2014), Hunt and
Sahimi (2017), and Chen et al. (2022a).

Another attempt is reported in Kmec et al. (2019, 2021),
who advocate for the so-called semi-continuum approach. In
this approach, the porous medium is divided into a grid of
blocks which are not considered infinitesimal – each block
retains the nature of a porous medium, and it is character-
ized by its pressure–saturation relation, hydraulic conduc-
tivity, and porosity. Saturation is considered continuous in
time but constant throughout each block (i.e., piecewise con-
stant in space). Flow between neighboring blocks proceeds
according to the Darcy–Buckingham law. The key feature
of the semi-continuum approach is to account for the block
size. This is done by an appropriate scaling of the reten-
tion curve with the block size (Vodák et al., 2022). As the
block size decreases, the retention curve becomes more flat
(i.e., its derivative decreases), while keeping the hysteresis
effect constant. See Vodák et al. (2022) for more details and
a physical justification.

The semi-continuum model was shown to reproduce
all experimentally observed features of unsaturated porous
medium flow in a long vertical tube well (Kmec et al.,
2019). A two-dimensional version of the model was shown
to correctly capture the transition between finger flow and
diffusion-like flow, with increasing initial saturation (Kmec
et al., 2021) for uniform infiltration imposed on the entire
top boundary. Vodák et al. (2022) examined the limit of the
semi-continuum model as the block sizes go to zero. They
report a limit version of the model in the form of a partial
differential equation with a Prandtl-type hysteresis operator
(Visintin, 1994) under the derivative.

In this paper, we use a previously developed semi-
continuum model and demonstrate that this model is able
to fully reproduce Bauters’ paradox – the transition from
finger-like flow in an initially dry medium to diffusion-like
flow in an initially wet medium for a point source infiltration.
We show that the non-monotonic relation between initial sat-
uration and flow velocity and initial saturation and satura-
tion overshoot magnitude is captured correctly by the semi-
continuum model.

Bauters’ paradox

The authors of Bauters et al. (2000) used a Hele–Shaw cell
(50× 30× 0.94 cm) filled with homogeneous 20/30 quartz
sand, with a particle size between 0.60 and 0.85 mm. The
used sand does not change its wettability according to the
duration of contact with distilled water. Water was injected at
a rate of 2 cm3 min−1 through a hypodermic needle located
at the top of the chamber near the sand surface. The initial
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saturation was gradually increased from zero to the full field
capacity. The results of the experiments can be summarized
as follows:

– Wetting front dependence on the initial saturation. As
the initial saturation increases, the flow regime changes
from an unstable finger-like to a stable diffusion-like
flow. Three flow regimes can be distinguished, namely
unstable, intermediate, and stable. During unstable flow,
the finger width remains almost constant. This is consis-
tent with theoretical analysis (Raats, 1973) and exper-
imental observations (Selker et al., 1992; Rezanezhad
et al., 2006). In the intermediate regime, the fingers
gradually give way to a stable infiltration front. This
type of flow transition has not yet been sufficiently
investigated, neither theoretically nor experimentally.
In the diffusion-like regime, the saturation and pres-
sure profiles are monotonic, with no overshoot behav-
ior. Moreover, the wetting front is much wider than the
finger.

– The width and velocity of the fingers. With increasing
initial saturation, the fingers first become faster and nar-
rower, and then they become slower and wider.

– Pressure and saturation overshoot magnitude. The
magnitude of the saturation overshoot decreases with
increasing initial saturation of the medium. Moreover, a
hyperbolic relation between initial saturation and satu-
ration overshoot magnitude is observed. The same holds
for the pressure overshoot magnitude.

Although the experiments of Bauters et al. (2000) are well
known in the soil science community (currently more than 90
citations in the Scopus database), there is no unified explana-
tion for the observed paradox. Moreover, almost none of the
citing authors comment on this interesting phenomenon. To
our best knowledge, there are only three attempts to model
or explain Bauters’ paradox. Chapwanya and Stockie (2010)
used a dynamic capillary pressure term to model the effect
of initial saturation. However, a small artificial perturbation
in the influx had to be used to initiate the finger flow, and the
influx was imposed over the entire top boundary instead of a
point. The finger velocity was independent of the initial sat-
uration of the medium. Moreover, the authors did not focus
on the non-monotonic dependence of finger width on initial
saturation.

Another attempt was undertaken by Joekar-Niasar and
Hassanizadeh (2012) and Masoodi and Pillai (2012). These
authors hypothesized that the non-monotonic velocity of the
front is due to a tradeoff between conductivity and capillary
pressure. With increasing initial saturation, the conductivity
increases because there is more trapped air in the medium.
Beyond a critical value of initial saturation, the trapping does
not change significantly, but the matric potential decreases.
As a result, the wetting front slows down. This means that

the intrinsic permeability of the medium is not a constant but
rather a function of saturation.

Finally, Kmec et al. (2021) used a semi-continuum ap-
proach to investigate the effect of the initial saturation on the
wetting flow formation. Similar to Chapwanya and Stockie
(2010), the influx was imposed on the entire top boundary.
The nonlinear dependence of the finger width was repro-
duced (see Fig. 6 in Kmec et al., 2021). The finger velocity
dependence on the initial saturation was not studied due to
different choice of the top boundary condition than in Bauters
et al. (2000).

This article presents simulations of the point source infil-
tration used in Bauters et al. (2000) by means of the semi-
continuum model. We show that all the experimentally ob-
served features of Bauters’ paradox are reproduced well.

2 Methods

2.1 Semi-continuum model

Let us recall the 2D semi-continuum model that was intro-
duced by Kmec et al. (2021). Here, we use the same model
with an appropriate scaling of the retention curve with the
block size (Vodák et al., 2022). The porous medium is rep-
resented as a rectangular grid of N ×M square blocks of
uniform size 1x×1x. Each block is denoted by its row
and column indices [i,j ]. Saturation St (i,j) and pressure
Pt (i,j) of the wetting phase (liquid) at time t are assumed
constant within each block (i,j), and the pressure of the
non-wetting phase (gas) is assumed to be zero everywhere.
Each block retains the nature of a porous medium, and it
is characterized by a hysteretic pressure–saturation relation
(main wetting branch pw(S), main draining branch pd(S)),
non-hysteretic hydraulic conductivity (intrinsic permeability
κ; relative permeability k(S)), and porosity θ . The invad-
ing wetting liquid is characterized by its density ρ and dy-
namic viscosity µ. Acceleration due to gravity is denoted by
g. The semi-continuum model tracks the following three key
quantities: the saturation St (i,j) (−) of the wetting phase in
each block at time t , the pressure Pt (i,j) (Pa) of the wetting
phase in each block at time t , and the fluxes qt [(i1,j1)→

(i2,j2)] (ms−1) of the wetting phase between neighboring
blocks (i1,j1) and (i2,j2) at time t .

At each instant, the saturation in each block is updated ac-
cording to the discretized mass balance law in the following
way:

θ

1t

[
St+1t (i,j)− St (i,j)

]
=

1
1x

(
qt
[
(i− 1,j)→ (i,j)

]
− qt

[
(i,j)→ (i+ 1,j)

]
+ qt

[
(i,j − 1)→ (i,j)

]
− qt

[
(i,j)→ (i,j + 1)

])
, (1)

where θ (−) denotes the porosity of the material,1t is a time
step, and 1x is the block size. A backward scheme can also
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be used (Kmec et al., 2021), but it slows the numerical algo-
rithm unnecessarily.

The next step is to update the capillary pressure in each
block according to the capillary pressure operator P(S). The
capillary pressure operator consists of the main wetting and
draining branches defined by van Genuchten Eq. (5). To com-
plete the capillary pressure operator, a hysteresis model is
included (Parker and Lenhard, 1987). We use a similar ap-
proach to the play-type hysteresis used, e.g., in Rätz and
Schweizer (2013) and Schweizer (2017). All scanning curves
are straight lines with a very large gradient KPS. Once a
block (in the wetting mode between the two main branches)
reaches the main wetting branch along a scanning curve, it
clings to it and continues along it. A similar procedure ap-
plies for the block in the draining mode.

Finally, the flux between neighboring blocks is updated
according to the Darcy–Buckingham law (Bear, 1972):

q =
κ

µ
k(S)(ρ g−∇P(S)) , (2)

where κ (m2) denotes the intrinsic permeability, ρ (kgm−3)
the fluid density, g (ms−2) acceleration due to gravity, and
µ (Pas) the dynamic viscosity of fluid. P(S) is the capillary
pressure operator. The relative permeability function k(S) is
modeled by the form derived in Mualem (1976), Mualem and
Dagan (1978), and Van Genuchten (1980):

k(S)= Sλ
[
1−

(
1− S

1
m

)m]2
, (3)

where λ(−) is a free parameter. Let us denote, with γ (S)=
κk(S), the effective permeability of the porous medium.

We use the following discrete implementation of the
Darcy–Buckingham law (Eq. 2):

qt
[
(i1,j1)→ (i2,j2)

]

=


1
µ

√
γ (St (i1,j1))γ (St (i2,j2))

(
ρg−

Pt (i2,j2)−Pt (i1,j1)
1x

)
for j1 = j2, i2 = i1+ 1
1
µ

√
γ (St (i1,j1))γ (St (i2,j2))

(
0− Pt (i2,j2)−Pt (i1,j1)

1x

)
for i1 = i2, j2 = j1+ 1
0 otherwise

. (4)

Thus, for the hydraulic conductivity between blocks, we use
the geometric mean of the conductivity values in the respec-
tive blocks. This choice of averaging has the desirable prop-
erty of being small if the permeability of one of the blocks is
small. The force of gravity is included only for the vertical
fluxes j1 = j2. After setting the fluxes between neighboring
blocks, the time is updated to t+1t , and we proceed back to
Eq. (1).

2.2 Scaling of the retention curve

A crucial idea behind the semi-continuum model is the ap-
propriate scaling of the main branches of the retention curve,
which was first introduced by Vodák et al. (2022). The scal-
ing of the retention curve is based on the fact that the shape of

the retention curve depends on the size (especially the height)
of the sample on which the measurement is made (Larson and
Morrow, 1981; Hunt et al., 2013; Silva et al., 2018).

The simple scaling mechanism introduced in Vodák et al.
(2022) is used here in which the main branches of the re-
tention curve take the form of the standard van Genuchten
model (Van Genuchten, 1980). More details about the pro-
posed scaling of the retention curve and its sample size de-
pendency are given in the following section. However, the
detailed mathematical and physical justification is already
published in Vodák et al. (2022); hence, for a deeper under-
standing, we refer to this paper.

For the reference block size 1x0, the retention curve is
modeled by the following formula:

pw
0 (S)=−

1
αw

(
S
−1
mw − 1

) 1
nw
, (5a)

pd
0(S)=−

1
αd

(
S
−1
md − 1

) 1
nd , (5b)

where S denotes saturation, pw
0 is the capillary pressure on

the wetting branch, pd
0 is the capillary pressure on the drain-

ing branch, αw,nw, and mw = 1− 1
nw

are parameters of the
main wetting branch, and αd,nd, andmd = 1− 1

nd
are param-

eters of the main draining branch.
The idea of the retention curve scaling is the following. For

a block size 1x <1x0, the retention curve becomes more
flat, but the distance between the main wetting and drain-
ing branches remains the same. Thus, for the main wetting
branch,

pw(S,1x)=
1x

1x0
pw

0 (S)+ c
w, (6)

with cw, such that pw(0.5,1x)= pw
0 (0.5), i.e.,

cw(1x)= pw
0 (0.5)

(
1−

1x

1x0

)
. (7)

Clearly, for 1x =1x0, the relation in Eq. (6) reduces
to Eq. (5a), while for 1x→ 0, we obtain pw(S,1x)→

pw
0 (0.5). For the main draining branch pd(S,1x) the scal-

ing is analogous to Eqs. (6) and (7).
The scaling of the retention curve for 20/30 sand is

shown in Fig. 1 for the reference block size 1x0 =
10
12 cm

≈ 0.83 cm. Determining the dimension of 1x0 is not trivial.
In Sect. 3 it is explained how this dimension can be deter-
mined using the results of Bauters et al. (2000).

2.3 Concept of the semi-continuum model and its limit
in the spatial variable

The scaling of the retention curve, i.e., the dependence of the
capillary pressure–saturation relation on the block size, is not
a common approach in flow modeling. However, the depen-
dence of the experimentally determined retention curve on
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Figure 1. The scaling of the retention curve for 20/30 sand. The
solid lines denote the main wetting branches, and the dashed lines
denote the main draining branches for the respective value of 1x.
The green curve represents the reference sample for 1x0 =

10
12 cm

≈ 0.83 cm. As 1x→ 0, the retention curve becomes more flat, but
the distance between the main wetting and draining branches re-
mains the same. The main wetting and draining branches rotate
around fixed values pw

0 (0.5) and pd
0(0.5), respectively.

the porous medium sample size has been observed for a long
time (Larson and Morrow, 1981; Mishra and Sharma, 1988;
Zhou and Stenby, 1993; Perfect et al., 2004; Hunt et al.,
2013; Ghanbarian et al., 2015). Note that this dependence
on the sample volume also applies to other hydraulic and
physical properties such as porosity or permeability (Mishra
and Sharma, 1988; Ewing et al., 2010; Ghanbarian et al.,
2017, 2021). In classical continuum mechanics, this scaling
problem is defined away by the concept of the representative
elementary volume (REV). REV is the smallest volume for
which the key physical quantities (e.g., saturation and pres-
sure) can still be considered smooth. However, if the sample
of a porous medium is smaller than REV, then key physical
quantities, such as the retention curve, are strongly dependent
on the sample size, and the continuum assumption is violated
(Kouznetsova et al., 2001; White et al., 2006; Al-Raoush
and Papadopoulos, 2010; Al-Raoush, 2012). The crucial idea
of the semi-continuum model is to include the pressure–
saturation dependency in the model, i.e., to scale the reten-
tion curve according to the block size. In the semi-continuum
model, a block represents a real sample of the porous mate-
rial. This makes the semi-continuum model fundamentally
different from numerical schemes for solving partial differ-
ential equations where the block plays only a discretization
(i.e., mathematical) role, and regardless of the block size,
the retention curve remains the same. In the semi-continuum
model, the computational mesh (the blocks) takes into ac-
count the dependence of the physical parameters on the size
of the blocks. Surprisingly, the idea of taking REV size into
account in modeling porous media has been around for a long
time. For instance, in White et al. (2006), the authors esti-
mated the size of the REV and used it as a lower limit for the
size of the finite elements. They argue that the use of smaller

elements would lead to violation of continuum assumptions,
and thus the continuum approximation would no longer be
appropriate. The same idea is used in the semi-continuum
model. For blocks smaller than the REV, the scaling of the
retention curve must be included because the continuum ap-
proximation is no longer adequate. Because we are interested
in the description of flow phenomena below the REV scale,
we need to include the dependence of the retention curve on
the block size. This scaling of the retention curve must meet
a physically justified requirement that the nature of the flow
is preserved across all levels of block size. This means that
the fluxes between neighboring blocks must not change when
1x changes. Given Eq. (4), if1x decreases by half, then the
fluxes increase by a factor of 2 if the scaling of the retention
curve is not included. Therefore, a linear scaling of the re-
tention curve is introduced in Eq. (6), so the fluxes between
blocks remain the same as 1x decreases. For more details,
see Figs. 4–6 in Vodák et al. (2022), which show the numeri-
cal convergence of the semi-continuum model in 1D and 2D.

The natural question is what the limit of the semi-
continuum model would be as 1x→ 0. We tried to answer
this question in Vodák et al. (2022) and derived the limit
equation in a single spatial dimension as follows:

(KPS∂tS− ∂tPH)(PH− v)≥ 0,

for all v ∈ [C2,C1], and PH ∈ [C2,C1],

θ∂tS+ ∂x

(
κ

µ

√
k(S−)

√
k(S+)(ρg− ∂xPH)

)
= 0,

S±(x0, t)= lim
x→x±0

S(x, t). (8)

In this equation, κ denotes the intrinsic permeability, ρ the
fluid density, g acceleration due to gravity, µ the dynamic
viscosity of fluid, and S the saturation. The values C1 (Pa)
and C2 (Pa) denote the constant limits of the main wetting
and draining branches, respectively. The limit is a partial dif-
ferential equation containing a Prandtl-type hysteresis oper-
ator PH under the space derivative. If we are located on the
main wetting or draining branches, then the limit equation
becomes a hyperbolic differential equation. Between the two
main branches (i.e., we are located on the scanning curve),
the limit represents a parabolic differential equation. It means
the limit switches between parabolic and hyperbolic types of
equation. The limit equation is a new type of mathematical
model – we are not aware of any research that has investi-
gated equations of this type. Note that the RE is a parabolic
type equation – that is why it is only able to simulate the
diffusion-like flow regime (Fürst et al., 2009).

3 Results

We want to completely reproduce the experiments reported
in Bauters et al. (2000). The authors report that water was in-
jected at a rate of 2 cm3 min−1 through a hypodermic needle
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Table 1. Parameters used to reproduce the experiments of Bauters
et al. (2000). Parameters for 20/30 sand were adopted from Schroth
et al. (1996) and DiCarlo (2004).

Parameter Symbol Value

Horizontal width of the chamber A 31 cm
Vertical length of the chamber B 50 cm
Reference block size 1x0 0.83 cm
Block size 1x 0.25 cm
Porosity θ 0.35
Density of water ρ 1000 kg m−3

Dynamic viscosity of water µ 9× 10−4 Pas
Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8
Acceleration due to gravity g 9.81 m s−2

Wetting curve parameter αw 0.177 cm−1

Wetting curve parameter nw 6.23
Draining curve parameter αd 0.0744 cm−1

Draining curve parameter nd 8.47
Slope of scanning curves KPS 105 Pa
Boundary flux qB 8× 10−5 ms−1

located near the sand surface. Thus, a point source infiltra-
tion is modeled such that a constant flux is prescribed across
1 cm of the top edge (in the middle). Zero discharge at the
bottom boundary is prescribed, for simplicity. This choice
of the bottom boundary condition does not affect the stud-
ied phenomena. All parameters used for the simulations are
given in Table 1. The parameter λ= 0.8, which is consistent
with experimental measurements (Schaap and Leij, 2000).

3.1 Adjustment of reference block size for 20/30 sand

First of all, the reference block size 1x0 is unknown. This is
a parameter of the semi-continuum model that has to be set.
The parameter 1x0 was calibrated by simulating the experi-
ments of Bauters et al. (2000). In the simulation, we use the
parameters for 20/30 sand adopted from Schroth et al. (1996)
and DiCarlo (2004) (see Table 1). We ran several simulations
of the semi-continuum model with 1x0 equal to 10

12 , 1.00,
and 12

10 cm. The moisture profile was calculated for three dif-
ferent initial saturation, namely a dry (0.001), a medium dry
(0.01) and a wet (0.05) porous medium. The parameters used
for simulations are given in Table 1, except for the block size
1x = 0.50 cm andA= 17 cm (horizontal width of the cham-
ber), which were changed in order for the simulations not to
be extremely time-consuming. The moisture profiles for all
values of 1x0 are depicted in Fig. 2.

We want to choose the parameter 1x0 for which the non-
monotonic behavior of the moisture profiles widths occurs.
Table 2 shows the width of the moisture profiles. The width
of the moisture profile is calculated in the following way.
First, we calculate the width of each row, which equals nrow×

1x, where nrow is a number of blocks in the row for which
the saturation exceeds 0.07 during the simulation, and 1x

Table 2. The width of the moisture profiles for different values of
1x0.

Reference block size 1x0
Moisture profile width for

Sin = 0.001 Sin = 0.01 Sin = 0.05

10
12 cm 5.3137 cm 4.6986 cm 8.1000 cm
1.00 cm 4.0156 cm 3.8202 cm 7.8500 cm
12
10 cm 2.6333 cm 2.8421 cm 4.6200 cm

is the size of the block. The width of the moisture profile is
then calculated as the average width of all rows with non-zero
width. It is clear that the most pronounced non-monotonic
behavior of the moisture profiles widths is given for 1x0 =
10
12 ≈ 0.83 cm (Fig. 2a) and is therefore the most appropriate.

Note that the width of the finger is not constant for an ini-
tially dry porous medium, although it has been experimen-
tally observed (Bauters et al., 2000). This artificial behavior
is due to the unrealistic homogeneity of porous medium used
for the simulation. Although, in reality, the porous medium
is homogeneous, this does not mean that all the characteris-
tics are identical in each block of the simulation. If a small
distribution of the intrinsic permeability is included, then the
finger width will be constant. This is demonstrated in the next
section.

3.2 Wetting front dependence on initial saturation

Let us now demonstrate the ability of the semi-continuum
model to capture Bauters’ paradox. As mentioned above,
even in homogeneous porous medium, all characteristics are
not identical in each block. Thus, the spatially correlated dis-
tribution of the intrinsic permeability is introduced. Such dis-
tribution was also used, e.g., in Kmec et al. (2021). The dis-
tribution satisfies κmax/κmin ≈ 4, and the mean of the intrin-
sic permeability approximately equals κ . The distribution of
the values of intrinsic permeability is shown in Fig. 3. The
distribution of the intrinsic permeability is not the cause of
Bauters’ paradox. However, with such a distribution, more
physical-looking fingers evolve. For a simulation of Bauters’
paradox without the intrinsic permeability distribution, see
Fig. A1 in the Appendix.

Figure 4 shows a snapshot of the saturation field at 25 min
for seven different values of the initial saturation. It can be
seen that, as the initial saturation increases, the finger first be-
comes faster and narrower. Then the finger slows down and
widens and finally gives way to a diffusion-like plume. The
transition between unstable and stable flow is also in agree-
ment with the experimental observation. The non-monotonic
behavior of the finger width and velocity is captured cor-
rectly, in addition to the shape of the wetting front. Moreover,
a stable wetting front appears for the initial saturation that is
higher than 0.03, which is also consistent with experiments.
Note that the authors of Bauters et al. (2000) only recorded
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Figure 2. Snapshots of the saturation field for various1x0 for an initially dry (Sin = 0.001), a medium dry (Sin = 0.01) and a wet (Sin = 0.05)
porous material. The moisture profiles for (a) 1x0 =

10
12 cm, (b) 1x0 = 1.00 cm and (c) 1x0 =

12
10 cm are shown at (a) 30, (b) 30, and (c)

20 min, respectively. Saturation values are color coded according to the color bar on the right.

Figure 3. The distribution of the intrinsic permeability κ (m2),
which satisfies κmax/κmin ≈ 4. Intrinsic permeability values are
color coded according to the color bar on the right.

the wetting front patterns 15 cm from the top. Therefore, we
are not able to compare the wetting fronts at the upper part
of the chamber.

One may wonder if this complex behavior depends on the
choice of the intrinsic permeability distribution. We gener-
ated seven different distributions (see Fig. A2), and the same
simulations as above were performed. Snapshots of the satu-
ration field 25 min from the beginning of the infiltration for
seven different values of the initial saturation are shown in
Figs. A3–A9. The figures show that the character of the flow
remains the same for all types of distributions. Thus, the dis-
tribution of the intrinsic permeability does not affect the tran-
sition from the finger flow to the diffusion-like flow.

3.3 Width and velocity of the fingers

Figure 5a shows the width of the fingers (moisture profiles)
25 min from the beginning of infiltration for the simulation
shown in Fig. 4 (wetting profiles for Sin = 0.0005,0.002, and
0.04 are not included in Fig. 4 to make the figure more read-
able). The width of each moisture profile is calculated in the
same way as was used in Table 2. We can clearly see that the
finger width first slightly decreases and then increases. The
narrowest finger is produced for Sin = 0.01 (2.70 cm) which
is consistent with experiments (see Fig. 5 in Bauters et al.,
2000). Let us note that the finger width for Sin = 0.0003
(3.74 cm) is slightly smaller than for Sin = 0.0005 (3.82 cm).
However, this is due to the distribution of the intrinsic per-
meability. Indeed, the finger width for all simulations given
by eight different distributions of the intrinsic permeability
(see Figs. 3 and A2) is depicted in Fig. 5b. We observe that –
on average – the finger width for the lowest initial saturation
used in the simulation is higher than for Sin = 0.0005.

For finger velocity, we proceed similarly, i.e., we find the
bottom-most block of the finger whose saturation exceeds
0.07. The depth of the bottom-most block defines the cur-
rent length of the finger. Finger velocity is computed as the
rate of change in the finger length in time. The finger (or
wetting front) velocity at t = 25 min for the simulation given
by Fig. 4 is summarized in Fig. 6a. The advance of the wet-
ting front was slower for the diffusion-like behavior com-
pared to finger flow (but higher than for Sin = 0.002). This
is rather counterintuitive, since the classical theory as the RE
predicts an increase in velocity with increasing initial satura-
tion. The highest finger velocity is observed for Sin = 0.02,
and it is approximately 5 times lower than the highest fin-
ger velocity experimentally observed in Bauters et al. (2000)
(for Sin = 0.01). This is consistent because we used 4 times
lower influx in our simulations compared to the experiments.
We observed that the character of the dependence remains the
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Figure 4. Snapshot of the saturation field at 25 min for seven different values of the initial saturation. Saturation values are color coded
according to the color bar on the right. Initial saturation of the medium increases from left to right.

Figure 5. The width of the finger (or wetting front) at t = 25 min is plotted against the initial saturation. (a) The distribution of the intrinsic
permeability given by Fig. 3. (b) All simulations given by eight different distributions of the intrinsic permeability (see Fig. 3 and Fig. A2).
The blue line connects the averages.

same for different distributions of the intrinsic permeability
(see Fig. 6b).

3.4 Water content at and behind the wetting front

Let us now examine the change in saturation at and behind
the wetting front (a finger tip). The difference between the
saturation of the tip and the tail is called the saturation over-
shoot magnitude. To quantify the saturation overshoot mag-
nitude, the saturation is averaged for each row, which gives
the saturation profiles in 1D. Averaging is applied only to
those blocks whose saturation exceeds 0.07. Saturation over-
shoot magnitude is then given as an average saturation at the
finger tip minus an average saturation at the finger tail. In
the case of diffusion-like flow with no overshoot, we average
the bottom 20 cm of the saturation profile and subtract the
average of the rest of the profile.

The dependence of saturation overshoot magnitude on ini-
tial saturation at t = 25 min is shown in Fig. 7. We see that
there is a hyperbolic decay relationship between the ini-
tial saturation and the saturation overshoot magnitude (R2

=

0.990). This is consistent with the experimental observation
(Bauters et al., 2000). There is still a minor saturation over-
shoot for Sin = 0.02. This is again consistent with the experi-

ments, where the authors observed a saturation overshoot for
Sin = 0.02 but no overshoot for Sin = 0.03.

Let us note that the distribution of the intrinsic permeabil-
ity causes higher variability in the saturation profiles. With-
out this distribution, the accuracy of the fit is better. This
was shown in the 1D semi-continuum model, where the hy-
perbolic fit was obtained with R2

= 0.995 (see Fig. 3.6. in
Kmec, 2021).

3.5 Sensitivity analysis

The parameters such as infiltration rate and material char-
acteristics are not fitted to obtain the best results. Let us
first demonstrate the effect of the boundary flux on the flow
regime. Since all the simulations are computationally de-
manding, a larger block size1x = 0.50 cm is used, while the
rest of parameters remained the same (see Table 1).

Five different values of the boundary flux qB were used,
ranging from 2×10−5 to 16×10−5 ms−1. The baseline sim-
ulations are given for qB = 8×10−5 ms−1. For each value of
qB, 28 different simulations are performed, with variable ini-
tial saturation (seven different initial saturation simulations)
and variable intrinsic permeability distribution (four different
distributions; see Fig. B1). Note that 140 different simula-
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Figure 6. The velocity of the wetting front at t = 25 min is plotted against the initial saturation. (a) The distribution of the intrinsic perme-
ability given by Fig. 3. (b) All simulations given by eight different distributions of the intrinsic permeability (see Figs. 3 and A2). The blue
line connects the averages.

Figure 7. Dependence of the saturation overshoot magnitude on ini-
tial saturation at 25 min. Saturation overshoot magnitude is com-
puted even for diffusion-like profiles (see the text for the method-
ology). A hyperbolic relation f (x)= ax+b

cx+d
fitted to the simulated

data has a R2 value of 0.990.

tions were performed in total. The same scheme was applied
to all other sensitivity analysis simulations, i.e., the analysis
was always performed for seven different values of initial sat-
uration and four different distributions of intrinsic permeabil-
ity. Figure 8 shows the width and the velocity of the fingers
(moisture profiles) for five different values of boundary flux
qB and for seven different values of the initial saturation Sin.
For a given value qB and Sin, the average width and velocity
of the four different distributions of the intrinsic permeability
are calculated and plotted.

Since the used boundary fluxes varied by more than
1 order of magnitude, the times for which the velocity
and the width are calculated need to be scaled accord-
ing to the boundary flux. The time points used are t =

100,50,25,12.5, and 6.25 min for qB = 2,4,8,16, and 32×
10−5 ms−1, respectively. It can be seen in Fig. 8a that, with
decreasing boundary flux, the flow tends to become more dif-
fusive. The transition between the finger-like and diffusion-
like regimes is clearly evident for the initial saturation, for
which the width of the moisture profiles increases rapidly.

For instance, for qB = 2×10−5 and qB = 4×10−5 ms−1, the
rapid increase can be already seen for Sin = 0.02. For higher
values of qB, diffusion-like behavior is observed for higher
values of initial saturation. To make this as clear as possible,
a snapshot of the saturation field for the intrinsic permeability
distribution defined by Fig. B1a is shown in the left panel of
Fig. B5. Note that the dependence on the boundary flux is in
good agreement with the experimental observation (DiCarlo,
2004). Moreover, it is not surprising that the velocity of the
moisture profiles shown in Fig. 8b decreases with decreasing
boundary flux.

It is evident that the non-monotonic behavior of the width
and the velocity of the moisture profiles is not dependent on
the boundary flux. Hence, Bauters’ paradox is observed for
all tested values of qB. Since the diffusion-like behavior oc-
curs at lower values of boundary flux, the manifestation of
Bauters’ paradox is shifted to higher initial saturation values
as the boundary flux increases.

In order not to extend the main part of the paper too much,
a sensitivity analysis for other parameters such as intrinsic
and relative permeability, dynamic viscosity and retention
curve is included in Appendix B. It is shown that Bauters’
paradox occurs for different values of material parameters.
For details, see Figs. B1–B6 and the corresponding text.

4 Discussion

To our best knowledge, the presented semi-continuum model
is the first model which is able to fully capture Bauters’ para-
dox. This is achieved without introducing any new param-
eters or material functions. The semi-continuum model is
based on well-established physics only – the mass balance
equation, the Darcy–Buckingham law, and a proper scaling
of the retention curve with the volume of the block. The
model may help to explain the precise mechanism of the tran-
sition between the finger-like and diffusion-like regimes.

We conjecture that the explanation of Bauters’ paradox is
rather similar to the non-monotonic dependence of porous
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Figure 8. The effect of the boundary flux on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) is plotted
against the initial saturation for five different values of boundary flux qB. Times are scaled according to the boundary flux qB, thus the
width and velocity of the moisture profiles are calculated at t = 100,50,25,12.5, and 6.25 min for qB = 2,4,8,16, and 32× 10−5 m s−1,
respectively. The averages of four different distributions of the intrinsic permeability are plotted.

medium flow on the magnitude of the influx. For very small
values of influx, the flow becomes stable with increasing fin-
ger width. The same applies for very large values of influx.
Hence, the unstable flow is only observed for fluxes within a
certain range (Yao and Hendrickx, 1996; Glass et al., 1989b;
DiCarlo, 2013). Yao and Hendrickx (1996) hypothesized that
the stable flow occurs when the effect of gravity becomes
negligible. This happens in two extreme cases. First, at very
low infiltration rates, the capillarity becomes the dominant
force compared to the force of gravity. Second, for infiltra-
tion rates higher than the saturated hydraulic conductivity,
the viscosity dominates and the stable flow without fingers
occurs. In our case, the dependence of the flow regime on
the initial saturation behaves similarly. For an initially dry
porous medium, the capillarity dominates, and the large cap-
illary forces are able to win over gravity in sucking the water
sideways into dry areas of the matrix. In a medium which
is moderately wet, this becomes more difficult because the
capillary forces are generally lower. Thus, in a moderately
wet medium, the fingers become thinner and faster. At suffi-
ciently high initial saturation, the large conductivity between
neighboring blocks prevents water piling up behind the wet-
ting front and the formation of saturation overshoot. This re-
sults in the ability of lateral expansion because the persis-
tence of the fingers is suppressed (Rezanezhad et al., 2006;
Kmec et al., 2021). Therefore, a diffusion-like flow regime is
observed.

A distribution of intrinsic permeability was used in the
model. This was motivated by the following observation. As
the blocks become smaller and smaller, the variability in their
material characteristics necessarily increases. The character-

istic of a block is given by an average over the pores of the
block. As the block size decreases, so does the number of
pores over which the average is taken. Thus, the variability
in the characteristics increases. It is possible to introduce a
distribution of other parameters such as porosity and the pa-
rameters of the retention curve (White et al., 2006; Ghanbar-
ian et al., 2021). However, to keep the model as simple as
possible, this has not been implemented here. It should be
stressed that Bauters’ paradox appears even if the intrinsic
permeability is kept homogeneous. Furthermore, a sensitivity
analysis of Bauters’ paradox was performed, which showed
that Bauters’ paradox occurs for different values of material
parameters and boundary flux.

DiCarlo (2013) states the following four criteria to evalu-
ate a model for unsaturated porous media flow. Paraphrasing
his words, the model should do the following:

1. have a minimum of adjustable parameters, and the pa-
rameters should be meaningful,

2. reduce to the RE in non-overshoot and static profiles,

3. produce a good match of the observed 1D profiles, not
just the magnitude of the overshoot, and

4. be able to produce predictions of the 2D and 3D prefer-
ential flow in terms of finger widths and finger spacing.

Since the RE can simulate only a diffusion-like regime, we
understand item 2 in the way that the model should be able to
reproduce also diffusion-like regime and not only the finger-
like regime. This does not mean that the semi-continuum
model behaves in the same way as the RE in non-overshoot
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profiles. This is of course not possible due to the scaling of
the retention curve.

The semi-continuum model formulation uses only the
physics of the RE (porosity, permeability, the pressure-
saturation relation, mass conservation, and the Darcy–
Buckingham law). The block size used in the simulation is
not a free parameter – it is tied to the retention curve by
the scaling relation and the reference block size 1x0. The
value of 1x0 is not arbitrary; it is connected to the REV.
Thus, item 1 on the DiCarlo (2013) list is satisfied. In view of
Figs. 4, 5, 6, and 7 and the results in Kmec et al. (2019, 2021),
we claim that items 2–4 are also satisfied.

However, there are two exceptions. For 2D preferential
flow, the dependence of finger width and finger spacing on
the influx is still missing. Here, we mention, for example, the
experiments of Yao and Hendrickx (1996) for low infiltration
rates and Glass et al. (1989b) for higher infiltration rates. We
will discuss this complex dependency in a forthcoming pa-
per. Moreover, the semi-continuum model has not yet been
extended to 3D.

Note that, for a given 1x and retention curve, the semi-
continuum model may look like a numerical scheme for the
RE. However, when using different block size1x, a different
retention curve must be used for the RE to retain the character
of the flow. Otherwise, only the diffusion-like behavior oc-
curs (Fürst et al., 2009). In contrast, for the semi-continuum
model, we define the retention curve for the reference block
size1x0, and the retention curve is then scaled automatically
according to the block size. In this case, the retention curve
is a measurable material characteristic. The semi-continuum
model is thus predictive; we do not need to fit the retention
curve for each1x separately. Therefore, the semi-continuum
model is not a numerical scheme to solve RE. The crucial dif-
ference between the semi-continuum model and a numerical
scheme for the RE is in an appropriate scaling of the reten-
tion curve with the block size. As 1x decreases, the semi-
continuum model retains the character of the flow between
the blocks, and the saturation overshoot does not disappear
(Vodák et al., 2022). Let us also stress that it is important
to use the geometric mean of the hydraulic conductivity for
computing the flux between neighboring blocks. In principle,
it is necessary to use a type of averaging that has the desir-
able property of being small if the permeability of one of the
blocks is small. Such an averaging of the hydraulic conduc-
tivity creates a pile-up effect, resulting in a finger with sat-
uration overshoot. Thus, the geometric mean is not the only
possible averaging choice; for example, the harmonic mean
can also be used. In the semi-continuum model, we use the
geometric mean because it is shown that using this type of
averaging is the most appropriate in the case of random pore
networks (Jang et al., 2011).

We can summarize the role of (1) the appropriate aver-
age of the hydraulic conductivity (for instance the geomet-
ric mean) and (2) the scaling of the retention curve as fol-
lows. The geometric mean is essential to create the pile-

Figure 9. The role of the geometric mean of the hydraulic con-
ductivity and the scaling of the retention curve. Snapshot of the
saturation field for (a) the semi-continuum model and (b) without
utilizing the geometric mean of the hydraulic conductivity and the
scaling of the retention curve. Both simulations in panels (a) and
(b) are given at t = 25 min for Sin = 0.0003. The saturation values
are color coded according to the color bar on the right.

up effect (saturation overshoot), while the effect of scaling
the retention curve is to preserve this saturation overshoot
for 1x→ 0. If (1) and (2) were not utilized in the semi-
continuum model, then diffusion-like flow patterns would al-
ways be produced with a monotonic saturation profile. This
behavior is demonstrated for the initially almost dry medium
in Fig. 9. The used distribution of the intrinsic permeabil-
ity is shown in Fig. 3. A typical finger with saturation over-
shoot is produced for the semi-continuum model (Fig. 9a),
while, without (1) and (2), a monotonic diffusion-like pro-
file is formed (Fig. 9b). In Vodák et al. (2022), we have
demonstrated that the overshoot behavior is not lost in the
limit dx→ 0 (for the numerical convergence, see Figs. 4–6
in Vodák et al., 2022). Thus, the semi-continuum model does
not converge to the RE, even if the block size goes to zero.
It converges to a new type of hysteretic partial differential
equation defined by Eq. (8) that – to our knowledge – has not
been studied so far. We invite the porous media community to
study the semi-continuum model and its limit because, so far,
it has been proven to capture all of the complex and counter-
intuitive features of unsaturated homogeneous porous media
flow that have been observed and reported in the literature
well.

5 Conclusions

It is known from infiltration experiments that unsaturated
porous media flow patterns depend on the initial saturation
of the medium in a complex way. Going from an initially
dry medium to an initially wet medium, the flow pattern
changes from a finger-like regime with a pronounced satura-
tion overshoot to a diffusion-like regime with no overshoot.
During the transition, several finger characteristics (velocity,
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overshoot magnitude, and finger width) change in a non-
monotonic way. This complex behavior is called Bauters’
paradox, and the standard continuum mechanics-based the-
ory has been unable to reproduce it.

Here, we introduced a semi-continuum model (discrete
in space and continuous in time) which is able to correctly
reproduce all the observed features of Bauters’ paradox.
The semi-continuum model implements a physically rele-
vant scaling of the retention curve – the slope of the retention
curve decreases with decreasing block size. This model cor-
rectly reproduces the flow patterns both for an initially dry
medium and an initially wet porous medium.

Appendix A

Figure A1 shows a snapshot of the saturation field at 25 min
for seven different values of the initial saturation. The distri-
bution of the intrinsic permeability is not included; i.e., the
medium is perfectly homogeneous. The effect of the in-
trinsic permeability distribution is pronounced for the ini-
tially dry porous medium, while for the initially wet porous
medium, this effect is negligible. This is expected because,
in the case of diffusion-like regime, small changes in intrin-
sic permeability do not have a significant effect on the flow.
The artificial-looking behavior for the initially dry porous
medium is eliminated if a more realistic porous medium is
used for the simulations; i.e., if the distribution of the intrin-
sic permeability is included.

Figure A1. Snapshot of the saturation field at 25 min for seven different values of the initial saturation. The distribution of the intrinsic
permeability is not included. Saturation values are color coded according to the color bar on the right. Initial saturation of the medium
increases from left to right.
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Figure A2. The distribution of the intrinsic permeability κ (m2). The distributions satisfy the following: (a) κmax/κmin ≈ 2.60,
(b) κmax/κmin ≈ 2.50, (c) κmax/κmin ≈ 3.40, (e) κmax/κmin ≈ 2.45, (f) κmax/κmin ≈ 2.35, (g) κmax/κmin ≈ 3.90, and (h) κmax/κmin ≈
3.50. Intrinsic permeability values are color coded according to the color bar on the right.

Figure A3. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 2.60 (the distribution in Fig. A2a). Saturation values are color coded according to the color bar on the right.

Figure A4. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 2.50 (the distribution in Fig. A2b). Saturation values are color coded according to the color bar on the right.
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Figure A5. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 3.40 (the distribution in Fig. A2c). Saturation values are color coded according to the color bar on the right.

Figure A6. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 2.45 (the distribution in Fig. A2e). Saturation values are color coded according to the color bar on the right.

Figure A7. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 2.35 (the distribution in Fig. A2f). Saturation values are color coded according to the color bar on the right.

Hydrol. Earth Syst. Sci., 27, 1279–1300, 2023 https://doi.org/10.5194/hess-27-1279-2023



J. Kmec et al.: Semi-continuum modeling to explain Bauters’ paradox 1293

Figure A8. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 3.90 (the distribution in Fig. A2g). Saturation values are color coded according to the color bar on the right.

Figure A9. Snapshot of the saturation field at 25 min for seven different values of the initial saturation for the distribution which satisfies
κmax/κmin ≈ 3.50 (the distribution in Fig. A2h). Saturation values are color coded according to the color bar on the right.

Appendix B

B1 Effect of the intrinsic permeability and dynamic
viscosity on the flow regime

Increasing the intrinsic permeability κ has the same effect
as decreasing the parameter µ, and vice versa. Therefore, a
fraction κ

µ
is used for the sensitivity analysis of both these pa-

rameters. The baseline values of κ andµ are given in Table 1.
Five different values b · κ

µ
were examined, where b = 0.50,

0.75, 1.00, 1.50, and 2.00. Obviously, baseline simulations
are given for b = 1.00. Figure B2 shows the width and the
velocity of the fingers (moisture profiles) 25 min from the
beginning of infiltration for five different values of b and for
seven different values of initial saturation Sin. For a given
value b and Sin, the average width and velocity of the mois-
ture profile of four different distributions of the intrinsic per-
meability were calculated and plotted.

It can be seen in Fig. B2a that, as parameter b increases,
the width of the moisture profiles increases for higher ini-
tial saturation. For lower initial saturation, the effect of b
is negligible. This is because, with increasing parameter b,
diffusion-like behavior is observed for lower values of ini-
tial saturation. The transition between the finger-like and
diffusion-like regimes is clearly evident for the initial satu-
ration, for which the width of the moisture profiles increases
rapidly. For instance, for b = 2.00 and b = 1.50, the rapid in-
crease can be already seen for Sin = 0.02. For lower values of
b, diffusion-like behavior is observed for higher values of ini-
tial saturation. For clarity, a snapshot of the saturation field at
25 min for the intrinsic permeability distribution defined by
Fig. B1a is shown in the right panel of Fig. B5. As for the
moisture profile width, the velocity of the moisture profiles
also increases with increasing b, as can be seen in Fig. B2b.
This is expected because the parameter b directly affects the
magnitude of the flow.
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Figure B1. The distribution of the intrinsic permeability κ (m2)
used for the sensitivity analysis of Bauters’ paradox. The distribu-
tions satisfy the following: (a) κmax/κmin ≈ 3.40, (b) κmax/κmin ≈
3.48, (c) κmax/κmin ≈ 2.28, and (d) κmax/κmin ≈ 2.42. Intrinsic
permeability values are color coded according to the color bar on
the right.

Finally, it can be seen that Bauters’ paradox is observed
for all values of b. Therefore, the non-monotonic behavior of
the width and the velocity of the moisture profiles is not de-
pendent on intrinsic permeability and/or dynamic viscosity.

B2 Effect of relative permeability on the flow regime

The relative permeability function k(S) is given by Eq. (3).
The function contains a free parameter λ(−), and therefore,
the effect of the relative permeability on the flow regime is
tested by using five different values of λ ranging from 0.6 to
1.0. The baseline simulations are given for λ= 0.8. Note that
the parameter λ affects the value of the relative permeability,
especially for an initially dry porous medium. For the lowest
initial saturation used for simulations (Sin = 0.0003), the rel-
ative permeability is more than 25 times larger for λ= 0.6
compared to λ= 1.0. In contrast, it is approximately 3.6
times larger for Sin = 0.04. As mentioned above, 28 differ-
ent simulations were performed for each λ with variable ini-
tial saturation and intrinsic permeability distribution. Again,
a snapshot of the saturation field at 25 min for the intrinsic
permeability distribution defined by Fig. B1a is shown in the
left panel of Fig. B6.

Figure B3 shows the width and the velocity of the fin-
gers (moisture profiles) 25 min from the beginning of infil-
tration for five different values of λ and for seven different
values of initial saturation Sin. For a given value of λ and Sin,
the average width and velocity of the four different distribu-
tions of the intrinsic permeability is calculated and plotted.
With decreasing λ (the relative permeability is increasing),
the diffusion-like behavior is observed for lower initial satu-
ration; hence, the width of the moisture profile is increasing.

This is expected because the effect of relative permeability
on the flow regime should be similar to the effect of intrin-
sic permeability and dynamic viscosity (see Fig. B2a). Note
that the effect of relative permeability is more pronounced
because the relative permeability varies more significantly
for different values of λ compared to the sensitivity analy-
sis shown in Fig. B2.

The velocity of the moisture profiles is increasing with de-
creasing λ for lower initial saturation values. However, this
does not apply for initial saturation Sin = 0.02 and higher.
This is because, for lower λ, a diffusion-like behavior is ob-
served for lower values of initial saturation; hence, the mois-
ture profile slows down significantly.

Bauters’ paradox is again observed for all values of λ. As
λ increases, both the minimum width and maximum veloc-
ity occur for higher values of initial saturation. This is be-
cause the diffusion-like behavior occurs at higher values of
initial saturation. The manifestation of Bauters’ paradox is
thus shifted to higher initial saturation values. This can also
be seen in Fig. B2, but the effect is not so pronounced.

B3 Effect of the retention curve on the flow regime

The effect of the retention curve on the flow regime is tested
using different parameters αw and αd related to the main wet-
ting and main draining branches, respectively. This is done
by multiplying the basic values of the parameters αw and αd
(given in Table 1) by the free parameter α. Both values αw
and αd are multiplied by the same parameter α ranging from
0.70 to 1.30. Obviously, the baseline simulations are given
for α = 1.00. The parameters nw and nd are fixed and are
given in Table 1.

Note that, with increasing α, the main branches become
flatter. This is analogous to using a porous medium with
coarser grains. On the other hand, as α decreases, the main
branches become steeper, which is analogous to using a
porous medium with finer grains. Figure B4 shows the width
and the velocity of the fingers (moisture profiles) 25 min
from the beginning of infiltration for five different values of α
and for seven different values of initial saturation Sin. For a
given value α and Sin, the average width and velocity of the
four different distributions of the intrinsic permeability is cal-
culated and plotted. Again, a snapshot of the saturation field
at 25 min for the intrinsic permeability distribution defined
by Fig. B1a is shown in the right panel of Fig. B6. As α de-
creases, the width of the moisture profiles increases rapidly
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Figure B2. The effect of the intrinsic permeability and dynamic viscosity on the flow regime. The width (a) and the velocity (b) of the
finger (or wetting front) at t = 25 min is plotted against the initial saturation for five different values of b · κµ . The average of four different
distributions of the intrinsic permeability is plotted.

Figure B3. The effect of the relative permeability on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) at
t = 25 min is plotted against the initial saturation for five different values of parameter λ. The average of four different distributions of the
intrinsic permeability is plotted.

because the diffusion-like behavior is observed for lower val-
ues of initial saturation. This is consistent with experimen-
tal observations, as the diffusion-like behavior is more read-
ily observed in porous media with finer grains compared to
coarser grains (see, e.g., the experiments in Cremer et al.,
2017). Next, the velocity of the moisture profiles decreases
as α decreases. This is expected because, at lower values of
α, the flow behaves in a much more diffusion-like manner,
and therefore, the moisture profiles are slower.

Bauters’ paradox occurs for all tested values α. Moreover,
similarly to the effect of the relative permeability, the min-
imum width and maximum velocity occur for higher ini-
tial saturation as α increases, so that the manifestation of
Bauters’ paradox is shifted to higher initial saturation values.
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Figure B4. The effect of the retention curve on the flow regime. The width (a) and the velocity (b) of the finger (or wetting front) at
t = 25 min is plotted against the initial saturation for five different values of parameter α. The averages of four different distributions of the
intrinsic permeability are plotted.

Figure B5. A snapshot of the saturation field for the intrinsic permeability distribution shown in Fig. B1a for seven different values of initial
saturation Sin and five different values of qB (left column) and for seven different values of initial saturation Sin and five different values of
b (right column). For the left column, times are scaled according to the boundary flux qB; thus, a snapshot of the saturation field is shown at
t = 100,50,25,12.5, and 6.25 min for qB = 2,4,8,16, and 32× 10−5 m s−1, respectively. For the right column, times are given at 25 min.
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Figure B6. A snapshot of the saturation field at 25 min for the intrinsic permeability distribution shown in Fig. B1a for seven different values
of initial saturation Sin and five different values of λ (left column) and for seven different values of initial saturation Sin and five different
values of α (right column).

Code and data availability. The software code that produced the
simulations is written in MATLAB and can be downloaded from
https://doi.org/10.5281/zenodo.6837742 (Kmec, 2022). Simulation
data that are needed to create the plots included in the paper can be
downloaded from https://doi.org/10.5281/zenodo.7657002 (Kmec
et al., 2022). Please do not hesitate to contact the corresponding au-
thor if you encounter any problems when downloading the software
code or simulation data.
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