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Abstract. Although radar-based quantitative precipitation
estimation (QPE) has been widely investigated from various
perspectives, very few studies have been devoted to extreme-
rainfall QPE. In this study, the performance of specific dif-
ferential phase (KDP)-based QPE during the record-breaking
Zhengzhou rainfall event that occurred on 20 July 2021 is
assessed. Firstly, the OTT Parsivel disdrometer (OTT) obser-
vations are used as input for T-matrix simulation, and dif-
ferent assumptions are made to construct R(KDP) estima-
tors. KDP estimates from three algorithms are then com-
pared in order to obtain the best KDP estimates, and gauge
observations are used to evaluate the R(KDP) estimates.
Our results generally agree with previous known-truth tests
and provide more practical insights from the perspective of
QPE applications. For rainfall rates below 100 mm h−1, the
R(KDP) agrees rather well with the gauge observations, and
the selection of the KDP estimation method or controlling
factor has a minimal impact on the QPE performance pro-
vided that the controlling factor used is not too extreme.
For higher rain rates, a significant underestimation is found
for the R(KDP), and a smaller window length results in a
higher KDP and, thus, less underestimation of rain rates. We
show that the QPE based on the “best KDP estimate” can-
not reproduce the gauge measurement of 201.9 mm h−1 with
commonly used assumptions for R(KDP), and the poten-
tial factors responsible for this result are discussed. We fur-
ther show that the gauge with the 201.9 mm h−1 report was

in the vicinity of local rainfall hot spots during the 16:00–
17:00 LST period, while the 3 h rainfall accumulation center
was located southwest of Zhengzhou city.

1 Introduction

Extreme rainfall can lead to high-impact events, such as soil
erosion, debris flows, and flash floods, and therefore poses
a serious threat to both life and property. In a warming cli-
mate, the occurrence frequency of regional extreme-rainfall
events is expected to increase (Allan and Soden, 2008; Donat
et al., 2016), and this increase is particularly highlighted in
regions of rapid urbanization (Zhang, 2020), where both the
intensity of precipitation and the risk of flooding tend to be
exacerbated (Zhang et al., 2018).

To mitigate potential damage induced by extreme-rainfall
events, great efforts have been devoted to improving the pre-
diction and monitoring of extreme rainfall. While the pre-
diction technologies based on numerical models are con-
fronting major challenges (Luo et al., 2020), a collection of
in situ and remote sensing instruments is in operation to ob-
serve precipitation (due to the development of surface ob-
serving systems). The “ground truth” of a surface precipita-
tion map is customarily made from rain gauge observations.
However, the distances between rain gauges are usually more
than several kilometers, and such “point” observations are in-
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Figure 1. (a) Topography over and around Zhengzhou overlaid with the locations of the two operational S-band dual-polarization radars
(black triangles), meteorological rain gauges (METE gauges; red dots), hydrological rain gauges (HYDRO gauges; blue dots), and one OTT
Parsivel disdrometer (OTT; black cross); (b) a satellite image of Zhengzhou city (modified from Google Maps); (c) hourly rain rate recorded
by the gauge and the OTT disdrometer located at the Zhengzhou national reference climatological station (34.71◦ N, 113.66◦ E; the site at
which the OTT disdrometer was deployed) on 20 July 2021; and (d) the 5 min horizontal wind speed (left axis) and direction (right axis)
from 14:00 to 18:00 LST. The light blue curves in panel (a) indicate county boundaries, and Zhengzhou city is outlined in dark green. Note
that the HYDRO gauges are widely distributed, although only those over Zhengzhou city are presented in panel (a).

adequate to represent the localized rainfall centers produced
by rapidly evolving storms (Schroeer et al., 2018). Gauge
measurements seem to be falling short with respect to sup-
porting flood control in urban areas, where the inhomogene-
ity of underlying surfaces and the complexity of fine-grained
drainage connections call for rainfall observations with fine
resolutions (Paz et al., 2020) and the simulated runoff is even
more sensitive to the spatial resolution than to the temporal
resolution (Bruni et al., 2015). Areal rainfall maps can be
seamlessly made with remote sensing observations. Weather
radars have been used for quantitative precipitation estima-
tion (QPE) based on the equivalent radar reflectivity fac-
tor (Ze), polarimetric observations (the differential reflectiv-
ity, ZDR; the specific differential phase, KDP; and the cross
correlation coefficient, ρHV) or attenuation effects. From the
perspective of rain drop size distribution (DSD) moments,
KDP and specific attenuation, corresponding to the estima-
tors of R(KDP) and R(A), respectively, are better correlated
with rain rates. Therefore, the R(KDP) and R(A) approaches
are more efficient than Ze-based ones with respect to re-
ducing uncertainties caused by DSD variability (Ryzhkov
et al., 2022). For lower rain rates, R(A) has shown appar-
ent advantages, whereas R(KDP) is optimal for heavy rain
(Ryzhkov et al., 2022). However, the accuracy of KDP esti-
mation can significantly depend on the methods used (Reimel
and Kumjian, 2021). To the best of our knowledge, the per-

formance of KDP-based heavy-rainfall estimation has hardly
been addressed, despite a large volume of works on radar-
based QPE (Schleiss et al., 2020; Cremonini et al., 2022).

On 20 July 2021, a devastating rainfall event hit
Zhengzhou (Fig. 1a), one of the largest cities in central
China, which hosts over 12 million residents. This event took
place following continuous, relatively weaker rainfall on
18 and 19 July and caused severe flooding over Zhengzhou
city that led to around 300 fatalities and tremendous eco-
nomic losses (Yin et al., 2022). In Zhengzhou city, urban in-
frastructure is mostly constructed with impervious materials,
so-called “gray urbanization” (gray area in Fig. 1b), mak-
ing the city vulnerable to waterlogging in the presence of
short-duration extreme rainfall. Given the limited emergency
resources, it is imperative to accurately locate the worst-hit
area. The most intense rainfall was produced between 14:00
and 17:00 LST (local solar time) on 20 July (Yin et al., 2022)
(Fig. 1c). Although a gauge located in Zhengzhou (marked
with a black cross in Fig. 1a and b) reported the maximum
hourly rainfall of 201.9 mm at 17:00 LST, an hourly rainfall
rate exceeding or close to the historical record in mainland
China (Ding, 2019), the location and extremity of other local
rainfall hot spots are still unclear.

In this study, we aim to quantitatively assess the perfor-
mance of different KDP-estimation algorithms with respect
to this extreme-rainfall event and to analyze the areal precip-
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itation map over Zhengzhou city. The paper is organized as
follows: the data andKDP estimation methods are introduced
in Sect. 2; the methods for comparing KDP estimates from
different algorithms, constructing different R(KDP) estima-
tors, and merging radar observations at multiple elevation
angles are described in Sect. 3; Sect. 4 compares the QPE
performance of KDP estimated using different approaches;
the areal precipitation map over Zhengzhou city is analyzed
in Sect. 5; and conclusions are given in Sect. 6.

2 Data

2.1 Dual-polarization weather radars

Since the late 1990s, the nationwide China New Generation
Doppler Weather Radar (CINRAD) network has been built
in China and comprises over 200 new-generation Doppler
weather radars. CINRADs typically work in volume cover-
age pattern 21 mode, which consists of nine plan position in-
dicator scans (0.5, 1.5, 2.4, 3.3, 4.3, 6.0, 9.9, 14.6, and 19.5◦)
with a volumetric update time of 6 min. In recent years, more
than 100 CINRADs have been upgraded to dual-polarization
systems, and others are in the process of being upgraded.
As shown in Fig. 1a, two S-band dual-polarization CIN-
RADs are deployed in Luoyang city (34.5◦ N, 112.44◦ E)
and Zhengzhou city (34.704◦ N, 113.697◦ E), respectively.
Both the Luoyang and Zhengzhou radars have the same
configurations, e.g., a range resolution of 0.25 km, an az-
imuth resolution of 1◦, and a time resolution of 6 min.
Mount Song, located between Luoyang and Zhengzhou, is
about 0.9 km a.m.s.l. (above mean sea level), and the alti-
tude of the Luoyang radar is 0.209 km a.m.s.l. Therefore, the
mountains partially block the Luoyang radar’s lowest radar
beam (0.5◦); this may affect reflectivity observations, but
KDP is immune to this effect (Lang et al., 2009). The altitude
of the Zhengzhou radar is 0.18 km. We have checked the Lu-
oyang and Zhengzhou radar observations at different eleva-
tion angles, and no second-trip echoes can be identified. Due
to a power outage, Zhengzhou radar data were missing from
17:18 to 19:48 LST on 20 July 2021. However, the extreme-
precipitation event over Zhengzhou city was still success-
fully captured by the Zhengzhou radar, as the majority of
the precipitation system moved out of urban Zhengzhou af-
ter 17:00 LST.
KDP is one-half the range derivative of the differential

phase shift (8DP), while radars measure the total differential
phase shift, which is a combination ofKDP and the backscat-
ter differential phase (δ). The impact of δ on KDP is negligi-
ble at S-band, whereas it can be significant at shorter radar
wavelengths (Trömel et al., 2013). There are a number of
algorithms available for KDP estimation, and some of them
are accessible in the open-source Python ARM Radar Toolkit
(Py-ART; Helmus and Collis, 2016). Reimel and Kumjian
(2021) used a known-truth framework to evaluate the com-

monly used KDP estimation algorithms. They found that the
algorithm accuracy is dependent on the raw 8DP and con-
cluded that each algorithm has its apparent strengths and
weakness. They also showed that the method of Maesaka
et al. (2012) and linear programming (Giangrande et al.,
2013) can change the overall behavior between oversmooth-
ing and undersmoothing. This means that a couple ofKDP es-
timates generated with different tuned parameters may yield
a range of values that the “best KDP” falls within; neverthe-
less, it is challenging to determine the best control parameter.
In this study, we will assess the performance of using differ-
ent tuning parameters in KDP-based QPE. A brief introduc-
tion of KDP-estimation algorithms is given in the following:

– The operationally used KDP estimation algorithm in
CINRADs is a traditional least squares fitting (LSF)
method. As a regression approach, LSF is easy to im-
plement and is commonly used for estimating KDP for
weather radars. For a given window of smoothed 8DP,
linear regression is done to estimate KDP. The win-
dow length is adaptive and depends on observed Ze
(Wang and Chandrasekar, 2009). Due to this depen-
dence on Ze, which can be affected by data quality
issues (such as ground clutter), KDP estimates with
ρHV below 0.8 are removed.

– The linear programming (LP) algorithm assumes that
8DP monotonically increases with range and uses
self-consistency between Ze and KDP. As the self-
consistency relation is developed for rainfall, the algo-
rithm does not process 8DP values above the melting
layer (4.5 km in this study) nor in presence of hail. The
algorithm was proposed by Giangrande et al. (2013)
and is compiled in Py-ART (Helmus and Collis, 2016).
The user can define a self-consistency coefficient for
KDP–Ze as well as a self-consistency factor, or they can
use the default settings. In Py-ART, the self-consistency
factor is used to define the weight of the Ze–KDP re-
lationship on the final solution, and the default value
is 6× 104. For S-band radars, a self-consistency fac-
tor below 4×104 may degrade the estimation perfor-
mance (Reimel and Kumjian, 2021), whereas it should
be tuned for C-band radars (Cremonini et al., 2022).
In this study, the default setting in Py-ART was used.
We compared the 8DP reconstructed by the LP method
with the raw 8DP in radar radials and found that the
algorithm works reasonably well. In addition, the user
should set a window length in which a Sobel filter is
imposed, and the length of this window effectively af-
fects the smoothness of theKDP field. For a comparison
with Reimel and Kumjian (2021), we have tried the win-
dow lengths of 5 (0.75 km), 15 (3.75 km), 25 (6.25 km),
35 (8.75 km), and 45 (11.25 km) in this study.
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– The Maesaka algorithm assumes a monotonic increase
in 8DP below the melting layer, which is applicable
to rain. It applies a low-pass filter to smooth the ob-
served 8DP, and the effect that the low-pass filter has
on the final solution depends on a user-defined param-
eter Clpf. By changing the value of Clpf, the user can
control the amount of smoothing applied by the algo-
rithm. For a thorough introduction of the algorithm, the
reader is referred to Maesaka et al. (2012). Similar to
Reimel and Kumjian (2021), we have used Clpf values
of 100, 102, 104, and 106 for KDP estimation in this
study.

Note that the data quality of 8DP, which is also critical
for KDP estimation, can be heavily affected by ground clut-
ter, which usually leads to significant spikes in 8DP at cer-
tain ranges (r). To minimize the impact of those spikes on
KDP estimation, the following procedures were utilized:

– a linear fit was made to the raw 8DP(r) data for an
interval of 5 km, and the fitted values were labeled
as 8′DP(r);

– the point with |8DP(r)–8′DP(r)| exceeding 10◦ was
identified as clutter;

– a cubic spline interpolation was made to the identified
clutter points.

These steps can effectively remove the majority of clut-
ter signals; however, local perturbation of 8DP can be of
the order of 10◦ given that the area of interest is so close
to the radar. Therefore, we have also manually checked the
8DP fields and removed significant clutter signals.

2.2 Surface observations

The most widely used rainfall measuring instrument by op-
erational weather services is the tipping bucket rain gauge.
The buckets of these gauges are mounted on a fulcrum and
located below a funnel. Once one bucket is filled with water,
which is channeled through the funnel, it tips down and the
other bucket is raised. At the same time, a switch records an
electronic signal that is then converted to the amount of rain.
The gauge observations used in this study are from both me-
teorological (METE) and hydrological (HYDRO) rain gauge
stations. For the METE gauges, the volume of a bucket is
0.1 mm, which corresponds to the minimal detectable rain
accumulation of 0.1 mm. Every 1 min, the number of tips is
recorded. Liu et al. (2019) reported that the uncertainty of
such gauges is about 4 % for rain rates exceeding 10 mm h−1.
The HYDRO gauges employ tipping buckets as well, but the
instrument model differs from that of the METE gauges. The
minimal detectable rain accumulation of the HYDRO gauges
is 0.5 mm, and the time resolution is 1 h. The high tempo-
ral resolution of the METE gauges enables the inspection of
the data quality. For the HYDRO gauges with hourly mea-
surements, the inverse distance weighting (IDW) approach

(Chen and Liu, 2012) was implemented to yield an estimate
of hourly rainfall accumulation at a given HYDRO gauge
site. Observed values that were less than 50 % of the expected
value were then removed in order to identify the gauges that
were not working due to power outages. After data quality
control, 114 gauges were retained for use in this study.

Different from tipping bucket gauges, OTT Parsivel dis-
drometer (OTT) instruments measure rainfall by accounting
for every raindrop that severely attenuates the light signal
emitted from a laser sheet. This different measuring princi-
ple makes the OTT an independent instrument that can be
used to evaluate gauge observations. The OTT instrument de-
ployed close to the gauge is a second-generation OTT. Fig-
ure 1c compares hourly rain rate measurements recorded by
a rain gauge and by an OTT instrument at the Zhengzhou na-
tional reference climatological station on 20 July 2021. Dur-
ing most of the period, the OTT slightly overestimates hourly
rainfall accumulation compared with the gauge observations.
This may be attributed to the overestimation of large drops,
which is possibly caused by several factors, such as the as-
sumed oblate shape and the coincidence effect (Tokay et al.,
2013; Park et al., 2017).

2.3 Comparison of the Luoyang and Zhengzhou radar
observations

The Zhengzhou radar is located in the southeast of
Zhengzhou city, whereas the Luoyang radar is around
120 km from Zhengzhou city. As the lowest beam of the Lu-
oyang radar is about 2.2 km over Zhengzhou city whereas
the lowest beam of Zhengzhou radar is rather close to the
surface, the agreement between the Luoyang and Zhengzhou
radar observations is a potential issue that should be ad-
dressed. Given the fact that the hourly precipitation reached
a peak between 16:00 and 17:00 LST, radar retrievals during
this period were used for assessment. To provide a reference
for the operational service, we used KDP from the CINRAD
operational products (LSF method) in the comparison. The
lowest elevation angle of the Luoyang radar (0.5◦, the radar
beam is about 2.2 km over Zhengzhou city) was used, while
the selection of 1.5◦ for the Zhengzhou radar was due to sig-
nificant clutter issues at 0.5◦. A linear interpolation was ap-
plied to range gates that were severely affected by ground
clutter, as characterized by a ρHV value below 0.8. The raw
data were interpolated to a spatial resolution of 0.5 km using
Py-ART (Helmus and Collis, 2016). Note that we did not find
significant evidence of hail from the Luoyang radar ρHV ob-
servations; therefore, hail was anticipated to be absent below
2.2 km.

As shown in Fig. 1c, the heaviest rainfall over the area was
experienced around the Zhengzhou radar site from 16:00 to
17:00 LST, which may explain the breakdown of Zhengzhou
radar at 17:12 LST. Closer inspection of Fig. 2b shows that
the location of the precipitation center retrieved by the Lu-
oyang radar (black isolines) is to the east of that retrieved by
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the Zhengzhou radar. Yin et al. (2022) carried out numerical
simulations of this event and found that the storms were ver-
tically tilted in the eastward direction. The sampling height
of the Luoyang radar over Zhengzhou city was about 2 km,
while the Zhengzhou radar observed near-surface precipita-
tion. Therefore, the precipitation observed by the Luoyang
radar was further eastward than that observed the Zhengzhou
radar. In addition, warm-rain processes may also signifi-
cantly augment rain rates below the melting layer (Yu et al.,
2022). Given the effects discussed above, the Zhengzhou
radar observations were used for QPE in this study.

3 Methods

As pointed out by Bringi and Chandrasekar (2001), the ac-
curacy of KDP-based QPE is dependent not only on the
KDP estimation from radars but also on the parameterization
of R(KDP). This section will address these two respective
aspects.

3.1 Approaching the “best KDP estimate”

Calculation of KDP with the Maesaka and LP algorithms re-
quires presetting the Clpf and the window length, respec-
tively; this controls the extent of smoothing applied to 8DP.
Bringi and Chandrasekar (2001) concluded that the minimal
window length required for KDP estimation decreases with
precipitation intensity. Reimel and Kumjian (2021) further
showed that the best KDP estimate falls within a range of
values produced by varying the parameters in known-truth
simulations and that the retrieved KDP is heavily dependent
on the algorithm and tuning parameter employed for steep
real KDP regions. In this study, the Zhengzhou national ref-
erence climatological station hosts an OTT and the gauge
with the 201.9 mm h−1 report and is 3.15 km at 274◦ azimuth
from the Zhengzhou radar site. KDP estimates from differ-
ent algorithms using various tuning parameters over this site
were compared. Here, radar observations at elevation angles
of 1.5, 2.4, 3.3, and 4.3◦ were used to investigate the follow-
ing two assumptions:

1. The dependence of observed KDP on the viewing angle
is expected to be negligible at small radar elevation an-
gles, i.e., smaller than 4.3◦ (Bringi and Chandrasekar,
2001).

2. Due to the strong ground clutter contamination, we dis-
carded the data recorded at the lowest elevation an-
gle. KDP estimates at elevation angles of 1.5, 2.4,
3.3, and 4.3◦, corresponding to respective heights of
about 0.083, 0.132, 0.182, and 0.237 km over the sta-
tion, were used. Given the small range of heights, we
assume that the realKDP values over Zhengzhou station
at these elevation angles were about the same.

Bearing the above considerations in mind,KDP estimates us-
ing the Maesaka and LP algorithms are presented in Fig. 3.
Interestingly, our results resemble those presented in Fig. 16
of Reimel and Kumjian (2021) with respect to the following
aspects:

– A stronger dependence of KDP on the tuning parame-
ter is found for the LP algorithm than for the Maesaka
algorithm.

– The smaller window length used in the LP method gen-
erally leads to higher KDP values for heavy-rainfall pe-
riods. In comparison,KDP does not significantly change
when varying Clpf from 100 to 104 for the Maesaka al-
gorithm.

– LP can produce higher KDP values than the Maesaka
algorithm.

– In the presence of relatively light rainfall, such as before
15:00 LST, the longer window length in LP agrees better
with the Maesaka algorithm.

– KDP values retrieved from both the LSF and Maesaka
algorithms are less uncertain than LP.

However, the impact of changing the window length does
not seem to be as significant as in Reimel and Kumjian
(2021). The KDP values with a window length of 0.75 km,
which is expected to yield nearly the most extreme KDP
(Reimel and Kumjian, 2021), are comparable with the win-
dow length of 3.75 km (Fig. 3b). Thus, it appears that the
KDP estimated using the LP algorithm has reached “satura-
tion” at the window length of 3.75 km.

It should be noted that nonuniform radar beam filling was
not considered in idealized known-truth tests (Reimel and
Kumjian, 2021), but it can lead to local perturbation of KDP
(Ryzhkov and Zrnic, 1998). As the LP and Maesaka algo-
rithms assume a monotonic increase in 8DP, they are ex-
pected to yield higher KDP than the LSF method if the nega-
tive radial slope of 8DP occurs in close proximity. However,
this effect does not seem to be significant in this study for the
following reasons: the Zhengzhou radar is close to the gauge
site (3.15 km), and the radar sampling volume is, there-
fore, much smaller than that at larger distances; the gauge
site was not located on the edges of rain cells (see merged
KDP observations at https://github.com/HaoranLiHelsinki/
Figs_Zhengzhou, last access: 7 March 2023); and we man-
ually checked 8DP observations but did not see significant
negative radial slope of 8DP. Moreover, the smallest Clpf
(least smoothing) yields smaller KDP than the LSF method
from 16:00 to 17:00 LST (Fig. 3a), suggesting that the selec-
tion of the KDP estimation method is more important than
the effect of nonuniform radar beam filling in this study.

https://doi.org/10.5194/hess-27-1033-2023 Hydrol. Earth Syst. Sci., 27, 1033–1046, 2023
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Figure 2. Rainfall accumulation from 16:00 to 17:00 LST estimated using R = 51K0.86
DP ; KDP estimates were from the operational data

products (LSF method). (a) Luoyang radar data at an elevation angle of 0.5◦ and (b) Zhengzhou radar data at an elevation angle of 1.5◦

were used for comparison. Note that KDP estimates within 3 km of the Zhengzhou radar site were removed. The black triangle and cross
denote the Zhengzhou radar and the gauge/OTT site, respectively. The two black isolines indicate rainfall accumulation of 100 and 130 mm,
respectively, observed by the Luoyang radar.

Figure 3. KDP estimates using (a) the Maesaka (2012) method and (b) LP over the Zhengzhou national reference climatological station.
Thick lines and shaded areas indicate the respective median values and standard deviations of KDP at elevation angles of 1.5, 2.4, 3.3, and
4.3◦. LP represents the linear programming method (Giangrande et al., 2013); LSF represents least squares fitting, which is the operational
algorithm for CINRAD. Colored lines indicate the different window length (len) values used in LP.

3.2 Parameterizations of R(KDP)

While KDP is less dependent on the DSD than other radar
products, a localized R(KDP) parameterization is suggested
to minimize the impact of varying DSDs (e.g., Chen et al.,
2022). In this study, the OTT disdrometer observations on
20 July 2021 were used as input to PyTMatrix (Leinonen,
2014) to calculate radar polarimetric variables. Before the
calculation, we removed raindrops with a velocity more than
±50 % the empirical relations (Atlas et al., 1973) or with

a volume equivalent diameter higher than 6 mm. It was as-
sumed that raindrops are oblate spheroids with an aspect ratio
parameterized by the equivolumetric spherical drop diameter
(Thurai et al., 2007). The water temperature was set to 20 ◦C,
and the orientation of rain drops was assumed to be normally
distributed with a zero mean and a certain value of standard
deviation (σ ). We discuss the factors affecting the accuracy
of R(KDP) parameterization in the following:

– DSD. Zhang et al. (2022) showed that, for a given KDP,
the fitted relation for OTT observations during the pe-
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riod from 16:00 to 17:00 LST yields higher precipitation
rates than that for the whole day, but the difference does
not exceed ∼ 15 mm h−1. In addition, most rain rates
above 200 mm h−1 are found from 16:00 to 17:00 LST,
and they follow the fitted curves rather well. Therefore,
we have used the OTT data from 00:00 to 24:00 LST on
20 July 2021.

– Assumed σ . The simulated radar polarimetric variables
are dependent on σ if hydrometeors are assumed to be
spheroids (Li et al., 2018). Bringi et al. (2008) found
a σ of around 7◦ for a stratiform rainfall event under
low-wind conditions and of 12◦ under moderate-wind
conditions. In the presence of high winds, this value can
be 13.6–24.7◦ (Bolek and Testik, 2022). The automatic
weather station at the OTT site reported that the wind
speed during this event ranged from 2 to 5 m s−1 with a
peak of 7.8 m s−1 at around 16:00 LST. The magnitude
of the wind speed seems rather close to the condition
corresponding to a σ of 13.6◦ (Bolek and Testik, 2022).

For a given KDP of 5◦ km−1, the estimated rain rates
are 203.6 and 183.6 mm h−1 for a σ of 13.6 and 7◦, re-
spectively. This value can even be 279.4 mm h−1 (R =
70K0.86

DP ; not shown) for a σ of 24.7◦, which was ob-
served during a tornadic squall-line storm (Bolek and
Testik, 2022) and seems to be unrealistically large in
this case.

– Aspect ratio parameterization. Assuming light-wind
conditions (σ = 7◦), the Pruppacher and Beard (1970)
and Beard and Chuang (1987) parameterizations lead
to quite different rain rate estimations (Fig. 4), as ear-
lier shown by Bringi and Chandrasekar (2001). Thurai
et al. (2007) showed that the observed raindrop shapes
are rather close to the model simulations in Beard and
Chuang (1987). This is why we employed the Thu-
rai et al. (2007) aspect ratio parameterization in our
KDP calculations.

As shown in Fig. 4, the deviation between different pa-
rameterizations seems relatively small for smaller rain rates,
but it significantly enlarges as the precipitation intensity in-
creases. This indicates that a singleR(KDP) parameterization
is applicable for QPE of moderate rainfall. For higher rain
rates, the fitted relation for a σ of 13.6◦ agrees rather well
with Beard and Chuang (1987) and Huang et al. (2018).

3.3 Merging Zhengzhou radar observations at multiple
elevation angles

One of the major challenges of using weather radar observa-
tions is to mitigate the ground clutter contamination in the
vicinity of radar sites. To remove pixels affected by ground
clutter, in a first step, a threshold of ρhv = 0.8 (Kumjian,
2013) was implemented . Second, based on the assumption
that the rain microphysics within 0.6 km of the surface do

Figure 4. T-matrix-based simulation of KDP vs. rain rate from the
OTT observations on 20 July 2021. Black and green circles in-
dicate observations with σ = 7 and 13.6◦, respectively, assuming
the aspect ratio parameterization of Thurai et al. (2007, T07). The
R(KDP) relations from Ryzhkov et al. (2005, R05), Huang et al.
(2018, H18), and Bringi and Chandrasekar (2001) with aspect ra-
tio parameterizations from Pruppacher and Beard (1970, PB70) and
Beard and Chuang (1987, BC87) are also presented.

not change, the median of the radar observations at elevation
angles from 0.5 to 4.3◦ was used to replace the pixels iden-
tified as ground clutter. Because of the rapid increase in the
beam height at higher elevation angles, the maximum radar
range decreases with increasing elevation angle for a given
height. Due to clutter contamination, very few radar obser-
vations in the vicinity of the radar site at an elevation an-
gle of 0.5◦ were used in the data merge. Meanwhile, radar
data at 6.0, 9.9, 14.6, and 19.5◦ were discarded due to the
limited valid data available and the fact that the elevation
dependence of polarimetric measurements may start appear-
ing (Bringi and Chandrasekar, 2001). Finally, the inverse
distance weighting (IDW) interpolation (Cressman, 1959;
Goudenhoofdt and Delobbe, 2009) of the radar data was ap-
plied to fill in empty regions, and the newly constructed radar
data were interpolated to a spatial resolution of 0.5 km using
Py-ART (Helmus and Collis, 2016).

4 Results

4.1 KDP-based QPE over the gauge/OTT site

Using a parameterized R(KDP), we were able to quanti-
tatively analyze the performance of KDP-based QPE over
the gauge site. Given the high rain rates during this event,
KDP estimates using the LSF method, the Maesaka algorithm
with Clpf= 100, and the LP method with a window length of
0.75 km are used for comparison. As shown in Fig. 5a and b,
R(KDP) generally agrees well with the gauge and OTT ob-
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servations before 16:00 LST, regardless of the KDP estima-
tion method or the R(KDP) parameterizations used.

From 16:00 to 17:00 LST, significant deviations can be
found between the gauge and OTT observations. In addition,
KDP-based QPE significantly underestimates the surface pre-
cipitation during this period. With a larger σ (Fig. 5b),
R(KDP) is still well below OTT/gauge observations. There-
fore, it is necessary to discuss factors potentially contributing
to this underestimation, which are as follows:

– The accuracy of KDP estimates. Compared with the
LSF and Maesaka algorithms, KDP estimated via the
LP method underestimates the rainfall less. Note that
the parameterizations used for the Maesaka and LP al-
gorithms are expected to generate the highest KDP val-
ues for heavy rainfall (Reimel and Kumjian, 2021).
Therefore, we should have good confidence that the best
KDP should be close to or lower than the estimates.

– DSD variations in the air. The lowest radar sampling
volume is 0.083 km over the gauge/OTT site (1.5◦),
whereas the highest radar sampling volume is 0.237 km
(4.3◦). If the DSDs had varied significantly, KDP es-
timates at different elevation angles should also have
changed. However, the uncertainty in the KDP esti-
mates at different elevations angles is of the order of
0.5◦ km−1. Therefore, the change in DSDs should not
be significant, and the DSDs observed by OTT should
be applicable to radar observations that are so close to
the surface. In addition, the rainwater content does not
seem to change within such a short distance (Chen et al.,
2020).

– Vertical air motion. The KDP-based QPE assumes the
absence of vertical air motion. For a given DSD in the
radar sampling volume, downdrafts can lead to an un-
derestimation of rain rates. For such heavy rainfall, a
downdraft of 2–3 m s−1 can lead to a rain rate underes-
timation of 30 %–40 %. We have examined this factor
from two aspects. Firstly, we found that the diameter–
velocity diagram generated by OTT observations agrees
rather well with the empirical relation, suggesting the
absence of significant downdrafts near the surface (Kim
and Song, 2018). Then, although direct retrieval of ver-
tical air motion is rather uncertain (Oue et al., 2019)
compared with the magnitude of expected downdrafts
(1–2 m s−1) as shown in model simulations (Yin et al.,
2022), the existence of downdrafts is detectable in the
radial divergence (Roberts and Wilson, 1989; Adachi
et al., 2016).

Here, we define the radial divergence (RD) as

RD=
Vi+4−Vi−4

ri+4− ri−4
, (1)

where Vi is the observed radar Doppler velocity at the
range gate ri . The RD is derived every 2 km for a

range resolution of 0.25 km according to Eq. (1). Fig-
ure 6 shows time series of the observed Doppler velocity
(black) as well as the RD (red) over the Zhengzhou na-
tional reference climatological station. The leading edge
of the extreme-rainfall-producing storms passed the site
at about 15:36 LST; during this time the Doppler ve-
locity underwent a transition from positive to negative
and the RD reached a local minimum (−3× 10−3 s−1),
indicating the presence of updrafts. From 16:00 to
17:00 LST, the Doppler velocity is around 0 m s−1 and
RD is about 2× 10−3 s−1, suggesting sustained down-
drafts. Therefore, unquantified downward air motion
may be responsible for the underestimation of rainfall
accumulation.

– The assumption of σ . As shown in Fig. 4, the assump-
tion of σ is critical for the parameterization of R(KDP).
However, σ cannot be measured by OTT, and very few
experiments have been conducted to address this is-
sue (e.g., Bringi et al., 2008; Bolek and Testik, 2022).
The wind observations are rather close to what was
reported by Bolek and Testik (2022), and σ = 13.6◦

seems to be a good first guess. If the σ = 24.7◦ mea-
sured during the passage of a tornadic squall-line storm
(the 4 min running average horizontal wind speed is 6–
10 m s−1) is used, the resulting rain rate estimation is
rather close to gauge/OTT measurements (dashed line in
Fig. 5b). However, the observed horizontal wind speed
is 3–5 m s−1 from 16:00 to 17:00 LST (Fig. 1d). There-
fore, even though we cannot give a more accurate esti-
mate of σ , 24.7◦ seems to be unrealistically large in this
study.

– Different sampling volumes between the radar and the
gauge/OTT. The width of the sampling volume for
the Zhengzhou radar with a beam width of 1◦ over
the gauge site is about 55 m, which is much larger
than that of a gauge. Although this effect is diffi-
cult to quantify, we argue that it plays a minor role
in the rainfall underestimation. By manually check-
ing the movement of storms (merged KDP obser-
vations at https://github.com/HaoranLiHelsinki/Figs_
Zhengzhou, last access: 7 March 2023), we found that
the storm propagation speed is of the order of several
kilometers per hour, contrasting with the much smaller
radar sampling volume. Given the rapidly changing na-
ture of storms, the sampling effect does not seem to be
a major factor responsible for rainfall underestimation.

4.2 Statistical evaluation

The dense meteorological and hydrological rain gauge net-
work in Zhengzhou city allows for statistical evaluation of
the KDP-based QPE. In addition, R(KDP) is expected to
be less uncertain than other approaches for heavy precip-
itation (Ryzhkov et al., 2022). Therefore, the performance
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Figure 5. Comparison of rainfall estimates usingKDP estimated via different methods over the Zhengzhou national reference climatological
station. Thick lines and shaded areas indicate the respective median values and standard deviations of rain rates estimated from KDP at
elevation angles of 1.5, 2.4, 3.3, and 4.3◦. The parameterizations used are (a) R = 46K0.86

DP and (b) R = 51K0.86
DP . The dashed line in

panel (b) presents the use of R = 70K0.86
DP (σ = 24.7◦) for QPE from 16:00 to 17:00 LST.

Figure 6. Doppler velocity (left axis) and radial divergence (right
axis) observed over the Zhengzhou national reference climatologi-
cal station. Thick lines and shaded areas indicate the respective me-
dian values and standard deviations at elevation angles of 1.5, 2.4,
3.3, and 4.3◦.

of R(KDP) during the most intense precipitation period
(14:00–17:00 LST) was investigated. As discussed above, the
assumption of σ = 13.6◦ appears to be more suitable than
the commonly used 7◦ for this event; thus, R = 51K0.86

DP
was used. Note that the gridded R(KDP), as introduced in
Sect. 3.3, was used for comparison.

For rainfall rates below 50 mm h−1, the standard devia-
tion (SD) and bias of R(KDP) are mostly of the order of 7–
8 mm h−1 and −1 to 0 mm h−1, respectively. Regarding the
LP method, the window length used does not significantly
degrade the accuracy of QPE (Fig. 7a, b, c, d, e). The perfor-
mance of the Maesaka method is comparable to that of the LP

method (Fig. 7f, g, h), except for Clpf= 106 (Fig. 7i) which
imposes an overly aggressive filter that obviously leads to
oversmoothing as well as a much larger SD and bias. The op-
erationally used LSF method (Fig. 7j) shows relatively large
bias values (1.8 mm h−1), indicating that the KDP derived
using the LSF method for rainfall rates below 50 mm h−1

should be used with caution.
For rainfall rates above 50 mm h−1, R(KDP) generally un-

derestimates hourly rainfall accumulation, and this underes-
timation becomes more significant as the rain rate increases
(smaller bias and SD values for the red dots than for the
black dots). KDP values estimated using the Maesaka algo-
rithm are smaller on average than those estimated using the
LP and LSF methods, which is consistent with the results
in Fig. 3. Interestingly, the SD and bias of the LP method
are very close to those of the LST method, regardless of the
used window length. This indicates that varying the window
length from 0.75 to 11.25 km has minimal impact on the ac-
curacy of R(KDP) for rain rates of 50 to ∼ 100 mm h−1 for
this event.

Reimel and Kumjian (2021) showed that smaller a window
length employed in the LP method yields higher KDP. This
appears to be true for the gauge with the 201.9 mm h−1 re-
port, but decreasing the window length did not significantly
ameliorate the underestimation from a statistical perspective
(Fig. 7a, b, c, d, e). Specifically, the highest hourly rainfall
accumulation was found for the LP method, and the value
rose from 100 mm h−1 (len= 11.25 km) to 149.6 mm h−1

(len= 0.75 km). For reference, the value was 122.9 and
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Figure 7. KDP-based hourly rainfall accumulation vs. gauge observations from 14:00 to 17:00 LST. KDP was estimated using the (a–
e) LP, (f–i) Maesaka, and (j) LSF methods. Rain rates were divided into three groups: Rgauge < 50 mm h−1 (blue), 50 mm h−1

≤ Rgauge <

100 mm h−1 (red), and 100 mm h−1
≤ Rgauge (black). The standard deviation (SD) and bias between Rgauge and R(KDP) for each group are

marked using the corresponding colors. R = 51K0.86
DP was used.

143.3 mm h−1 for the Maesaka method with Clpf= 100 and
for the LSF method, respectively.

5 Analysis of the areal rainfall map

As discussed above, the use of the window length
(LP method) and Clpf (Maesaka algorithm) has limited im-
pact on heavy-rainfall QPE, and a window length of 0.75 km
generates the closest rainfall estimation to the 201.9 mm h−1

report. Therefore, we have compared the areal hourly rain-
fall accumulation based onKDP values generated using these
three methods during the period with most intense rainfall
(14:00–17:00 LST).

As shown in Fig. 8, the rainfall rate hot spots can be man-
ually identified, and the results of the three methods gener-
ally agree with each other for R(KDP) < 100 mm h−1. How-
ever, an in-depth analysis reveals that the magnitudes of the
rainfall accumulation are different at higher rain rates. From
16:00 to 17:00 LST (Fig. 8a3, 8b3, 8c3), the rainfall hot spots
are in the vicinity of the Zhengzhou radar site (black triangle
Fig. 8). The LP method is characterized by the largest area
of R(KDP) > 130 mm h−1 (Fig. 8a3), whereas the smallest
area is found for the Maesaka algorithm (Fig. 8b3). How-
ever, due to the scarcity of gauges in the area of rainfall hot
spots, this difference is noticeable only for the gauge with the
201.9 mm h−1 report (black cross Fig. 8).

The areal hourly rainfall accumulation enables the analy-
sis of the evolution of this event. As shown in Fig. 8a, the
precipitation system moved into Zhengzhou city from the
southwest causing rainfall of up to 130 mm h−1 from 14:00 to
15:00 LST (Fig. 8a). It then slowly propagated northeastward

over the next hour with increased precipitation intensity.
Hourly rainfall of more than 100 mm h−1 covered a north–
south oriented, ellipse-shaped area of about 115.5 km2. From
16:00 to 17:00 LST, the precipitation system moved east-
ward, causing the most intense hourly rainfall over the cen-
ter of Zhengzhou city (Fig. 8c). A rainfall rate of more than
100 mm h−1 was observed over an area of about 198.25 km2,
which was 171.7 % that of the previous 1 h. The increased
rainfall extremity and the more localized extreme rainfall
likely resulted from the mergence of convective cells and the
formation of an arc-shaped convergence zone that favored the
development of convective updrafts in a three-quarter circle
around the storm (Yin et al., 2022). Interestingly, the gauge
with the 201.9 mm h−1 report was located almost exactly in
the high-value center of the hourly rainfall map at 17:00 LST.

The accumulated rainfall from 14:00 to 17:00 LST is pre-
sented in Fig. 9. As expected, the results of the LP method
and the LSF method are similar, whereas the area of rainfall
accumulation exceeding 200 mm generated by the Maesaka
method is significantly different from those using the other
two methods. Interestingly, we have found that the center
of the 3 h rainfall accumulation was offset with respect to
the hot spot encompassing the record-breaking hourly rain-
fall accumulation (16:00–17:00 LST; Fig. 8a3). Specifically,
the center of the 3 h rainfall accumulation was located south-
west of Zhengzhou city, which is fortunately an urban–rural
fringe area where the surface is less impervious and in which
relatively fewer residents were living.
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Figure 8. Hourly areal rainfall map from 14:00 to 17:00 LST. KDP was estimated using (a) the LP method with LP= 0.75 km, (b) the
Maesaka method with Clpf= 100, and (c) the LSF method. The black triangle and cross denote the Zhengzhou radar and the site hosting the
gauge with the 201.9 mm h−1 report, respectively. R = 51K0.86

DP was used.

Figure 9. Satellite images from Google Maps overlaid with isolines indicating the rainfall accumulation (mm) during the 14:00–17:00 LST
period. The rain rate was inferred from R = 51K0.86

DP ; KDP was estimated using (a) the LP method with len= 0.75 km, (b) the Maesaka
algorithm with Clpf= 100, and (c) the LSF method. The black triangle and cross denote the Zhengzhou radar and the site hosting the gauge
with the 201.9 mm h−1 report, respectively.
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6 Conclusions

In this study, we examined KDP-based QPE for the
record-breaking extreme-rainfall event that occurred over
Zhengzhou between 14:00 and 17:00 LST on 20 July 2021.
The rain DSD observations obtained using an OTT disdrom-
eter were used to develop R(KDP) parameterizations. The
KDP estimates generated via the operationally used LSF
method were compared with two parameter-controlled meth-
ods. The KDP estimates were gridded with a spatial resolu-
tion of 500 m, and the results ofR(KDP)were compared with
gauge observations. The results can be summarized as fol-
lows:

– The range degradation effect significantly affected the
performance of radar-based QPE for this event. The pre-
cipitation center as identified by the Luoyang radar –
about 120 km from the Zhengzhou city center – signifi-
cantly deviated from the Zhengzhou radar estimates.

– The assumed σ in the T-matrix simulation has a tangi-
ble impact on the development of R(KDP) parameter-
izations. A higher σ value results in a smaller KDP in
simulations for a given rain DSD. The previous exper-
imental study by Bringi et al. (2008) on σ was under-
taken under low-wind conditions; thus, the applicabil-
ity of the σ assumption under moderate- to strong-wind
conditions should be addressed in future studies.

– Gauges deployed over Zhengzhou city were used to
evaluate the accuracy of R(KDP). The results show
that all methods agree with each other rather well for
R(KDP) < 100 mm h−1. The LP method is capable of
producing the highest rainfall accumulation. In a statis-
tical sense, changing the window length from 0.75 to
11.25 km in the LP method or changing Clpf from 100

to 104 in the Maesaka algorithm does not significantly
affect the QPE performance; moreover, oversmoothing
was found for the Maesaka algorithm with Clpf= 106.

– The KDP estimates from the three algorithms for the re-
gion comprising the gauge with the 201.9 mm h−1 re-
port were compared, and the results are generally sim-
ilar to Reimel and Kumjian (2021). One notable differ-
ence is that the estimated KDP almost reached “satura-
tion” at a window length of 3.75 km, and the increase
in KDP with a decrease in window length is not as sig-
nificant as that in Reimel and Kumjian (2021). The re-
sults of the LP method with a window length of 0.75 km
are close to those of the LSF method but significantly
larger than the highest values obtained from the Mae-
saka algorithm.

– R(KDP) with the KDP estimation using the three meth-
ods cannot reproduce the gauge-observed value of
201.9 mm h−1. Our comparisons suggest that this un-
derestimation is unlikely due to theKDP estimation pro-

cess; rather, the adequacy of the assumed σ and unquan-
tified vertical air motion may explain the underestima-
tion.

– The gauge with the 201.9 mm h−1 report was located
in the vicinity of local rainfall hot spots during the pe-
riod from 16:00 to 17:00 LST, but the center of the 3 h
areal rainfall accumulation was found to be located to
the southwest of Zhengzhou city, deviating from the site
with the 201.9 mm h−1 record.

From the perspective of operational applications, the ef-
fect of smoothing on KDP estimation is interesting. Our re-
sults show that the use of a smoothing factor has minimal im-
pact onKDP for hourly rainfall accumulation below 100 mm;
however, its impact becomes more significant as the rain
rate increases. This suggests the importance of employing an
adaptive window length, as used in the LSF method. How-
ever, the current LP and Maesaka algorithms use a fixed win-
dow length or a single smoothing factor, respectively. The
future development of a new LP algorithm with an adap-
tive window length is recommended. In addition, we spec-
ulate that the underestimation of the 201.9 mm h−1 rainfall
accumulation value can be attributed to inadequate assump-
tions about raindrop microphysics and unquantified vertical
air motion. Although we cannot quantify their contributions
during the Zhengzhou event, more focused observational ex-
periments are suggested to ascertain their impact on radar-
based QPE.

Extreme-rainfall events are relatively rare, but they are
very destructive. We call for integrated efforts to tackle
the issue of radar data quality control as well as to pro-
mote the capability of operational weather radars in extreme-
rainfall monitoring. This will improve hydrological model-
ing, extreme-rainfall nowcasting, and disaster mitigation for
cities, and it will also be valuable to studies of mechanisms
governing extreme rainfall production.
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