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Abstract. Crop water productivity is a key element of wa-
ter and food security in the world and can be quantified
by the water footprint (WF). Previous studies have looked
at the spatially explicit distribution of crop WFs, but little
is known about their temporal dynamics. Here, we present
AquaCrop-Earth@lternatives (ACEA), a new process-based
global gridded crop model that can simulate three con-
sumptive WF components: green (WFg), blue from irri-
gation (WFbi), and blue from capillary rise (WFbc). The
model is applied to analyse global maize production in 1986–
2016 at 5×5 arcmin spatial resolution. Our results show that
over the 2012–2016 period, the global average unit WF of
maize is 728.0 m3 t−1 yr−1 (91.2 % WFg, 7.6 % WFbi, and
1.2 % WFbc), with values varying greatly around the world.
Regions with high-input agriculture (e.g. Western Europe
and Northern America) show small unit WFs and low in-
terannual variability, while low-input regions show oppo-
site outcomes (e.g. Middle and Eastern Africa). From 1986
to 2016, the global average unit WF reduced by a third,
mainly due to the historical increase in maize yields. How-
ever, due to the rapid expansion of rainfed and irrigated ar-
eas, the global WF of maize production increased by half,
peaking at 768.3× 109 m3 yr−1 in 2016. As many regions
still have a high potential in closing yield gaps, unit WFs
are likely to reduce further. Simultaneously, humanity’s ris-
ing demand for food and biofuels may further expand maize
areas and hence increase WFs of production. Thus, it is im-
portant to address the sustainability and purpose of maize
production, especially in those regions where it might en-
danger ecosystems and human livelihoods.

1 Introduction

Ever-increasing crop production is one of the reasons why
humanity transgresses planetary boundaries (Campbell et
al., 2017; Jaramillo and Destouni, 2015). In particular, crop
production is estimated to account for around 87 % of hu-
manity’s total water consumption (Hoekstra and Mekonnen,
2012), which in some places already exceeds environmen-
tal limits, endangering local ecosystems and water security
(Hoekstra et al., 2012b; Schyns et al., 2019; Verones et al.,
2017). Moreover, the situation is likely to worsen in the fu-
ture as crop water consumption continues to grow (Wada and
Bierkens, 2014; Greve et al., 2018).

One way to minimise crops’ pressure on water resources is
to increase crop water productivity, i.e. have “more crop per
drop” (Giordano et al., 2006). The volume of water needed
to produce a unit of a crop can be measured by the consump-
tive water footprint (WF). It is calculated as the crop water
use (CWU) over crop yield (Hoekstra, 2011). CWU reflects
the amount of accumulated evapotranspiration (ET) over the
growing season and can be attributed to green (from pre-
cipitation) and blue water (from capillary rise – CR – and
irrigation). Crop yield reflects the harvestable part of crop
biomass.

Since its introduction in 2002, the WF concept has been
widely applied to analyse crop water productivity (Feng et
al., 2021; Lovarelli et al., 2016). However, most studies ei-
ther focus on a small geographical extent (e.g. specific catch-
ments or administrative units) or consider a short time pe-
riod. The few existing global studies focus on the average
year 2000 (Mekonnen and Hoekstra, 2011; Siebert and Döll,
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2010; Tuninetti et al., 2015) and thus lack the analysis of
historical trends and interannual variability. Moreover, their
methods to estimate green and blue crop WFs have sev-
eral limitations: (i) the applied crop water requirement ap-
proach does not simulate crop growth and its response to
thermal stresses; (ii) the water balance is simulated without
considering CR that can be relevant in areas with shallow
groundwater (Hoekstra et al., 2012a); (iii) the green–blue wa-
ter partitioning is performed in post-processing, which does
not account for the full dynamics of green and blue water
fluxes in the soil water balance (Hoekstra, 2019). Alterna-
tively to these studies, crop WFs can be simulated with global
gridded crop models (GGCMs). These models (e.g. LPJmL,
EPIC, and DSSAT) typically simulate crop growth and wa-
ter use from the underlying biophysical processes in the
atmosphere–plant–soil continuum in each grid cell (Müller
et al., 2017). Due to high computational demands, a limited
body of literature applies GGCMs. The most prominent stud-
ies come from the Global Gridded Crop Model Intercompar-
ison (GGCMI) within the Agricultural Model Intercompari-
son and Improvement Project (Rosenzweig et al., 2013; El-
liott et al., 2015) that mainly uses ensembles of GGCMs to
analyse climate change impacts on crop production (Ruane et
al., 2018; Jägermeyr et al., 2021a; Minoli et al., 2019; Zabel
et al., 2021; Deryng et al., 2016). Besides GGCMI, several
studies look into spatial patterns of crop water productivity
but not into historical dynamics (Liu et al., 2009, 2016; Fader
et al., 2010).

In this paper, we present AquaCrop-
Earth@lternatives (ACEA) – a global gridded version
of FAO’s water-driven, process-based, and site-based crop
growth model AquaCrop (Vanuytrecht et al., 2014; Steduto
et al., 2009). We use AquaCrop because it requires a small
number of inputs to produce reliable estimates of crop yield
and CWU under various agro-climatic conditions (Araya et
al., 2016; Greaves and Wang, 2016; Karandish and Hoekstra,
2017; Maniruzzaman et al., 2015; Chukalla et al., 2015;
Zhuo et al., 2016). In recent years, several studies applied it
at the regional scale via GIS software (Lorite et al., 2013;
Huang et al., 2019; Han et al., 2020). However, in this
implementation, AquaCrop demands inputs for each simu-
lation site in separate files, which can be computationally
inefficient. To overcome this limitation, ACEA utilises the
open-source version developed by Kelly and Foster (2021)
– AquaCrop-OSPy. We optimise ACEA for large-scale
simulations by minimising the number of input files and
by parallelising the modelling procedure. Furthermore, we
implement the daily accounting of green and blue water
fluxes in the soil profile, including CR contributions from
shallow groundwater.

Although ACEA can be applied to simulate all crops that
are compatible with AquaCrop, we demonstrate ACEA’s per-
formance by simulating global WFs of maize (Zea mays L.)
at 5×5 arcmin resolution (∼ 8.3 km× 8.3 km). We cover the
1986–2016 period, considering historical changes in har-

vested areas and crop yields. We focus on maize because
of several reasons. First, it is the most produced grain in
the world (FAOSTAT, 2021). Second, it plays a major role
in the global economy by being used not only as food for
animals (including humans), but also to produce biofuels
and other biochemicals (Ranum et al., 2014). Finally, maize
WFs are not as extensively researched as WFs of other ma-
jor grains, such as rice and wheat (Chapagain and Hoekstra,
2011; Mekonnen and Hoekstra, 2010). In our analysis, we re-
veal temporal and spatial patterns in both unit WFs of maize
(in m3 t−1 yr−1) and WFs of maize production (in m3 yr−1)
at global and regional levels. We conclude by comparing our
results to estimates from previous studies, discussing both
limitations and advantages of crop water productivity anal-
ysis with ACEA, and addressing the sustainability of maize
production.

2 Data and methods

2.1 Global gridded crop model ACEA

2.1.1 General description

ACEA is written in Python, and its simulation procedure
has three main stages as shown in Fig. 1. In the first stage,
ACEA collects crop and environmental input data for each
grid cell within the study area (elaborated in Sect. 2.2). The
spatial resolution of input data determines the size of grid
cells, while the geographical extent of rainfed and irrigated
production systems determines the number of cells. Depend-
ing on water availability, several rainfed and irrigation setups
can be selected. The rainfed setups include fully rainfed (s1)
and rainfed with presence of shallow groundwater (s2). The
irrigation setups include surface irrigation (s3), sprinkler ir-
rigation (s4), drip irrigation (s5), and surface irrigation with
presence of shallow groundwater (s6). Besides water avail-
ability setups, crop management can be customised by se-
lecting field practices (mulches, weed control, and bunds)
and adjusting irrigation strategies. In the second stage, ACEA
runs AquaCrop-OSPy (described in Sect. 2.1.2) in each grid
cell independently, meaning that lateral processes, such as
water inflow from adjacent cells, are not considered. Main
output variables are crop yield and CWU (see all outputs
in Sect. S1.1 in the Supplement). In the third stage, ACEA
aggregates the raw outputs from each grid cell into global
gridded datasets in NetCDF format. Then, it runs optional
post-processing procedures, including crop yield scaling (see
Sect. 2.1.4), WF calculation (Sect. 2.1.3), statistical analysis
(Sect. 2.1.5), and visualisation.

2.1.2 AquaCrop-OSPy and green–blue water
accounting

We use AquaCrop-OSPy (Kelly and Foster, 2021), which
is a Python implementation of FAO’s AquaCrop application
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Figure 1. Schematic representation of ACEA’s simulation framework.

version 6.1. This crop model uses crop, soil, climate, field,
and irrigation management data (see Fig. 1) to simulate daily
crop growth and the soil water balance (Vanuytrecht et al.,
2014). The latter includes water input (precipitation, irri-
gation, and CR) and output (runoff, evaporation (E), tran-
spiration (T ), and deep percolation) fluxes as well as up-
ward and downward fluxes between soil compartments (see
Fig. 2). Crop growth is temperature-driven via growing de-
gree days (GDDs) and expressed by the variable effective
rooting depth and canopy cover. Canopy cover is used to
convert the potential evapotranspiration (ET0) into T , which
drives dry above-ground biomass growth via a CO2-adjusted
water productivity factor. At the end of the growing season,
the accumulated biomass is converted into a dry crop yield
via a harvest index. The crop growth is affected by thermal
and water stresses. For example, the latter can induce stom-
atal closure and constrain canopy expansion, which would
lead to reduced T and biomass growth. Note that the nutri-
ent cycle and water salinity are not simulated in AquaCrop-
OSPy. For more information on AquaCrop, please refer to
user manuals (Raes et al., 2009; Steduto et al., 2009; Hsiao
et al., 2009).

The green–blue water accounting is our most important
addition to the AquaCrop-OSPy code (see other changes in
Sect. S1.2). According to Hoekstra (2019), each of the in-
put fluxes is attributed to one of the three water types: green
from precipitation, blue from CR, or blue from irrigation (see
the respective coloured boxes in Fig. 2). Once entered, these
fluxes are assumed to mix evenly with moisture in soil com-
partments at the top or the bottom of the soil profile. Then,
the mixed water is partly redistributed via the upward and
downward fluxes between the compartments due to gravi-
tational and capillary forces. The mixed water is taken up
for ET – from the upper part of the soil profile for E and from
all compartments within the effective rooting depth for T .
Therefore, the volumes of the three water types stored in
each soil compartment constantly change. This implies that
the composition of ET varies per day too, and, consequently,
we can estimate precise CWU for each of the three water
types. For more details about green–blue water accounting,
please refer to Hoekstra (2019).

Figure 2. AquaCrop simulation scheme. Green, blue, and cyan
boxes represent variables related to the soil water balance, brown
boxes to crop growth, and grey boxes to climate. We only abbrevi-
ate the terms that are often used in the text.

2.1.3 Water footprint calculation

ACEA calculates the annual consumptive
unit WF (m3 t−1 yr−1) of a crop as the sum of three
WF components (Hoekstra, 2011):

WF=WFg+WFbc+WFbi, (1)

where WFg is the green WF, WFbc is the blue WF from CR,
and WFbi is the blue WF from irrigation. Each unit WF com-
ponent is calculated as the crop water use CWUx (mm yr−1)
of a water type x (g, bc, or bi) over crop yield Y (t ha−1 yr−1).
To convert from millimetres per year (mm yr−1) into cubic
metres per hectare per year (m3 ha−1 yr−1), CWUx is multi-
plied by 10:

WFx =
CWUx · 10

Y
. (2)

To obtain Y , the simulated crop yield Ys in AquaCrop-OSPy
is corrected by two unitless coefficients. The first one is
a conversion coefficient from dry to fresh crop yield Kf
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(0.87 for maize); the second one is a yield scaling factor S,
which is introduced to account for external developments not
modelled in ACEA (explained in Sect. 2.1.4):

Y =
Ys · S

Kf
. (3)

The simulated water availability setups are combined to anal-
yse rainfed and irrigated production systems. In the case
of rainfed systems, unit WFs of a water type x from se-
tups s1 and s2 (defined in Sect. 2.1.1) are simply summed as
rainfed grid cells always only have one setup. On the other
hand, in irrigated systems, the same grid cell can have sev-
eral irrigated setups (s3 to s6) at once. Therefore, irrigated
unit WFs are multiplied by irrigation factor Ki before being
summed. The latter reflects a fraction of irrigated area under
the respective irrigation method obtained from Jägermeyr et
al. (2015):

Rainfed WFx =WFx,s1+WFx,s2 (4)

Irrigated WFx =

s6∑
i=s3

WFx,i ·Ki . (5)

Note that we differentiate between the unit WF and the WF of
crop production. The latter is calculated by multiplying the
unit WF by the annual crop production, and thus it is mea-
sured in cubic metres per year.

2.1.4 Crop yield scaling

During the last decades, maize yields have increased globally
due to various long-term agricultural developments, namely
advances in agricultural inputs (e.g. irrigation, fertilisers, ma-
chinery, and chemical control of weeds and insects) and bet-
ter crop varieties (e.g. higher plant density and improved
biotic and abiotic stress resistance) (Duvick, 2005; Lorenz
et al., 2010). At the same time, there have been short-term
developments that caused interannual variability in maize
yields, namely disruptions due to political (e.g. civil wars),
economic (e.g. food prices), and natural reasons (e.g. locust
plague, flooding) (Woo-Cumings, 2002; Smale et al., 2011).
Both long-term and short-term developments are not mod-
elled in ACEA, either because of input data limitations or
because required processes are not included in AquaCrop-
OSPy. However, following the logic of previous studies
(Mekonnen and Hoekstra, 2011; Siebert and Döll, 2010), we
attempt to represent the combined effect of these develop-
ments via yield scaling factors (S) that scale Ys to the annual
statistics from FAO (FAOSTAT, 2021).

Because FAO reports the total crop production at the na-
tional scale, S values are the same for each grid cell within a
country (see Fig. 3). S is calculated per country per year as
the ratio of the official crop production PFAO (t yr−1) reported
by FAO to the simulated crop production PACEA in ACEA.
The latter is calculated as the sum of rainfed and irrigated
production:

Figure 3. Calculation procedure of yield scaling factors at the na-
tional level.

S =
PFAO∑

Rainfed PACEA+
∑

Irrigated PACEA
(6)

Rainfed PACEA =

(
Ys,s1+Ys,s2

)
·Arainfed

Kf
(7)

Irrigated PACEA =

(
s6∑

i=s3

Ys,i ·Ki

Kf

)
·Airrigated, (8)

where Ys is the simulated crop yield (t ha−1 yr−1) in a specific
water availability setup (rainfed: s1 and s2, irrigated: s3–
s6), Arainfed and Airrigated are historical rainfed and irrigated
harvested areas (ha yr−1), and Ki and Kf are defined in
Sect. 2.1.3.

Interannual variability in S leads to interannual variabil-
ity in crop yields and hence in unit WFs. However, we aim
to capture the effect of long-term external conditions while
maintaining the modelled climate-related interannual vari-
ability. Therefore, we take a 3-year moving average of scal-
ing factors for each country (using the previous, current, and
next year’s factors). This allows us to keep the overall trend
and variability in historical crop yields while attenuating ex-
treme responses to short-term external developments.

One could argue that CWU should be scaled as well. How-
ever, we only scale Ys due to several reasons. First, improve-
ments in crop varieties (e.g. angle and size of leaves) can
change the ratio of T to E, but this has minor effects on
CWU as an increase (or decrease) in T is compensated by
a decrease (or increase) in E (Xu et al., 2018; Nagore et
al., 2014). Both E and T consume green and blue water,
and thus we do not expect major changes in green and blue
CWUs either. Second, the historical increase in plant density
mainly increases maize yields, while CWU values stay rel-
atively similar for the same reasons as mentioned above. A
sensitivity analysis with our model (see Sect. S1.3) confirms
this. Third, an input of nitrogen fertiliser can marginally
increase CWU when first applied, but additional fertiliser
amounts would not always lead to a larger CWU (Rudnick
et al., 2017). In our study, we have to assume no nutrient
stress (i.e. optimal nutrient supply) as AquaCrop-OSPy can-
not simulate the nutrient cycle. This might lead to an overes-
timation of CWU in places that do not use fertilisers. How-
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Table 1. Summary of input data used for maize crop modelling and post-processing in ACEA.

Type Period Time step Resolution Source

Data for crop modelling in AquaCrop-OSPy (1984–2016)

Climate inputs 1984–2016 daily 30× 30 arcmin GSWP3-W5E5 v1.0 (Lange, 2019)

Atmospheric CO2 concentration 1984–2016 annual Global average NOAA (Dlugokencky and Tans, 2020)

Crop parameters – – – AquaCrop’s manual and crop files

Crop calendar – – 30× 30 arcmin Jägermeyr et al. (2021b)

Soil composition – – 30× 30 arcmin ISIMIP3 project (ISIMIP, 2020) based on the Harmonized
World Soil Database 1.12 (Nachtergaele et al., 2008)

Groundwater levels Average of monthly 5× 5 arcmin Fan et al. (2013)
2004–2014

Data for setup and post-processing (1986–2016)

Harvested areas Around 2010 annual 5× 5 arcmin SPAM2010 (Yu et al., 2020)

Irrigated cropland 1985–2005 5-year 5× 5 arcmin HID (Siebert et al., 2015)

Irrigated and rainfed cropland 1980–2017 10-year till 2000 5× 5 arcmin HYDE 3.2 (Klein Goldewijk et al., 2017)
then annual

Maize production statistics 1986–2016 annual National FAO (FAOSTAT, 2021)

ever, we assume that the majority of maize is produced by
high-input farms with sufficient nutrient supply, and thus our
CWU estimates over large scales should be hardly affected.
To sum up, the literature indicates that historical changes in
crop varieties and agricultural inputs only have minor effects
on maize CWU compared to yields. Therefore, scaling the
yields should be sufficient to represent historical dynamics
in maize unit WFs.

2.1.5 Statistical analysis of results

Statistical analysis is performed at several spatial scales
according to the UN classification (UNSD, 2021): global,
(sub)regional, and national. To obtain representative values
for each scale, unit WFs are averaged based on the produc-
tion amounts, and related variables (Y , CWU, and S) are av-
eraged based on the harvested area in each grid cell. We also
focus on two timeframes: (i) the last 5-year period (2012–
2016) as a proxy for the current state of unit WFs and (ii) the
whole 1986–2016 period to analyse historical changes. For
the trend analysis of WFs and related variables, we use the
Mann–Kendall test, which identifies the direction and signifi-
cance of a trend in time series (Hussain and Mahmud, 2019).
We further detrend the variables with significant trends to
analyse interannual variations by removing a linear trend.
The interannual variability is measured by estimating the co-
efficient of variation (CV) of detrended time series, and the
dependency between different variables is determined by the
Pearson linear correlation coefficient (Brown, 1998).

2.2 Simulation setup

Data needed to run ACEA for global maize production
are summarised in Table 1. We simulate maize WFs over
the 1986–2016 period at 30× 30 arcmin resolution (∼
50 km× 50 km), which is also common for GGCMI stud-
ies (Franke et al., 2020). The maize-growing grid cells are
selected according to the location of maize production sys-
tems obtained from SPAM2010 (Yu et al., 2020). Note that
we do not differentiate between the various types of maize
(e.g. pop, dent, flour, and sweet corns) due to a lack of in-
put data. We consider only one growing season per year, as
double cropping of maize is negligible at the global scale
(Portmann et al., 2010). The periods between growing sea-
sons are also simulated to account for soil moisture changes.
We exclusively use water availability setups s1 to s4 (de-
fined in Sect. 2.1.1), as s5 and s6 are not common for maize
production. The 30× 30 arcmin modelling outputs are dis-
tributed among its underlying 5× 5 arcmin grid cells from
SPAM2010, and hence the post-processing (see Sect. 2.1.1)
is performed at 5× 5 arcmin resolution.

Climate inputs for AquaCrop-OSPy are obtained from
the bias-corrected reanalysis product GSWP3-W5E5 v1.0
(Lange, 2019) that provides historical daily rainfall, tem-
perature, surface shortwave radiation, wind speed, and rel-
ative humidity. These variables (except rainfall) are used
together with a global elevation model (Amante, 2009) to
estimate ET0 according to the Penman–Monteith equation
(Allen et al., 1998).

Crop parameters are obtained from the AquaCrop manual
(Raes et al., 2018) and the default maize crop file provided
with AquaCrop-OSPy. In the case of inconsistencies among
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these two sources, priority is given to data from the man-
ual. The considered crop calendar (Jägermeyr et al., 2021b)
is a composite of multiple recent data sources that rely on
national and subnational statistics, remote sensing products,
and modelling. The planting and harvest dates from the crop
calendar are used to calculate GDDs with the third calcula-
tion method from AquaCrop (Raes et al., 2018). Crop devel-
opment stages (in GDDs) for each grid cell are recalculated
with the method of Minoli et al. (2019) to ensure that the
average growing season duration is similar to the one from
the crop calendar. Since some growing seasons are colder
than average, they are allowed to be up to 15 % longer for
the crop to reach maturity. Additional information on maize
parametrisation is provided in Sect. S1.4.

The soil profile is defined as one layer of 3 m depth with
eight compartments ranging from 0.1 to 0.7 m in thickness.
The selection of soil compartments is based on the analy-
sis described in Sect. S1.5. Sand, silt, and clay fractions for
each grid cell are obtained from the ISIMIP3 project (ISIMIP,
2020) which provides the fractions from the Harmonized
World Soil Database 1.12 (Nachtergaele et al., 2008) up-
scaled to 30× 30 arcmin. The soil composition is then con-
verted into hydraulic parameters using a pedotransfer func-
tion (Saxton and Rawls, 2006) included in AquaCrop-OSPy.
To ensure realistic initial soil moisture values, we run the
model 2 years in advance of our study period (described in
Sect. S1.6).

The average monthly groundwater levels are taken from
Fan et al. (2013) and initially upscaled to 5× 5 arcmin using
a resample function in QGIS (QGIS, 2021). Then, the near-
surface values are lowered to 1 m depth under the assump-
tion that farmers drain the agricultural field to avoid aeration
stress (see Sect. S1.7). We further upscale monthly ground-
water levels to 30× 30 arcmin by taking an average over
the underlying 5× 5 arcmin grid cells where maize produc-
tion and shallow groundwater (< 3 m in depth) are present.
Finally, we interpolate the monthly values to obtain daily
groundwater levels. Note that Fan et al. (2013) report val-
ues in a natural state for only 1 year, and thus short- and
long-term effects of groundwater pumping and natural an-
nual fluctuations are not considered.

Following previous studies (Andarzian et al., 2011;
Khoshravesh et al., 2013), irrigation events are triggered as
soon as the soil moisture drops below 50 % of the maximum
available soil water within the root zone. The amount of irri-
gated water in each of the irrigated setups is limited by field
capacity and depends on the percentage of wetted area by the
respective irrigation method (Chukalla et al., 2015). The con-
veyance efficiency is set to 100 % to provide the net irriga-
tion requirement. No particular field management practices
are activated due to a lack of data on where they are applied.

To account for the historical changes in harvested areas,
we extrapolate SPAM2010 to the 1986–2016 period. The ex-
trapolation is performed using two historical datasets on rain-
fed and irrigated cropland extent, i.e. HYDE 3.2 (Klein Gold-

ewijk et al., 2017) and HID (Siebert et al., 2015), under the
assumption that harvested areas of maize from SPAM2010
experienced the same dynamics as the croplands did. Then,
the extrapolated areas are scaled to FAOSTAT (2021). A de-
tailed description of the extrapolation and scaling procedures
is provided in Sect. S1.8.

3 Results

3.1 Average water footprints in 2012–2016

The global average unit WF of maize is 728.0 m3 t−1 yr−1

over the 2012–2016 period. The share of green water (WFg)
is 91.2 %, while the shares of blue water from CR (WFbc)
and irrigation (WFbi) are 1.2 % and 7.6 %, respectively.
The unit WF has a distinct latitudinal distribution (see
Fig. 4a) following the same patterns as crop yields (see
Fig. S1a in the Supplement). High yields and small unit WFs
north of 20◦ N are due to high-input production systems
in the main maize-growing regions: Northern America
(WF is 483.1 m3 t−1 yr−1; yield is 10.1 t ha−1 yr−1), Eu-
rope (597.5 m3 t−1 yr−1; 6.2 t ha−1 yr−1), and Eastern Asia
(615.7 m3 t−1 yr−1; 5.9 t ha−1 yr−1). On the other hand, the
regions with low yields have substantially larger unit WFs
and are mostly located in arid parts of the world that mainly
rely on low-input rainfed production systems (e.g. Middle
and Eastern Africa).

Rainfed systems produce 76.5 % of maize and show on av-
erage a 10.5 % larger unit WF (744.9 m3 t−1 yr−1) than irri-
gated systems (674.1 m3 t−1 yr−1). However, both the small-
est and the largest regional unit WFs (among regions with
at least 0.5 % of global maize production) are located in
areas dominated by rainfed production (see Table 2), with
the largest one in Middle Africa (3157.9 m3 t−1 yr−1) and
the smallest one in Western Europe (433.2 m3 t−1 yr−1). The
smaller WF in the latter region can be explained by both a
smaller CWU (i.e. lower ET rates) and a higher crop yield
(see Fig. S1). The WF values also vary among areas domi-
nated by irrigated production. For example, the WF in West-
ern Asia (569.6 m3 t−1 yr−1) is almost half of that in North-
ern Africa (1035.5 m3 t−1 yr−1) due to a smaller CWU, while
maize yields in both regions are similar. The global maps
with separated rainfed and irrigated unit WFs can be found
in Fig. S2.

Zooming to the national level, the average unit WF
of the nine biggest producing countries plus the EU 27
is 591.0 m3 t−1 yr−1 (90.5 % WFg, 1.6 % WFbc, and
7.9 % WFbi). The WF values range from 487.2 m3 t−1 yr−1

in the USA to 1252.4 m3 t−1 yr−1 in Mexico (see Fig. 5).
WFbc is substantial in Argentina (4.6 % of WF) and the
EU 27 (2.4 %). Among the 27 EU countries, the largest WFbc
shares are in Slovakia (8.1 %), the Netherlands (7.2 %), and
Hungary (6.9 %). Together, these 10 biggest producers ac-
count for 68.1 % of the global WF of maize production,

Hydrol. Earth Syst. Sci., 26, 923–940, 2022 https://doi.org/10.5194/hess-26-923-2022



O. Mialyk et al.: Historical simulation of maize water footprints with a new global gridded crop model ACEA 929

Ta
bl

e
2.

O
ve

rv
ie

w
of

gl
ob

al
m

ai
ze

pr
od

uc
tio

n
an

d
w

at
er

fo
ot

pr
in

ts
ta

tis
tic

s
as

th
e

av
er

ag
e

ov
er

20
12

–2
01

6
(e

xc
ep

tt
he

co
ef

fic
ie

nt
of

va
ri

at
io

n
(C

V
),

w
hi

ch
is

es
tim

at
ed

fo
r1

98
6–

20
16

).
C

W
U

is
cr

op
w

at
er

us
e,

an
d

W
F

is
w

at
er

fo
ot

pr
in

t(
g

–
gr

ee
n,

bc
–

bl
ue

fr
om

ca
pi

lla
ry

ri
se

,b
i–

bl
ue

fr
om

ir
ri

ga
tio

n)
.T

he
se

le
ct

io
n

of
re

gi
on

s
is

ba
se

d
on

th
e

U
N

cl
as

si
fic

at
io

n
(U

N
SD

,
20

21
).

R
eg

io
n

M
ai

ze
Ir

ri
ga

te
d

W
F

of
C

ro
p

Y
ie

ld
C

W
U

W
F g

W
F b

c
W

F b
i

U
ni

tW
F

C
ha

ng
e

in
un

it
C

V
of

pr
od

uc
tio

n
(%

of
pr

od
uc

tio
n

yi
el

d
ga

p∗
(m

m
yr
−

1 )
(%

of
un

it
W

F)
(m

3
t−

1
yr
−

1 )
W

F
(r

el
at

iv
e

un
it

W
F

(%
of

gl
ob

al
)

pr
od

uc
tio

n)
(%

of
gl

ob
al

)
(t

ha
−

1
yr
−

1 )
to

19
86

–1
99

0)

N
or

th
er

n
A

fr
ic

a
0.

8
%

98
.6

%
1.

1
%

6.
7

58
.7

%
69

1.
9

5.
1

%
0.

1
%

94
.8

%
10

35
.5

−
34

.0
%

7.
5

%
E

as
te

rn
A

fr
ic

a
3.

0
%

1.
4

%
11

.4
%

1.
8

88
.7

%
51

3.
3

99
.4

%
0.

1
%

0.
4

%
27

63
.5

−
22

.8
%

33
.9

%
M

id
dl

e
A

fr
ic

a
0.

6
%

1.
4

%
2.

8
%

1.
1

89
.7

%
36

3.
5

98
.9

%
0.

7
%

0.
4

%
31

57
.9

−
30

.1
%

30
.1

%
So

ut
he

rn
A

fr
ic

a
1.

1
%

32
.9

%
1.

7
%

4.
1

46
.6

%
45

6.
5

88
.7

%
0.

0
%

11
.3

%
10

67
.3

−
60

.3
%

74
.5

%
W

es
te

rn
A

fr
ic

a
1.

9
%

0.
7

%
5.

3
%

1.
6

85
.0

%
33

2.
5

99
.7

%
0.

1
%

0.
1

%
20

08
.9

−
22

.3
%

40
.0

%

A
fr

ic
a

7.
4

%
15

.9
%

22
.4

%
2.

0
84

.8
%

43
7.

2
93

.9
%

0.
2

%
6.

0
%

21
57

.0
−

26
.6

%
38

.5
%

C
ar

ib
be

an
0.

1
%

9.
1

%
0.

2
%

1.
3

87
.0

%
30

8.
1

98
.6

%
0.

2
%

1.
2

%
22

99
.8

−
25

.5
%

22
.9

%
C

en
tr

al
A

m
er

ic
a

2.
8

%
24

.3
%

4.
8

%
3.

1
78

.4
%

39
4.

9
91

.0
%

0.
1

%
8.

9
%

12
78

.7
−

42
.3

%
13

.2
%

So
ut

h
A

m
er

ic
a

11
.9

%
4.

5
%

12
.2

%
5.

2
64

.2
%

38
9.

8
96

.8
%

1.
3

%
1.

9
%

74
6.

6
−

57
.7

%
13

.7
%

N
or

th
er

n
A

m
er

ic
a

35
.1

%
17

.0
%

22
.9

%
10

.1
31

.0
%

47
6.

8
90

.3
%

1.
7

%
8.

0
%

48
3.

1
−

28
.8

%
16

.1
%

A
m

er
ic

as
49

.9
%

14
.4

%
40

.2
%

7.
4

48
.8

%
43

5.
0

92
.4

%
1.

4
%

6.
2

%
59

2.
6

−
37

.4
%

15
.4

%

C
en

tr
al

A
si

a
0.

2
%

88
.3

%
0.

2
%

6.
2

47
.4

%
45

6.
5

36
.1

%
0.

9
%

63
.0

%
75

6.
4

−
45

.2
%

18
.8

%
E

as
te

rn
A

si
a

23
.2

%
46

.4
%

19
.5

%
5.

9
55

.7
%

36
2.

3
85

.6
%

1.
9

%
12

.5
%

61
5.

7
−

29
.5

%
19

.3
%

So
ut

h-
ea

st
er

n
A

si
a

4.
1

%
9.

3
%

3.
6

%
4.

2
60

.6
%

27
3.

8
98

.4
%

0.
3

%
1.

3
%

64
3.

5
−

59
.1

%
15

.7
%

So
ut

he
rn

A
si

a
3.

4
%

38
.0

%
4.

5
%

2.
9

72
.5

%
27

6.
8

87
.1

%
0.

2
%

12
.7

%
94

1.
8

−
49

.1
%

21
.3

%
W

es
te

rn
A

si
a

0.
7

%
49

.3
%

0.
5

%
7.

1
22

.1
%

37
2.

2
65

.1
%

0.
5

%
34

.4
%

56
9.

6
−

36
.9

%
36

.7
%

A
si

a
31

.5
%

41
.0

%
28

.3
%

5.
1

58
.7

%
33

3.
0

86
.8

%
1.

4
%

11
.9

%
65

4.
7

−
38

.5
%

19
.4

%

E
as

te
rn

E
ur

op
e

6.
5

%
3.

8
%

6.
0

%
5.

3
53

.4
%

35
1.

6
96

.7
%

2.
2

%
1.

1
%

66
9.

5
−

30
.1

%
44

.9
%

N
or

th
er

n
E

ur
op

e
0.

01
5

%
0.

0
%

0.
0

%
6.

3
39

.4
%

24
7.

6
99

.0
%

1.
0

%
0.

0
%

39
2.

1
−

54
.5

%
52

.3
%

So
ut

he
rn

E
ur

op
e

2.
4

%
43

.5
%

1.
8

%
7.

9
44

.7
%

44
2.

1
79

.8
%

3.
6

%
16

.6
%

56
2.

5
−

30
.3

%
14

.7
%

W
es

te
rn

E
ur

op
e

2.
2

%
39

.7
%

1.
3

%
9.

1
35

.9
%

39
4.

6
94

.3
%

0.
4

%
5.

3
%

43
3.

2
−

20
.5

%
8.

8
%

E
ur

op
e

11
.2

%
19

.5
%

9.
1

%
6.

2
48

.9
%

37
2.

9
93

.0
%

2.
2

%
4.

8
%

59
7.

5
−

26
.4

%
31

.2
%

A
us

tr
al

ia
an

d
N

ew
Z

ea
la

nd
0.

1
%

57
.0

%
0.

05
%

8.
1

34
.6

%
42

6.
7

72
.3

%
0.

3
%

27
.4

%
52

9.
8

−
32

.8
%

14
.3

%
M

el
an

es
ia

0.
00

1
%

0.
0

%
0.

00
1

%
3.

4
65

.2
%

19
1.

6
10

0.
0

%
0.

0
%

0.
0

%
57

2.
7

−
60

.1
%

18
.1

%

O
ce

an
ia

0.
1

%
55

.9
%

0.
05

%
7.

9
35

.8
%

41
5.

4
72

.9
%

0.
3

%
26

.8
%

53
0.

7
−

33
.2

%
14

.3
%

A
ve

ra
ge

w
or

ld
–

23
.5

%
–

5.
4

59
.0

%
39

5.
3

91
.2

%
1.

2
%

7.
6

%
72

8.
0

−
34

.5
%

19
.8

%

∗
Y

ie
ld

ga
p

is
es

tim
at

ed
as

10
0

%
–

yi
el

d
sc

al
in

g
fa

ct
or

.

https://doi.org/10.5194/hess-26-923-2022 Hydrol. Earth Syst. Sci., 26, 923–940, 2022



930 O. Mialyk et al.: Historical simulation of maize water footprints with a new global gridded crop model ACEA

Figure 4. Unit water footprint (a) (m3 t−1 yr−1) and water footprint of production (b) (103 m3 yr−1) of maize as the average over 2012–2016
at 5× 5 arcmin resolution. The grey area in the side chart represents the median of all data points along the respective latitude, and the black
line is the 10th percentile.

with the USA (22.5 %) and China (19.3 %) contributing the
most (see Fig. 4b). The complete table with maize WFs of
149 countries can be found in Table S3.

3.2 Historical trends

The global average unit WF of maize has reduced over the
last decades as shown in Fig. 6. When compared to 1986–
1990, the average WF of 2012–2016 is 34.5 % smaller. How-
ever, not all unit WF components reduced by the same mag-
nitude. WFg and WFbc reduced by nearly one-third between
the two periods (−35.7 % and −31.0 %, respectively), while
WFbi reduced by only 16.6 %. Therefore, the fraction of blue
water in the average WF has increased by 23.9 % (+5.4 %
for WFbc and +27.4 % for WFbi).

To explain the decreasing trend in the global average
unit WF, the main contributing factors – Ys, CWU, and S

(see Sect. 2.1.3) – are analysed with the Mann–Kendall trend
test (Hussain and Mahmud, 2019). We detect significantly in-
creasing trends in S (+51.5 % since 1986; p = 5.74×10−13)
and CWU (−0.37 % since 1986; p = 2.5× 10−2) and no
significant trend in Ys (p = 0.54). Subsequent correlation
analysis shows that WF significantly correlates only with S

(r =−0.96, t =−19.5) and CWU (r =−0.45, t =−2.7).
Hence, the reduction in the WF can mainly be attributed
to the increase in S, which reflects the historical agricul-

tural advances (see Sect. 2.1.4). Once detrended, the WF
only correlates significantly with Ys (r =−0.77; t =−6.4),
and thus the interannual variations in the WF are mainly
driven by Ys response to climatic variability. For example, the
WF peaks around 1988 and 2012 (see Fig. 6) are likely due to
extreme La Niña-driven droughts in major maize-producing
areas which caused substantial drops in crop yields (Iizumi
et al., 2014; Rippey, 2015). A summary of global average an-
nual WFs and main contributing factors during 1986–2016 is
provided in Table S4.

All major maize-producing areas show smaller average
unit WFs in 2012–2016 compared to 1986–1990 (see Fig. 7).
The regions with the largest WF reductions are Southern
Africa (−60.3 %), Melanesia (−60.1 %), and South-eastern
Asia (−59.1 %), which indicates substantial increases in
maize yields. On the other hand, the regions with the smallest
reductions are Western Europe (−20.5 %), Western Africa
(−22.3 %), and Eastern Africa (−22.8 %). In the case of
Western Europe, this is due to the already small WF in 1986–
1990 (545.1 m3 t−1 yr−1), and thus there was a low potential
for its reduction. In the case of Western and Eastern Africa,
there was a high reduction potential, but it was barely re-
alised, likely due to underlying socio-economic limitations
(Smale et al., 2011).

Among the countries that together account for 95 % of
global maize production, reductions of more than 50 % are

Hydrol. Earth Syst. Sci., 26, 923–940, 2022 https://doi.org/10.5194/hess-26-923-2022
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Figure 5. Average unit water footprint of maize (g – green, bc – blue from capillary rise, bi – blue from irrigation) in cubic metres per tonne
per year (m3 t−1 yr−1) and percentage of global production of the 10 biggest maize producers during 2012–2016.

Figure 6. Global trends in average unit water footprints (g – green,
bc – blue from capillary rise, bi – blue from irrigation) in cubic
metres per tonne per year (m3 t−1 yr−1) and yield scaling factors of
maize from 1986 to 2016. Note that both y axes do not start at zero.

in Brazil, Indonesia, South Africa, the Philippines, Vietnam,
Pakistan, and Paraguay (see Table S3). On the other hand,
three countries that have increases in unit WFs (see Fig. 8)
but together produce only 0.77 % of maize globally are the
Democratic Republic of Congo (+9.7 %), Kenya (+12.7 %),
and the Democratic People’s Republic of Korea (+32.2 %).
In the first two countries, this is due to an overall decreasing
trend in maize yields and high interannual variability (see
Sect. 3.3). Different dynamics can be observed in North Ko-
rea, where maize yields have dropped dramatically since the
mid-1990s – the period known as the “North Korean famine”
(Woo-Cumings, 2002). The yields have not yet recovered re-
sulting in a larger unit WF.

The global WF of maize production has increased
by 49.6 % since 1986 (see Fig. 9), peaking at 768.3×
109 m3 yr−1 in 2016. This increase differs among produc-
tion systems. In rainfed systems, the consumption of green
and blue water (from CR) has increased by 39.9 % and
67.0 %, respectively. In irrigated systems, it has increased
by 108.4 % and 72.5 %, respectively. The Mann–Kendall
trend test detects significantly increasing trends in the two
main contributing factors: rainfed harvested area (+39.5 %
since 1986; p = 5.0× 10−9) and irrigated harvested area
(+107.2 % since 1986; p = 1.2× 10−14). Subsequent cor-

relation analysis shows a significant correlation with both
factors (r = 0.98 each). Hence, the expansion of harvested
areas increases global maize water consumption despite the
reduction in unit WFs. The detrended global WF of produc-
tion correlates significantly with the detrended harvested ar-
eas (rainfed r = 0.95; irrigated r = 0.86), which means that
historical changes in the harvested areas are responsible for
interannual variations in the global WF.

Most of the harvested area expansion since 1986 has oc-
curred in Asia and Africa (+81.7 % and +76.1 %, respec-
tively), which has led to substantial increases in the WFs of
maize production (+96.8 % and +67 %). At the same time,
the Americas and Europe have also increased their WFs of
production (+26.3 % and +20.8 %), but the harvested areas
have expanded moderately (+25.7 % and +14.4 %). One of
the main reasons behind a larger increase in WFs of pro-
duction than in harvested areas lies in the expansion of ir-
rigated systems. They have a larger CWU than rainfed sys-
tems (+17.3 % on average), and hence the regions with a
larger expansion of irrigated systems, such as +204.7 % in
Asia (compared to +45.0 % in rainfed systems), experience
an increase in the average CWU. As a result, the share of ir-
rigated maize in the global WF of production increased from
16.8 % in 1986 to 22.0 % in 2016. Besides the increase in
feed demand, one of the main driving forces for maize area
expansion is biofuel production. For example, nearly 40 % of
maize in the USA is grown to produce bioethanol (Ranum et
al., 2014).

3.3 Interannual variability

The interannual variability in detrended unit WFs of maize
is analysed using the coefficient of variation (CV). The
global average CV over the 1986–2016 period is 19.8 %.
The variability in rainfed systems (average CV of 26.1 %)
differs around the world depending on water availability.
For instance, the average CV of regions with CR contribu-
tion is 16.8 %, while many arid parts of Sub-Saharan Africa
that completely rely on rainfall have CV values higher than
70 % (see Fig. 10). As a result, some years may have ex-
tremely low yields, leading to unit WF peaks of more than
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932 O. Mialyk et al.: Historical simulation of maize water footprints with a new global gridded crop model ACEA

Figure 7. Relative change in unit water footprint of maize from the average of 1986–1990 to the average of 2012–2016 at 5× 5 arcmin
resolution.

Figure 8. Comparison of the national unit water footprints of
maize (m3 t−1 yr−1) between the average of 1986–1990 and the av-
erage of 2012–2016. The black line represents no change, and the
dotted grey lines show +30 % and −30 % changes.

Figure 9. Trends in the regional water footprints of production
(109 m3 yr−1) and global harvested areas (106 ha yr−1) of maize
from 1986 to 2016. Oceania is not shown due to its negligible con-
tribution. Note that the right y axis does not start at zero.

5000 m3 t−1 yr−1 (see Fig. 4a). On the other hand, the unit
WF variability in irrigated systems (average CV of 8.2 %)
is generally low in all regions as also suggested by previ-
ous studies (Kucharik and Ramankutty, 2005; Osborne and
Wheeler, 2013). The interannual variability also depends on
the level of agricultural development and socio-economic
stability. For example, the average CV of the mostly rain-
fed maize in Western Europe is 8.8 %, while the average CV
of the mostly irrigated maize in Central Asia is 18.8 %. The
CV values of other regions are listed in Table 2.

4 Discussion

4.1 Comparison with literature

4.1.1 Average water footprints around 2000

Three previous studies have estimated maize WFs at the
global scale with a distinction between green and blue water
(see Table 3). All three focus on the period around year 2000.
Therefore, we average our results over the 1996–2005 pe-
riod to make the comparison. The previous studies agree
with ours on the dominant role of green water. They also
show larger global average unit WF estimates (ranging from
+5 % to +23 %). Since the differences in the global average
crop yields are relatively small (−4 % to +9 %), these larger
WF estimates are likely caused by different methods of CWU
estimation.

Siebert and Döll (2010) estimate larger global average
green and blue unit WFs compared to our study. The authors
assume a predefined root depth and canopy development (in
the initial, mid-, and late-season stages). In our study, both of
them are driven by daily temperature and water availability,
and thus the ability of maize to take up water and to transpire
it can be limited by abiotic stresses (e.g. constrained root
and canopy expansion, induced stomatal closure). Therefore,
we likely simulate a smaller CWU compared to Siebert and
Döll (2010). There are several other reasons for differences
in CWU, but to what degree they explain the smaller esti-
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Figure 10. Coefficient of variation of the detrended unit water footprints of maize during 1986–2016 at 5× 5 arcmin resolution. The grey
area in the side chart represents the median of all data points along the respective latitude, and the black line is the 10th percentile.

Table 3. Comparison of ACEA results for maize with other global gridded studies. Numbers in brackets indicate the difference compared to
the results of ACEA.

Source Water footprint calculation approach Shallow Averaging Average unit water footprint
groundwater period Crop yield (t ha−1 yr−1) (m3 t−1 yr−1)

Rainfed Irrigated Green Blue Total

Our study Process-based and water-driven model Considered 1996–2005 4.3 5.5 812 75 887
in growing degree days with incorporated (with trend)
green–blue separation

Siebert and Daily soil water balance model and crop Not considered 1998–2002 4.1 5.7 969 120 1089
Döll (2010) coefficient approach with green–blue (with trend) (−3 %) (+3 %) (+19 %) (+60 %) (+23 %)

separation in post-processing

Mekonnen and Similar to Siebert and Döll (2010) but for 1 Not considered 1996–2005 4.1 6 947 81 1028
Hoekstra representative year (no trend) (−4 %) (+9 %) (+17 %) (+8 %) (+16 %)
(2011)

Tuninetti et al. Crop coefficient approach with Not considered 1996–2005 – – 886∗ 47∗ 933
(2015) evapotranspiration and crop yields from (with trend) (+9 %) (−38 %) (+5 %)

literature

∗ Approximate estimates from the reported total water consumption as unit water footprint components were not explicitly provided.

mates in ACEA is difficult to answer. Siebert and Döll (2010)
consider a constant growing season duration using the crop
calendar based on year 2000, while in our model the grow-
ing season duration is temperature-dependent, and the crop
calendar is a composite of multiple recent data sources (see
Sect. 2.1.4). Consequently, crop calendar days differ among
the two studies, leading to different daily weather condi-
tions and growing season durations. This results in different
ET rates and hence different CWUs. Moreover, the authors
estimate green and blue CWU with methods that are less
precise than the daily green–blue accounting in ACEA (see
Sect. 2.1.2). Siebert and Döll (2010) also cover a shorter his-
torical period and use two older input datasets, i.e. climatic
data that directly affect water availability and ET rates and
harvested area data that affect the averaging of results.

Mekonnen and Hoekstra (2011) also show larger green and
blue unit WFs. The authors use a similar modelling approach
as Siebert and Döll (2010), but they simulate only 1 repre-
sentative year, which neglects the interannual variability in
climatic variables as well as trends in agricultural develop-

ments and harvested areas. Therefore, CWU estimates do not
capture years with abnormal weather (wet, dry, cold, warm).
Nevertheless, at the national level, both studies correlate well
(r = 0.95).

Tuninetti et al. (2015) report larger green but smaller blue
unit WFs. The authors do not model the reference evapotran-
spiration and crop yields (as the other studies do) but take
both from literature instead. Moreover, they equalise the blue
CWU to irrigation supply which is calculated using indepen-
dent data sources of different temporal and spatial resolu-
tions.

The methodological differences among these three studies
also lead to different estimates of the global WF of maize
production. Compared to our study, Siebert and Döll (2010)
and Mekonnen and Hoekstra (2011) report 16 %–18 % larger
global WFs (15 %–17 % larger green and 8 %–53 % larger
blue), while Tuninetti et al. (2015) report a half larger
global WF (55 % larger green but 12 % smaller blue).
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Table 4. Comparison of crop water use (CWU) of rainfed and irrigated maize with field studies.

Location Period Country Production Evapotranspiration Average maize CWU Reference
system measuring method∗ difference relative to

ACEA (range of values)

1 40◦39′ N, 104◦59′W 2006–2010 USA Irrigated Soil water balance −5.4 % (−13.3 % to +4.7 %) DeJonge et al. (2012)

2 36◦69′ N, 108◦31′W 2011–2014 USA Irrigated Meteorological −8.5 % (−12.4 % to −5.8 %) Djaman et al. (2018)

3 41◦09′ N, 96◦28′W
2002–2006 USA

Irrigated
Energy balance

+9.4 % (+1.6 % to +24.4 %)
Suyker and Verma (2009)

4 41◦10′ N, 96◦26′W Rainfed −7.8 % (−22.6 % to +20.6 %)

5 42◦24′ N, 85◦24′W 2010–2016 USA Rainfed Meteorological +14.8 % (+7.2 % to +24 %) Abraha et al. (2020)

6 40◦43′ N, 98◦8′W 2011–2012 USA Rainfed Soil water balance −9.4 % (−19.9 % to +1.1 %) Irmak and Djaman (2016)

7 37◦45′ S, 58◦18′W 1995–1996 Argentina Irrigated Energy balance −0.9 % Gardiol et al. (2003)

8 45◦10′ N, 12◦13′ E 2011–2012 Italy Rainfed Remote sensing +11.9 % (+3.1 % to +20.7 %) Grosso et al. (2018)

∗ According to FAO classification (Allen et al., 1998).

4.1.2 Other comparisons

The recent literature review of 70 related studies by Feng et
al. (2021) reports the global average unit WF of maize of
730 m3 t−1 yr−1 (CV of 15.9 %) in 2002–2018. This aligns
well with our estimate of 728.0 m3 t−1 yr−1 (CV of 19.8 %)
in 2012–2016. Our estimates of maize CWU also align well
with the literature. Jägermeyr et al. (2021a) simulate CWU
for both rainfed and irrigated maize with multiple GGCMs
at 30× 30 arcmin resolution. The global medians are sim-
ilar to ours, as can be observed in Fig. S3. Moreover, we
compare our maize CWU estimates to several field studies
in various years and locations (see Table 4). The differences
between ACEA’s values and the ones reported in literature
vary between −9.4 % and +14.8 %. Irrigated maize shows
smaller differences than rainfed maize for most of the con-
sidered studies. This may not be a model but rather a data
accuracy issue. It is likely that the gridded meteorological
data we use with a spatial resolution of 30× 30 arcmin (see
Sect. 2.2) deviate from measured data at the fields in the other
studies. This is particularly relevant for rainfall, which shows
strong spatial variability at small scales.

Approximate comparisons can also be done for maize
yield gaps. Three studies estimate the global yield gaps
around 2000 in a range of 50 %–64 % (Licker et al., 2010;
Mueller et al., 2012; Neumann et al., 2010). Our esti-
mate of the water-limited yield gap for 1996–2005 in
ACEA is 67.3 %. Two more recent studies report yield gaps
around 2010 for several locations in different regions (Hoff-
mann et al., 2018; Edreira et al., 2018). Their estimates show
similarities to our study (calculated for 2012–2016): 80 %
yield gap in Sub-Saharan Africa (77.5 % in ACEA), 20 % in
Northern America (31.0 % in ACEA), and 38 % in East Asia
(55.7 % in ACEA). The more pessimistic results of our study
are likely due to differences in yield-limiting factors and har-
vested areas.

4.2 Strengths and weaknesses of ACEA

4.2.1 Advancing crop water productivity research

ACEA is a new GGCM that can estimate crop yield and
CWU distinguishing three water types: green water, blue wa-
ter from CR, and blue water from irrigation. The open-source
nature and easy customisation in ACEA facilitate the anal-
yses of crop water productivity responses to various envi-
ronmental and managerial changes. Furthermore, the opti-
mised modelling procedure allows for computationally effi-
cient large-scale simulations. In our case, ACEA took 12 h
to simulate 57 000 combinations of grid cells and setups
(34 years long each; see Sect. 2.2) on a working station
with 12 CPUs. This corresponds to 160 000 simulated years
per computational hour. Compared to the reported perfor-
mance of AquaCrop-GIS (Lorite et al., 2013), ACEA is up
to 25 times faster. Simulation inputs for this study take more
than 27.3 GB of space and outputs more than 30.2 GB.

4.2.2 Uncertainties in global crop modelling

Global gridded crop modelling is a complex process that con-
tains many uncertainties (Folberth et al., 2019), and ACEA
is not an exception. Most of the uncertainties likely originate
from spatial and temporal resolutions of input datasets rather
than from the model itself. We simulate maize production at
30× 30 arcmin resolution, meaning that input datasets with
finer resolutions have to be upscaled, such as soil characteris-
tics and shallow groundwater levels (see Sect. 2.2). Then, we
distribute the results among 5× 5 arcmin grid cells accord-
ing to the spatial distribution of harvested areas. This leads
to uncertainty as the distributed results do not reflect the ex-
act environmental conditions in each 5× 5 arcmin grid cell.
Alternatively, we could run ACEA at a finer resolution, but
this was not feasible due to input data limitations and high
computational requirements.
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Next, selected crop parameters are based on a single maize
cultivar from FAO (Hsiao et al., 2009). Therefore, the re-
gional and historical differences in crop variety are not di-
rectly considered but incorporated in yield scaling factors
(see Sect. 2.1.4). Moreover, the lack of subnational data
needed to generate reliable crop calendars results in a rough
representation of spatial variability in planting and harvest
dates. Thus, the start and duration of growing seasons might
be miscalculated. As the current version of ACEA does not
consider chemical cycles between a crop and the environ-
ment, the biophysical stresses from water salinity and insuf-
ficient nutrient intake are not simulated, which again leads to
uncertainties in our results.

We also assume the same soil-moisture-based rule for ir-
rigation application in all grid cells. In reality, farmers de-
cide when and how much to irrigate based on site-specific
conditions such as access to water and technological inputs.
Furthermore, the water consumed by irrigation conveyance
is not accounted for. Therefore, the timing and volume of
irrigation events simulated in ACEA can deviate from the
actual ones. As for CR, we consider neither interannual vari-
ations in groundwater levels nor the effects of pumping, and
thus our WFbc estimates rather reflect potential values under
steady-state conditions.

Finally, the post-processing of results also contains uncer-
tainties. In particular, the distribution of extrapolated har-
vested areas (see Sect. 2.2) plays an important role dur-
ing spatial averaging. The resulted uncertainties are partic-
ularly relevant when zooming to smaller geographical scales
(e.g. analysis of small countries).

4.3 Sustainability of maize production

Global maize production has soared in recent decades due to
high demands from livestock and biofuel industries. For ex-
ample, in the USA, these industries consume almost 90 % of
all domestically produced maize (Ranum et al., 2014), and
thus only a small fraction ends up on humans’ plates. This
does not only lead to debates of “food versus fuel” and “food
versus feed” but also raises the question of the environmental
impacts of maize production (Wallington et al., 2012). Al-
though assessing the latter is out of the scope of our study,
we highlight several sustainability aspects of maize produc-
tion that could be addressed in further research. Concerning
water resources, there are three key aspects:

– To what extent WFs of maize production contribute to
local green (Schyns et al., 2019) and blue water scarcity
(Mekonnen and Hoekstra, 2016). For example, the WFs
of production can be compared to local time-specific en-
vironmental limits of water consumption (Hogeboom et
al., 2020; Mekonnen and Hoekstra, 2020).

– How local unit WFs of maize compare to appropriate
benchmarks. These benchmarks refer to unit WFs that
are either obtained by the best producers in other ar-

eas with similar agro-environmental conditions or can
be achieved using best available practices (Mekonnen
and Hoekstra, 2014). Examples of such practices are
the application of mulches, selection of better crop vari-
eties, and optimisation of irrigation and nutrient supply
(Chukalla et al., 2015; Rusinamhodzi et al., 2012).

– To what extent maize production pollutes the local water
resources via applied fertilisers, herbicides, and pesti-
cides. This pollution can be quantified by water qual-
ity indicators, such as the grey WF (Chukalla et al.,
2018a; Mekonnen and Hoekstra, 2010; Liu et al., 2017),
which refers to the volume of water needed to assimi-
late a load of pollutants to freshwater bodies. This load
can be minimised with agroecological practices, such
as the application of organic alternatives to agrochemi-
cals and intercropping (or crop rotation) with nitrogen-
fixing plants (e.g. alfalfa, soybeans) (Capellesso et al.,
2016). In this context, it is also worthwhile to study the
trade-offs between the consumptive (green plus blue)
and grey WFs, as the alternative agroecological prac-
tices also affect the former (Chukalla et al., 2018b).

The sustainability of maize production can also be assessed
from other perspectives than water, e.g. by addressing ques-
tions around impacts on ecosystems (Fletcher et al., 2011;
Immerzeel et al., 2014), associated GHG emissions (Yang
and Chen, 2013; Dias De Oliveira et al., 2005), equitable
crop markets (Marenya et al., 2017; Mmbando et al., 2015),
and economic value (Wallington et al., 2012; Baffes et al.,
2019).

5 Conclusions

ACEA is a new process-based crop model that allows for
the assessment of green and blue crop water productivity
at large spatial scales, which we demonstrate by simulat-
ing global maize WFs over the 1986–2016 period. Our re-
sults show that the current global average unit WF of maize
is 728.0 m3 t−1 yr−1. The WF composition is dominated by
green water, but the share of blue water from irrigation is
increasing. The share of blue water from CR is minor at
the global scale but can be substantial in areas with the
presence of shallow groundwater. Unit WFs vary greatly
around the world. Regions characterised by high-input agri-
culture generally have a small unit WF and corresponding
CV, such as Western Europe and Northern America (WF <

500 m3 t−1 yr−1, CV < 17 %). Conversely, low-input regions
show opposite outcomes, such as in Middle and Eastern
Africa (WF > 2500 m3 t−1 yr−1, CV > 30 %). Nevertheless,
we observe unit WF reductions in most regions due to the
historical increase in maize yields. As a result, the global
average unit WF has reduced by 34.5 % since 1986. De-
spite this productivity gain, the global WF of maize produc-
tion has increased by 49.6 % due to the expansion of rainfed
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and irrigated areas. Both trends are likely to continue as the
yield gaps are closing and maize areas are further expanding
driven by demands from food, livestock, and biofuel indus-
tries. Therefore, it is important to address the sustainability
and purpose of maize production as it might endanger local
ecosystems and human livelihoods, e.g. by polluting water
resources and contributing to water scarcity.
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