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Abstract. The rapid development of droughts, referred to
as flash droughts, can pose serious impacts on agriculture,
the ecosystem, human health, and society. However, its def-
inition, using pentad-averaged soil moisture, could result in
low accuracy in assessing the drought occurrence, making
it difficult to analyze various factors controlling the forma-
tion of flash droughts. Here we used a stochastic water bal-
ance framework to quantify the whole probability structure
of the timing for soil moisture dropping from a higher level
to a lower one. Based on this framework, we can theoreti-
cally examine the nonlinear relationship between the rapid
decline rate of soil moisture and various hydrometeorologi-
cal factors and identify possible flash drought risks caused by
less rainfall (e.g., long dry spells), higher evapotranspiration
(e.g., extreme heat waves), lower soil water storage capacity
(e.g., deforestation), or a combination thereof. Applying this
framework to the global datasets, we obtained global maps
of the average time for drought development and the risks
of flash drought. We found that possible flash drought de-
velopment in humid regions, such as southern China and the
northeastern United States, calls particular attention to the
need for flash drought monitoring and mitigation.

1 Introduction

Drought, usually defined as a prolonged period of water
scarcity, is one of the major natural disasters that has influ-
enced nearly 40 % of the world population (Hamdy et al.,

2003). The rapid intensification of drought is particularly
detrimental, such as the drought in 2012 in the central United
States, which has long-term impacts on agriculture, ani-
mal husbandry, navigation, and employment (Hoerling et al.,
2014) and was estimated to be the costliest drought event in
USA history, with total losses of USD 35 billion (Grigg and
Neil, 2014). The rapid intensification of drought has recently
received much research attention, and various indices have
been proposed to define the rapid intensification of drought
or flash drought. Based on hydrometeorological variables
such as evapotranspiration and precipitation, Mo and Letten-
maier (2015) identified two types of flash drought primarily
caused by heat waves and precipitation deficit, both of which
can be accurately characterized as the rapid intensification of
drought conditions (Liu et al., 2020). Moreover, soil water
capacity is associated with vegetation dynamics and water
balance, which acts as a buffer zone to reduce the variation
in soil moisture, thus also influencing the drought develop-
ment (Wang et al., 2013; Gao et al., 2014; Laio et al., 2001a).
While traditional drought indices and monitoring systems
(e.g., the Standardized Precipitation Evapotranspiration In-
dex) do not promptly respond to the rapid occurrence of
drought events (Ford et al., 2015; Zhang et al., 2017; Moham-
madi et al., 2022), soil moisture has been argued to be a use-
ful indicator for characterizing a flash drought (Hunt et al.,
2009; Mozny et al., 2012; AghaKouchak et al., 2015). A flash
drought event is usually identified when the pentad-averaged
(5 d average) soil moisture has dropped from a higher level
(e.g., 40th percentile) to a lower one (e.g., 20th percentile) in
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20 d or fewer (Otkin et al., 2016; Ford and Labosier, 2017;
Basara et al., 2019; Nguyen et al., 2019; Lisonbee et al.,
2021; Osman et al., 2021; Zhang et al., 2022), and subse-
quent studies have also refined the onset and end of flash
drought events (Yuan et al., 2018, 2019). Readers may refer
to a more comprehensive review of the flash drought defini-
tions, for example, by Lisonbee et al. (2021).

While these indices based on pentad-averaged soil mois-
ture reduce the impacts of extreme soil moisture fluctuation
and are valuable for characterizing drought behaviors, the
timing of soil moisture crossing any threshold has a coarse
temporal resolution of 5 d. This may be less accurate for a
drought occurrence within 20 d or fewer, resulting in a rel-
ative bias of higher than 25 % and thus further complicat-
ing the assessment and identification of hydrometeorological
factors contributing to the flash drought. An illustrative ex-
ample based on a water balance model, introduced in Sect. 2,
is given in Fig. 1, which shows both the time series of instan-
taneous soil moisture (s; solid lines in Fig. 1a) and pentad-
averaged soil moisture (s5; solid lines in Fig. 1c). For the
prescribed hydrometeorological factors, it takes 15 d for s to
decrease from the 40th to the 20th percentile but 15–20 d
for s5. When varying the soil water capacity w0 (Fig. 1b)
or total rainfall rate by a factor of k (Fig. 1d), one can find
zigzagged lines of s5 crossing the threshold, suggesting an
insensitive response of the traditional flash drought index to
w0 and k. While this problem may be partially solved by us-
ing a smoothing technique or changing averaging windows,
it essentially stems from the probabilistic structure of the soil
moisture evolution, which requires further exploration for the
accurate assessment of flash drought.

To this end, here we provide a stochastic framework and
its crossing properties to quantify the rapid intensification of
drought. Instead of counting drought events and justifying
the proper smoothing windows to eliminate extreme fluctu-
ations in soil moisture, we describe the whole probabilistic
structure of the soil moisture crossing different thresholds,
which theoretically counts infinitely more drought events and
smooths the extreme fluctuations over the whole spectrum
of soil moisture levels. Under this framework, we can cal-
culate the average time required for soil moisture to decline
from the 40th to the 20th percentile and compare the rapid
decline rate of soil moisture under different hydrometeoro-
logical conditions, thus providing an efficient and objective
tool for analyzing the rapid intensification of drought. The
paper is organized as follows: Sect. 2 introduces the stochas-
tic framework, which is used to analyze various hydrometeo-
rological factors contributing to the rapid decline rate of soil
moisture and identify global patterns of flash drought risks
in Sect. 3. Section 4 discusses other factors associated with
drought, and the conclusions are summarized in Sect. 5.

2 Theory

To characterize the flash behavior of drought, we use, without
loss of generality, the minimalist soil water balance frame-
work (Porporato et al., 2004; Porporato and Yin, 2022).

w0
dx(t)

dt
= R(t)−E(x(t), t)−LQ(x(t), t), (1)

where x is the relative soil moisture, ranging from 0 at the
wilting point to 1 around field capacity, w0 is water storage
capacity in the root zone, andR,E, and LQ are rainfall, evap-
otranspiration, and deep leakage and/or runoff, respectively.
In the water balance model, E is assumed to be a function of
soil moisture and potential evapotranspiration, as follows:

E = f (Emax,x)= x Emax, (2)

where the last equality assumes that E linearly increases
from 0 for x = 0 to Emax for x = 1 in the minimalist frame-
work. The excessive rainfall at x = 1 is converted to LQ.
When assuming that the rainfall is a marked Poisson pro-
cess, with rainfall rate of λ and an exponentially distributed
rainfall depth of mean α, then we can express the probabil-
ity density function (PDF) of x at the steady state, p(x), as
follows (Porporato et al., 2004):

p(x)=
γ λ/η

0(λ/η)−0(λ/η,γ )
e−γ xxλ/η−1, (3)

where γ = w0/α, η = Emax/w0, and 0(·) and 0(·, ·) are the
complete and incomplete gamma functions, respectively. The
cumulative distribution function (CDF) of x can be found by
integrating Eq. (3) as follows:

P(x)=
0(λ/η)−0(λ/η,γ x)

0(λ/η)−0(λ/η,γ )
. (4)

The inverse of CDF is the quantile function of x, which pro-
vides soil moisture values for the given percentiles.

Following the flash drought definition given by Ford and
Labosier (2017) and many others, we measure the timing for
the drop in relative soil moisture from a high level x1 (e.g.,
40th percentile) to a low level x2 (e.g., 20th percentile). In
our stochastic framework, this timing is also a random vari-
able, tx1↓x2 . While its whole distribution is difficult to obtain,
its mixed feature with both continuous and discrete parts is
evident (Gardiner, 1985). When there is no rainfall, the soil
moisture decreases, following the fast routine from x1 to x2,
which can be found by solving Eq. (1) without rainfall and
runoff (i.e., R = LQ= 0), as follows:

tmin =−
1
η

ln
(
x2

x1

)
. (5)

The atom probability of this no-rainfall condition in a Pois-
son process is e−λtmin (Last and Penrose, 2017). In the min-
imalist case, the continuous part tends to be an exponen-
tial distribution that is shifted by tmin, as demonstrated in
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Figure 1. An illustrative example of drought occurrence. A water balance model in Sect. 2 is used to simulate time series of (a) rainfall,
instantaneous soil moisture s, and (c) pentad-averaged soil moisture s5. The first passage time (FPT) from the 40th to the 20th percentile is
calculated (b) by varying the soil water capacity w0 and (d) by changing the rainfall rate by a factor of k. The parameters in panels (a), (c),
and (d) are given as follows: potential evapotranspiration Emax = 4 mm d−1 and water storage capacity w0 = 80 mm.

Fig. 2. Therefore, we can approximate the whole distribution
of tx1↓x2 as follows:

f (tx1↓x2)≈ e
−λtminδ(tx1↓x2 − tmin)

+ (1− e−λtmin)βe−β(tx1↓x2−tmin), (6)

where δ(·) is the Dirac delta function, and β is the parameter.
The cumulative distribution function (CDF) of tx1↓x2 can be
obtained by integrating Eq. (6), as follows:

F(tx1↓x2 )=

tx1↓x2∫
tmin

f (τ)dτ

=

{
0 tx1↓x2 < tmin,

1− e−β(tx1↓x2−tmin)+ e−β(tx1↓x2−tmin)−λtmin tx1↓x2 ≥ tmin,
(7)

where τ is an integration variable. This CDF can be used
to quantify the risk (or probability) of the first passage time
as being lower than any given threshold. Moreover, the ex-
pectation is often referred to as the mean first passage time
(MFPT), tx1↓x2 , as follows (Rodríguez-Iturbe and Porporato,
2004):

tx1↓x2 =

x1∫
x2

1
η2u2p(u)

[λ− λP (u)+ ηup(u)]du, (8)

which does not have an explicit solution due to the pres-
ence of P(u)/p(u) in the integral. Codes for the numerical

integration with different parameters are available at https:
//github.com/yxshot/MFPT (last access: 25 October 2022).
Matching this mean value with its PDF in Eq. (6) yields the
parameter β, as follows:

β =
1− e−λtmin

tx1↓x2 − tmin
. (9)

Besides the risks given in Eq. (7), the variance of the first
passage time (VFPT), σ 2

x1↓x2
, could roughly quantify the un-

certainties in the crossing time and can be expressed as fol-
lows:

σ 2
x1↓x2

=

∞∫
tmin

(tx1↓x2 − tx1↓x2)
2f (tx1↓x2)dtx1↓x2

=
(
tmin− tx1↓x2

)2
e−λtmin

+
(
1− e−λtmin

)[
2β−2

+
(
tmin− tx1↓x2

)
(
tmin+ 2β−1

− tx1↓x2

)]
. (10)

Therefore, the distributions of tx1↓x2 in Eq. (6) along with
its CDF in Eq. (7), the mean in Eq. (8), and the variance
in Eq. (10) provide comprehensive metrics for quantifying
the rapid intensification of drought. As a starting point for
applying this framework, here we only used the minimal-
ist model for a demonstration, and a more general form of
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Figure 2. (a) Quantile function for soil moisture (i.e., the inverse of Eq. 4) along with the 20th and 40th percentiles of soil moisture marked by
circles. (b) Numerical simulation of Eq. (1) for relative soil moisture x from 40th to 20th percentiles, where rainfall is assumed to be a Poisson
process. (c) The empirical distribution of first passage time (sample size of 1000). The parameters are set as follows: average rainfall depth
α = 12 mm, rainfall rate λ= 0.3 d−1, water storage capacity w0 = 83.2 mm, and potential evapotranspiration Emax = 5 mm d−1. Note that
the continuous part of the distribution tends to be exponential (i.e., linear in the logarithmic scale for the y axis) not only for the parameters
given in this example but also in the parameter space of Fig. 2.

the loss function for describing the risks of the flash drought
will be the subject of future research (see the discussion in
Sect. 4).

3 Results

3.1 Hydrometeorological impacts on the rapid decline
rate of soil moisture

The interaction among climate, soil, and vegetation controls
the water balance and influences drought occurrence (Mishra
and Singh, 2010; Chen et al., 2021; Hu et al., 2021). This is
theoretically analyzed here by using the framework devel-
oped in the last section with four hydrometeorological fac-
tors, i.e., rainfall frequency (λ), average rainfall depth (α),
potential evapotranspiration (Emax), and soil water storage
capacity (w0).

By fixing two factors and varying the other two, we can
find how hydrometeorological factors influence the mean
first passage time of the soil moisture dropping from the 40th
to the 20th percentile. Using this stochastic framework, we
found that less precipitation, stronger evapotranspiration, and
a lower water storage capacity can speed up the loss of soil
moisture, resulting in shorter MFPT (see Fig. 3a–c). While

the first two factors have been identified in previous stud-
ies, the last one is less extensively investigated, probably due
to the low resolution of the traditional pentad-averaged soil
moisture (although root depth or soil water storage capacity
may be one of the critical factors considered in the general
drought events; e.g., Passioura, 1983; Padilla and Pugnaire,
2007; Sehgal et al., 2021). When compared with the cross-
ing time from pentad-averaged soil moisture (e.g., Fig. 1), it
is clear that the crossing time of the ensemble average soil
moisture has smoother responses to the environmental fac-
tors, highlighting the importance of exploring the probabilis-
tic behaviors of water balance for assessing flash drought.

Specifically, a low water storage capacity accelerates the
loss of water, even in wet regions, where plenty of water is
converted into runoff (Fig. 3a), or in cold regions, where po-
tential evaporation is low (Fig. 3b). In contrast to the wa-
ter storage capacity, the impacts of the rainfall frequency or
potential evapotranspiration on MFPT tend to be less non-
linear (Fig. 3c). In arid regions with a high potential evapo-
transpiration rate, neither increasing water storage capacity
nor rainfall rate can significantly slow down the rate of mois-
ture decline (e.g., upper right corners of Fig. 3b and c) due
to the significant water loss. In semi-arid or semi-humid re-
gions, the occurrence of flash droughts may require the com-
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Figure 3. The influence of hydrometeorological factors on the mean first passage time (days) of soil moisture dropping from the 40th
to the 20th percentile. w0 is water storage capacity in the root zone, λ is rainfall rate, α is average rainfall depth, and Emax is potential
evapotranspiration. The plus sign and asterisk (+ and ∗) correspond to the sites in Guangdong, China, and New York state, USA, for the
values of hydrometeorological factors and MFPT, respectively (see Fig. 4).

bined effects of several hydrological conditions (e.g., moder-
ate rainfall frequency and high potential evapotranspiration
or low water storage capacity; see Fig. 3a and c).

Moreover, the interplay between the frequency and the
depth of rainfall can be analyzed by considering a fixed to-
tal precipitation αλ= const. Therefore, increasing λ means
frequent yet lighter rainfall, lowering the overall uncertainty
in the rainfall process. For saturation-excess runoff, a lower
rainfall uncertainty tends to reduce the runoff generation and
thus increase the MFPT, as shown in Fig. 3d. Similarly, a
larger soil water capacity provides deeper buffer zones for
uncertain rainfall, thus also increasing the MFPT and delay-
ing the rapid decline rate of soil moisture. Note that canopy
interception is not considered here, which may reduce the
water infiltrated into the soil and shorten the MFPT.

3.2 Timing of global drought occurrence

Besides the theoretical analysis of the drought occurrence,
our framework can also be used to diagnose the global pat-
terns of rapid drought occurrence using global hydrometeo-
rological datasets. The daily precipitation in the boreal sum-

mer of 2009–2018 was obtained from the Global Precipita-
tion Climatology Project (GPCP), which combines satellite
infrared microwave sounding observations and precipitation
observation data from more than 6000 ground stations at the
spatial resolution of 1◦ (Huffman et al., 1997, 2001). We cal-
culated the rainfall frequency as being the proportion of rainy
days and rainfall depth as the average depth of daily rain-
fall during rainy days. We calculated the average potential
evapotranspiration by using the CRU TS v4 (Climatic Re-
search Unit gridded Time Series version 4), which is one of
the most widely used observed climate datasets at a spatial
resolution of 0.5◦ (Harris et al., 2020). The global soil wa-
ter storage capacity of the root zone was obtained from the
International Satellite Land Surface Climatology Project, Ini-
tiative II (ISLSCP II), with a resolution of 1◦, which is de-
rived from the assimilation of the NDVI-FPAR (normalized
difference vegetation index and fraction of absorbed photo-
synthetically active radiation) and the atmospheric forcing
data (Kleidon, 2011).

We rescaled all these datasets to 0.5◦ spatial resolution and
substituted them into Eqs. (8) and (10) to find the global
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Figure 4. Global distribution of the mean first passage time (MFPT) in summer. The red boxes in panel (a) indicate the magnified areas in
panels (b) and (c), where New York state, USA (74◦W, 44◦ N), and Heyuan city, Guangdong province, China (115◦ E, 24◦ N), are marked
by red dots. The gray areas are hyper-arid regions, and other colored areas are those for which the MFPT of soil moisture drops from the
40th to the 20th percentile in fewer than 100 d. Desert regions (gray areas) are excluded from this analysis.

MFPT (see Fig. 4). We excluded hyper-arid regions, which
may be better characterized as being permanent drought con-
ditions. In general, lower MFPT is located in dry and/or hot
regions. It should be noted that regions with a MFPT of more
than 20 d are also present where the VFPT tends to be large
(see Fig. S1 in the Supplement). In these regions, large un-
certainties in the first passage time suggest that flash drought
is also possible due to the interannual variability in climate.
More precisely, the risks of flash drought, quantified by the
CDF of the first passage time, were presented in Fig. 5, which
show similar patterns to the global MFPT. Therefore, we only
focused on MFPT in the following analysis.

Specifically, the results show that, in summer, the soil
moisture in southern China and the United States decreases
rapidly, making these regions prone to a flash drought risk.
This is consistent with some recent observations and anal-
yses, which have shown increasing trends of flash drought
events in humid areas in China (Wang et al., 2016; Yuan
et al., 2019; Qing et al., 2022). Chen et al. (2019) also

found that flash drought events occurred mainly in the central
United States during the warm season. We focused on one
site in the eastern United States and another in southeastern
China, which are both marked in Fig. 3c, according to their
MFPT and hydrological conditions, and in Fig. 4, based on
their geographical location. While the decline in soil mois-
ture at both sites is after around 25 d, the causes are somehow
different. With approximately the same water storage capac-
ity, the site in southeastern China has adequate precipitation
but higher evaporation, whereas the site in the eastern United
States has relatively lower evapotranspiration but less pre-
cipitation. These fall into the two categories of flash drought
described by Mo and Lettenmaier (2015, 2016), namely a
heat-wave-based flash drought caused by increased evapo-
transpiration and the precipitation-deficit-based flash drought
caused by insufficient precipitation. From our stochastic
framework, it might be interesting to define a third type of
flash drought related to the low water capacity in regions un-
dergoing rapid urbanization or deforestation. This requires
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Figure 5. Global risk of flash drought occurrence. The risk is calculated from Eq. (7) as being the probability of soil moisture dropping from
the 40th to the 20th percentile within 20 d or fewer. Similar patterns can be found by using different thresholds.

further investigation and remains an exciting and open area
of research in hydrometeorology.

4 Discussion

We have provided a stochastic framework to quantify the
timing of soil moisture crossing from one level to another
to characterize the occurrence of flash droughts. While, con-
ventionally, pentad-averaged soil moisture has been used to
estimate the crossing properties, the soil moisture at daily
timescales in our stochastic framework is not directly used
to characterize the flash drought. Instead, the ensemble aver-
ages of the first passage time (i.e., averaged over many real-
izations of the stochastic processes) are much smoother than
the first passage time for the given hydrometeorological con-
dition and are used to characterize the rapid intensification of
drought. The crossing properties of the pentad-averaged soil
moisture should asymptotically approach the MFPT, which
could provide a more accurate description of the soil mois-
ture dry-down process.

Besides the soil moisture, evaporative stress ratios
(E/Emax) or evaporation deficit (E−Emaxx) were also used
to characterize flash droughts (e.g., Li et al., 2020; Christian
et al., 2021). In the minimalist framework with E = xEmax,
the evaporative stress ratio is already equivalent to x. In the
more general form, when modeling evaporation as a function
of soil potential evaporation and soil moisture, we can model
evapotranspiration with different soil water thresholds (e.g.,
wilting point and field capacity) and still obtain the statis-
tics of crossing properties (Rodríguez-Iturbe and Porporato,

2004). In this general framework, these two new metrics can
be expressed as functions of Emax and x. If daily variations
in Emax were assumed to have limited impacts on soil water
balance (e.g., Daly and Porporato, 2006), then these metrics
can be expressed as the derived distributions of soil moisture,
thus allowing us to analyze flash droughts using the corre-
sponding percentiles and crossing properties of the evapora-
tive stress ratios or deficits.

In the minimalist model, drought was explicitly diagnosed
with only four hydrometeorological parameters. This analy-
sis, however, can be extended to explore other important fac-
tors. In this regard, we specifically consider the impacts of
deforestation and heat waves. Deforestation converts forests
into cropland or savanna, possibly reducing the rooting depth
and soil water storage capacity (Kleidon and Heimann, 1999;
Nijzink et al., 2016; O’Connor et al., 2019). As shown in
Fig. 3, a lower soil water storage capacity (w0) tends to re-
duce the mean first passage time of soil moisture, which
drops from the 40th to the 20th percentile, thus demonstrat-
ing the possible impacts of deforestation on flash droughts.

Moreover, deforestation also tends to increase surface
albedo and thus influences the surface energy balance and
potential evaporation rate (Dirmeyer and Shukla, 1994; Cera-
soli et al., 2021). A smaller Emax increases the mean first
passage time and therefore reduces the likelihood of a flash
drought (see Fig. 3b and c). Deforestation may also change
soil properties, such as organic content, retention curve, and
infiltration rate (Runyan et al., 2012; Veldkamp et al., 2020),
which inevitably influence the hydrological cycle and soil
moisture dynamics (Laio et al., 2001b). Such changes can be
included in the full stochastic framework (e.g., Rodríguez-

https://doi.org/10.5194/hess-27-1077-2023 Hydrol. Earth Syst. Sci., 27, 1077–1087, 2023



1084 Y. Li et al.: Stochastic framework for flash drought

Iturbe and Porporato, 2004) to diagnose the indirect impacts
of deforestation on flash drought.

At an even larger scale, deforestation may also change sur-
face temperature and precipitation through land–atmosphere
interaction (Shukla et al., 1990; Salazar et al., 2016). De-
forestation may change the partitioning of the surface heat
flux and influence the atmospheric boundary layer dynam-
ics, thereby controlling the transition from shallow to deep
convection (Betts et al., 1996; Findell and Eltahir, 2003; Yin
et al., 2015; Tuttle and Salvucci, 2016; Cerasoli et al., 2021).
A lower precipitation rate corresponds to a faster drop in
soil moisture and a higher probability of a flash drought (as
shown in Fig. 3a and c).

As one of the important contributors to flash drought,
heat waves are often accompanied by high temperatures and
strong solar radiation Stott et al. (2004). From the Penman
equation (see Eq. S1 in the Supplement), we expect higher-
equilibrium evaporation and larger Emax. Moreover, dry or
moist heat waves may also have abnormal vapor pressure
deficit (Stefanon et al., 2012), which may influence the dry-
ing power of the air and also Emax. Therefore, heat waves
could control the soil moisture dynamics and drought occur-
rence by changing the potential evapotranspiration.

5 Conclusions

We have used a stochastic framework to quantify the rapid
intensification of drought. Within the minimalist soil water
balance framework, we provided the mean first passage time
for the relative soil moisture, dropping from different lev-
els, which was then used to identify different types of flash
droughts. We found that not only the precipitation and evap-
otranspiration frequently mentioned in previous studies but
also the water storage capacity discussed here could all play
major roles in controlling the rapid decline rate of soil mois-
ture. By applying this framework and analyzing various hy-
drometeorological factors, we identified a rapid decline in
soil moisture in some wet areas due to high evapotranspi-
ration rates, such as southern China and the northeastern
United States.

In response to global warming, the frequency of flash
droughts may increase, posing great risks to our society. Un-
derstanding the causes of these drought events is a neces-
sary step for drought warning, preparation, and mitigation.
The stochastic framework developed here is efficient at diag-
nosing the impacts of hydrometeorological factors and thus
could provide an objective tool for monitoring flash drought
events. Future work could focus on applying this stochas-
tic framework and using the up-crossing properties of the
stochastic process to evaluate the drought mitigation strate-
gies by quantifying the timing of recovering from a low soil
moisture level to a higher level (e.g., setting x1 < x2 for
tx1↑x2 ).
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