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Abstract. Irrigation has important implications for sustain-
ing global food production by enabling crop water demand
to be met even under dry conditions. Added water also cools
crop plants through transpiration; irrigation might thus play
an important role in a warmer climate by simultaneously
moderating water and high temperature stresses. Here we
used satellite-derived evapotranspiration estimates, land sur-
face temperature (LST) measurements, and crop phenologi-
cal stage information from Nebraska maize to quantify how
irrigation relieves both water and temperature stresses. Un-
like air temperature metrics, satellite-derived LST revealed a
significant irrigation-induced cooling effect, especially dur-
ing the grain filling period (GFP) of crop growth. This cool-
ing appeared to extend the maize growing season, espe-
cially for GFP, likely due to the stronger temperature sen-
sitivity of phenological development during this stage. Our
analysis also revealed that irrigation not only reduced wa-
ter and temperature stress but also weakened the response
of yield to these stresses. Specifically, temperature stress
was significantly weakened for reproductive processes in irri-
gated maize. Attribution analysis further suggested that wa-
ter and high temperature stress alleviation was responsible
for 65± 10 % and 35± 5.3 % of the irrigation yield benefit,
respectively. Our study underlines the relative importance of
high temperature stress alleviation in yield improvement and
the necessity of simulating crop surface temperature to bet-
ter quantify heat stress effects in crop yield models. Finally,
considering the potentially strong interaction between water
and heat stress, future research on irrigation benefits should
explore the interaction effects between heat and drought al-
leviation.

1 Introduction

Irrigation – a large component of freshwater consumption
sourced from water diversion from streams and groundwa-
ter (Wallace, 2000; Howell, 2001) – allows crops to grow
in environments that do not receive sufficient rainfall, and
buffers agricultural production from climate variability and
extremes. Irrigated agriculture plays an outsized role in
global crop production and food security: irrigated lands ac-
count for 17 % of total cropped area, yet they provide 40 %
of global cereals (Rosegrant et al., 2002; Siebert and Döll,
2010). Meeting the rising food demands of a growing global
population will require either increasing crop productivity
and/or expansion of cropped areas; both strategies are daunt-
ing under projected climate change. Cropland expansion may
be in marginal areas that require irrigation even in the present
climate (Bruinsma, 2009); increasing temperatures will drive
higher atmospheric vapor pressure deficits (VPDs) and raise
crop water demand and crop water losses. This increasing
water demand poses a water ceiling for crop growth and
might necessitate irrigation application over present rainfed
areas to increase or even maintain yields (DeLucia et al.,
2019).

However, the provision of additional irrigation water mod-
ifies both the land surface water and energy budgets. Addi-
tional water can result in an evaporative cooling effect, which
may be beneficial for crop growth indirectly through lower-
ing the frequency of extreme heat stress (Butler et al., 2018).
High temperature stress will be more prevalent (Russo et al.,
2014) under future warming and might result in more severe
yield losses than water stress (Zhu et al., 2019) due to re-
duced photosynthesis, pollen sterility, and accelerated crop
senescence in major cereals (Eyshi Rezaei et al., 2015; Rat-
talino Edreira et al., 2011; Ruiz-Vera et al., 2018). A bet-
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Figure 1. The spatial pattern of county-level multi-year (2003–2016) mean daily precipitation (a) and air temperature (b) during the maize
growing season. County-level multi-year (2003–2016) mean maize irrigation fraction across Nebraska (c). The maize irrigation fraction is
based on the USDA NASS report. Box plot of county-level irrigated and rainfed maize yield in Nebraska over the study period (d). The
lines in (d) show the linear fitted yield trend with a 95 % confidence interval. Box plots indicate the median (horizontal line), mean (cross),
interquartile range (box), and 5th–95th percentile (whiskers) of rainfed or irrigated yield across all counties.

ter understanding of irrigation’s potential to alleviate high
temperature stress will therefore be important for agricul-
tural management. More broadly, understanding how irriga-
tion can or should contribute to a portfolio of agricultural
adaptation strategies thus requires improved understanding
of its relative roles in mitigating both water and heat stresses.

Climate models and meteorological data have been used
to investigate how historical expansion of irrigation at global
and regional scales has influenced the climate system, in-
cluding surface cooling and precipitation variation (Kang and
Eltahir, 2019; Thiery et al., 2017; Bonfils and Lobell, 2007;
Sacks et al., 2009). However, many crop models still use
air temperature rather than canopy temperature to estimate
heat stress; this may overestimate heat stress effects in irri-
gated cropland (Siebert et al., 2017), since canopy tempera-
ture can deviate significantly from air temperature depending
on the crop moisture conditions (Siebert et al., 2014). Re-
cently, a comparison of crop-model-simulated canopy tem-
peratures suggests that most crop models lack sufficient abil-
ity to reproduce the field-measured canopy temperature, even
for models with a good performance in grain yield simulation
(Webber et al., 2017).

Satellite-derived land surface temperature (LST) measure-
ments have been used to directly quantify regional-scale sur-
face warming or cooling effects resulting from surface en-
ergy budget changes due to changes in land cover and land
management (Loarie et al., 2011; Tomlinson et al., 2012;
Peng et al., 2014). Importantly, yield prediction model com-
parisons suggest that replacing air temperature with MODIS
LST can improve yield predictions because LST accounts for
both evaporative cooling and water stress (Li et al., 2019).
Satellite data also provide the observational evidence to con-
strain model performance or directly retrieve crop growth

status information. For example, satellite-derived soil mois-
ture has been used to characterize irrigation patterns and im-
prove irrigation quantity estimations (Felfelani et al., 2018;
Lawston et al., 2017; Jalilvand et al., 2019; Zaussinger et
al., 2019). Integration of satellite products like LST there-
fore have the potential to improve our understanding of how
irrigation and climate change impact crop yields and thus
provide guidance for farmers to optimize management de-
cisions.

In this study, we focused on Nebraska, the third largest
maize producer in the United States. Multi-year mean cli-
mate data showed that conditions have been drier in west-
ern areas and warmer in southern areas of the state (Fig. 1a
and b). Importantly, Nebraska has historically produced a
mixture of irrigated and rainfed maize that facilitated com-
parison (more than half, 56 %, of the Nebraska maize crop-
land was irrigated, with more irrigated maize in the western
area – see Fig. 1c – according to the United States Depart-
ment of Agriculture; USDA, 2018a). County yield data from
the USDA showed that interannual fluctuations in rainfed
maize yield have in general been much larger than for irri-
gated maize (Fig. 1b). Although irrigated yields were higher,
rainfed maize yields grew faster than irrigated (an average
of 3.9 % per year versus 1.0 % per year) over the study pe-
riod (2003–2016) (Fig. 1b), in part because breeding tech-
nology progress has improved the drought tolerance of maize
hybrids (Messina et al., 2011).

As noted above, irrigation potentially benefits crop yields
by moderating both water and high temperature stress. Here
we used satellite-derived LST and satellite-derived water
stress metrics to statistically tease apart the contributions of
irrigation to water and heat stress alleviation separately. We
(1) evaluated the difference in temperature and moisture con-
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ditions over irrigated and rainfed maize croplands, (2) ex-
plored how irrigation mitigated water and high temperature
stresses using panel statistical models, (3) quantified the rel-
ative contributions of irrigation-induced water and high tem-
perature stress alleviation to yield improvements, and (4) ex-
plored whether current crop models reproduced the observed
irrigation benefits for maize growth status.

2 Materials and methods

We first describe the data used, followed by a brief descrip-
tion of the statistical methodology.

2.1 Satellite products to identify irrigated and
non-irrigated maize areas

We used the United States Department of Agriculture’s Crop-
land Data Layer (CDL) to identify maize croplands for each
year in the study period 2003–2016 (USDA, 2018b). The ir-
rigation distribution map across Nebraska was obtained from
a previous study that used Landsat-derived plant greenness
and moisture information to create a continuous annual ir-
rigation map across US Northern High Plains (Deines et
al., 2017). The irrigation map showed very high accuracy
(92 % to 100 %) when validated with randomly generated
test points and was also highly correlated with county statis-
tics (R2

= 0.88–0.96) (Deines et al., 2017). Both the CDL
and irrigation map are at 30 m resolution. We first projected
them to MODIS sinusoidal projection and then aggregated
them to 1 km resolution to align with MODIS ET and LST
products. Then, pixels containing more than 60 % maize and
an irrigation fraction> 60 % were labeled as irrigated maize,
while pixels with > 60 % maize and < 10 % irrigation frac-
tion were labeled as rainfed maize croplands. As always,
threshold selection involves a trade-off between mixing sam-
ples and retaining as many samples as possible. Our choices
of < 10 % as the threshold for rainfed maize and 60 % to de-
fine irrigated maize represented the best optimization in our
sample, as we found that a more stringent threshold had a
very small effect on LST differences between irrigated and
rainfed maize at county level but resulted in significant data
omission (more details in Figs. S1 and S2 in the Supplement).

2.2 Maize phenology information

Maize growth stage information derived in a previous study
was used to assess the influence of irrigation on maize growth
during different growth stages (Zhu et al., 2018). Stage in-
formation, including emergence date, silking date, and matu-
rity date, was derived with MODIS WDRVI (Wide Dynamic
Range Vegetation Index, 8 d and 250 m resolution) based on
a hybrid method combining shape model fitting (SMF) and
threshold-based analysis. Then we defined the vegetative pe-
riod (VP) as the period from emergence date to silking date,
the grain filling period (GFP) as the period from silking date

to maturity date, and the growing season (GS) as the period
from emergence date to maturity date. Details can be found
in our previous studies (Zhu et al., 2018). WDRVI was used
due to its higher sensitivity to changes at high biomass than
other vegetation indices (Gitelson, 2004) and was estimated
with the following equations:

NDVI= (ρNIR− ρred)/(ρNIR+ ρred) , (1)

WDRVI= 100 ·
[(α− 1)+ (α+ 1)×NDVI]
[(α+ 1)+ (α− 1)×NDVI]

, (2)

where ρred and ρNIR are the MODIS surface reflectance in
the red and near-infrared (NIR) bands, respectively. To mini-
mize the effects of aerosols, we used the 8 d composite prod-
ucts in MOD09Q1 and MYD09Q1 and quality-filtered the re-
flectance data using the band quality control flags. Only data
passing the highest quality control were retained (Zhu et al.,
2018). The scaling factor, α = 0.1, was adopted based on a
previous study to degrade the fraction of the NIR reflectance
at moderate-to-high green vegetation and best linearly cap-
ture the maize green leaf area index (LAI) (Guindin-Garcia
et al., 2012).

2.3 Temperature exposure during maize growth

We used daily 1 km spatial resolution MODIS Aqua
LST (MYD11A1) data to characterize the crop surface
temperature; since its overpassing times are at 01:30 and
13:30 LT, it is closer to the times of daily minimum and max-
imum temperature than the MODIS Terra LST (Wan, 2008)
and is therefore better for characterizing crop surface tem-
perature stress (Johnson, 2016; Li et al., 2019). For qual-
ity control, pixels with an LST error> 3◦ were filtered out
based on the corresponding MODIS LST quality assurance
layers. Missing values (less than 3 % of total observations)
were interpolated with robust spline function (Teuling et al.,
2010). Aqua LST data are available after July 2002; we thus
restricted our study to the period 2003–2016. For compar-
ison, we also obtained daily minimum and maximum sur-
face air temperature (Tmin and Tmax) at 1 km resolution from
Daymet version 3 (Thornton et al., 2018). For both MODIS
LST and air temperature, we calculated integrated crop heat
exposure – the growing degree days (GDD) and extreme de-
gree days (EDD) – according to the following definitions.

GDD30
8 =

N∑
t=1

DDt , DDt

=

 0, when T < 8 ◦C
T − 8 when 8 ◦C≤ T < 30 ◦C
22, when T ≥ 30 ◦C

 (3)
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EDD∞30 =

N∑
t=1

DDt , DDt

=

{
0, when T < 30 ◦C
T − 30, when T ≥ 30 ◦C

}
(4)

Here, temperature (T ) could be either air temperature or LST,
interpolated from daily to hourly values with sine function
(Tack et al., 2017). t represents the hourly time step, and
N is the total number of hours in a specified growing period
(either the entire growing season or a specific phenological
growth phase, as defined below). Following previous studies
(Lobell et al., 2011; Zhu et al., 2019), we used 30 ◦C as the
high temperature threshold, although higher values might be
applicable in some settings (Sanchez et al., 2014).

2.4 Maize water stress

Water stress during maize growth was characterized by the
ratio of evapotranspiration (ET) to potential evapotranspi-
ration (PET), as in a previous study (Mu et al., 2013). We
used MODIS products (MYD16A2) for both ET and PET
based on its good performance for natural vegetation (Mu
et al., 2011); however, our comparison using flux-tower-
observed ET at an irrigated maize site in Nebraska suggested
that ET for the irrigated maize was significantly underesti-
mated by MODIS ET (Fig. S3). We therefore also used an-
other ET product (SSEBop ET) to replace MODIS ET. SSE-
Bop ET was also estimated with MODIS products (Senay et
al., 2013), like LST, vegetation index, and albedo as input
variables, but used a revised algorithm including predefined
boundary conditions for hot and cold reference pixels (Senay
et al., 2013) and showed better performance than MODIS ET
(Velpuri et al., 2013). We also saw improved performance
when we compared it with flux-tower-observed ET at an irri-
gated maize site (Fig. S4). The comparison of MODIS PET
and flux-tower-estimated PET showed satisfactory perfor-
mance for MODIS PET (Fig. S5). Since MODIS PET from
MYD16A2 has a spatial resolution of 500 m with 8 d tempo-
ral resolution, while SSEBop ET has 1 km spatial resolution
with daily time step, we reconciled the two datasets to 1 km
spatial resolution and 8 d temporal resolution.

2.5 Crop model simulation results

We compared the results of our statistical analysis with
four gridded crop models. Simulation results from pAP-
SIM, pDSSAT, LPJ-GUESS, and CLM-crop for both rain-
fed and irrigated maize across Nebraska were obtained
from the Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) (Rosenzweig et al., 2013) and Inter-
Sectoral Impact Model Intercomparison Project 1 (ISIMIP1)
(Warszawski et al., 2014). The four models were driven
by the same climate forcing dataset (AgMERRA) and run
at a spatial resolution of 0.5 arcdegree longitude and lati-
tude. All simulations were conducted for purely rainfed and

nearly perfectly irrigated conditions. These models simulated
maize yield, total biomass, ET, and growing stage informa-
tion (planting date, flowering date, and maturity date). Plant-
ing date occurs on the first day following the prescribed sow-
ing date on which soil temperature is at least 2◦ above the
8 ◦C base temperature. Harvest occurs once the specified heat
units are reached. Heat units to maturity were calibrated from
the prescribed crop calendar data (Elliott et al., 2015). Crop
model simulation was evaluated by calculating the Pearson
correlation between simulated yields in the baseline simula-
tions and detrended historical yields for each county from the
Food and Agriculture Organization. The management sce-
nario “harmnon” was selected, meaning the simulation us-
ing harmonized fertilizer inputs and assumptions on grow-
ing seasons. More details on the simulation protocol can be
found in Elliott et al. (2015) and Müller et al. (2019). We
used this model comparison project outputs to shed light on
how well crop models simulated the irrigation benefits we
identified in different phases of crop growth.

2.6 Method

We used standard panel statistical analysis techniques to
identify the impacts of irrigation on maize productivity via
heat stress reduction and water stress reduction pathways.

Comparison of LST, ET, PET, ET /PET, GDD, and EDD
between irrigated and rainfed maize areas was performed
within each county to minimize the effects of other spatially
varying factors, like background temperature and manage-
ment practices, on surface temperature and evapotranspira-
tion. These biophysical variables (LST, ET, PET, ET /PET,
GDD, and EDD) averaged over each county were then in-
tegrated over the vegetative period (VP, from emergence
date to silking date), grain filling period (GFP, from silk-
ing date to maturity date), and whole growing season (GS,
from emergence date to maturity date) so we could evalu-
ate whether and how irrigation had differentially influenced
maize growth during early VP and late GFP.

We further examined how irrigation had changed the sen-
sitivity of maize yield and its components to temperature
variation. As done in our previous study (Zhu et al., 2019),
we decomposed the total yield (t ha−1) variation into three
components: biomass growth rate (BGR, t ha−1 d−1), grow-
ing season length (GSL, days), and harvest index (HI) based
on the following equation:

Yield= HI ·AGB= HI ·BGR ·GSL. (5)

Aboveground biomass (AGB, t ha−1) was retrieved through
a regression model:

AGB= β · IWDRVIγ , (6)

which was built in the previous study by regressing field-
measured maize AGB against MODIS-derived integrated
WDRVI (IWDRVI) (Zhu et al., 2019). The coefficients β and
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γ were estimated as 16.4±2.5 (t ha−1) and 0.8±0.08. Then
HI could be estimated as yield /AGB and BGR could be esti-
mated as AGB /GSL. This decomposition allowed us to ex-
amine how different crop growth physiological processes re-
sponded to external forcing: HI characterizes dry matter par-
titioning between source organ and sink organ and is mainly
related to processes determining grain size and grain weight;
BGR is related to physiological processes of daily carbon as-
similation rate through photosynthesis, and GSL is related
to crop phenological development. The uncertainties in AGB
estimation result from the parameters in the regression model
(Eq. 6) converting IWDRVI to AGB. Here we quantified the
uncertainties rooted in the estimated parameters by running
the panel model 1000 times with the samples generated from
each parameter’s 95 % confidence interval (Zhu et al., 2019).

Temperature sensitivity of irrigated or rainfed
yield (SYield

T ) was estimated using a panel data model
(Eq. 7) with growing season mean LST and ET /PET as the
explanatory variables:

log
(
Yieldi,t

)
= γ1t + γ2LSTi,t + γ3

ET
PET i,t

+Countyi + εi,t . (7)

Yieldi,t is maize yield (t ha−1) in county i and year t . It is a
function of overall yield trends (γ1t) that fairly steadily in-
creased over the study period (Fig. 1b), local crop temper-
ature stress (LSTi,t ), and local crop water stress ( ET

PET i,t
).

The Countyi terms provide an independent intercept for each
county (fixed effect) and thus account for time-invariant
county-level differences that contributed to variations in
yield, like the soil quality. εi,t is an idiosyncratic error term.
γ2 or ∂ ln(Yield)

∂LST defines the temperature sensitivity of yield.
The temperature sensitivity of BGR (SBGR

T ), HI (SHI
T ), and

GSL (SGSL
T ) could be estimated with Eq. (7) in a similar

way by using BGR, HI, and GSL as dependent variables.
Here, the dependent variable Yield (BGR, GSL, and HI) was
logged, so the estimated temperature sensitivity represented
the percentage change in Yield (BGR, GSL, and HI) with a
1 ◦C temperature increase.

To quantify the relative contribution of water and high
temperature stress alleviation to yield benefit, we related the
yield difference between irrigated and non-irrigated maize
(irrigation yield-rainfed yield, 1Yield) to a quadratic func-
tion of growing season EDD and ET /PET differences be-
tween irrigated and rainfed maize:

1Yieldi,t = γ11
ET

PET i,t
+ γ21

ET
PET

2

i,t
+ γ31EDDi,t

+ γ41EDD2
i,t +Countyi + εi,t . (8)

The yield improvement explained by heat and water stress
alleviation was estimated as

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t
+ γ3

∑
1EDDi,t + γ4

∑
1EDD2

i,t∑
1Yieldi,t

.

The relative contribution of water and high temperature stress
alleviation was estimated as

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t
+ γ3

∑
1EDDi,t + γ4

∑
1EDD2

i,t

and

γ3
∑
1EDDi,t + γ4

∑
1EDD2

i,t

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t
+ γ3

∑
1EDDi,t + γ4

∑
1EDD2

i,t

,

respectively. We also ran the model above using daytime LST
difference (1LST) in lieu of 1EDD as a robustness check:

1Yieldi,t = γ11
ET

PET i,t
+ γ21

ET
PET

2

i,t
+ γ31LSTi,t

+ γ41LST2
i,t +Countyi + εi,t . (9)

To diagnose any potential collinearity between 1 ET
PET and

1LST, we calculated the variance inflation factor (VIF) for
the model above. In this formulation the relative contribu-
tions of water and high temperature stress alleviation were
estimated as

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t
+ γ3

∑
1LSTi,t + γ4

∑
1LST2

i,t

and

γ3
∑
1LSTi,t + γ4

∑
1LST2

i,t

γ1
∑
1 ET

PET i,t + γ2
∑
1 ET

PET
2
i,t
+ γ3

∑
1LSTi,t + γ4

∑
1LST2

i,t

,

respectively.

3 Results

As expected, irrigation improved maize yield and the yield
benefit showed a distinct spatial variation when we com-
pared areas we identified as irrigated versus rainfed maize.
The yield benefit of irrigation was much higher in the west-
ern area of the state (Fig. 2a) because the drier environment
in the western area featured a wider yield gap between irri-
gated and rainfed cropland in an average year. The satellite-
derived vegetation index WDRVI reflected these differences,
with higher values in areas we identified as irrigated maize,
especially around maize silking (Fig. 2b). Importantly, this
suggested that irrigated and rainfed croplands were distin-
guishable based on satellite-derived crop seasonality infor-
mation.

When county-level LST data were averaged over 2003–
2016, the daytime LST in irrigated maize was 1.5◦ cooler
than rainfed maize, while nighttime LST showed a very
slight difference (0.2◦) (Fig. 3a and b). When the LST
differences were integrated over different growing periods
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Figure 2. The difference between irrigated and rainfed maize yield (a) and satellite-observed vegetation index (b, c). The shaded area in (b)
and (c) shows 1 standard deviation of the WDRVI (b) and WDRVI difference (c).

Figure 3. Spatial–temporal patterns of daytime and nighttime MODIS LST differences (a–h) and surface air temperature differences (i–p)
between irrigated and rainfed maize in different growth stages: vegetative period and grain filling period. The shaded areas in (a), (b), (i),
and (j) show 1 standard deviation of corresponding variables.

(Fig. 3e–h), we found that the daytime cooling effect was
greatest in the GFP (Fig. 3g), probably due to the higher
LAI (or ground cover) and transpiration during that stage of
growth. This was also consistent with previous field studies
showing that irrigation was mainly applied during the middle
to late reproductive period, which corresponded to the great-
est water demand period (Chen et al., 2018). The spatial pat-
tern of the LST difference showed a stronger cooling effect in
the western area (Fig. 3c–h), which was similar to the spatial
pattern of yield benefit identified in Fig. 2a. In contrast, sur-
face air temperature showed a much smaller daytime cooling

effect (Fig. 3i and j). The mean daytime and nighttime air
temperature differences between irrigated and rainfed maize
were −0.2 and −0.3◦, respectively, and the spatial pattern
of air temperature difference over VP and GFP was also
relatively small between counties and crop growth periods
(Fig. 3k–p). The difference between spatial–temporal pat-
terns identified using LST and air temperature likely arises
because LST reflects canopy energy partition between the la-
tent heat flux and sensible heat flux. Additional moisture pro-
vided by irrigation results in more heat transferred as latent
heat flux, creating a cooling effect.
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Figure 4. Box plot of maize phenological date (a) and duration (b, c) for irrigated and rainfed maize areas. The spatial pattern of phenological
date and duration differences between irrigated and rainfed maize areas (d, e).

Temperature is an important driver of crop phenology and
has been used as the primary environmental variable in crop
phenology models (Wang and Engel, 1998). Given the iden-
tified irrigation cooling, we further examined how irrigation
altered maize phenological stages. We found that irrigated
maize showed an earlier emergence and silking but delayed
maturity (Fig. 4a). Consequently, GFP was extended by 7.5 d
on average, which contributed to most of the total GS ex-
tension (8.1 d) (Fig. 4b). Site measurements of phenologi-
cal stage information confirmed that irrigated maize had a
longer GS, especially during GFP (Fig. 4c). That this exten-
sion mainly occurred during GFP could be due to the fact that
(1) LST cooling was more prominent during GFP, (2) pheno-
logical development during GFP was more sensitive to tem-
perature variation than development during VP (Egli, 2004),
and there were (3) variety differences between irrigated and
rainfed maize. The spatial pattern suggested that GS and GFP
extension was more significant in the western area of the state
(Fig. 4g and h), likely due to the corresponding stronger cool-
ing effect.

We integrated LST or air temperature as described above
(Sect. 2.3) to estimate total heat exposure (GDD and EDD)
over the maize growing season. We found that both LST
and air-temperature-estimated GDD were greater in irri-
gated maize than GDD in rainfed maize across most coun-
ties, especially during GFP (Fig. 5a and c), which was

Figure 5. Box plot of GDD and EDD estimated with MODIS
LST (a, b) and surface air temperature (c, d) for irrigated and rain-
fed maize areas. Box plots indicate the mean (cross), median (hor-
izontal line), 25th–75th percentile (box), and 5th–95th percentile
(whiskers) of corresponding variables in all year and county combi-
nations.
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Figure 6. Box plot of SSEBop ET, MODIS PET, and ET /PET for irrigated and rainfed maize areas (a–c). Spatial pattern of SSEBop ET,
MODIS PET, and ET /PET differences between irrigated and rainfed maize areas (d–f).

very likely due to the GFP extension. As GDD character-
izes the beneficial thermal time accumulation, the greater
GDD in irrigated maize might contribute to the higher yield.
In terms of EDD, LST-estimated EDD suggested that ir-
rigation suppressed high temperature stress, especially for
GFP (Fig. 5b), while air-temperature-estimated EDD failed
to characterize the irrigation-induced lower high temperature
stress (Fig. 5d).

SSEBop ET and MODIS PET were used to explore how
irrigation influenced water demand and water supply across
maize. We found that irrigation led to 27 % higher (p <
0.001) ET and 2 % lower (p > 0.05) PET (Fig. 6a and b).
Higher ET was anticipated in irrigated maize, and lower PET
might be due to the irrigation cooling effect, which resulted
in lower VPD and thus lower evaporative demand. We used
the ratio of ET to PET as a proxy for water stress in this study,
whereby low values indicated that plants were not transpir-

ing at their full potential in the ambient conditions. This ra-
tio was higher for irrigated maize, especially during the GFP
(Fig. 6c), and the spatial distribution suggested that the dif-
ference was greater in western counties than eastern counties
(Fig. 6d and e), similar to the distribution of the local cooling
effect identified in Fig. 3c.

We divided the temperature sensitivity of yield into three
components (sensitivity of BGR, GSL, and HI) to investigate
how irrigation changed the response of maize physiological
processes to temperature. Because collinearity between LST
and ET /PET was potentially worrisome, we quantified the
variance inflation factor (VIF) in the model; this was found
to be well below standard thresholds, with a value of 2.8
and 3.6 for irrigated and rainfed maize yield, respectively.
(VIFs over 10 indicate strongly collinear variables, with 5 be-
ing a more strict standard.) As shown in Fig. 7, we found
that temperature sensitivity of yield was significantly weak-
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Figure 7. Temperature sensitivity of yield and yield compo-
nents (GSL, HI, and BGR) for irrigated and rainfed maize areas.
The error bars represent the 95 % confidence interval of estimated
temperature sensitivity. Double asterisks (∗∗) indicate a significant
estimation of temperature sensitivity with p < 0.01, while a single
asterisk (∗) indicates significance with p < 0.05.

ened from−6.9 % per degree (p < 0.01) to−1 % per degree
(p < 0.01) in rainfed vs. irrigated areas, and this yield sen-
sitivity change was mainly driven by a change in the sensi-
tivity of the HI, which was weakened from −4.2 % per de-
gree (p < 0.01) to 1 % per degree (p < 0.01). In both rainfed
and irrigated maize, temperature sensitivity of GSL was quite
close at approximately −2 % per degree (p < 0.01), while
BGR was only slightly influenced by temperature (Fig. 7).

We found that irrigation not only lowered water and high
temperature stress, but also made yield less sensitive to wa-
ter and high temperature stress (Fig. 8a–c), consistent with
previous studies (Troy et al., 2015; Tack et al., 2017). For
example, field data across Africa suggest that better water
management can reduce yield loss due to heat stress from
−1.7 % per degree day to−1 % per degree day (Lobell et al.,
2011). We statistically related yield differences to climatic
variables differences using the linear model (Eq. 8) and es-
timated that 61± 9.4 % of yield improvement between irri-
gated and rainfed maize could be explained by the irrigation-
induced heat and water stress alleviation. We further calcu-
lated that 79± 13 % of that yield improvement was due to
water stress alleviation and 21±3.2 % was due to heat stress
alleviation. Because the distribution of1EDD was truncated
for points with1EDD> 0 (Fig. 8e), we explored an alterna-
tive model with quadratic functions of1LST and1ET/PET
(Eq. 9). In this specification, 72±12 % of yield improvement
was explained by water and high temperature stress allevia-
tion, with 65± 10 % and 35± 5.3 % of yield improvement
due to water and high temperature stress alleviation, respec-
tively. We also estimated VIF in the model; this was found
to be well below standard thresholds, with a value of 2.2.
Intuitively, our low VIF value was likely due to the use of
differences in LST and ET /PET between irrigated and rain-
fed maize rather than directly using LST and ET /PET as

the explanatory variables. We also note that the high temper-
ature stress alleviation estimated here appears larger than the
estimation in a recent study (Li et al., 2019) wherein LST
was also employed to detect the yield benefit of the irrigation
cooling effect. But this is due to the fact that we estimated
cooling effect benefits relative to the total sum of cooling
and water stress effects, whereas Li et al. (2019) calculated
the cooling effect relative to net yield differences between ir-
rigated and rainfed maize. Since other effects (like cultivar
difference and fertilizer application) might also contribute to
the yield difference between irrigated and rainfed maize, the
denominator used in Li et al. (2019) was larger.

Because we found a strong effect on yields via alleviation
of heat stress (and not simply water stress), we compared
our results with four process-based crop models that simu-
lated crop growth under both rainfed and irrigated conditions.
These simulations qualitatively reproduced the irrigation-
induced higher maize yield, biomass, and ET (Fig. 9) but
to different degrees. The highest modeled improvement was
identified in CLM-crop, with increases of 57 %, 43 % and
32 % in yield, biomass and ET, respectively. However, all
models except CLM-crop failed to reproduce the grow-
ing stage extension under irrigation (Fig. 9), likely because
CLM-crop was the only one of the tested models to have
implemented a canopy energy balance module to simulate
canopy temperature. CLM-crop was thus the only model able
to capture the irrigation-induced evaporative cooling effect
(heat stress reduction). That the best agreement between ob-
served and modeled results occurred with the only model that
plausibly accounted for heat stress alleviation due to irriga-
tion was further evidence that this was the phenomenon we
captured in our satellite observational study.

4 Discussion and conclusion

By integrating satellite products and ground-based informa-
tion on cropping and irrigation, we showed that irrigated
maize yields were higher than rainfed maize yields because
added irrigation water reduced heat stress in addition to water
stress. Our study underlines the relative importance of heat
stress alleviation in yield improvement and the necessity of
incorporating crop canopy temperature models to better char-
acterize heat stress impacts on crop yields (Teixeira et al.,
2013; Kar and Kumar, 2007). In addition, disentangling the
two effects allows crop models to better predict crop phe-
nology, considering that the irrigation-induced cooling effect
alters maize growing phases.

Although ours is not the first study to suggest replacing air
temperature with MODIS LST for maize yield prediction, es-
pecially under extreme warm and dry conditions, our results
underscore important implications of doing so. Given the im-
portant role of heat stress in determining crop yield, thermal-
band-derived LST information at finer spatial and temporal
resolution should be a critical input for satellite-data-driven
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Figure 8. Response of maize yield to ET /PET (a), EDD (b), and daytime LST (c) in both irrigated and rainfed maize. Response of yield
differences to ET/PET (d), EDD (e), and daytime LST (f) differences between irrigated and rainfed maize. The linear (dash black line) and
quadratic (solid black line) response curves of 1Yield to 1ET/PET, 1EDD, and 1LST are shown in (d)–(f).

Figure 9. Box plot of crop-model-simulated yield, biomass, ET, and phenological duration (VP, GFP, and GSL) differences between irrigated
and rainfed maize areas. For phenological duration, CLM-crop only reports GSL.
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yield prediction models (Wang et al., 2015; Huryna et al.,
2019; Li et al., 2019; Meerdink et al., 2019). In addition,
given the differential responses of crop growth to heat and
water stresses in different stages, fusing satellite-derived crop
stage information with the heat and water stressors might im-
prove crop yield prediction.

This study also has useful implications for process-based
crop model development. In our model evaluation, only the
model that implemented a canopy energy balance scheme
captured the observed maize growth stage extension. Our re-
sults suggest that the heat stress alleviation due to irrigation
identified here is largely overlooked in current crop models.
As such, when those crop models are calibrated to match
observed yields, processes associated with water stress al-
leviation are probably overestimated, resulting in uncertain-
ties for predicting future irrigation water demand and crop
yield. These uncertainties might mislead future adaptation
decisions due to incomplete or biased estimates of the rel-
ative contributions of heat and water stress.

Relatedly, recent studies have compared heat stress repre-
sentation in crops models which explicitly simulate canopy
temperature (Webber et al., 2017). For example, STICS es-
timates canopy temperature using canopy energy balances
which account for net radiation, soil heat flux, evapotranspi-
ration, and aerodynamic resistance (Brisson et al., 2003). In
APSIM, canopy temperature is taken as 6 ◦C higher than air
temperature when the crop is fully stressed and 6 ◦C cooler
than air temperature when the crop is fully transpiring. Be-
tween these limits, the basis of the expression for canopy
temperature is the relationship between temperature differ-
ence (canopy temperature minus air temperature) and the
ratio of actual and potential evapotranspiration (Webber et
al., 2017). This model comparison study suggests that mod-
els using canopy temperature to account for heat stress ef-
fects indeed outperform models depending on air tempera-
ture, but the model comparison also identified a wide range
for the simulated canopy temperature in current crop mod-
els. Therefore, assimilating satellite-derived LST might be
a potential solution to improving crop models’ heat stress
representation so that they can better reproduce the observed
heat stress effects (Meng et al., 2009; Xu et al., 2011). These
remotely sensed LSTs can also be used to validate model-
simulated LST, especially given that the recent ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Sta-
tion (ECOSTRESS) mission makes hourly plant temperature
measurements available (Meerdink et al., 2019). However, it
is worth noting that the availability of satellite LST presents
a constraint when thinking about future climate change im-
pact studies. In addition, some caution is required for validat-
ing model-simulated LST, since LST is sensor- and satellite-
specific.

Several limitations and caveats apply to our study. First,
the daily MODIS daytime LST we used to explain crop max-
imum daily temperature had missing values due to quality
control checks and was derived from a mix of crop cover

and other land surface temperature information, which might
bias the identified irrigation cooling effect. Specifically, us-
ing MODIS daytime LST as a proxy for true (measured)
maximum crop surface temperature in an empirical statistical
model might underestimate the benefit of the cooling effect
(measurement error in a predictor variable producing attenu-
ation bias). These uncertainties in the LST dataset might be
resolved with the recently launched ECOSTRESS mission,
as its hourly revisiting frequency enables better estimation
of maximum daily temperature. The second issue is that wa-
ter stress and heat stress are not perfectly separable. As we
have shown, the cooling effect of irrigation lowers evapora-
tive demand (PET) and thus indirectly contributes to lower
water stress (higher ET /PET). In addition, water stress re-
duced photosynthesis and ET, resulting in higher plant tem-
perature. Our disentangling methods do not account for the
water stress and heat stress interaction effects, so these “heat”
and “water stress” channels should be interpreted carefully.
We note that our statistical model-estimated temperature co-
efficient should be interpreted as the net of all effects raising
surface temperature. The third issue is that our study only ex-
amined maize in one state, Nebraska. Although Nebraska is
the largest irrigated maize producer in the US, results might
differ for other crop types and other landscapes due to differ-
ent crop canopy structures and management practices (Chen
et al., 2018), as well as spatial variations in water and heat
stress mitigation effects (Figs. 3 and 7).

Overall, our study suggests that heat stress alleviation, in
addition to water stress alleviation, plays an important role in
improving irrigated maize yield. Since current models gener-
ally cannot accurately simulate the canopy temperature, the
irrigation-induced yield benefit might have been overly at-
tributed to water stress alleviation. This might bias the fu-
ture yield prediction under irrigation, since high temperature
stress might be more dominant than drought for crop yield
formation under future warmer climate (Zhu et al., 2019;
Jin et al., 2017). Better constrained crop models – perhaps
through integration of satellite-observed land surface tem-
perature and crop stage information – will be necessary to
improve yield prediction and help policy makers and farmers
make better decisions about where and when to implement
irrigation.
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