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Abstract. The North American Prairie Pothole Region (PPR)
represents a large system of wetlands with great impor-
tance for biodiversity, water storage and flood management.
Knowledge of seasonal and inter-annual surface water dy-
namics in the PPR is important for understanding the func-
tionality of these wetland ecosystems and the changing de-
gree of hydrologic connectivity between them. Optical sen-
sors that are widely used for retrieving such information are
often limited by their temporal resolution and cloud cover,
especially in the case of flood events. Synthetic aperture
radar (SAR) sensors can potentially overcome such limita-
tions. However, water extent retrieval from SAR data is often
impacted by environmental factors, such as wind on water
surfaces. Hence, robust retrieval methods are required to re-
liably monitor water extent over longer time periods .

The aim of this study was to develop a robust approach
for classifying open water extent in the PPR and to anal-
yse the obtained time series covering the entire available
Sentinel-1 observation period from 2015 to 2020 in the hy-
drometeorological context. Open water in prairie potholes
was classified by fusing dual-polarised Sentinel-1 data and
high-resolution topographical information using a Bayesian
framework. The approach was tested for a study area in North
Dakota. The resulting surface water maps were validated us-
ing high-resolution airborne optical imagery. For the obser-
vation period, the total water area, the number of waterbod-
ies and the median area per waterbody were computed. The
validation of the retrieved water maps yielded producer’s ac-

curacies between 84 % and 95 % for calm days and between
74 % and 88 % for windy days. User’s accuracies were above
98 % in all cases, indicating a very low occurrence of false
positives due to the constraints introduced by topographical
information.

The observed dynamics of total water area displayed both
intra-annual and inter-annual patterns. In addition to dif-
ferences in seasonality between small (< 1 ha) and large
(> 1 ha) waterbodies due to the effect of evaporation during
summer, these size classes also responded differently to an
extremely wet period from 2019 to 2020 in terms of the in-
crease in the number of waterbodies and the total area cov-
ered. The results demonstrate the potential of Sentinel-1 data
for high-resolution monitoring of prairie wetlands. Limita-
tions of this method are related to wind inhibiting the correct
water extent retrieval and to the rather long acquisition inter-
val of 12 d over the PPR, which is a result of the observation
strategy of Sentinel-1.

1 Introduction

Surface water dynamics in wetland ecosystems play an im-
portant role in water storage variability of a region (Acre-
man, 2012) and are of great importance for flood manage-
ment (Huang et al., 2011b), biodiversity (Cohen et al., 2016),
groundwater recharge (Mitsch and Gosselink, 2000) and bio-
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geochemical cycles (Cheng and Basu, 2017). The distribu-
tion of wetlands of different sizes in time and space is a
key factor determining their function in a landscape. While
large wetlands store considerable water volumes (Liu and
Schwartz, 2011), small wetlands fulfil important roles for
biodiversity by acting as habitats (Krapu et al., 2018). The
ecological functioning of wetlands depends greatly on the
abundance of wetlands of different sizes in the landscape,
which is subject to land-use changes and climate variability
(McKenna et al., 2019).

The Prairie Pothole Region (PPR) of North America cov-
ers an area of over 780 000 km2 in the Great Plains of the
northern USA and southern Canada. The region is charac-
terised by millions of shallow depressions formed during
glacier retreat at the end of the last glacial period when
glacial till was unevenly deposited in ground moraines.
These depressions contain wetlands whose areas vary be-
tween 1 m2 and several square kilometres. They can store
considerable amounts of water during rainfall events, which
contributes to flood mitigation in downstream populated ar-
eas (Huang et al., 2011b). The wetlands of the region are
of great importance for the waterfowl population of North
America (Mitsch and Gosselink, 2000). Many of the smaller
wetlands fall dry during the summer months, especially in
drier years, and refill during spring snowmelt or intense rain-
fall events (Huang et al., 2011a; Montgomery et al., 2018).
Thus, the waterbody size distribution of the PPR and its vari-
ability have attracted considerable interest in the hydrologic
community (Bertassello et al., 2019; Liu and Schwartz, 2011;
Proulx et al., 2013). Van Meter and Basu (2015) revealed a
preferential loss of smaller wetlands when comparing cur-
rent maps to historic data, which they attributed to the arti-
ficial draining of small, upland wetlands and to the prefer-
ential restoration of large, lowland wetlands. Furthermore,
distances between individual wetlands as well as between
wetlands and the river network have increased, with impor-
tant implications for their connectivity, for example, in terms
of habitat function. In another study, distributions of pothole
sizes from a hydrological model run over the 20th century
(Liu and Schwartz, 2011) were analysed with respect to their
inter-annual and seasonal changes. The abundance of larger
potholes (> 1 ha) was found to be relatively unaffected by
short-term climatic variations, whereas the size distribution
of smaller wetlands changed due to the typical seasonal cy-
cle of snowmelt in spring and gradual drying out due to high
evaporation rates in summer.

Direct evidence to support such conceptual models of wa-
ter surface dynamics in the PPR is mainly based on Earth ob-
servation (Rover and Mushet, 2015). Remote-sensing-based
approaches can be used to derive wetland extent over large
areas at a comparatively low cost (Ozesmi and Bauer, 2002).
The resulting wetland extent maps have been used to cali-
brate and validate hydrological models simulating wetlands
behaviour (McIntyre et al., 2014). Both optical and synthetic
aperture radar (SAR) data have been used for mapping sur-

face water extent in the PPR (Proulx et al., 2013; Vanderhoof
et al., 2016; Brooks et al., 2018; Bolanos et al., 2016). In
addition to satellite data, very high resolution (HR) airborne
optical data and lidar data have been used both for estimat-
ing surface water extent and routing of water flow between
potholes (Wu and Lane, 2017; Wu et al., 2019; Vanderhoof
and Lane, 2019). However, satellite-based imagery has re-
ceived the bulk of attention to date, likely due to its lower
cost. Landsat imagery in particular has received much con-
sideration due to its long time period covered (i.e. from 1972
to present). Vanderhoof et al. (2016) mapped inter-annual
changes in wetland extent using time series of cloud-free
Landsat scenes at an approximately annual interval over a
21-year period. Wetland extent and connectivity were found
to correlate with each other as well as with climatological in-
dices and runoff. The authors noted that their study was lim-
ited by the spatial resolution of the Landsat data and by the
fact that sub-annual dynamics in small wetlands (e.g. in re-
sponse to rainfall events) could not be assessed. In a study us-
ing eight Landsat scenes acquired over the course of 2 years,
Brooks et al. (2018) found variations in total water surface
area of ca. 50 % within a catchment. Although they analysed
only a relatively small number of images, their results high-
light the dynamic nature of surface water extent in the PPR.
The use of Landsat imagery for monitoring surface water ex-
tent in the PPR is limited by its temporal resolution, which
is additionally degraded by cloud cover, and its relatively
coarse spatial resolution of 30 m (Rover and Mushet, 2015).
In this context, Vanderhoof and Lane (2019) assessed the
Landsat-based Global Surface Water (GSW) dataset (Pekel
et al., 2016) for mapping the distribution of wetland sizes
in the PPR and characterising their interactions. The authors
concluded that analysis of the Landsat-based product alone
would suggest that the landscape in the PPR is dominated
by wetlands of sizes 0.2 to 8.0 ha. Using a dataset based on
HR imagery that was pan-sharpened to a 0.5 m spatial reso-
lution, however, resulted in smaller wetlands dominating the
distribution of wetland sizes. Based on this product, they also
detected narrow interactions between wetlands in the form of
channels and locations where adjacent wetlands merged dur-
ing wet periods (Vanderhoof and Lane, 2019).

However, HR satellite or airborne imagery is typically not
available at the very short time intervals necessary to re-
solve intra-annual variations in waterbody sizes. Moreover,
the flood mitigation potential of the wetlands in the PPR
is a function of the water volume existing at the beginning
of a flood event (Huang et al., 2011b). While cloud cover
additionally limits the temporal resolution of optical data,
SAR sensors have the potential to provide more continuous
monitoring of the surface water extent. SAR data have been
successfully used for wetlands mapping (e.g. Brisco, 2015;
Reschke et al., 2012; Schlaffer et al., 2016; White et al.,
2015). In addition to the ability of microwave radiation to
penetrate clouds, SAR sensors are not only highly sensitive
to the occurrence of open water surfaces (Richards, 2009)
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but also to flooding beneath vegetation (Tsyganskaya et al.,
2018). Recent missions, such as Sentinel-1, also offer data
at spatial resolutions comparable to or higher than Landsat
and temporal sampling intervals in the order of several days.
Open water surfaces act as specular reflectors and, as a re-
sult, appear dark in the resulting imagery (Giustarini et al.,
2016). However, factors such as wind (Bartsch et al., 2012)
or vegetation protruding through the water surface lead to an
increase in the amount of energy scattered back to the sensor
and, hence, increase false negative rates in the classification.
Dry, sandy areas (Martinis et al., 2018), wet snow (Bartsch
et al., 2012) or tarmac can be confused with open water dur-
ing SAR image classification. In recent years, several studies
have aimed at mapping and monitoring surface water dynam-
ics in the PPR from SAR data (Bolanos et al., 2016; Huang
et al., 2018; Montgomery et al., 2018). In particular, the anal-
ysis of polarimetric SAR data has received attention, as data
acquired using different polarisations for sending and receiv-
ing (cross-polarised data) respond differently to scattering
mechanisms, such as surface and volume scattering, than co-
polarised data (same polarisation used for sending and re-
ceiving). Bolanos et al. (2016) used dual-polarised Radarsat-
2 time series to map open water dynamics in the Canadian
PPR and applied different thresholds to backscatter and im-
age texture. Montgomery et al. (2018) analysed time series
acquired by Radarsat-2 for classifying prairie wetlands ac-
cording to their hydroperiod (i.e. the number of days per year
that a wetland is covered by water). Strong fluctuations in
water extent in accordance with precipitation inputs were re-
ported, especially for the more hydrologically disconnected
study sites. The rather long revisit cycle of Radarsat-2 of 24 d
was mentioned as a major limiting factor for characterising
surface water dynamics. In a study by Huang et al. (2018),
data acquired by Sentinel-1, which has a temporal resolu-
tion of 12 d over most of the PPR, have been used to classify
open water in the PPR of North Dakota. A set of polarised in-
dices was created from the dual-polarised imagery and used
together with backscatter coefficients as features in a random
forest classifier trained on reference surface water products,
such as the aforementioned GSW dataset. The authors noted
that limitations of their approach relate to the omission of
water-covered areas due to inundated vegetation and the spa-
tial resolution of the sensor as well as commission errors due
to smooth surfaces resembling open water in SAR imagery
(Huang et al., 2018).

Such limitations, along with the short observation periods
currently available for most SAR missions (in comparison to
e.g. Landsat), pose the greatest hindrances for a wider up-
take of SAR data for a long-term monitoring of wetland dy-
namics. In contrast to most SAR missions to date, the two-
satellite Sentinel-1 constellation focuses on providing consis-
tent data over longer time periods (Torres et al., 2012), which
is ensured by the launch of Sentinel-1C/D planned from 2022
onwards (ESA CEOS EO Handbook, 2021). Therefore, there
is a need for novel algorithms making use of the capabilities

of Sentinel-1, such as dual polarisations and its high spatial
temporal resolution, while addressing the above-mentioned
limitations, such as misclassification due to water surfaces
roughened by wind or land surfaces resembling open water.
In the field of flood mapping, the inclusion of ancillary to-
pographic information has been used to minimise the influ-
ence of these factors. Such ancillary information can be in-
tegrated into the classification workflow either by masking
during post-processing (e.g. Westerhoff et al., 2013; Schlaf-
fer et al., 2015) or by probabilistic data fusion of SAR and
topographic data (e.g. D’Addabbo et al., 2016).

Here, a retrieval algorithm for open waterbodies in the
PPR based on dual-polarisation Sentinel-1 data is proposed.
We use a probabilistic approach based on Bayes’ theorem
combining SAR backscatter and information derived from a
lidar-based digital elevation model in order to minimise the
occurrence of false positives, caused by bare areas, tarmac or
wet snow, which has been identified as a limiting factor in
the aforementioned study (Huang et al., 2018). The method
is applied to the full time series of Sentinel-1 imagery avail-
able for the snow-free months between 2015 and 2020. We
hypothesise that a time series of water extent maps at sub-
monthly intervals will facilitate the analysis of both intra-
annual and inter-annual variations in the distribution of wa-
terbody sizes. As mentioned earlier, modelling studies, such
as Liu and Schwartz (2011), have demonstrated the sensitiv-
ity of small waterbodies to intra-annual variations, whereas
larger waterbodies were only affected by deluge or drought
periods at larger timescales. Our focus is on both the inter-
annual surface water dynamics and the impacts of short, in-
tense rainfall or snowmelt events on the number of waterbod-
ies and the area covered by them. To our knowledge, this is
the first time that inter-annual wetland dynamics in the PPR
have been studied using the entire length of the Sentinel-1
time series. Furthermore, this study represents the first anal-
ysis of wetland dynamics during the flood events of 2019,
which caused large areas in the Midwest to be inundated (Yin
et al., 2020).

2 Material and methods

2.1 Study area

The study area comprises the Pipestem Creek catchment in
North Dakota (ND), USA (Fig. 1). The catchment has an area
of ca. 2770 km2 and forms part of the PPR. The climate is
continental with cold, dry winters (Wu and Lane, 2017) and
a long-term average annual precipitation of approximately
440 mm (Huang et al., 2011a), most of which occurs during
the summer months (Fig. 2a). Inter-annual precipitation vari-
ability is high: during the study period from 2015 to 2020,
annual precipitation measured at Jamestown Regional Air-
port varied between 341 mm (in 2017) and 661 mm (in 2016).
The study area is predominantly under agricultural use, and
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Figure 1. Digital elevation model of the Pipestem Creek catchment. The inset shows the location of the study area within the PPR. Dashed
lines show the footprints of the aerial imagery used for validation. OpenStreetMap is used as the background. The elevation data are provided
by the North Dakota State Water Commission (2018) under the Creative Commons license.

natural vegetation in the region mainly consists of grassland.
According to the National Agricultural Statistical Service
(NASS) Cropland Data Layer (CDL) for 2015 (USDA Na-
tional Agricultural Statistics Service Cropland Data Layer,
2015), dominant crop types in the area are corn, soybean,
wheat and sunflowers.

Discharge in the Pipestem Creek shows large variability
(Fig. 2b). Runoff peaks typically occur in spring as a result
of snowmelt; however, their magnitude varies considerably
(e.g. between the spring seasons of 2016 and 2017). In 2019,
runoff peaks occurred in both spring and autumn. In that year,
ND and several other Midwestern states documented their
wettest year on record. The high runoff led to widespread
flooding in the Missouri, Arkansas and Mississippi river
basins. In addition, blizzards in mid-October led to the dec-
laration of a state-wide flood emergency (Umphlett, 2019).
Between 2015 and 2018, the Palmer drought severity index
(PDSI), which was derived from the Gridded Surface Mete-
orological Dataset (GRIDMET) (Abatzoglou, 2013) and av-
eraged over the study area, oscillated between −2 and +2,
indicating normal to slightly dry and slightly wet conditions
respectively. In the last 2 years of the observation period,
however, the PDSI increased until it reached values> 5 in
late autumn of 2019, indicating extremely wet conditions that
persisted until the summer of 2020. The occurrence of dis-

charge peaks in 2017, 2019 and 2020 coincided with periods
with a positive PDSI (Fig. 2b).

2.2 Data and preprocessing

2.2.1 Sentinel-1 data

Surface water dynamics were derived from a stack
of Sentinel-1 interferometric wide swath (IWS) images.
Sentinel-1A was launched in April 2014, and its twin satel-
lite Sentinel-1B followed in April 2016. Both satellites carry
a C-band SAR instrument operating at a wavelength of
ca. 5.6 cm. The ground range detected (GRD) product has
a spatial resolution of ca. 20 m (Torres et al., 2012). Data
for the study area are available from March 2015 onwards.
As wet snow and ice cover on lakes can alter backscatter
behaviour, the study was limited to the months from May
to October, which we assumed to be mostly snow-free. A
total number of 74 scenes acquired between May 2015 and
October 2020 were downloaded from the Copernicus Open
Access Hub. From 2016, data were available at an interval
of 12 d with a few exceptions (Fig. 2b). All of the scenes
used in this study were acquired from the same relative orbit
(number 34) and were available in both vertical send–vertical
receive (VV) and vertical send–horizontal receive (VH) po-
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Figure 2. (a) Monthly precipitation sums at Jamestown Regional Airport (from Global Surface Summary of the Day, GSOD; © National
Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce); (b) daily runoff at Pingree (© USGS) and the GRIDMET-derived
PDSI (Abatzoglou, 2013) during the observation period. The rug plot at the bottom marks the dates of the Sentinel-1 acquisitions used in
this study.

larisations. The downloaded GRD scenes were filtered using
a Gamma-MAP speckle filter (Lopes et al., 1993) with a win-
dow size of 3× 3 pixels and were radiometrically calibrated
to obtain the backscattering coefficient σ 0. Terrain correction
was carried out using the range–Doppler approach and the
digital elevation model from the Shuttle Radar Topography
Mission (Farr et al., 2007). The scenes were resampled to a
common grid with a pixel spacing of 10 m in the Universal
Transverse Mercator (UTM Zone 14 North) projection. The
SAR data were preprocessed using the Sentinel Application
Platform (SNAP version 7), provided by the European Space
Agency (ESA).

2.2.2 Topographical data

A digital terrain model (DTM) with a resolution of 1 m was
available from the North Dakota State Water Commission
(2018) (Fig. 1). The DTM is based on lidar data acquired in
autumn 2011. The data package downloaded from the North
Dakota GIS Hub also included polygons of waterbodies clas-
sified based on the lidar intensity data. For the comparison
with Sentinel-1 data, the DTM and the waterbodies were ag-
gregated to the 10 m grid mentioned above. The waterbody
polygons were aggregated by retaining pixels as water pixels
if they were more than 50 % covered by a water polygon. The
height above nearest drainage (HAND), zHAND, was then
computed from the DTM. HAND is defined as the differ-

ence in elevation between a given DTM cell and the nearest
cell pertaining to the drainage network (Rennó et al., 2008).
For this purpose, the flow direction was determined using the
D8 (deterministic eight-node) method. The algorithm then
follows the flow direction raster until reaching a cell pertain-
ing to the drainage network and computes the height differ-
ence between the drainage cell and the original starting cell.
The HAND index has been used in flood remote sensing for
masking areas that are not prone to floods (Westerhoff et al.,
2013; Schlaffer et al., 2015; Twele et al., 2016). In order to
take the special environmental conditions encountered in the
PPR into account, we used both the identified potholes as
well as the drainage network obtained from the DTM after
filling the pothole sinks as drainage pixels. The drainage net-
work was extracted using the “r.watershed” tool in GRASS
GIS (GRASS Development Team, 2017).

2.2.3 Land use/land cover

As a source of information on land use/land cover, the
U.S. Department of Agriculture (USDA) NASS CDL for
North Dakota was downloaded (henceforth referred to as
CDL). The CDL for 2015 is based on data from Landsat 8,
DEIMOS-1 and UK2 that were acquired during that year.
The CDL has a spatial resolution of 30 m and is provided
under a Creative Commons licence (USDA National Agri-
cultural Statistics Service Cropland Data Layer, 2015). The
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CDL was resampled to the same 10 m grid as the Sentinel-1
data using nearest-neighbour resampling. Due to the differ-
ence in the spatial resolution between the CDL and Sentinel-
1, pixels at the border between water and land areas were
masked in order to avoid sampling from mixed pixels. Mask-
ing was done in both directions, towards water and land (i.e.
a buffer of 20 m along the water–land border was avoided
when using the information for sampling from the two dif-
ferent distributions).

2.2.4 Validation data

The surface water extents were validated for three differ-
ent dates in 2016, 2017 and 2019 using aerial imagery from
the National Agriculture Imagery Program (NAIP, U.S. De-
partment of Agriculture, Farm Service Agency). These years
were selected to have a representation of dry and wet years.
The three NAIP scenes cover different parts of the study area
(Fig. 1). False-colour composites of the images are shown in
Appendix A (Fig. A1). NAIP imagery has a spatial resolu-
tion of 1 m and comprises four bands in the visible and near-
infrared (NIR) portions of the electromagnetic spectrum. For
validating the water extents derived from Sentinel-1, we sam-
pled points across the extent of the NAIP images and clas-
sified them manually into water and non-water classes. Al-
though wetlands occur frequently in the study area, a ran-
dom sample would likely underrepresent surface water. To
account for this class imbalance, a stratified random sam-
pling approach was applied. With the help of the DTM-
derived potholes, 200 pixels per class were randomly sam-
pled from potholes and upland areas throughout each of the
three NAIP footprints, resulting in 400 reference points for
each reference image (shown in Fig. A1). The NIR band was
especially useful in identifying areas where vegetation was
emerging from water surfaces. We assumed that such con-
ditions would fundamentally impact radar backscatter from
these areas. Whenever vegetation was protruding through the
water surface around a sampling point, the respective point
was classified as non-water, as the proposed approach applies
only to open water surfaces.

2.3 Water extent delineation

Calm, open water surfaces typically cause specular reflection
of incident microwave radiation. In SAR scenes with an ap-
proximately balanced mix of open water and land classes,
this phenomenon leads to bimodal grey-value histograms.
However, these classes rarely occur at similar proportions
within a scene, and, as a result, bimodality of the histogram
is not commonly observed. Efforts have been made to bal-
ance water and non-water classes by subsampling areas from
SAR images where water and land pixels are equally rep-
resented (Martinis et al., 2009; Schlaffer et al., 2016; Chini
et al., 2017). An example of such an effort is split-based ap-
proaches (Martinis et al., 2009; Chini et al., 2017), where

image subsets showing a bimodal grey-value distribution are
automatically selected from a SAR scene based on a set of
predefined criteria. This approach is especially useful if the
approximate locations of the waterbodies or flooded areas are
not known a priori.

The locations of prairie potholes, however, are governed
by the landscape features of the PPR and have been reported
to be relatively stable over longer time periods (Bolanos
et al., 2016). Therefore, we chose to treat the potholes as
the baseline of the study (see box (1) in Fig. 3). The pothole
locations were determined based on the waterbodies prod-
uct contained in the 2011 lidar data. We assumed that this
dataset contained more waterbodies than what could be clas-
sified from satellite data due to the higher spatial resolution
and the fact that the data had been acquired during extremely
wet conditions (Wu and Lane, 2017). Therefore, it was re-
garded as a suitable baseline dataset for monitoring surface
water dynamics in as many potholes as possible.

An overview of the water classification workflow is shown
in Fig. 3. In contrast to other studies on remote-sensing-based
water retrieval, which treat a scene uniformly (i.e. by es-
timating the statistical distributions of water and non-water
classes along with classification thresholds across the entire
image), the class-specific backscatter distributions were esti-
mated locally (i.e. for each of the known pothole locations)
(box (2) in Fig. 3). The reasoning behind this approach is that
backscatter values may vary considerably over large regions
over water surfaces, due to wind/semi-submerged vegetation,
and over land surfaces, due to variations in soil moisture/wet
snow cover/vegetation structure and moisture.

In order to estimate the backscatter distribution expected
for open water, an independent reference layer is required
(Schlaffer et al., 2017), for example, derived from optical
data. Here, we chose the CDL for 2015 (USDA National
Agricultural Statistics Service Cropland Data Layer, 2015)
as the reference layer. Backscatter values for open waterbod-
ies delineated in the CDL were extracted for the months from
May to October, henceforth denoted as σ 0

w, p for each of the

two polarisations p ∈ {VV,VH}. The mean of σ 0
w, p is σ 0w, p.

For each of the previously delineated potholes, we checked
if at least 10 pixels had σ 0

p values lower than σ 0w, p. If this
condition was not fulfilled, it was assumed that no open wa-
ter was present in the respective pothole. Otherwise, we pro-
ceeded to check the bimodality of the backscatter distribution
within the pothole. We followed the approach by Chini et al.
(2017) for this. As a first guess, the histogram was automati-
cally split using the Otsu approach (Otsu, 1979). This initial
threshold for polarisation p is referred to as τip in the fol-
lowing. The bimodality was then assessed using Ashman’s
D (Ashman et al., 1994), which is defined as

D =
√

2
|µ1−µ2|

σ 2
1 + σ

2
2
, (1)
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Figure 3. Sentinel-1 processing workflow for dynamic open water classification. Bold numbers in parentheses indicate key datasets and
processing steps referred to in the text.

where µ1 and σ 2
1 are the mean and variance of all σ 0

p ≤ τip

respectively, and µ2 and σ 2
2 are the mean and variance of all

σ 0
p > τip respectively. A value of D > 3 was assumed to be

an indication of a bimodal histogram. If this condition was
not fulfilled, the region around the pothole was extended to
include neighbouring pixels in order to include a higher num-
ber of non-water pixels and was then checked again for bi-
modality. For each pothole, the sampling region around the
pothole was further extended by including neighbouring pix-
els up to a maximum number of 10 iterations. If a bimodal
histogram was encountered before reaching this number of
iterations, the final Otsu threshold for the respective pothole
was saved. In the following, the threshold value derived for
σ 0

p is denoted as τp. In processing step (3) shown in Fig. 3,
the parameters of the respective backscatter distributions for
water (w) and land (l) for each pothole were estimated as

µw, p =
∑

σ 0
w, p/Nw, p, σ 2

w, p =
1

Nw, p− 1

∑
σ 0

w, p, (2)

and

µl, p =
∑

σ 0
l, p/Nl, p, σ 2

l, p =
1

Nl, p− 1

∑
σ 0

l, p. (3)

Here, σ 0
w, p values are all σ 0

p ≤ τp, and σ 0
l, p values are all σ 0

p >

τp. Nw, p and Nl, p are the number of σ 0
w, p and σ 0

l, p values
respectively. The probability of a pixel belonging to the water
distribution given a certain value of σ 0

p was computed as

p(W |σ 0
p )=

p(σ 0
p |W)p(W)

p(σ 0
p |W)p(W)+p(σ

0
p |L)[1−p(W)]

. (4)

p(σ 0
p |W) and p(σ 0

p |L) are the probability density functions
(PDFs)

p(σ 0
p |W)=

1√
2πσ 2

w, p

e

σ0
p−µw, p

2σ2
w, p (5)

and

p(σ 0
p |L)=

1√
2πσ 2

l, p

e

σ0
p−µl, p
2σ2

l, p . (6)

The p(W) term in Eq. (4) denotes the prior probability of
a pixel being land or water. If no information is available,
p(W)= 0.5 can be used to give equal prior probability to the
land and water distributions (Giustarini et al., 2016). How-
ever, as the location of the open water surfaces was known to
be mainly confined by the topography of the potholes, which
changes little over time (Bolanos et al., 2016), we chose to
incorporate this knowledge. Bayes’ theorem has been used
as an efficient framework to fuse information from different
sources, for example, for obtaining SAR-based flood delin-
eation maps (e.g. Frey et al., 2012; D’Addabbo et al., 2016;
Li et al., 2019). Here, p(W) was modelled using a logistic
regression with zHAND as the predictor (step (4) in Fig. 3):

p(W)=
1

1+ e−b0−b1zHAND
, (7)

where b0 and b1 are regression parameters which were es-
timated using 20 samples, each consisting of 5000 land and
5000 water pixels identified from the CDL. An additional
sample of 4985 land and 4668 water pixels not containing
any of the pixels used for training was set aside for test-
ing. When sampling the training and testing data, pixels in a
buffer region along the border between land and water were
excluded to obtain a pure sample of each class. Pixels that
are identified as land in the CDL may still be prone to the
occurrence of wetlands. For example, they may be located
in depressions that have been drained or may not have been
covered by water when the imagery used for the CDL was
acquired. In order to account for potential sampling biases,
Eq. (7) was fitted to each of the 20 training samples sepa-
rately, and the average of the estimated parameters b0, i and
b1, i, where 0< i≤ 20, was used to estimate p(W).
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The estimated p(W |σ 0
p ) values were classified into wa-

ter and non-water classes considering the spatial relationship
between areas with high p(W |σ 0

p ), which changes over time,
and the static pothole extents derived from the DTM. This
approach served to minimise the occurrence of isolated clus-
ters of water pixels far from potholes which may occur due
to speckle or dry land surfaces appearing as dark areas in the
SAR image. This condition was implemented using a region-
growing approach with the DTM-based pothole area as seed.
The region growing was limited to a maximum of 10 itera-
tions to prevent “spilling” of positive pixels into large por-
tions of the scene. The idea is illustrated in Fig. 4. Two pot-
holes are separated in the DTM by a low topographic barrier
(left). However, the potholes are visibly merged together in
the Sentinel-1 image shown in the centre. After the region
growing, the classification result shows the merged water-
bodies (right).

In addition, the final water area should take the informa-
tion from both VV and VH polarisations into account. The
respective water probabilities, p(W |σ 0

VV) and p(W |σ 0
VH),

were combined based on their values (step (5) in Fig. 3). We
opted for a rather conservative approach for combining the
two datasets to minimise the occurrence of false positives. In
summary, we applied the following conditions for classifying
dynamic open water from water probability:

i p(W |σ 0
VV) > 0.8∨p(W |σ 0

VH) > 0.8∨ [p(W |σ 0
VV) >

0.5∧p(W |σ 0
VH) > 0.5], where ∨ is a logical OR, and

∧ is a logical AND;

ii there is a ≤ 10 pixel distance to the original pothole
area;

iii the derived water area is connected with the original
pothole area (taking all eight neighbours of each pixel
into account).

For validation, producer’s and user’s accuracies were
computed for the water class using the combined product
against the reference data described in Sect. 2.2.4. Each of
the three reference datasets was compared to the Sentinel-
1-derived waterbodies closest in time to the date of the re-
spective NAIP acquisition. In order to estimate the impact
of using VV or VH polarisation, accuracies were also com-
puted for each polarisation separately using a threshold of
p(W |σ 0

p ) > 0.5.

2.4 Analysis of surface water dynamics

Prairie wetlands can merge over time with neighbouring wet-
lands or split into separate waterbodies. Hence, monitoring
the area of individual waterbodies is challenging. To track
surface water dynamics across the study area, we computed
the total water area, areas covered by individual waterbod-
ies and the number of waterbodies for each of the obser-
vation dates. Furthermore, we were interested in the inter-
and intra-annual dynamics of wetlands of different sizes. For

this purpose, waterbodies were divided in four different size
bins, and the contribution of each bin to the total water extent
was tracked along the observation period. The metrics were
computed using the “landscapemetrics” R package (Hessel-
barth et al., 2019). In accordance with the spatial resolution
of the Sentinel-1 sensor, before deriving the metrics we ap-
plied a minimum mapping unit of 0.04 ha, equal to the area
of four pixels, to remove small clusters of water pixels from
the result. Such small clusters are often the result of noise.
For easier visual interpretation, the obtained time series were
further smoothed by overlaying a locally estimated scatter-
plot smoothing (LOESS; Cleveland et al., 1992) taking the
observations of the current year into account.

3 Results and discussion

3.1 Open water classification

The obtained p(W) values are shown in Fig. 5. It can be seen
that high p(W) predominantly occur in potholes and along
rivers and streams, whereas most of the upland areas are as-
signed values close to zero. We validated the estimated p(W)
using an independent test sample with labels assigned from
the lidar-based water map. Calculating an overall accuracy
for the test sample would not take the unknown occurrence
of potential wetlands in the CDL land class into account.
Therefore, we computed the sensitivity of our approach as
s = TP/(TP+FN), where TP denotes true positives, and FN
denotes false negatives, after classifying the predicted p(W)
into binary values using a threshold of p(W)= 0.5. The
sensitivity quantifies the capability of the classifier to cor-
rectly identify existing waterbodies and was calculated as
s = 0.985.

Open water maps were produced for the months from May
to October for the period from 2015 to 2020 (Fig. 6c, d). In
Fig. 6c, most of the waterbodies were identified in both VV
and VH polarisations. However, the subset also shows sev-
eral wetlands only detected in VV, visible as light-blue ar-
eas in the RGB composite. VH backscatter over land areas
is mainly related to volume scattering. In areas with sparse
vegetation density, this may lead to a low contrast between
water and non-water in the VH band of the image. In such
cases, no suitable threshold could be determined. The sub-
set shown in Fig. 6d contains several wetlands only clas-
sified in the VH data (pink colour). Comparison with the
corresponding backscatter image (Fig. 6b) reveals that VV
backscatter seems to be increased over these waterbodies, as
indicated by the reddish colours. This, in turn, leads to lower
contrast between water and surrounding non-water classes.
In some cases, waterbodies could not be detected in either
polarisation, such as the large waterbody in the centre of
Fig. 6d and f. This is often the case when either ice cover
is present/the water surface is roughened by wind or when
the surrounding land surface appears dark, as in the centre
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Figure 4. The left panel shows the DTM hillshade and derived potholes, the middle panel displays the Sentinel-1 σ 0
VV on 31 May 2017, and

the right panel outlines the derived open water extent.

Figure 5. Map of prior water probabilities p(W) predicted from
Eq. (7) with b0 = 1.9479 and b1 =−3.5598. Scales show coordi-
nates in the Universal Transverse Mercator system (UTM zone 14).

of Fig. 6b. Such darker areas are often related to grassland
and sparsely vegetated areas, which can be distinguished in
the false-colour images in Fig. 6e and f by their paler appear-
ance compared with vegetated fields (visible in bright red).
Agricultural fields tend to appear brighter in the SAR im-
agery (Fig. 6a, b) owing to high soil moisture and vegetation
influencing both VV- and VH-polarised backscatter.

Comparison with independent NAIP data, which was car-
ried out for three dates, resulted in high producer’s accura-
cies (> 84 %) for two dates and very high user’s accuracies
for all three dates (> 98 %), suggesting some underestima-
tion of the water extent (Table 1). The high user’s accura-
cies are the result of a very low number of false positives.
The underestimation of the water extent is to be expected
due to the difference in spatial resolution between Sentinel-1
(ca. 20 m) and the reference data (1 m). In such cases, valida-
tion points located close to the edges of objects may coincide
with mixed pixels in the lower-resolution imagery. In the case

of the validation carried out for July 2016, producer’s accu-
racies were lower, especially for VV, possibly due to wind
roughening the water surface. Such effects are visible in the
NAIP imagery and may have also occurred on the follow-
ing day when the Sentinel-1 scene was acquired. The extent
of the NAIP image acquired in 2019 is located in the up-
per Pipestem catchment and dominated by a high number of
small waterbodies that were sometimes not detected by our
approach, leading to somewhat lower producer’s accuracies
(below 90 %).

The accuracies reported here are similar to the ones re-
ported by Huang et al. (2018), who compared the open
water extent derived from dual-polarised Sentinel-1 data
against reference extents derived from NAIP imagery over
the Pipestem Basin. The authors of that study also used the
scene acquired on 5 July 2016 for validation. For the wa-
ter class, they obtained producer’s accuracies between 64 %
and 92 % and user’s accuracies between 87 % and 99 %. For
the wind-affected scene of July 2016, a producer’s accu-
racy of 64 % was reported, whereas a producer’s accuracy
of 87.8 % was obtained here with the combination of VV
and VH polarisations. The inclusion of topographic informa-
tion may have helped to mitigate the effect of the backscat-
ter increase due to the wind-roughened water surface. This
interpretation is supported by the relatively high producer’s
accuracy of 74.5 % for VV on that day. In comparison to
Huang et al. (2018), user’s accuracies reported here were
consistently higher, suggesting a lower overestimation of wa-
ter extent. We attribute this to the integration of HAND in
the Bayesian framework, which helped to constrain water ex-
tent retrieval even in image areas where the contrast between
water and non-water pixels was low. Such low-contrast ar-
eas often lead to a “spilling” into non-water areas during the
region-growing process.

Wind is an important environmental factor in the prairies
and has been shown to affect SAR water extent retrieval by
causing scattering from roughened water surfaces (Bartsch
et al., 2012). As a result, the contrast between water and non-
water areas may be decreased to the point that no distinc-
tion is possible, even by visual means. Such a case can be
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Figure 6. Panels (a) and (b) show colour composites of σ 0
VV (red) and σ 0

VH (green) on 5 July 2016, panels (c) and (d) present classification
results as RGB composites (R – VH; G – VV; and B – final classification, Fin); and panels (e) and (f) display false-colour composites (R –
near-infrared, G – red and B – green) of NAIP imagery acquired on 4 July 2016.

observed in Fig. 7a, where hardly any open water surfaces
could be detected by the algorithm. The scene was acquired
on a windy day during which average wind speed measured
at nearby Jamestown Regional Airport exceeded the 99 %
quantile of the recorded daily averages since 1990 (source:

GSOD). Especially larger waterbodies are not visible in the
co-polarised backscatter image due to the low contrast. The
waterbody delineation based on VH-polarised data, however,
did not display the same issues. While the backscatter from
larger open waterbodies still shows some influence of wa-
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Table 1. Accuracy values of open water classification for three dates.

Date Reference Polarisation Producer’s User’s
accuracy accuracy

[%] [%]

VV 74.5 99.3
5 July 2016 4 July 2016 VH 87.2 99.4

VV and VH 87.8 99.4

VV 91.7 100.0
23 August 2017 27 August 2017 VH 92.8 98.8

VV and VH 95.0 100.0

VV 84.4 99.3
6 September 2019 6 September 2019 VH 86.2 100.0

VV and VH 88.0 100.0

ter surface roughening, this fact inhibited water extent delin-
eation to a far lower degree (Fig. 7b).

The effect of wind on SAR backscatter from water sur-
faces was a frequently encountered problem in this study, es-
pecially for VV-polarised imagery. VH data were shown to
be less affected by this problem, which is in line with our
expectations and findings available in the literature (Henry
et al., 2006). However, as the cross-polarised signal is dom-
inated by volume scattering (Richards, 2009), areas with
sparse vegetation often resemble water surfaces in the re-
sulting imagery (Twele et al., 2016). Hence, its full potential
lies in its complementary use with co-polarised data, as was
demonstrated here.

Overall, the proposed approach for water extent classifi-
cation represents an efficient way of fusing SAR backscatter
with topographical information via the derivation of HAND.
Such probabilistic approaches have drawn some attention in
recent years to combine SAR imagery with multi-temporal
and ancillary sources of information (D’Addabbo et al.,
2016; Li et al., 2019). D’Addabbo et al. (2016) used interfer-
ometric coherence, a geomorphic flood index and Euclidean
distance from a river to incorporate a priori information on
the probability of an area becoming flooded during an in-
undation event. The authors note that, when using the an-
cillary information, both false and missed alarms were re-
duced with respect to the use of SAR intensity data only.
Furthermore, the probabilistic information obtained using the
Bayesian approach may add some information on the uncer-
tainty of the produced maps. The intermediate probabilistic
maps (Fig. B1) corresponding to the images shown in Fig. 6
show rather crisp borders between areas with low and high
water probability. There are, however, some areas with inter-
mediate p(W |σ 0

p ) values, mainly between high-probability
wetlands. It should be noted that, in this study, fixed thresh-
olds were used to convert the continuous probabilistic maps
into binary water maps combining both VV and VH polarisa-
tions. However, receiver operating characteristic curves may

be used to select more optimal thresholds by balancing true
and false positive rates.

3.2 Surface water dynamics

Throughout the study period, the number of potholes with
open water surfaces strongly varied between ca. 2300 and
more than 5000. The total water surface area varied between
ca. 14 000 ha and more than 18 000 ha (Fig. 8). A number of
outliers occur in the time series. For example, the image ac-
quired on 12 October 2019, when heavy winds influenced the
water retrieval (Fig. 7), has a lower number of waterbodies,
a lower total water area and a higher average water area per
detected waterbody, indicating that only larger objects could
be detected. In addition, for example, in October of the years
2015, 2017, 2018 and 2020, the number of waterbodies and
their median area showed sudden changes due to wind on
the water surface or emerging ice cover which limited the al-
gorithm’s capability to accurately delineate the surface water
extent. As a result, large waterbodies were only partially clas-
sified as water and, therefore, higher numbers of small wa-
terbodies were erroneously identified. In the following, the
results for these dates will not be taken into account.

We first report and discuss seasonality in the derived ob-
served water area, number of waterbodies and average area
per waterbody. Subsequently, inter-annual differences are re-
ported and discussed in the context of ancillary hydrometeo-
rological information.

3.2.1 Intra-annual surface water dynamics

In most years, the number of waterbodies and total water
area displayed a seasonal behaviour: the highest numbers
are observed in spring, there is an annual minimum in late
summer, and the numbers increase again during September
and October (Fig. 8a, b). The decline in water area from
spring throughout summer was especially noticeable in 2017,
when water area decreased from ca. 15 400 ha in May to ca.
13 180 ha in October (Fig. 8b). The median area per water-
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Figure 7. Backscatter in (a) VV and (b) VH polarisation as well as derived waterbodies on 12 October 2019.

Figure 8. (a) Number of waterbodies, (b) total water area and (c) median waterbody size across the Pipestem Creek basin for each of the
Sentinel-1 scenes. Lines show LOESS smoothing functions along with 95 % confidence intervals.
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body (Fig. 8c) was similar to the inverse of the number of
waterbodies. Potholes tended to have larger water areas in
summer than in spring and autumn. In combination with the
seasonal decrease in water area and number of waterbodies,
this suggests that smaller waterbodies dry out during sum-
mer. Further evidence for this assumption is found when
looking at the contribution of different waterbody size classes
to the total water area during the study period (Fig. 9). In the
following, waterbodies> 1 ha will be referred to as large wa-
terbodies, and waterbodies< 1 ha will be referred to as small
waterbodies. Large waterbodies accounted for most of the to-
tal water area in the Pipestem Basin. The water area in these
size classes (1–8 ha and > 8 ha), with the exception of the
aforementioned dates affected by wind and ice cover, was
rather stable until 2018 and showed little seasonal variability
(Fig. 9a, b). The water area accounted for by small waterbod-
ies, however, showed a clear seasonal pattern with a decrease
in water area from spring throughout summer (Fig. 9c, d).

In general, the temporal patterns found in these variables
followed the expected seasonality. In a modelling study, Liu
and Schwartz (2011) reported intra-annual dynamics with the
number of small waterbodies declining from spring through-
out summer, whereas the number of larger waterbodies re-
mained stable throughout the year. Our results, covering a
period of 6 years, corroborate these findings. In most years,
the contribution of small waterbodies to total water extent
declined from May towards the end of summer and then in-
creased again until the end of October. The area of larger
waterbodies, however, remained stable. Along with the typ-
ical seasonal decline in the number of waterbodies and the
increase in median waterbody size, this suggests that a large
number of small waterbodies fall dry during the summer
months when evaporation rates are high. In the following
year, these small potholes typically refill after spring rains
and snowmelt.

3.2.2 Inter-annual surface water dynamics

In general, the number of waterbodies, the total water area
and the median area per waterbody were relatively stable be-
tween 2015 and 2019, whereas 2020 differed considerably
from the rest of the observation period in terms of these three
metrics (Fig. 8). Between 2015 and 2019, the total water area
varied between ca. 14 000 and 16 000 ha. In the first half of
the study period, total water area declined from ca. 16 000 ha
in 2015 to 15 000 ha in 2017. During 2018, total water area
remained stable. In contrast, 2019 started with higher val-
ues which then declined by ca. 1500 ha until mid-September.
This was followed by a steep increase until the water area
reached its maximum of the study period up to that point
at ca. 16 500 ha (Fig. 8b). This increase coincides with the
exceptional spring floods of that year and the wet October
leading to widespread flooding along the James River and
other regions of ND (Umphlett, 2019). In addition to the
strong increase in total water area at the end of 2019, which

is not found in other years, a decrease in median water area
per pothole (Fig. 8c) and a larger number of waterbodies
(Fig. 8a) can be observed, suggesting that a large number
of small potholes filled due to the intense storm event. Both
in spring and during the storm event in October 2019, wa-
ter area was higher than in summer in all four wetland size
classes (Fig. 9). Large waterbodies accounted for 88.7 % of
the total increase in water area of almost 2000 ha between
18 September and 24 October 2019. The year 2020 differed
from the rest of the study period with respect to all three in-
dicators shown in Fig. 8. The number of waterbodies and the
total water area were consistently higher than in all previous
years, with both indicators surpassing the maximum values
of those years during all of the observed months in 2020. At
the same time, the median area per waterbody was smaller in
2020 than in previous years, indicating a much larger abun-
dance of small waterbodies. The decrease in both total wa-
ter area and the median area along with the stable or even
increasing number of waterbodies suggests that small water-
bodies remained present throughout 2020. The persistence of
small waterbodies throughout 2020 becomes obvious when
looking at the contributions of waterbodies of different sizes
to the total water area (Fig. 9). During that year, large water-
bodies showed inverse behaviour compared with small wa-
terbodies: while the water area in the larger two size classes
declined between May and July, the total area of small wa-
terbodies stayed relatively stable and increased in autumn.

The strong increase in water area and the emergence of
small wetlands in October 2019 with respect to an earlier
year can also be observed in the water extent maps in Fig. 10.
In 2016 (Fig. 10a, b), a decrease in the extent of waterbodies
is visible from early summer (green colour) towards August
(dark blue and yellow). The decreased water extent led to a
disconnection of some wetlands into several smaller water-
bodies. Between August and October, water extent only in-
creased by a small amount, which can be seen in red. During
2019, in contrast, the open water extent visible in June (green
colour) was small, whereas in later months, August and Oc-
tober (orange and red colour respectively), the water extent
increased and, especially in October, many wetlands began
to merge (Fig. 10c, d). This disconnecting and merging be-
haviour illustrates that an increase in overall water area does
not necessarily translate into an increase in the number of
small waterbodies (and vice versa). This may explain some
of the seemingly different temporal patterns seen in total wa-
ter area, number of waterbodies and median waterbody size
in Fig. 8. At the time of writing, we could not find an anal-
ysis of the effects of the 2019 extreme events on wetland
extents in the literature. While extensive floods have been re-
ported for spring 2019 across the Midwest (Umphlett, 2019;
NOAA, 2019), which are visible as peaks in the discharge
time series, the autumn event led to much higher flood peaks
in the Pipestem Creek (Fig. 2). The merging of smaller wet-
lands into larger ones reported here may contribute to this be-
haviour. This finding may suggest that larger, connected, wa-
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Figure 9. Summed areas of waterbodies in size classes (a)> 8 ha, (b) 1–8 ha, (c) 0.2–1 ha and (d) 0.05–0.2 ha. Lines show LOESS smoothing
functions along with 95 % confidence intervals.

terbodies contributed more to floodwater runoff than small,
isolated waterbodies.

To our knowledge, this study is the first time that sur-
face water dynamics in the PPR have been monitored using
Sentinel-1 over an extended period covering both dry and wet
years. This enables us to also support findings from previous
studies (e.g. Liu and Schwartz, 2011) on inter-annual differ-
ences in wetland extent. While intra-annual changes in water
extent have been found mainly for small waterbodies, larger
wetlands should only change on an inter-annual timescale.
Our results demonstrate that the contribution of wetlands
both larger and smaller than 1 ha to the total water extent is
in line with what would be expected from meteorological in-
dices indicating water availability, such as the PDSI (Fig. 2).
During the extremely wet period in late 2019–early 2020,
large waterbodies showed significantly higher water extent
values than during the rest of the study period. It is note-
worthy that these increased water extents in larger wetlands
decreased again relatively quickly along with the decrease in
the PDSI during 2020, whereas the extent of small waterbod-
ies remained relatively stable. This may suggest that larger
wetlands can act as a water reservoir during wet periods but
then return to their formerly stable extent by releasing wa-
ter to the drainage network. Small potholes, however, tend
to be more geographically isolated – that is to say, they do

not have well-defined inlets or outlets and their water bal-
ance is mainly controlled by vertical fluxes, such as rainfall,
evaporation and drainage to the subsoil (Cohen et al., 2016).
They may persist as long as meteorological conditions are
wet enough to support them. During most of 2020, the PDSI
was above 2 in the study region, which indicates such condi-
tions. Furthermore, the snowpack during the winter of 2019–
2020 was thicker than normal (Umphlett, 2019), and the wa-
ter released after melting fed many of the smaller potholes,
also leading to a higher number of smaller waterbodies.

Inter-annual changes in prairie wetland extent have been
tracked using Landsat data (Vanderhoof et al., 2016; Krapu
et al., 2018; Rover et al., 2011) and high-resolution aerial
imagery (Wu and Lane, 2017; Wu et al., 2019); however, the
limitations due to cloud cover and the long intervals between
the acquisition of NAIP data typically do not allow for the
reproduction of extreme events. The analysis of SAR time
series unaffected by cloud cover and with high temporal res-
olution may help to understand the complex threshold be-
haviour which characterises catchments in the PPR (Shaw
et al., 2013). A major limitation encountered in this study for
the monitoring of wetland dynamics during extreme events
is the rather low temporal resolution of Sentinel-1 over the
study area. Imagery over the study area is currently only
acquired by one of the two satellites of the Sentinel-1 con-
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Figure 10. Water extent dynamics in (a, b) 2016 and (c, d) 2019 in a subset of the study area. Observation times refer to 5 July 2016 and
14 June 2019, 10 August 2016 and 13 August 2019, and 27 October 2016 and 24 October 2019 respectively. The “+” symbol denotes water
detected at multiple observation times. Dark blue areas were detected as water on all three dates. The box in panel (a) marks the extent of
the detailed maps shown in panels (b) and (d). Scales show coordinates in the Universal Transverse Mercator system (UTM zone 14).

stellation and only along ascending passes. This limits the
acquisition interval of the entire catchment to a revisit time
of 12 d. Additionally, imagery was not acquired during ev-
ery overpass, further reducing the temporal resolution. Ob-
viously, this time span is too large to resolve flood events
caused by storm or rain-on-snow events. The combination
of Sentinel-1 data with other SAR sensors, such the Radarsat
Constellation Mission or the future National Aeronautics and
Space Administration–Indian Space Research Organisation
(NASA-ISRO) SAR (Kumar et al., 2016) mission, may help
to mitigate this problem in the future. In the present study,
only water extent, which is directly observable by satellite
imaging systems was analysed. However, for many applica-
tions, such as water availability assessment or flood manage-
ment, surface water storage would also be of interest. Pothole
bathymetry data only exist at very limited scales (e.g. Mushet
et al., 2017). While empirical relationships between water
surface and stored volume exist for prairie potholes of differ-

ent size classes (Gleason et al., 2007), validating such esti-
mates is difficult due to missing reference data. The planned
Surface Water Ocean Topography (SWOT) mission (Bianca-
maria et al., 2016) may help to provide such information in
the future.

4 Conclusions

In this study, a novel approach for retrieving dynamic open
water extent in prairie pothole wetlands from dual-polarised
Sentinel-1 SAR data was presented. Using a Bayesian frame-
work, topographic information was integrated in the retrieval
processed via HAND. The results demonstrate that the ap-
proach was successful in mapping changes in water extent in
prairie potholes when their location was known a priori. The
inclusion of topographic information, at least in some cases,
helped to mitigate the adverse effects of non-water areas re-

https://doi.org/10.5194/hess-26-841-2022 Hydrol. Earth Syst. Sci., 26, 841–860, 2022



856 S. Schlaffer et al.: Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota

sembling water surfaces due to low backscatter and of wind
roughening the water surface. The impact of the latter fac-
tor was further decreased by the combination of co-polarised
and cross-polarised SAR data, as the latter are typically less
affected by surface roughness. The obtained time series of
total water area, number of open waterbodies and median
wetland area covering a time period of 6 years showed clear
intra-annual as well as inter-annual patterns. The different
responses of small (< 1 ha) and large (> 1 ha) wetlands to
an extremely wet period lasting from 2019 to 2020 were hy-
pothesised to be at least partly the result of the different de-
gree of connectivity between small and large potholes within
the catchment. Notwithstanding the value of the retrieved dy-
namic wetland maps, limitations persist with respect to the
effect of wind on SAR backscatter from open water and the
rather long revisit cycle of Sentinel-1 of 12 d over large parts
of the PPR. However, the value of Sentinel-1 for this appli-
cation will further increase with the time period covered by
this long-term Earth observation programme.

Appendix A: Validation dataset

Figure A1. NAIP false-colour composites (R – near-infrared, G – red and B – green) acquired in (a) 2016, (b) 2017 and (c) 2019. Green dots
show sample points used for the validation of waterbodies derived from Sentinel-1. (d) Location of the NAIP footprints inside the study area.
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Appendix B: Probabilistic water maps

Figure B1. Maps of posterior probabilities, p(W |σ 0
p ), for p = VH (in green) and p = VV (in blue) polarisations. Panel (a) corresponds to

the binary maps shown in Fig. 6c, and panel (b) corresponds to the binary maps shown in Fig. 6d.

Code availability. The code used in this paper can be made avail-
able upon request from the first author.

Data availability. The data used in this study were re-
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available through the Copernicus Open Access Hub
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data are available from the USGS National Water Informa-
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USGS National Water Information System, 2021); pre-
cipitation data can be downloaded from the NOAA
NCDC Global Surface Summary of the Day (GSOD,
2022, https://www.ncei.noaa.gov/access/search/data-search/
global-summary-of-the-day); PDSI is available from GRIDMET
Drought (https://www.climatologylab.org/gridmet.html, Abat-
zoglou, 2021); NAIP imagery (https://doi.org/10.5066/F7QN651G,
USDA Farm Service Agency, 2020) is available through
USGS Earth Explorer (https://earthexplorer.usgs.gov/); topo-
graphic data are available from the North Dakota GIS Hub
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