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Abstract. Evapotranspiration plays an important role in the
terrestrial water cycle. Reference crop evapotranspiration
(ETo) has been widely used to estimate water transfer from
vegetation surface to the atmosphere. Seasonal ETo fore-
casting provides valuable information for effective water re-
source management and planning. Climate forecasts from
general circulation models (GCMs) have been increasingly
used to produce seasonal ETo forecasts. Statistical calibra-
tion plays a critical role in correcting bias and dispersion er-
rors in GCM-based ETo forecasts. However, time-dependent
errors resulting from GCM misrepresentations of climate
trends have not been explicitly corrected in ETo forecast cal-
ibrations. We hypothesize that reconstructing climate trends
through statistical calibration will add extra skills to seasonal
ETo forecasts. To test this hypothesis, we calibrate raw sea-
sonal ETo forecasts constructed with climate forecasts from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) SEAS5 model across Australia, using the recently
developed Bayesian joint probability trend-aware (BJP-ti)
model. Raw ETo forecasts demonstrate significant inconsis-
tencies with observations in both magnitudes and spatial pat-
terns of temporal trends, particularly at long lead times. The
BJP-ti model effectively corrects misrepresented trends and
reconstructs the observed trends in calibrated forecasts. Im-
proving trends through statistical calibration increases the
correlation coefficient between calibrated forecasts and ob-
servations (r) by up to 0.25 and improves the continuous
ranked probability score (CRPS) skill score by up to 15 (%)
in regions where climate trends are misrepresented by raw
forecasts. Skillful ETo forecasts produced in this study could
be used for streamflow forecasting, modeling of soil moisture
dynamics, and irrigation water management. This investiga-
tion confirms the necessity of reconstructing climate trends

in GCM-based seasonal ETo forecasting and provides an ef-
fective tool for addressing this need. We anticipate that future
GCM-based seasonal ETo forecasting will benefit from cor-
recting time-dependent errors through trend reconstruction.

1 Introduction

As a critical process in the terrestrial water cycle, evapotran-
spiration transfers a large amount of water from the land sur-
face to the atmosphere. Reference crop evapotranspiration
(ETo) measures the evaporative demand of the atmosphere
for a hypothetical crop of a given height with defined surface
resistance factor and albedo. It is generally computed using
the Penman–Monteith equation, following Allen et al. (1998,
see Sect. 2.1), which is known as FAO56. McMahon et
al. (2013) provide additional information about the process.
Forecasting of ETo has been used to support water resource
management (Anderson et al., 2015; Le Page et al., 2021)
and improve soil moisture modeling (Yu et al., 2016). In ad-
dition, ETo forecasting also helps constrain the significant
uncertainties in streamflow forecasting (Greuell et al., 2019;
Van Osnabrugge et al., 2019). Seasonal ETo forecasts have
been used to support water allocation among competing users
(Chauhan and Shrivastava, 2009) and in planning farming
activities (Zinyengere et al., 2011). In recent years, climate
forecasts produced by general circulation models (GCMs)
have been increasingly used for seasonal ETo forecasting,
since GCMs often produce forecasts of all climate variables
needed to estimate future ETo (Tian et al., 2014; Zhao et
al., 2019a).

Raw ETo forecasts constructed with GCM climate fore-
casts often inherit significant errors from the raw fore-
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casts of climate variables, including temperature, solar ra-
diation, wind speed, and vapor pressure. Due to deficien-
cies in the GCM representation of physical processes of the
atmosphere (Woldemeskel et al., 2014), model parameteri-
zation (O’Gorman and Dwyer, 2018), and data assimilation
(O’Kane et al., 2019), raw GCM forecasts often demonstrate
systematic errors (Weisheimer and Palmer, 2014). For exam-
ple, inconsistencies with observations have been reported for
the raw forecasts of all variables needed to construct ETo
forecasts using the FAO56 method (Groisman et al., 2000;
Slater et al., 2017). These inconsistencies often lead to sig-
nificant bias and low skills in the resultant raw ETo forecasts
(Zhao et al., 2019b).

Failing to correctly simulate the temporal trends of the
climate system could be partially responsible for the low
skills of GCM-based raw ETo forecasts. Time-dependent er-
rors are introduced when GCMs lack skills in modeling cli-
mate trends driven by rising atmospheric greenhouse gas
(GHG) concentrations (Sansom et al., 2016). There is mount-
ing evidence that climate change has resulted in increasing
trends in temperature (Smith et al., 2007) and vapor pres-
sure (Byrne and Gorman, 2018) but led to decreasing trends
in solar radiation (Liepert, 2002). However, GCMs config-
ured for seasonal climate forecasts often misrepresent these
observed trends. For example, an evaluation across nine cli-
mate regions in the U.S. showed that nine of 10 selected
GCMs failed to reproduce the observed temporal trends in
seasonal temperature forecasts (Das Bhowmik and Sankara-
subramanian, 2020). In the Middle East, seasonal temper-
ature forecasts by the Climate Forecast System Version 2
(CFSv2) model overestimated the warming trend in reference
data by approximately 0.4◦C per decade (Alizadeh-Choobari
et al., 2019). In Australia, evaluations of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) SEAS5
model identified significant discrepancies between observed
and forecasted trends in temperature (Shao et al., 2020,
2021). Forecasts of the fire weather index (calculated with
forecasts of precipitation, wind speed, temperature, and hu-
midity), based on the ECMWF System 4 model, demon-
strated significant inconsistencies with observations in tem-
poral trends in Europe during 1981–2010 (Bedia et al., 2018).
As a result, it is unlikely that raw ETo forecasts constructed
with raw forecasts of these climate variables would faithfully
reproduce the observed climate trends. Failing to capture the
observed trends inevitably introduces errors to GCM-based
raw ETo forecasts.

Raw ETo forecasts constructed with climate forecasts
need to be calibrated to correct biases and dispersion errors.
Statistical calibration models initially developed for other
variables, such as precipitation or temperature, have been
adopted to calibrate raw ETo forecasts (Medina and Tian,
2020; Zhao et al., 2019a). Using a quantile mapping method,
Tian et al. (2014) improved seasonal ETo forecasts based on
CFSv2 outputs in Florida, USA. In the calibration of sea-
sonal ETo forecasts in Australia, Zhao et al. (2019b) used the

Bayesian joint probability (BJP) model to post-process ETo
forecasts constructed with climate forecasts from the Aus-
tralian Bureau of Meteorology’s Australian Community Cli-
mate and Earth-System Simulator–Seasonal prediction sys-
tem version 1 (ACCESS-S1) model across three weather sta-
tions. This investigation validated the BJP model’s strengths
in error correction and skill enhancement in ETo forecast-
ing. However, none of these calibrations have explicitly dealt
with time-dependent errors caused by the misrepresentation
of climate trends in GCM forecasts.

Statistical techniques have been developed to correct
time-dependent errors in raw GCM forecasts. A commonly
adopted method is to replace the linear trend in raw fore-
casts with the observed trend (Kharin et al., 2012). Using this
method, Kharin et al. (2012) corrected trends in decadal tem-
perature forecasts and successfully reduced the systematic
residual drifts in raw forecasts. Meanwhile, improvements in
trends effectively adjusted the long-term climate behavior in
forecasts to match the observations (Kharin et al., 2012). To
correct errors associated with the representation of tempo-
ral changes and variability, Pasternack et al. (2021) adopted
a time-varying mean to characterize the climate trend in the
calibration of decadal temperature forecasts. In addition to
these decadal-scale calibrations, recent studies suggested that
seasonal climate forecasting could also benefit from correct-
ing time-dependent errors. For example, Shao et al. (2021)
improved the BJP model by adding trend reconstruction al-
gorithms to deal with time-dependent errors. The new algo-
rithm allows for the reconstruction of observed trends in cal-
ibrated forecasts. With this new feature, the improved BJP
model (hereafter referred to as BJP-ti) demonstrates the ca-
pability of adding extra skills to seasonal temperature fore-
casts through trend reconstruction.

We hypothesize that reconstructing trends in seasonal
ETo forecasts through statistical calibration will help cor-
rect time-dependent errors and, thereby, improve the fore-
cast skills. To test this hypothesis, we adopt the BJP-ti model
to calibrate seasonal ETo forecasts constructed with climate
forecasts from the ECMWF SEAS5 model across Australia.
This investigation aims to (1) reconstruct climate trends in
seasonal ETo forecasts through statistical calibration and
(2) investigate how trend reconstruction affects the skill of
calibrated ETo forecasts.

2 Method

2.1 Observations and forecasts

We develop monthly ETo data (treated as observations for
calibration) based on gridded monthly temperature, solar ra-
diation, and vapor pressure data from the Australian Water
Availability Project (AWAP; Jones et al., 2007, 2014). Since
the AWAP does not provide wind speed data, we use a con-
stant wind speed of 2 m s−1 in deriving the ETo observations
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(Allen et al., 1998). Based on these AWAP variables, we pro-
duce monthly ETo observations during 1990–2019 for fore-
cast calibration.

Seasonal climate forecasts from the latest version
(SEAS5) of the ECMWF model are used to construct the
raw ETo forecasts. The re-forecast period of SEAS5 is 1981–
2016, with an ensemble size of 25 members. Real-time fore-
casts started in 2017, with an ensemble size of 51 members
(Stockdale et al., 2017). SEAS5 forecasts have a horizon of
7 months (months 0 to 6), with a spatial resolution of 0.4◦.
While SEAS5 produces climate forecasts across the globe,
the calibration in this study is performed across Australia
only.

To match ETo observations, we combine the archived re-
forecasts and operational forecasts to derive raw ETo fore-
casts for the period of 1990–2019. ECMWF runs for re-
forecasts and operational forecasts are configured in a sim-
ilar way, except for differences in initialization (Johnson et
al., 2019). Absolute errors in raw ETo forecasts during the
two periods are comparable (Fig. S1 in the Supplement).
We choose the first 25 ensemble members of the real-time
forecasts (2017–2019) to match the ensemble size of the re-
forecasts (1990–2016). We calculate the ensemble mean of
the 25 ensemble members of ECMWF forecasts of temper-
ature, solar radiation, and vapor pressure for the calculation
of raw ETo forecasts. To be consistent with the ETo obser-
vations, we use a constant wind speed of 2 m s−1 in deriving
raw ETo forecasts. In addition, we aggregate the grid spac-
ing of AWAP data from 0.05 to 0.4◦ to match the ECMWF’s
spatial resolution.

2.2 Calculation of ETo observations and forecasts

We construct monthly raw ETo forecasts and ETo obser-
vations using the monthly ECMWF climate forecasts and
AWAP data based on the FAO56 ETo method as follows
(Allen, et al., 1998):

ETo =
0.4081(Rn−G)+ γ

900
T+273u2 (es− ea)

1+ γ (1+ 0.34u2)
, (1)

where ETo is the monthly reference crop evapotranspiration
(millimeters per month), 1 is the slope of the vapor pres-
sure curve (kPa ◦C−1), Rn is net radiation at the crop surface
(MJ m−2 per month),G is the soil heat flux density (MJ m−2

per month), which is calculated based on temperature, γ is
the psychrometric constant (kPa ◦C−1), T is average air tem-
perature (◦C), u2 is the wind speed at 2 m (m s−1), and es and
ea are saturated and actual vapor pressure (kPa), respectively.

2.3 Forecast calibration with the BJP-ti model

In this study, ETo forecast calibration is conducted separately
across Australia for each grid cell, month, and lead time. We
employ the BJP-ti model to calibrate the raw ETo forecasts.
This model was developed recently by extending the origi-

nal BJP model’s capability to deal with errors resulting from
the misrepresentation of climate trends. In this study, the cal-
ibration model is configured by month k (k = 1 to 12, corre-
sponding to January to December) of the year.

Calibration with the BJP-ti model involves six steps, in-
cluding (1) transformation of the data, (2) detrending of the
data, (3) joint probability modeling of the transformed and
detrended forecasts and observations, (4) generation of en-
semble calibrated forecast members conditional on the raw
forecast, (5) addition of the observed trend back to ensemble
members, and (6) back-transformation of the data to obtain
the final calibrated forecasts. We further introduce these steps
in detail, in the following.

The first step is to transform raw forecasts and observa-
tions to approach the normal distribution. We adopt the Yeo–
Johnson transformation method (Yeo and Johnson, 2000) to
transform ETo as follows:

x′ =

{
(λx+ 1)

1
λ − 1, (x ≥ 0,λ 6= 0)

exp(x)− 1, (x ≥ 0,λ= 0)
, (2)

where λ is a transformation parameter, x refers to raw ETo
forecasts or ETo observations (millimeters per month), and
x′ is the transformed x (forecasts or observations) generated
through the Yeo–Johnson transformation. The above trans-
formation is separately performed by month for raw fore-
casts and observations. The transformation parameter (λ) is
inferred using the Bayesian maximum a posteriori (MAP)
method (Shao et al., 2020).

Step 2 is to generate detrended forecasts and observations
in the transformed space. For each grid cell, we separately in-
fer linear trends for transformed forecasts and observations.
With the trend parameters (αf and αo), the trends in trans-
formed forecasts and observations are removed to produce
detrended data. Specifically, each transformed forecast and
observation record is adjusted based on the middle year of
the study period (1990–2019) and trend parameters, using
the following equations:

zf(t)= y
′
f(t)−αf(t − tm) , (3)

zo(t)= y
′
o(t)−αo(t − tm) , (4)

where y′f(t) and y′o(t) refer to the transformed ETo fore-
casts and observations for month k (k = 1 to 12, correspond-
ing to January to December) in year t during 1990–2019. αf
and αo are inferred trend parameters for transformed fore-
casts and observations, respectively. tm is approximately the
middle year (e.g., 2004 in this study) during 1990–2019. The
position of tm is empirically selected, but it will not affect
the calibration if we choose a different year, as tm, and zf(t)

and zo(t) are detrended ETo forecasts and observations in the
transformed space, respectively.

In step 3, we assume a bivariate joint distribution (z) be-
tween the predictor zf (detrended transformed raw forecasts)
and predictand zo (detrended transformed observations) as
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follows:

z=

[
zf
zo

]
∼N (µ,6) , (5)

where µ is the mean vector, and 6 is the covariance matrix.
We denote the parameters from Eqs. (3)–(5) as a vector θ =
{µ,6,αf,αo}.

For each month of the year, model parameters are inferred
with training data pairs (predictor and predictand) during the
study period (1990–2019). The a posteriori distribution of the
model parameters is as follows:

p(θ |D)∝ p(θ)p(D|θ)= p(θ)
∏n

t=1
p(D|θ) , (6)

where p(θ) is the prior distribution for model parameters,
and p(D|θ) is the likelihood function. D refers to all data
pairs (zf(t) and zo(t)) used for parameter inference. A Gibbs
sampler is utilized to repeatedly sample the parameter sets
θ from the conditional a posteriori distribution of the model
parameters.

In the BJP-ti model, informative priors are applied to set
boundaries for inferred trends to avoid over-fitting. The pri-
ors are separately estimated for each grid cell, month, and
lead time. This informative prior distribution p(αi) for trend
parameters αf and αo is formulated as follows (Shao et
al., 2021):

p(αi)∝N(0,m2
i ) (7)

[αi |·]= N

(
m2
i

∑n
t=1

(
y′i(t)−µi

)
(t − tm)

m2
i

∑n
t=1(t − tm)

2+ σ 2
i

,

m2
i σ

2
i

m2
i

∑n
t=1(t − tm)

2+ σ 2
i

)
, (8)

where mi is the standard deviation of the prior, which is set
based on trends of transformed forecasts and observations,
µi is the mean, and σi is the standard deviation for predictors
or predictands extracted from the diagonal of covariance ma-
trix 6 (see Eq. 5). Equation (8) shows the a posteriori distri-
bution of the parameter αi conditional on forecasts or obser-
vations. For trends that are insignificant (P > 0.05), we set
mi to 0 to avoid over-fitting trends in calibrated forecasts. For
significant trends, we set the mi value based on trends in ob-
servations and raw forecasts during 1981–2019. Specifically,
we pooled the significant trends of all grid cells, months, and
lead times for transformed forecasts and found that 95 % of
the absolute trends are smaller than 0.47. For transformed
observations, 95 % of grid cells and months have absolute
trends less than 0.52. As a result, we set mi to 0.47 and 0.52
for forecasts and observations, respectively.

In step 4, once all the parameters are inferred, we draw
1000 members from a conditional distribution of the predic-
tand, (zo(t

∗)), for a given new forecast, (zf(t
∗)). In step 5,

we add the trend from Eq. (4) back to zo(t
∗) to produce a

calibrated ensemble forecast (y′o(t∗)). In step 6, we back-
transform y′o(t

−) to the original space to produce the cal-
ibrated ensemble forecasts. Our analysis indicated that our
trend reconstruction strategy (detrending and retrending in
the transformed space and setting limits to inferred trends)
would not introduce significant bias to the calibrated fore-
casts (Fig. S2).

2.4 Evaluation of forecast calibration

To evaluate the performance of the calibration, we adopt a
leave-1-year-out cross-validation strategy for each grid cell
and lead time. Specifically, for one of the 30 years during
1990–2019, we keep month k aside and then use month k
from the remaining 29 years to infer the BJP-ti parameters.
Once the parameters are inferred, we generate a calibrated
forecast for month k in the year held aside. This process is
repeated until calibrated forecasts are obtained for month k
from each of the 30 years. Similar processes are conducted
for other months and other lead times until we obtain cali-
brated forecasts for all months and the seven lead times for
each grid cell across Australia.

To evaluate how the reconstruction of trends affects the
quality of calibrated forecasts, we compare BJP-ti calibrated
forecasts with those generated using the original BJP model,
which does not reconstruct trends. The BJP model omits
steps 2 (detrending) and 5 (retrending) in Sect. 2.3. We
present the results of the comparison in the main text for
months (August, September, and October) with large areas
(Fig. S3) of statistically significant (at the 95 % confidence
interval) temporal trends in observed ETo; the results for the
remaining 9 months are presented in the Supplement.

Evaluation metrics employed to examine the performance
of calibrations include the correlation coefficient, skill score,
bias, and reliability. The calculation of these metrics is fur-
ther introduced as follows.

2.4.1 Correlation coefficient

We use the Pearson correlation coefficient (r) between
raw/calibrated forecasts and observations to examine their
consistency in temporal dynamics as follows:

r =

n∑
t=1
(x(t)− x)(y(t)− y)√

n∑
t=1
(x(t)− x)2

√
n∑
t=1
(y(t)− y)2

, (9)

where x(t) is the ensemble mean of raw/calibrated ETo fore-
casts (millimeters per month), n is the total years during
the study period, x is the average of x(t) (millimeters per
month), y(t) is the corresponding ETo observations (mil-
limeters per month), and y is the average of y(t) (millimeters
per month).
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2.4.2 Forecast skills

We use the continuous ranked probability score (CRPS) to
measure the skill of the raw and calibrated forecasts as fol-
lows (Grimit et al., 2006):

CRPS(t)=
∫
{F(t,x)−H(x− y(t))}2dx , (10)

CRPS=
1
n

n∑
t=1

CRPS(t) , (11)

where F(t,x) is the cumulative density function of an en-
semble forecast, and y(t) is the observation at time t .H is the
Heaviside step function (H = 1 if x− y(t)≥ 0, and H = 0
otherwise), and the overline represents averaging across the
n months during January 1990–December 2019. For deter-
ministic raw forecasts, CRPS is reduced to absolute errors.

We further calculate the CRPS skill score (CRPSSS) to
measure the skill of raw and calibrated forecasts relative to
climatology forecasts using the following equation:

CRPSSS =
CRPSreference−CRPSforecasts

CRPSreference
× 100 , (12)

where CRPSreference is the CRPS value of climatology fore-
casts, and CRPSforecasts refers to CRPS value of raw or cali-
brated forecasts. Positive CRPSSS indicates better skill than
the climatology forecasts and vice versa. To make the CRPS
skill scores of calibrated forecasts generated by different
models (BJP vs. BJP-ti) comparable, we use the climatology
forecasts from the BJP model as the reference in the calcula-
tion of CRPSSS.

2.4.3 Bias

We evaluate the accuracy of the raw and calibrated forecasts
using the following equation:

Bias=
1
n

∑n

t=1
(x(t)− y(t)), (13)

where Bias refers to the bias in ETo (millimeters per month),
n is total months during the 30-year study period (January
1990–December 2019), x(t) is the raw or calibrated fore-
casts of ETo (millimeters per month), and y(t) is the corre-
sponding ETo observations of the same month (millimeters
per month). Raw forecasts are deterministic since they are
calculated based on the ensemble mean of each input vari-
able. For calibrated forecasts, we use the ensemble mean to
calculate bias.

2.4.4 Reliability

To evaluate the reliability of calibrated ensemble forecasts,
we calculate the probability integral transform (PIT) value
using the following equation:

π(t)= F (t,x = y(t)) , (14)

where F(t,x) is the cumulative density function of the en-
semble forecast, and y(t) is the observation. For reliable fore-
casts, the collection of π(t) follows a standard uniform dis-
tribution. We use the alpha (α) index to summarize the relia-
bility in each grid cell with the following equation to check
the overall reliability across Australia (Renard et al., 2010):

α = 1−
2
n

∑n

t=1

∣∣∣∣π∗(t)− t

n+ 1

∣∣∣∣ , (15)

where π∗(t) is the sorted π(t), t = 1,2, . . .n in ascending
order, and n is the total number of months. The α index
measures the total deviation of calibrated forecasts from the
corresponding uniform quantile. Perfectly reliable forecasts
should have an α index of 1, and forecasts with no reliability
would have an α index of 0.

3 Results

3.1 Trends in observations and raw/calibrated forecasts

We evaluate the capability of BJP-ti in reconstructing tempo-
ral trends for months with large areas of statistically signifi-
cant trends in observed ETo. Since the trend parameters are
estimated by month, we first examine the trend in ETo obser-
vations for each month k of the year for 1990–2019 (Fig. S3).
August, September, and October show larger areas with sta-
tistically significant trends than other months. As a result,
the evaluation of trends in raw/calibrated forecasts is mainly
conducted for these 3 months.

Observed ETo shows increasing trends in many parts of
Australia in the 3 selected months (Fig. 1; fourth column).
Compared with findings from previous investigations, ob-
served trends identified in this study also demonstrate sig-
nificant spatial variability and varying magnitudes in differ-
ent months (Donohue et al., 2010; McVicar et al., 2012).
We found more positive trends in our study period (1990-
2019) than the period of 1981–2006 (Donohue et al., 2010).
In August, areas with increasing trends larger than 6 mm
per decade are mainly located in the western parts of Aus-
tralia. In contrast, central and eastern Australia demonstrates
much lower trends of less than 4 mm per decade. Observed
trends are close to zero in Victoria and Tasmania and even be-
come negative in parts of the Northern Territory. In Septem-
ber, areas with significant increasing trends larger than 6 mm
per decade are located in many parts of Australia, with the
exception of a narrow coastal fringe and areas around the
Tropic of Capricorn. In this month, decreasing trends are ob-
served in a small part of the eastern areas of Western Aus-
tralia, where observations are relatively poor. In October,
central-eastern Australia, including the inland regions of Vic-
toria, New South Wales, South Australia, and southwestern
Queensland, demonstrate increasing trends of up to 8 mm per
decade. At the decadal scale, trends in ETo are comparable
with the standard deviation.
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Figure 1. Trends in raw forecasts, BJP calibrated forecasts, and BJP-ti calibrated forecasts at month 0 and observed ETo in August, Septem-
ber, and October. Blue polygons show regions where observed trends are statistically significant. SD refers to the standard deviation.

Raw ETo forecasts also demonstrate trends, but they dif-
fer from those in observations in both spatial patterns and
magnitudes (left column in Fig. 1). In August, raw forecasts
show increasing trends (> 6 mm per decade) in Western Aus-
tralia which partially match those in observations. However,
in the eastern parts of Australia, raw forecasts overpredict
trends in observations. In September, raw forecasts demon-
strate even larger overpredictions (> 8 mm per decade) in
trends than those in August, particularly in Western Australia
and New South Wales. In October, raw forecasts are better
aligned with observations in the increasing trends in south-
eastern Australia; however, they overpredict trends in West-
ern Australia and underpredict trends in northern Australia.

Trends in raw forecasts become weaker at longer lead
times (left columns in Figs. S4 and S5). For the lead time
of month 3, trends in raw ETo forecasts show similar spa-
tial patterns to those of month 0 in August but mainly drop
to less than 2 mm per decade. Similarly, the magnitudes of
increasing trends in the other 2 months are also much lower
at month 3 than those at month 0. At month 6, trends in raw
forecasts of the 3 selected months are close to zero across
Australia.

Calibrated ETo forecasts produced with the original BJP
model demonstrate trends similar to those of raw forecasts in
spatial patterns but show smaller magnitudes (second column
in Figs. 1, S4, and S5, respectively). Specifically, at month 0,
the BJP calibrated forecasts preserve the spatial variability in
trends in the raw forecasts and show higher trends in Western
Australia, the central parts of Australia, and the southern re-
gions of the country for August, September, and October, re-

spectively, but the increasing trends are all less than 4 mm per
decade, which are lower than those in raw forecasts (Fig. 1).
Consistencies in the spatial patterns of trends are also found
between BJP calibrated forecasts and raw forecasts at other
lead times (Figs. S4 and S5). Similarly, trends are also lower
in BJP calibrated forecasts than those of the corresponding
raw forecasts at longer lead times.

Calibration with the BJP-ti model successfully recon-
structs the observed trends in the calibrated forecasts (third
column in Figs. 1, S4, and S5, respectively). Inconsistencies
between raw forecasts and observations in the spatial patterns
and magnitudes of trends are effectively corrected through
the calibration, particularly for regions that demonstrate sig-
nificant observed trends. In addition, the tendency that trends
become weaker at longer lead times in the raw forecasts is
also effectively corrected. In the BJP-ti calibrated forecasts
(third column in Figs. 1, S4, and S5, respectively), all lead
times show trends consistent with observations in both spa-
tial patterns and magnitudes.

3.2 Correlation coefficients between forecasts and
observations

We further examine whether reconstructing trends improves
the representation of ETo temporal dynamics by forecasts.
Specifically, we compare the r between BJP-ti calibrated
forecasts and ETo observations with those between BJP cali-
brated forecasts and observations in August, September, and
October (Fig. 2). Following the trend reconstruction, BJP-ti
calibrated forecasts clearly present temporal patterns more
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Figure 2. Differences in the correlation coefficient (r) between BJP-
ti calibrated forecasts and observations with that between BJP cal-
ibrated forecasts and observations for 3 selected months (August,
September, and October) and three lead times (months 0, 3, and 6).
Red polygons show regions with significant observed trends.

consistent with observations than calibrated forecasts pro-
duced by the BJP model, particularly in regions where ob-
servations show significant trends (Fig. S3) and for forecasts
at longer lead times. For the lead time of month 0, increases
in r of over 0.1 are mainly located in the coastal regions of
northern Australia and northern Queensland for all 3 selected
months. More significant improvements in r are found at
longer lead times (months 3 and 6), with larger areas showing
increases in r (Fig. 2). At month 3, in addition to the coastal
areas in northern Australia, the majority of Western Australia
shows increases in r by more than 0.2 in August; in Septem-
ber, significant increases in r occur in both the far north and
far south of mainland Australia, and in October, areas with
higher r further expand in southern Australia and cover much
larger areas than those at month 0. Areas showing higher r
continue to expand at month 6. In August, increases in r of
over 0.2 or even 0.25 are found in the western and central
parts of north Australia; in September, regions with higher r
cover large areas in coastal parts of northern Australia and
coastal regions across Victoria and South Australia. In Oc-
tober, r increases cover large areas of southern and central
regions of Australia. Similar improvements are also found in
the remaining 9 months (Fig. S6).

Figure 3. Differences in CRPS skill scores between BJP-ti cal-
ibrated forecasts and the BJP calibrated forecasts for 3 se-
lected months (August, September, October) and three lead times
(months 0, 3, and 6). Red polygons show regions with significant
observed trends.

3.3 Skills of raw and calibrated ETo forecasts

Reconstruction of trends results in more skillful calibrated
forecasts. We compare the CRPS skill scores of BJP-ti cali-
brated forecasts with those produced with the BJP model for
the three selected months (Fig. 3). At month 0, the CRPS
skill score of the calibrated forecasts is increased by 5 %–
10 % in August, September, and October when trends are re-
constructed. The distribution of areas with increased CRPS
skill scores is generally consistent with that of the improved
r (Fig. 2). Increases in the CRPS skill score are greater at
longer lead times, in both magnitude and area, than those at
short lead times. At month 3, areas with increased CRPS skill
scores expand in Western Australia in August and in north-
ern Western Australia in September. Month 6 demonstrates
further improvements, with larger areas showing increases
in the CRPS skill score of over 15 % in the coastal areas of
northern Australia in August and September and central Aus-
tralia in October. The other 9 months also demonstrate sim-
ilar improvements in the CRPS skill score in regions with
significant trends (Fig. S7). In addition, a comparison for all
months together also demonstrates the improved skill score
following the trend reconstruction (Fig. 4).

We further evaluate the overall performance of the cali-
bration over the whole study period by comparing the CRPS
skill scores of the raw and BJP-ti calibrated forecasts (Fig. 5).
Calibration with the BJP-ti model substantially improves the
skills of the raw ETo forecasts. Compared with the clima-
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Figure 4. Differences in CRPS skill scores between BJP-ti cali-
brated forecasts and the BJP calibrated forecasts over 1990–2019.

tology forecasts, raw ETo forecasts demonstrate much lower
skills, with CRPS skill scores lower than −25 % in all grid
cells, even for those at short lead times.

We need to point out that simple bias correction is often
applied to raw ECMWF forecasts before they are used. We
applied quantile mapping to the raw ETo forecasts and were
able to improve forecast skills (Fig. S8). However, the bias-
corrected forecasts still demonstrate skills much worse than
climatology forecasts, particularly at long lead times.

With the correction of errors, including the time-
dependent errors, the BJP-ti calibrated forecasts demonstrate
CRPS skill scores larger than 20 (%) at month 0 in most
grid cells (Fig. 5). The eastern parts of Australia, such as
New South Wales and Victoria, show CRPS skill scores of
up to 30 (%). Beyond month 0, the skill score decreases
significantly in calibrated forecasts. Most areas of Australia
show CRPS skill scores lower than 10 (%) at month 1. The
skill score further decreases at longer lead times but remains
above zero in many parts of Australia, even at month 6, sug-
gesting better performances than the climatology forecasts.

We also summarize the CRPS skill score of calibrated
forecasts by target month at the seven lead times across Aus-
tralia (Fig. 6). Individual boxes indicate the variability among
all the grid cells across Australia for that month and lead
time. At the first lead time (month 0), all months show a
CRPS skill score that is markedly better than the climatol-
ogy forecasts across most grid cells, with the median CRPS

skill score being above 20 (%) for 7 months. However, the
skill score decreases quickly with lead time. At lead time 1,
the CRPS skill score is mainly lower than 10 (%) for all tar-
get months. The skills of calibrated forecasts vary among the
months. For October, November, and December, the CRPS
skill score is above 0 for more than 50 % of grid cells, even
at lead time 6, indicating better performance than the clima-
tology forecasts. For other months, such as January, April,
May, and June, the median CRPS skill score decreases to
values slightly below 0 beyond the first lead time (month 0).

3.4 Bias in raw and BJP-ti calibrated ETo forecasts

Raw monthly ETo forecasts constructed with the raw climate
forecasts of the ECMWF SEAS5 model demonstrate signif-
icant overpredictions (Fig. 7). Positive biases of over 15 mm
per month occur in most parts of Australia, away from the
coastal fringe, and Tasmania. Small areas with negative bi-
ases are found in the coastal margins of Queensland and Tas-
mania. The spatial patterns of bias in the raw ETo forecasts
are consistent across all seven lead times, demonstrating sys-
temic errors in raw ETo forecasts. The BJP-ti calibration sub-
stantially corrects the systematic errors in the raw forecasts,
resulting in biases close to 0 in calibrated forecasts for all
lead times (Figs. 7 and S9).

3.5 Correlation between raw/calibrated forecasts and
observations

The calibration based on the BJP-ti model also improves
the correlation coefficients between forecasts and observa-
tions. Raw forecasts are able to capture the high seasonality
in ETo and, thus, demonstrate high correlation coefficients
with observations (Fig. S10). The r values are generally
over 0.9 across most parts of central and southern Australia.
Lower r values are mainly distributed in coastal regions of
northern Australia. Calibration with the BJP-ti model further
improved the representation of the ETo temporal dynamics
(Fig. 8). The r values for the calibrated forecasts are over
0.9 in most parts of Australia. Improvements in r are more
pronounced in northern Australia, where raw forecasts show
lower correlations with observations.

3.6 Reliability of calibrated ETo forecasts

In this study, we generate 1000 ensemble members for each
raw forecast to quantify the uncertainties of the calibrated
forecasts. As indicated by the α index, calibrated ETo fore-
casts are highly reliable. The α index of calibrated ensemble
ETo forecasts is above 0.96 in most parts of Australia for all
the seven lead times (Figs. 9 and S11). The high reliability of
the calibrated forecasts suggests reasonable representations
of uncertainties in calibrated ETo forecasts, and the distribu-
tions of calibrated ensemble forecasts are neither too narrow
nor too wide (Fig. 9).
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Figure 5. CRPS skill scores in (a) raw and (b) calibrated forecasts at seven lead times during 1990–2019.

Figure 6. Box plot of CRPS skill score by target month in BJP-ti calibrated forecasts.

4 Discussion

4.1 The necessity of reconstructing climate trends in
seasonal ETo forecasting

This investigation confirms that the misrepresentation of cli-
mate trends is an important error source in GCM-based ETo
forecasting. Most previous investigations on climate trends
in seasonal forecasts were primarily focused on tempera-
ture (Krakauer, 2019) and precipitation (Alizadeh-Choobari
et al., 2019), and existing ETo forecasting studies have not
investigated trends in ETo forecasts, despite temporal trends
in ETo being observed at weather stations across the globe

(Djaman et al., 2018; Kousari and Ahani, 2012). Although
the ECMWF model runs have been forced with the observed
greenhouse gas concentrations for our study period (Johnson
et al., 2019), and have actually produced temporal trends in
raw ETo forecasts (Fig. 1), the trends show significant in-
consistencies with observations. In addition, raw ETo fore-
casts at long lead times demonstrate much weaker trends
than those at short lead times. Since misrepresentations of
climate trends have been reported for many GCMs (Dunn et
al., 2017), GCM-based seasonal ETo forecasting may gener-
ally suffer from time-dependent errors.

This investigation also verifies our hypothesis that cor-
recting time-dependent errors through trend reconstruction
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Figure 7. Bias in (a) raw and (b) BJP-ti calibrated ETo forecasts.

Figure 8. (a) Correlation coefficients between BJP-ti calibrated forecasts and observations and (b) improvements in correlation coefficients
through the calibration with the BJP-ti model relative to those between raw forecasts and observations.

can add extra skills to calibrated ETo forecasts. Reconstruc-
tion of climate trends using the BJP-ti model effectively im-
proves the consistency between forecasts and observations in
temporal patterns and leads to more skillful calibrated fore-
casts when compared with the calibration that does not re-
construct trends in ETo forecasts. These improvements are
particularly significant in regions showing statistically signif-
icant observed trends and at long lead times when trends are

misrepresented most. Consequently, this investigation clearly
indicates the necessity of correcting time-dependent errors in
GCM-based seasonal ETo forecasting. Although it may take
decades for climate change to substantially alter the mag-
nitude of ETo (Figs. S11 and 12), we recommend that fu-
ture GCM-based ETo forecasting should still correct time-
dependent errors. More frequent extreme weather events in
recent years support model projections that climate change
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Figure 9. Alpha index of BJP-ti calibrated ensemble ETo forecasts.

will intensify in the future (Kharin et al., 2013) and may in-
duce more significant temporal trends in ETo.

4.2 Implications for improving statistical calibration
models

Climate change has posed challenges to the statistical cali-
bration of seasonal climate forecasts. Many post-processing
models, such as those based on the probabilistic theory (Tian
et al., 2014; Wang et al., 2009), often rely on the climatol-
ogy of observations to construct the probability distribution
function for calibration (Wilks, 2018). However, the non-
stationary behavior of the climate system induced by ele-
vated greenhouse gas emissions has been increasingly re-
ported (Haustein et al., 2016; Lima et al., 2015). Many cal-
ibration models developed for seasonal forecasts have not
considered the climate change impacts on the observed cli-
matology. Although these models are proven to be effective
in correcting biases in raw forecasts, assuming a static cli-
matology may have hindered the utilization of predictable
information in the raw forecasts. This investigation and our
previous calibration of seasonal temperature forecasts (Shao
et al., 2020, 2021) suggest that reconstructing trends in cali-
brated forecasts is an effective solution for capturing the non-
stationary behavior of the climate system for more robust sta-
tistical calibrations of seasonal climate forecasts.

This current investigation has further validated the
strength of the trend reconstruction algorithms in BJP-ti.
Previously, we applied this model to correct seasonal tem-

perature forecasts and achieved significant improvements
in forecast skills relative to the original BJP model (Shao
et al., 2020, 2021). This study further demonstrates the
feasibility of the general application of BJP-ti to different
hydroclimate variables showing temporal trends (Shao et
al., 2022a, b). The successful application to ETo forecasts
confirms the robustness of trend reconstruction algorithms
based on the data transformation, Bayesian inference, and
using the statistical significance of observed trends to deal
with the over-fitting of trend parameters in the BJP-ti model.
We also anticipate that the BJP-ti algorithms for trend re-
construction could be adopted by other calibration models to
enhance seasonal forecast calibration.

4.3 Future work

In this investigation, we successfully improve ETo forecast
calibration by reconstructing climate trends. We also identify
a few challenges that should be addressed in the future to
further enhance GCM-based seasonal ETo forecasting.

First of all, more sophisticated cross-validation methods
should be developed for the inference of trend parameters.
The current leave-one-out method has been proven to be ef-
fective in the inference of the mean vector and covariance
matrix (Shao et al., 2020). However, this strategy may not
guarantee the independence between the left-out data and
the data used for the inference of trend parameters. We de-
cided not to implement the data-splitting method for cross-
validation because of the risk of introducing sampling errors.
Future investigations should take this challenge into consid-
eration and develop more robust cross-validation methods for
the inference of trend parameters.

In this study, we directly use the raw forecasts of indi-
vidual input variables (e.g., temperature, solar radiation, and
vapor pressure) to construct the raw ETo forecasts. How-
ever, trends in these variables have been reported in previous
investigations. Whether correcting errors, including time-
dependent errors in the raw forecasts of each input variable,
will lead to more skillful calibrated ETo forecasts, warrants
further investigation.

Correction of lead-time-dependent errors should be fur-
ther investigated in future GCM-based ETo forecasting. We
found sharp declines in the skill of calibrated ETo forecasts
from lead time month 0 to month 1. Model initialization
with field observations plays a critical role in seasonal cli-
mate forecasting based on GCMs (Doblas-Reyes et al., 2013;
Hazeleger et al., 2013). Short lead time forecasts are more
skillful since they are closer to the observed state of the cli-
mate system than those at long lead times. At long lead times,
the predictable signal is often much smaller than the intrin-
sic uncertainty of GCMs. As a result, the skills of raw fore-
casts often decrease quickly in the first month (Swapna et
al., 2015), posing a challenge to statistical calibration, even
for those using sophisticated calibration models (Hawthorne
et al., 2013). Currently, we calibrate raw ETo forecasts of
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each lead time independently. Whether correcting the lead-
time-dependent biases will add extra skills to calibrated fore-
casts, particularly to those at long lead times, warrants further
investigation (Van Schaeybroeck and Vannitsem, 2018).

Future forecast calibration should also investigate the im-
pacts of climate change on the temporal variations in ETo.
In addition to the increasing or decreasing trends, warm-
ing climate also induced more significant temporal varia-
tions in ETo, following increasing climate extremes (Wen
et al., 2012). The increasing variations could pose another
challenge to statistical calibration models, assuming an un-
changed variance of the observations. This current investi-
gation provides a remedy for dealing with the varying mean
of ETo in statistical calibration. Future investigations should
evaluate whether allowing the variance to vary with time in
calibration models would further improve the skills of sea-
sonal ETo forecasts.

5 Conclusions

ETo forecasting provides useful information for hydrologi-
cal investigations and has been increasingly used to support
water resource forecasting and management. Anthropogenic
disturbances have induced changes in the climate system and
resulted in trends in many climate variables. GCMs often
misrepresent these climate trends and, thus, lead to time-
dependent errors in seasonal climate forecasts. We have re-
cently improved the BJP model to deal with this error source
through the reconstruction of observed climate trends in cal-
ibrated forecasts. In this study, we apply the BJP-ti model to
calibrate raw seasonal ETo forecasts constructed with climate
forecasts from the ECMWF SEAS5 model. The BJP-ti model
effectively corrects misrepresented climate trends and recon-
structs observed trends in calibrated ETo forecasts. More im-
portantly, forecast skills in areas showing statistically signifi-
cant observed trends in observations are improved following
trend reconstruction. This investigation highlights the neces-
sity of correcting time-dependent errors for enhancing GCM-
based seasonal ETo forecasting. We conclude that future ETo
forecasting based on GCM climate forecasts could improve
forecast skills through reconstructing climate trends in fore-
casts.

This investigation also provides valuable insights for im-
proving statistical calibrations of seasonal climate forecasts
in the future. In recent decades, climate trends have been in-
creasingly observed. However, many calibration models for
seasonal forecasts have not taken the non-stationary behavior
of the climate system into consideration. Improved forecast
skills in seasonal ETo forecasts through the reconstruction
of temporal trends, together with our previous calibration of
seasonal temperature forecasts, validate the robustness and
effectiveness of trend reconstruction algorithms in the BJP-ti
model. We anticipate that these algorithms would be applica-
ble to enhance other calibration models.
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