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Abstract. Deep learning has emerged as a useful tool across
geoscience disciplines; however, there remain outstanding
questions regarding the suitability of unexplored model ar-
chitectures and how to interpret model learning for regional-
scale hydrological modelling. Here we use a convolutional
long short-term memory network, a deep learning approach
for learning both spatial and temporal patterns, to pre-
dict streamflow at 226 stream gauges across southwestern
Canada. The model is forced by gridded climate reanalysis
data and trained to predict observed daily streamflow be-
tween 1980 and 2015. To interpret the model’s learning of
both spatial and temporal patterns, we introduce a set of ex-
periments with evaluation metrics to track the model’s re-
sponse to perturbations in the input data. The model per-
forms well in simulating daily streamflow over the testing
period, with a median Nash–Sutcliffe efficiency (NSE) of
0.68 and 35 % of stations having NSE> 0.8. When predict-
ing streamflow, the model is most sensitive to perturbations
in the input data prescribed near and within the basins be-
ing predicted, demonstrating that the model is automatically
learning to focus on physically realistic areas. When uni-
formly perturbing input temperature time series to obtain rel-
atively warmer and colder input data, the modelled indicator
of freshet timing and peak flow changes in accordance with
the transition timing from below- to above-freezing tempera-
tures. We also demonstrate that modelled August streamflow
in partially glacierized basins is sensitive to perturbations in
August temperature, and that this sensitivity increases with
glacier cover. The results demonstrate the suitability of a con-
volutional long short-term memory network architecture for
spatiotemporal hydrological modelling, making progress to-
wards interpretable deep learning hydrological models.

1 Introduction

The use of deep learning (DL) has gained traction in geo-
physical disciplines as an active field of exploration in efforts
to maximize the use of growing in situ and remote sensing
datasets (Bergen et al., 2019; Reichstein et al., 2019; Shen,
2018). In hydrology, DL can provide alternative or comple-
mentary approaches to supplement traditional process-based
modelling (Shen et al., 2018; Hussain et al., 2020; Van et al.,
2020; Marçais and de Dreuzy, 2017; Shen, 2018). Particu-
larly notable are DL models which have been found to out-
perform traditional hydrological models applied at regional
scale, including those for streamflow prediction at daily tem-
poral scale (Kratzert et al., 2018, 2019b), at hourly temporal
scale (Gauch et al., 2021), and at ungauged basins (Kratzert
et al., 2019a). These recent DL-based studies have empha-
sized the development of lumped hydrological models with
inputs that are aggregated to the basin level. However, fewer
DL-based studies have explored the use of spatially dis-
cretized forcing and geophysical data (Gauch and Lin, 2020).
In contrast, traditional process-based approaches have made
substantial progress towards distributed hydrological models
which are driven by spatially discretized inputs (Freeze and
Harlan, 1969; Marsh et al., 2020; Pomeroy et al., 2007). Nev-
ertheless, as input and target data are becoming available at
increasingly finer spatiotemporal resolution, process-based
modellers are having to address the rising computational re-
quirements and human labour required to represent the rele-
vant hydrological processes across larger spatial scales (e.g.
Marsh et al., 2020). A key opportunity exists, then, to de-
velop a DL hydrological model which can utilize spatially
discretized forcing data at regional scale.

Early applications of machine learning in hydrology date
back to the 1990s, with artificial neural network (ANN)
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models used for rainfall–runoff modelling (Hsu et al., 1995;
Maier and Dandy, 2000, 1996; Maier et al., 2010; Zealand
et al., 1999) and a range of other hydrometeorological analy-
sis such as flood forecasting (Fleming et al., 2015), improv-
ing gridded snow water equivalent data products (Snauffer
et al., 2018), and predicting seasonal water supply (Hsieh et
al., 2003). ANN models aim to approximate functions that
connect input data (e.g. weather data), represented by input
neurons, to output or target data (e.g. streamflow data), rep-
resented by output neurons, through a series of hidden lay-
ers, each containing hidden neurons. The training of these
models, i.e. the tuning of model parameters in the functions
interconnecting each layer, aims to minimize the distance
between model output and observed target data. In particu-
lar, numerous types of machine learning applications have
been developed for hydrometeorological analyses and ap-
plications in western Canada. For example, Bayesian neu-
ral networks, support vector regression, and Gaussian pro-
cesses have been used for streamflow prediction at a sin-
gle basin (Rasouli et al., 2012), quantile regression neu-
ral networks have been used for precipitation downscal-
ing in British Columbia (Cannon, 2011) and the estima-
tion of rainfall intensity–duration–frequency curves across
Canada (Cannon, 2018), online sequential extreme learning
machines have been used for streamflow prediction in two
basins (Lima et al., 2016, 2017), and random forest models
have been used to identify temperature controls on maximum
snow water equivalence in western North America (Shrestha
et al., 2021). While such machine learning architectures have
a long history and continue to find useful applications in hy-
drology, DL has more recently become a promising area of
investigation due to several key characteristics (Shen, 2018),
i.e. that DL models can automatically extract abstract fea-
tures from large, raw datasets (Bengio et al., 2013), and
that DL model architectures which are explicitly designed
to learn complex spatial and/or temporal information, in par-
ticular convolutional neural networks (LeCun et al., 1990)
and long short-term memory neural networks (Hochreiter
and Schmidhuber, 1997), exist.

Long short-term memory (LSTM) neural networks are de-
signed to learn sequential relationships on a range of scales
(Hochreiter and Schmidhuber, 1997). LSTMs are a type of
recurrent neural network (RNN). Traditional RNNs include
a feedback loop between the network output and input in or-
der to learn temporal dependency within the data (Rumel-
hart et al., 1985); however, they struggle to learn long-term
dependencies greater than around 10 time steps (Bengio et
al., 1994). LSTMs overcome this limitation through the in-
clusion of an internal memory state or cell state which can
store information, and learning is achieved by including in-
ternal gates through which information can flow and inter-
act with the cell state. LSTMs have had particular success
in natural language processing (NLP), including applications
of text prediction (Karpathy et al., 2015), language trans-
lation (Sutskever et al., 2014), image captioning (Kiros et

al., 2014), and video-to-text conversion (Venugopalan et al.,
2015). In hydrology, Kratzert et al. (2018) demonstrated the
effectiveness of LSTMs for rainfall–runoff modelling, us-
ing the previous 365 d of basin-averaged weather variables
to predict the next day of streamflow at a stream gauge sta-
tion. They have shown that a single LSTM can be trained
on hundreds of basins and then fine-tuned for either each re-
gion or each basin, oftentimes outperforming standard hydro-
logical models. LSTM models trained on many basins have
been shown to outperform standard hydrological models for
prediction at ungauged basins, and the inclusion of physi-
cal basin characteristics as predictors further improved the
LSTM model performance, demonstrating the potential for
LSTM models to be used as regional hydrological models
(Kratzert et al., 2019a). However, while addressing the need
to learn complex sequential information, the LSTM approach
does not explicitly learn from spatially discretized informa-
tion and, as such, has been primarily used for lumped hydro-
logical modelling.

Another type of DL architecture, convolutional neural
networks (CNNs), is designed to learn spatial information.
Learning is achieved through convolving an input with a
layer of filters made up of trainable parameters. The devel-
opment of CNNs was largely driven by image classification
applications (Krizhevsky et al., 2012). In the geosciences,
CNNs have gained popularity more recently with applica-
tions including long-term El Niño forecasting (Ham et al.,
2019), precipitation downscaling (Vandal et al., 2017), hail
prediction (Gagne et al., 2019), urban water flow forecasting
(Assem et al., 2017), and beach state classification (Ellen-
son et al., 2020). Importantly, CNNs have been combined
with LSTMs to encode both spatial and temporal informa-
tion. Sequential CNN–LSTM models have been used to map
input videos to class labels or text captions, where frames
in the video are passed first through a CNN, and the out-
put is then passed through an LSTM (Donahue et al., 2017).
Alternatively, LSTM models with convolutional rather than
fully connected (or dense) layers have also been used to
encode spatiotemporal information for applications includ-
ing precipitation nowcasting (Shi et al., 2015). In hydrology,
CNN (and particularly combined CNN–LSTM) models have
seen fewer applications to date as compared to the LSTM ap-
proach, with recent work developing 1D CNNs for rainfall–
runoff modelling (Hussain et al., 2020; Van et al., 2020). No-
tably, the CNN–LSTM architecture has been identified as be-
ing an architecture of potential or emergent interest for geo-
scientific applications involving spatiotemporal phenomena
(Reichstein et al., 2019).

Historically, hydrological model development has empha-
sized understanding and incorporating physical processes in
order to improve model performance (Freeze and Harlan,
1969; Pomeroy and Gray, 1990; Hedstrom and Pomeroy,
1998; Painter et al., 2016; Marsh et al., 2020). Consider-
ing the emphasis on process-based modelling within the
hydrological community (Bahremand, 2016) and the mul-

Hydrol. Earth Syst. Sci., 26, 795–825, 2022 https://doi.org/10.5194/hess-26-795-2022
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tifaceted challenges surrounding water management (Milly
et al., 2008; Wheater and Gober, 2013), it is important that
DL-based hydrological models are interpretable and trust-
worthy in addition to being successful in simulating accurate
streamflow. Fleming et al. (2021b) discuss the importance
of model interpretability in the context of operational hy-
drological forecasting where model predictions may be used
for potentially high-stakes decision making; for example, the
end-user may need to communicate why models make a cer-
tain prediction in order to answer clients’ questions or to
satisfy legal requirements. We may begin to build trust in
a model’s ability to forecast in the near-term by evaluat-
ing model performance on a testing dataset that is separate
in time from the training and validation datasets. This ap-
proach, however, does not offer much insight into the physi-
cal relationships that the models are relying on for decision-
making. Practical methods are beginning to appear that allow
users to easily identify and geophysically interpret, in detail,
spatiotemporal patterns or input–output relationships identi-
fied by, respectively, new unsupervised learning (e.g. Flem-
ing et al., 2021b) and supervised learning (e.g. Fleming et
al., 2021a) algorithms designed for applied operational hy-
drological modelling environments where interpretability is
key. However, there is still much work to be done on devel-
oping new and better ways to further the goal of explainable
machine learning for hydrology in both deep and non-deep
contexts and both operations and research settings. Addition-
ally, without an understanding of what models have learnt, it
is challenging to trust a DL model for predictions in periods
or places where observational datasets do not exist (e.g. for
reconstructing missing historical streamflow, for predicting
streamflow at ungauged basins, or for long-term forecasting
of streamflow under climate change scenarios). By interpret-
ing what a DL model has learnt, we can better understand
where and when a DL model can be trusted and the tasks for
which it can be applied.

How a model is interpreted, and what it means to inter-
pret a DL model, may depend on the model architecture (e.g.
ANN, CNN, or LSTM), the task the model is performing
(e.g. regression or classification), and the research or practi-
cal questions being asked with the model. A review of meth-
ods used for DL interpretation in a geoscientific context is
provided in McGovern et al. (2019), and here we summa-
rize select concepts and methods. One approach to interpret
CNN models is to visualize the regions in the input that are
most important for decision-making, which can be done for
both classification and regression problems. Techniques such
as class activation mapping (CAM) and gradient class ac-
tivation mapping (Grad-CAM) utilize deep feature maps to
determine the regions most important for classification (Sel-
varaju et al., 2016). Another technique, layer-wise relevance
propagation (LRP), backpropagates from a single output neu-
ron through the trained network to identify the input region
which is most relevant for determining the value of the output
neuron (Bach et al., 2015). For LRP, the propagation rules

used depend on the model architecture (Arras et al., 2019;
Bach et al., 2015; Toms et al., 2020). In contrast to the above
approaches which interpret the model through explicit use of
the model parameters, alternative methods exist which do not
use internal network states for interpretation. For example,
techniques such as occlusion (Zeiler and Fergus, 2014) and
randomized image sampling explanation (RISE; Petsiuk et
al., 2018) iteratively grey out or zero out subsets of an input
image and measure how a model’s predictions change due to
this perturbation. Occlusion and RISE can identify the area
in the input where the model’s predictions are most sensitive
to perturbation, which can be interpreted as being the most
important information for the model to have in order to make
its prediction.

Recurrent networks can be challenging to interpret, as the
relevance of any feature in the network depends on the pro-
cessing of previous features. LSTMs have often been inter-
preted by analysing their internal states (Shen, 2018). For
example, Karpathy et al. (2015) visually inspect cell states
of an LSTM trained for natural language processing ap-
plications to identify states which track various recogniz-
able text features, such as quotations and line length. Most
states, however, were found to be uninterpretable (Karpathy
et al., 2015). A similar approach has been taken for inter-
preting LSTMs in hydrology; for example, Kratzert et al.
(2018) discuss cell states as being comparable to storages
in traditional hydrological models. They show that the evo-
lution of one cell state closely resembles the dynamics of a
snowpack, increasing when temperatures are below freezing
and quickly depleting when temperatures rise above freezing
(Kratzert et al., 2018). More recently, LRP has been adapted
for the LSTM architecture (Arras et al., 2019); however, to
our knowledge, there are no examples of its use in the geo-
scientific literature.

Deep learning in hydrology has shown promise for stream-
flow prediction tasks, but knowledge gaps exist surrounding
the development of architectures which explicitly incorpo-
rate both space and time, the interpretation of model learn-
ing, and the limitations of such modelling approaches. We
aim to address some of these knowledge gaps by creating
a relatively simple and interpretable DL model which maps
spatiotemporal weather fields, represented by gridded cli-
mate data at a relatively coarse (∼ 75 km) spatial resolution,
to streamflow at multiple stream gauge stations across a re-
gion. By explicitly encoding spatial information, we aim to
develop a DL analogue of a distributed hydrological model
which predicts streamflow on a regional scale without the
need for climate downscaling. Our specific objectives for this
paper are to (1) evaluate how well the sequential convolu-
tional long short-term memory model performs when pre-
dicting daily streamflow simultaneously at multiple stream
gauge stations across a region, (2) investigate if the model
has learnt to focus on the areas of the spatially distributed in-
put data that are within or near the watersheds where stream-
flow is being predicted, (3) investigate if the model has learnt
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Figure 1. The study region in western Canada. (a) The black box outlines the study region in both the main figure and the inset. The provincial
borders of British Columbia and Alberta are shown in grey. The inset shows the broader context of the study region in North America. The
figure is made with the Python library Cartopy (Met Office, 2018) and with data from Natural Earth. (b) Elevation data of the study region are
from the Shuttle Radar Topography Mission (Farr et al., 2007). (c) Mean annual temperature and (d) mean annual precipitation, as calculated
over the study period (1979–2015), from ERA5 climate reanalysis (Hersbach et al., 2020).

physically interpretable temporal links which drive the tim-
ing and peak flow of the spring freshet in snowmelt domi-
nated basins, and (4) investigate if the model has learnt to link
summer temperature with summer streamflow in glacierized
basins. The first objective is related to evaluating the accu-
racy of the model’s predictions, while the latter three objec-
tives relate to model interpretability. We do not undergo an
exhaustive parameter search to create the best or most com-
plex model; rather, we develop a model with relatively few
predictor variables which is sufficient for achieving these ob-
jectives. We explore several ways that perturbations to the
input temperature and precipitation fields result in stream-
flow responses that are expected on the basis of physical hy-
drologic knowledge. While this is not necessarily a unique
property of DL and may be found when using non-deep ma-
chine learning or other empirical models applied to the same
task, our findings are encouraging given the recent use of DL
for streamflow prediction tasks.

The paper is structured in the following way: in Sect. 2, we
discuss the study region. In Sect. 3, we outline the datasets
used and detail our decision-making for choosing the in-
put and output variables. In Sect. 4, we outline our meth-
ods, including the architecture, training, and evaluation of the
model, and describe the experiments developed for interpret-
ing the model’s learning. In Sect. 5, we present and discuss
the results of our analysis, and we present a summary and
conclusions in Sect. 6.

2 Study region

We use southwestern Canada as our study region, contain-
ing large sections of the provinces of British Columbia (BC)
and Alberta (AB; Fig. 1). This region contains a range of
hydroclimate regimes, allowing for our modelling approach
to be evaluated across a range of conditions. In winter, rela-
tively warm and moist Pacific air is advected into the study
region, leading to frequent rainfall events at low elevations
along the west coast of British Columbia where the maritime
climate is wetter and milder as compared to much of the rest
of the study region. While most precipitation typically falls
as rain at lower elevations, substantial winter snowfall leads
to seasonally continuous snow and substantial glacier cov-
erage at higher elevations in the coastal region (Trubilowicz
et al., 2016). Cooler winter conditions through much of the
rest of the province allow for the accumulation of a seasonal
snowpack (Moore et al., 2010). In contrast, winters in Alberta
are colder and drier given the influence of Arctic air masses.
Substantial snowfall can occur in Alberta when comparably
moist Pacific air crosses the Rockies and interacts with cold
and dry Arctic air (Vickers et al., 2001; Sinclair and Mar-
shall, 2009), but most precipitation in Alberta falls as rain in
the spring and summer. The seasonal streamflow characteris-
tics are described in Sect. 3.1.
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3 Data

3.1 Streamflow data

We use daily streamflow data (in cubic metres per second;
hereafter m3 s−1) extracted from Environment and Climate
Change Canada’s Historical Hydrometric Data website (HY-
DAT; Water Survey of Canada HYDAT data). HYDAT classi-
fies stream gauge stations as either regulated (downstream of
regulating structures such as a dam) or natural (upstream of
regulating features). We use stations which are classified as
natural and which are currently active. Many stream gauges
do not record data every day of the year, so we only select
stream gauges which have no more than 40 % of daily data
missing between 1980 and 2015 and for which no more than
1 year is missing more than 40 % of data.

A temporally complete dataset is needed to train the
model. For all missing data, we fill the daily value with the
average value of that day between 1980–2015. If all years
are missing that day (which is true for some stations which
record data seasonally rather than continuously), we fill the
missing day with the minimum seasonal streamflow. The
threshold of 40 % is chosen to allow for relatively dense spa-
tial coverage of stations across the study region and is ac-
ceptable for the purposes of this study, considering that most
missing data are during low-flow seasons when rainfall and
snowmelt are not strongly driving streamflow dynamics. It is
acceptable to allow for 1 year with greater than 40 % miss-
ing data because it substantially increases the station density.
There are 279 stream gauge stations in Alberta which are ac-
tive and measure natural flow. Of these, 120 meet the afore-
mentioned criteria; however, only 66 meet the stricter criteria
of having all years with less than 40 % missing data. In BC,
there are 288 active and natural stream gauges; of these, 145
meet the less strict criteria and 108 meet the stricter criteria.
We further restrict the study region to stations south of 56◦ N
because stream gauge density is greater below this latitude.
Missing data are common features in geoscientific datasets,
the presence of which pose challenges for the use of ma-
chine learning models (Karpatne et al., 2019), and so creating
a suitably large training dataset may require pre-processing
steps like those outlined above.

The Reference Hydrometric Basin Network (RHBN) is a
subset of the national stream gauge network which has long
records and minimal human impacts that have been identified
for use in climate change studies. Of the 226 stations used in
our study, 213 are within the RHBN. The remaining 13 sta-
tions have long observational records and are not modified
by regulating structures but may have more than minimal hu-
man impacts through other disturbances to the natural system
such as land use. We provide station names and station num-
bers and indicate if they are a part of the RHBN network in
Table S1 in the Supplement.

3.2 Streamflow clusters

Streamflow throughout the study region varies strongly in
space and time and reflects the varied topographic and cli-
matic conditions in British Columbia and Alberta. Here we
provide a brief, high-level overview of streamflow charac-
teristics, and while it is not a complete summary of the
full range of hydrologic conditions throughout the study re-
gion, we aim to highlight that streamflow through the re-
gion is heterogeneous in space and time. Streamflow at low-
elevation coastal stations is primarily driven by rainfall, with
highest monthly discharge in November or December. In
contrast, streamflow at stations that are at higher elevation,
further north, or further inland transition to a snowmelt-
dominated regime, with highest monthly discharge in spring
or early summer. Numerous glaciers exist in high-elevation
alpine areas throughout both the Coast Mountains along the
west coast of British Columbia and the Rocky Mountains
along the border between British Columbia and Alberta, and
glacier runoff contributes to streamflow through late summer
once the seasonal snowpack has melted (Eaton and Moore,
2010). East of the Rocky Mountains, the Prairie region in
eastern Alberta is characterized by relatively flat topography
with small surface depressions (LaBaugh et al., 1998). Water
can pond and be stored in these depressions, leading to in-
termittent connectivity throughout many basins and drainage
areas which may vary in time (Shook and Pomeroy, 2011).

Previous studies have used a range of techniques to clus-
ter or summarize the diversity of spatiotemporal streamflow
characteristics in the study region (e.g. Halverson and Flem-
ing, 2015, use complex networks to represent similarity be-
tween streamflow time series in the Coastal Mountains, while
Anderson and Radić, 2020, use principal component analysis
and self-organizing maps to characterize summer streamflow
through Alberta). In this study, we use a relatively simple
clustering approach, only considering seasonal streamflow,
station latitude, and station longitude. The clustering input
(observation) for each station is a vector, where the first 365
dimensions are the daily values of the climatological sea-
sonal streamflow, the next 182 dimensions are repeated val-
ues of latitude, and the final 182 dimensions of repeated val-
ues of latitude (Fig. A1). This clustering input is designed to
give the daily values of the climatological seasonal stream-
flow and geographic location similar weight in the clustering
algorithm, where approximately one-half of the input is sea-
sonal streamflow, one-quarter is latitude, and one-quarter is
longitude. By clustering in this way, the stream gauges that
belong to the same cluster are likely to have similar stream-
flow and experience similar climatic conditions. Seasonal
streamflow is normalized at each station to have zero mean
and unit variance, while latitude and longitude are each nor-
malized across all stations to have a mean of zero and unit
variance. We use agglomerative hierarchical clustering with
Ward’s method (Hastie et al., 2009) to identify six subdo-
mains or clusters of stream gauge stations (Fig. 2). The num-
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Figure 2. The seasonal streamflow cluster patterns and their locations in space. The colour of the stream gauge in the panel (a) corresponds
to the climatological seasonal streamflow cluster pattern in panel (b). The background grey curves in the cluster pattern plots (b) are the
daily values of the climatological seasonal streamflow at the stream gauges in each cluster. Seasonal discharge of each station is normalized
to have a mean of zero and unit variance.

ber of clusters chosen (six in this case) is determined from
the dendrogram (Fig. A2). We refer to the clusters as north-
western, northeastern, central, southern, eastern, and coastal,
as labelled in Fig. 2. The elevation and drainage area of sta-
tions for each cluster is shown in Fig. A3.

There are key differences between the streamflow regimes
identified by the clustering (Fig. 2). Only the lower-elevation
coastal stream gauges are characterized by low summer flows
and high winter flows which are driven by winter rainfall
events; all other clusters differ from one another largely in
the timing and peak flow of both the spring freshet (the first
streamflow peak in a year) and a second rainfall-driven peak
occurring in spring, summer, or fall. The eastern and north-
eastern clusters are characterized by relatively early spring
freshet, followed by rainfall-driven streamflow peaks in early
summer. The southern, central, and northwestern stations are
characterized by a later and more sustained spring runoff,
in part due to a longer-lasting snowpack which accumulates
from the relatively higher rates of winter precipitation in
British Columbia.

Our clustering approach does not explicitly consider input
features such as land use, glacier coverage, drainage area,
or elevation but rather implicitly considers the expressions
of these features in the seasonal hydrograph. The goal of this
type of clustering is to define subsets of stream gauge stations
that are nearby in space and share similar hydrographs. We
prioritize proximity in space over an explicit representation
of other important features (e.g. drainage area, elevation, and
glacier coverage) because a key goal of the study is to inter-
pret where in space the DL models have learnt to focus when
predicting streamflow. As discussed in the “Training” sec-
tion and Sect. 4.5.1, having clusters of stream gauge stations
which are nearby in space allow us to visualize if the trained
models are learning to focus on the subregion of the input do-

main which overlaps with the watersheds where streamflow
is being predicted.

3.3 Weather data

As input weather variables to the model, we select daily fields
of precipitation, maximum temperature, and minimum tem-
perature, extracted from ERA5 reanalysis (Hersbach et al.,
2020) from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Data are aggregated to a daily tempo-
ral resolution and 0.75◦×0.75◦ spatial resolution for the time
period 1979–2015. Our selection of variables is based on the
assumption that the combination of precipitation and temper-
ature is sufficient for estimating both how precipitation con-
tributes to streamflow as rainfall and for estimating the onset,
peak flow, and longevity of the spring freshet through the
seasonal accumulation and ablation of a snowpack. We rec-
ognize that the underlying physics which governs streamflow
throughout the year is more complex than these comparably
simple assumptions (e.g. interactions between surface water
and ground water, see Hayashi et al., 2016; evapotranspira-
tion, see Penman and Keen, 1948; snow redistribution from
wind, see Pomeroy and Li, 2000); however, we are assum-
ing that temperature and precipitation from reanalysis data
can act as proxies from which most of the information can
be inferred (e.g. Essou et al., 2016). While additional vari-
ables could be used as climatic drivers of streamflow (e.g.
solar radiation, evaporation, and wind), we opt to use a sim-
pler model with fewer input variables as a proof of concept
and to achieve our goals stated in Sect. 1.

ERA5 reanalysis is globally available from 1979 through
the present (once complete, it will be available from 1950
onwards) and has been shown to compare well against other
reanalysis products (Hersbach et al., 2020). ERA5 reanaly-
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Figure 3. Overview of the model architecture. The model input is a weather video with 365 frames/images, each corresponding to 1 d of
weather from ERA5 reanalysis in the past year. Each frame in the video has three channels corresponding to precipitation (P ), maximum
temperature (Tmax), and minimum temperature (Tmin). Each channel has dimensions of nlat× nlong, where nlat is the number of grid cells
in the vertical direction (latitude) and nlong is the number of grid cells along the horizontal direction (longitude). Each frame in the weather
video is passed through a CNN, and each weather video generates a sequence of 365 feature vectors. A dropout layer is used between the
CNN and LSTM for regularization. The sequence of 365 feature vectors is then passed through an LSTM and a dense linear transformation
to output the next day of modelled streamflow at N stations (i.e. streamflow at day 366 at N stations). Within the LSTM cell, c(t) is the cell
state, and h(t) is the hidden state.

sis was preceded by the ERA-Interim reanalysis, which has
been evaluated for use across British Columbia. It was found
that daily minimum and daily maximum temperatures are
well represented across British Columbia (Odon et al., 2018).
Additionally, daily precipitation was found to be well repre-
sented, with the caveat that extreme precipitation is less suc-
cessfully represented (Odon et al., 2019). ERA5 reanalysis
better represents precipitation as compared to ERA-Interim
reanalysis at the global scale (Hersbach et al., 2020). Impor-
tantly, the precipitation output from ERA5 has been found
to typically outperform the earlier ERA-Interim reanalysis in
the northern Great Plains region, which experiences a similar
climate to the Canadian Prairie region in our study area (Xu
et al., 2019). For these reasons, we consider the ERA5 reanal-
ysis to be suitable for our study. ERA5 data are available as a
preliminary product 5 d behind real time and as a final prod-
uct 2–3 months behind real time (Hersbach et al., 2020). This
latency has implications for model applications, as it may not
be possible to use ERA5 data for real-time forecasting with
the model in this study. We downloaded total precipitation
(variable name – tp; parameter ID – 228) and near-surface
air temperature (variable name – 2 m Temperature; parame-
ter ID – 500011), from which daily total precipitation, daily
maximum temperature, and daily minimum temperature are
calculated.

4 Methods

Here we summarize our methods before providing details
of each key step. We use a sequential CNN–LSTM model
to map weather predictors to streamflow at multiple stream
gauge stations simultaneously. As input data, we use the past
365 d of weather, covering the whole study region, in order

to predict the streamflow of the next day at N stream gauge
stations (Fig. 3 and Table 1). The CNN learns the spatial fea-
tures in each day of the input, while the LSTM model learns
the temporal relationship between these features in order to
predict streamflow. After the model is trained, we evaluate its
performance against the observed streamflow over a testing
period, which is independent of the training and validation
periods. Finally, we introduce three experiments to investi-
gate the model’s learning. The first experiment is focused
on interpreting the learning of spatial links between the pre-
dictors and streamflow, the second experiment is focused on
the learning of links between temperature and the snowmelt-
driven freshet, and the third experiment is focused on the
learning of links between August temperature and August
streamflow in glacierized basins. This section will provide
a brief overview of both the CNN and LSTM architectures,
followed by a description of our CNN–LSTM model design
and training and, finally, with a description of metrics and
experiments developed for the model evaluation and inter-
pretation.

4.1 CNN overview

The CNN is constructed using two main types of layers,
namely convolutional and pooling. Convolutional layers are
made up of multiple filters which are constructed by trainable
weights. Each filter convolves across an input layer to pro-
duce an output image which is then passed through a nonlin-
ear activation function. Mathematically, a single output neu-
ron can be calculated from a single filter as follows:

yCNN = g

(∑
i,j,k

W
i,j,k

CNNx
i,j,k

CNN+ bCNN

)
, (1)
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Table 1. Details of the model layers. The model input has a shape of 365× 12× 32× 3, with the final dimension corresponding to the three
input variables (daily maximum temperature, minimum temperature, and precipitation). Note that each of the 365 daily weather images is
passed independently through the convolutional and pooling layers (e.g. these layers are time distributed), and so the output shape of these
layers has a first dimension of 365.

Layer type Description Output shape No. of
parameters

Convolutional 32 filters, 1× 1 size 365× 12× 32× 32 128
Convolutional 16 filters, 3× 3 size 365× 12× 32× 16 4624
Convolutional 16 filters, 3× 3 size 365× 12× 32× 16 2320
Max pooling 2× 2 pool size 365× 6× 16× 16 0
Convolutional 32 filters, 3× 3 size 365× 6× 16× 32 4640
Convolutional 32 filters, 3× 3 size 365× 6× 16× 32 9248
Max pooling Global 365× 32 0
Dropout 0.1 dropout rate 365× 32 0
LSTM 80 units 80× 1 36 160
Dense As many neurons as stream gauges N × 1 N · 81

where yCNN is the value of one neuron in the output layer,
g is the nonlinear activation function, WCNN are the weights
of the filter, xCNN is the region of the input layer, bCNN is
the bias value of the output neuron, and i, j , and k corre-
spond to width (e.g. number of pixels along the x direction
of the image), height (e.g. number of pixels along the y di-
rection of the image), and depth (e.g. number of channels of
the image) of the input, respectively. Pooling layers reduce
the image resolution, which reduces memory requirements
of the network; for example, a 2× 2 max-pooling layer will
reduce the number of pixels by a factor of 4 by outputting
only the maximum value of each 2× 2 region of the input.
CNN architectures often have a repeating structure of several
convolutional layers followed by a pooling layer. Through
training, the convolutional layers learn the spatial features
present, with more abstract features being learnt at deeper
layers, and the pooling layers reduce images to smaller and
smaller sizes. The output feature vector is encoded with the
learnt spatial information from the input.

4.2 LSTM overview

The LSTM network output is determined by the interaction
between two internal states, i.e. the cell state c(t), which acts
as the memory of the network, and the hidden state h(t),
which is an intermediate output of the network. Both states
are updated at each time step t (1≤ t ≤ n) by a series of gates
through which information can flow, i.e. the forget gate ft ,
the input gate it , the potential cell update c̃t , and the output
gate ot . Each time step of the input is concatenated with the
hidden state, as calculated in the prior time step, before being
passed through the network; in this way, learnt information
from previous time steps is used to calculate the next output.
In the following equations, weights (W) and biases (b) are
the learnable parameters in the network:

f t = σ
(
Wf[xt ,ht −1] + bf

)
(2)

it = σ
(
Wi[xt ,ht −1] + bi

)
(3)

c̃t = tanh
(
Wc[xt ,ht −1] + bc

)
(4)

ot = σ
(
Wo[xt ,ht −1] + bo,

)
(5)

where xt is the input vector to the LSTM at time t , tanh is
a hyperbolic tangent function, σ is a sigmoid function, and
square brackets indicate concatenation. The cell state at time
t is determined by the prior cell state and the interactions
with the outputs of the forget, input, and potential cell update,
while the hidden state at time t is determined by the new cell
state and the output gate, as follows:

ct = ct −1�f t + it � c̃t (6)
ht = tanh(ct )� ot , (7)

where � denotes element-wise multiplication. The final hid-
den state, hn, is passed through a dense layer constructed of
fully connected neurons. The activation of this dense layer is
linear, and so the final output is a linear transformation of the
final hidden state, as follows:

yflow =Wdhn+ bd . (8)

This output, yflow, is a vector of normalized streamflow for a
single day at multiple stream gauge stations.

4.3 Sequential CNN–LSTM architecture

An overview of the model architecture is shown in Fig. 3,
and information of each layer is presented in Table 1. To
ensure consistency between terminology in both image pro-
cessing (from which CNN technologies primarily originated)
and this study, a weather video refers to 365 d of the three
weather predictors, a frame or image in a weather video
refers to 1 d of the three weather predictors at all grid cells, a
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channel in a frame or image refers to 1 d of one weather pre-
dictor, and a pixel refers to one grid cell. We use a sequen-
tial CNN–LSTM model in order to simultaneously map the
previous 365 d of temperature and precipitation to the next
day of streamflow at multiple stream gauges throughout the
study region (i.e. days 1 through 365 of weather are used
to predict day 366 of streamflow). Daily weather images are
constructed where the height and width of the image corre-
spond to the number of grid cells along latitude and longi-
tude, respectively, and with three channels corresponding to
normalized maximum temperature (Tmax), minimum temper-
ature (Tmin), and precipitation (P ). Yearly weather videos are
constructed from the past 365 d of weather images, where
each frame in the video is a weather image. One year-long
weather video is used as an input to predict the next day of
streamflow at the 226 stream gauge stations; in other words,
all grid cells of temperature and precipitation are mapped to
streamflow at all stream gauge stations. Each frame in the
video is passed independently through the CNN, which con-
verts each of the 365 frames into a feature vector of length
32. This feature vector is a representation of the learnt spa-
tial features found in that frame of weather. There are 365
feature vectors generated from one year-long weather video,
since there are 365 d in the input video. Then, this series of
feature vectors is passed through an LSTM, which learns the
sequential relationship between the learnt spatial features and
outputs a final hidden vector, hn (Eq. 7), with length 80. This
hidden vector contains information of the sequential relation-
ships between the spatial features and is next passed through
a dense layer with linear activation to connect to the final
output neurons (yflow; Eq. 8). In other words, the 80 values
in the hidden vector are linearly combined to predict a single
day of streamflow at each individual station.

We divide our data into three subsets referred to as train-
ing, validation, and testing datasets, as is common practice in
DL model development (e.g. Goodfellow et al., 2016). The
training data are used to iteratively update the model param-
eters such that the error between the model’s predictions and
known observations is reduced across the training set; the
validation data are used to determine when to stop updating
the model parameters to prevent the model from overfitting
to the training data, and the testing data are used to evaluate
the final model’s performance.

Since 365 d of previous temperature and precipitation are
used to predict streamflow, and since the ERA5 data begin
on 1 January 1979, the first day of streamflow predicted is 1
January 1980. For all models, we use 1980–2000 for train-
ing, 2001–2010 for validation, and 2011–2015 for testing. In
other words, the training period is defined by daily stream-
flow from 1 January 1980 to 31 December 2000, with forc-
ing data ranging from 1 January 1979 to 30 December 2000.
The validation period uses streamflow data from 1 January
2001 to 31 December 2010, with forcing data ranging from
1 January 2000 to 30 December 2010. The testing period
uses streamflow data from 1 January 2010 to 31 December

2015, with forcing data ranging from 1 January 2009 to 30
December 2015. We choose to separate the training, valida-
tion, and testing datasets into non-overlapping time periods
of streamflow so that model performance can be evaluated
on out-of-sample streamflow examples. We choose to use a
full decade for validation because we want to encourage the
model to perform well across a range of conditions and not
for one particular year or climate state, since oscillations in
the climate system, such as the El Niño Southern Oscillation
and the Pacific–North American atmospheric teleconnection,
influence streamflow through modifications to temperature,
precipitation, and snow accumulation through the study re-
gion (Hsieh and Tang, 2001; Whitfield et al., 2010; Fleming
and Whitfield, 2010; Hsieh et al., 2003). We also choose to
use multiple years for testing so as to not bias our conclusions
towards the conditions of a single year. Furthermore, we par-
tition the training, validation, and testing data by year rather
than by the percentage of observations (i.e. the testing subset
is chosen as 5 years and not 10 % of observations) so that we
do not bias our results by including or excluding parts of the
year when the model performs better or worse than average.
Overall, the training–validation–testing data split is approxi-
mately 59 %–27 %–14 % of the total streamflow dataset. The
input data are normalized so that each variable (maximum
temperature, minimum temperature, and precipitation) has a
mean of zero and unit variance over the training period. The
target data from each of the 226 stations are normalized so
that each station’s streamflow has a mean of zero and unit
variance over the training period.

Training the DL model requires a balance of having suf-
ficient complexity to learn the mapping from weather to
streamflow but without being so complex that the model
overfits to the training set and performs poorly on the val-
idation or testing datasets. With that in mind, we designed
this architecture (Table 1) considering the following: (1) the
number of pooling layers is limited by the relatively small
input images (spatial size of 12× 32), (2) the number of fil-
ters in the deepest layer of the CNN determines the length of
the spatial feature vector (input to LSTM), and (3) the num-
ber of parameters in a single LSTM layer goes linearly with
the length of the spatial feature vector and quadratically with
the number of LSTM units. In addition to these general guid-
ing principles, we found that a single LSTM layer with more
units performed better than multiple LSTM layers with fewer
units, as had previously been used when predicting stream-
flow at a single station (Kratzert et al., 2018). The success
of a single LSTM layer with more units is likely because
we map the LSTM hidden state to multiple stream gauges (a
higher-dimensional space) rather than a single neuron, and so
more units are required for this mapping to work well. Addi-
tionally, we found that including 32 filters of size 1×1 as the
first layer improved model performance.
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Training

We use fine-tuning (Razavian et al., 2014; Yosinski et al.,
2014) to train our model in two steps, as follows:

1. Bulk training. A CNN–LSTM model is initialized with
random weights and is then trained on all 226 stream
gauge stations in the region.

2. Fine-tuning. The bulk model is further trained at sta-
tions from each of the six clusters (Fig. 1) in the follow-
ing way. The bulk model is copied six times, with one
copy used for each cluster, but the last dense layer in the
bulk model is removed and replaced with a new dense
layer which has as many neurons as stations in that clus-
ter. Weights in the new dense layer are randomly initial-
ized. Each fine-tuned model is then trained further on
only the stations in that cluster.

For both bulk and fine-tuned models, early stopping is used
to reduce overfitting. We use a dropout layer with a dropout
rate of 0.1 between the CNN and LSTM layers for regular-
ization (Srivastava et al., 2014). We use batch sizes of 64, a
learning rate of 10−4, mean squared error loss, and Adam op-
timization (Kingma and Ba, 2017). We use the Keras (Chol-
let, 2015) and TensorFlow (Abadi et al., 2016) libraries in
Python (Van Rossum and Drake, 2009), and Google Colab
for access to a cloud graphics processing unit (GPU). We
initialize 10 bulk models with 10 different sets of random
weights. Each bulk model is trained and then fine-tuned on
each cluster of stream gauge stations, creating 10 fine-tuned
CNN–LSTM models for each of the six clusters of stream
gauge stations. We use this ensemble of 10 bulk models and
10 fine-tuned models (per cluster) for our analysis. Training
a single bulk model on a single cloud GPU in Colab takes on
the order of tens of minutes. It is possible that a better per-
forming architecture or training scheme could be constructed
by optimizing hyperparameters with an out-of-sample sub-
set; however, we show our that model set-up and design is
sufficient for achieving the goals of this study.

4.4 Evaluation of model performance

We evaluate how well streamflow is simulated by the bulk
and fine-tuned models with the Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970). For each station, we calcu-
late NSE over the test period for both the bulk and fine-tuned
models, using the ensemble mean as the final model output.
NSE is defined as follows:

NSE= 1−

∑t=T
t=1

(
Qt
m−Q

t
o

)2∑t=T
t=1

(
Qt
o−Qo

)2 , (9)

where T is the total number of time steps in the test se-
ries, Qt

m is the modelled streamflow for that station at that
time, Qt

o is the observed streamflow for that station at that

time, and Qo is the mean observed streamflow for that sta-
tion over the whole test period. The overall performance of
both the bulk and fine-tuned models is evaluated by the me-
dian NSE of all stations as evaluated over the test period.
When NSE= 1, the modelled streamflow is exactly equal to
the observed streamflow, while NSE< 0 indicates very poor
model performance as more variability would be captured if
the streamflow was represented with its mean value than with
the modelled streamflow.

We compute NSE using the mean predictions across the
ensemble members, and we quantify an uncertainty in the
streamflow prediction as being twice the standard deviation
across ensemble members. This uncertainty is due to ran-
domness from the initialized parameters and through train-
ing. It is a measure of how different streamflow predictions
may be, even when using the same architecture and data,
and it is not a measure of uncertainty in meteorological forc-
ing. When and where this uncertainty is small (large) indi-
cates that the models in the ensemble predict similar (differ-
ent) streamflow values for that day. We evaluate performance
from an ensemble mean rather than a single model’s predic-
tion, and so this uncertainty gives an indication of the mag-
nitude of scatter around the ensemble mean.

4.5 Interpretation of model learning

4.5.1 Spatial perturbations

We interpret the model’s learning of spatial links by testing
the following hypothesis: if the model is learning physical
processes that drive streamflow at a given stream gauge sta-
tion, then the modelled streamflow at that station should be
most sensitive to perturbations in the watershed or vicinity of
that station, and less sensitive to perturbations further from
that station. To test this hypothesis, we perturb small spatial
regions of the input weather video and determine how sensi-
tive the predicted streamflow of each cluster of stream gauge
stations (Fig. 1) is to the areas which are perturbed. To eval-
uate the regions of the input space which are most important
for streamflow predictions at each stream gauge, we take the
following steps, each of which will be discussed in more de-
tail:

1. Perturb the input video.

2. Evaluate how much the modelled streamflow prediction
changes at each station.

3. Define a sensitivity map for this perturbation for each
station.

4. Iterate through steps 1–3 for each day in the test series
until the sensitivity map no longer substantially changes
from further perturbations.

5. Evaluate if the sensitive areas are representative of phys-
ically realistic learning for each streamflow cluster.
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Steps 1–4 are similar to the occlusion (Zeiler and Fergus,
2014) and RISE (Petsiuk et al., 2018) algorithms in that we
iteratively perturb the input and generate sensitivity maps
based on how the output changes. The RISE approach ze-
roes out portions of the input image, which here would be
equivalent to setting a portion of the input to be the mean
weather values since the input variables are normalized to
have zero mean; therefore, the difference between the per-
turbed and unperturbed input would depend on how close
the input variables are to their mean values in each day. In-
stead, here we perturb the input by adding or subtracting a
2D Gaussian curve from the input video, which alters each
day in the input regardless of whether (or not) it is near the
mean. We developed this method, as opposed to using al-
ready established methods such as occlusion, RISE, or LRP,
because our method is both agnostic of model architecture
and is grounded in a physical understanding of the key pro-
cesses taking place (i.e. the perturbations are adding in syn-
thetic warm/wet or cold/dry areas, and we determine if and
how this changes streamflow in the perturbed basins).

In step 1, we define a Gaussian perturbation (p) and per-
turbed daily temperature and precipitation fields (Tmax,p,
Tmin,p, and Pp), as follows:

p(x,y)= β · e
−

1
2

[
(x−xp)

2

σ2
x
+
(y−yp)

2

σ2
x

]
Tmax,p(x,y, t)= Tmax(x,y, t)+p(x,y)

Tmin,p(x,y, t)= Tmin(x,y, t)+p(x,y)

Pp(x,y, t)= P(x,y, t)+p(x,y), (10)

where x and y are longitude and latitude (in degrees), t is
time (in days), xp and yp are the longitude and latitude of
a randomly selected point within the study domain (in de-
grees), σx and σy are the standard deviations of the Gaussian
distribution in the x and y directions (in degrees), β is a mul-
tiplicative factor which has equal probability of being either
1 or −1 for each perturbation, and Tmax, Tmin, and P are the
unperturbed normalized daily maximum temperature, mini-
mum temperature, and precipitation, respectively. The Gaus-
sian distribution has an amplitude of 1, and standard devia-
tions are 1.5 pixels in both the x and y direction. The am-
plitude determines the strength of the perturbation, and the
standard deviations determine the extent. The amplitude of
the perturbation was chosen to be 1 since the climate vari-
ables are normalized to have unit variance across the training
period. In this way, each climate variable is perturbed by a
maximum of a single standard deviation. σx and σy were cho-
sen so that the Gaussian perturbation is small relative to both
the height and width of the input weather frame but larger
than a majority of basins. This perturbation is added to every
channel (predictor variable) and frame in the input video. An
example of a perturbation, a perturbed maximum tempera-
ture field, and the perturbed streamflow response is shown in
Fig. A4.

In step 2, we pass the perturbed video through the trained
model, and calculate the absolute value of the difference be-
tween the unperturbed and the perturbed modelled stream-
flow for each stream gauge. From this difference at each sta-
tion, we can quantify how important the perturbed area is for
the model’s decision-making. We quantify the importance in
step 3 by defining a sensitivity map for each stream gauge
station as follows:

si(x,y)=
∣∣Qi

m−Q
i
m,p

∣∣ ·p(x,y), (11)

where si(x,y) is the sensitivity map of stream gauge i, Qi
m

is the unperturbed modelled streamflow at the stream gauge
i, Qi

m,p is the perturbed modelled streamflow at the stream
gauge i, and p(x,y) is the perturbation. Each perturbation
produces 226 different sensitivity maps, corresponding to
one sensitivity map for each stream gauge station.

In step 4, we iterate through the first three steps for each
day in the test series until the mean sensitivity maps con-
verge, here taken as when the relative error between sensitiv-
ity maps of subsequent perturbations falls below 0.5 %. Then,
for each streamflow cluster, we calculate the mean sensitivity
map across all stream gauges in the cluster, all iterations, and
all days in the test series, as follows:

S(x,y)=
1
N
·

1
m
·

1
q

q∑
k=1

m∑
j=1

N∑
i=1

si,j,k(x,y), (12)

where S(x,y) is the mean sensitivity map, q is the number
of stream gauges in this cluster, m is the number of days in
the test set, N is the number of iterations, and si,j,k(x,y) is
the sensitivity map corresponding to iteration i of day j at
stream gauge k.

Finally, in step 5, we identify the values in the cluster
sensitivity map which are either (1) within the watershed or
within 1 pixel of distance from the watershed boundaries or
(2) further than 1 pixel in distance from the watershed bound-
aries (where 1 pixel has size 0.75◦× 0.75◦). If the model
is focusing on the areas which are within or near the clus-
ter’s basins, then we expect the sensitivity within or near
the basins to have a higher mean sensitivity and a substan-
tially different distribution of sensitivity than the distribution
of sensitivity outside or far from the basins. To evaluate how
different the distributions of sensitivity are, we calculate the
Kolmogorov–Smirnov D statistic (Chakravarti et al., 1967) to
compare the distribution of the sensitivity map pixels which
are within or near the cluster’s watershed boundaries, with
the distribution of pixels which are not within or near the
cluster’s watershed boundaries (i.e. all other pixels in the do-
main). The D statistic, D, is a measure of how different two
distributions are, where a value of 0 indicates perfectly over-
lapping distributions, while a value of 1 indicates entirely
non-overlapping distributions. D is calculated as follows:

D =max |Fin(S)−Fout(S)| , (13)
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where Fin(S) is the cumulative density function (CDF) of
sensitivity within/near the cluster’s watersheds, and Fout(S)

is the CDF of sensitivity outside/far from the cluster’s water-
sheds. Watershed boundaries are accessed through the Wa-
ter Survey of Canada (Environment and Climate Change
Canada, 2016). D is calculated for the mean sensitivity map
of each cluster for each ensemble member.

Additionally, we characterize the sensitivity maps by the
value A, here defined as the area fraction of the sensitiv-
ity map which is more than the half-maximum sensitivity.
Smaller values of A (closer to 0) indicate that the model is
focused on a smaller portion of the input area, while large
values of A (closer to 1) indicate that larger portions of the
input video are important for the model’s prediction at that
station. A is calculated for the ensemble mean sensitivity
map of each station (e.g. there are 226 values of A for the
bulk models and 226 values of A for the fine-tuned models).

4.5.2 Temperature perturbations

We assume that the transition from below- to above-freezing
temperatures is strongly related to the onset of snowmelt
and, thus, the timing of the freshet. While the assumption
is a simplification of processes dictated by the surface en-
ergy balance, the use of positive temperatures as successful
indicators for the warming and melting of snow is a com-
mon assumption of positive degree day models in simulating
snow and glacier melt and was first used by Finsterwalder
and Schunk (1887). Such positive degree day models have
since been widely applied for modelling snow and glacier
melt across multiple spatial scales (e.g. Hoinkesand and
Steinacker, 1975; Braithwaite, 1995; Hock, 2003; Radic et
al., 2014) and have been used in watershed hydrology mod-
els such as the University of British Columbia (UBC) wa-
tershed model (Quick and Pipes, 1977) and the HBV model
(Bergström, 1976). Therefore, for interpreting the model’s
learning, we introduce the following hypothesis: if the model
is learning physical processes which are driving streamflow
over the course of 1 year, and since snowmelt is a key con-
tributor to streamflow, then the modelled freshet should occur
once temperatures in the forcing data have transitioned from
below to above freezing. To test the hypothesis, we add a spa-
tially and temporally uniform temperature perturbation, 1T ,
to both the maximum and minimum temperature channels,
i.e. the same temperature change as measured in degrees Cel-
sius is added to every pixel and every day in the test period.
With this perturbation, we create a new test set which has ei-
ther warmer or colder temperature channels than the original
but the same precipitation channel. We pass this new test set
through the model and compute the mean seasonal flow for
each cluster, where the mean is derived across all years in the
test set and all stations in the cluster. We perform these steps
for the range−5≤1T ≤ 5 ◦C, with an increment of 1 ◦C, to
test how the modelled streamflow responds under a range of
warmer or cooler conditions.

Then, for each cluster region and for each temperature per-
turbation, we identify when the 30 d running mean of daily
minimum temperature and maximum temperature transition
from being below- to above-freezing temperatures as fol-
lows:

Tmax(t0,max)= 0 ◦C (14)
Tmin(t0,min)= 0 ◦C, (15)

where t0,max and t0,min indicate the day when maximum and
minimum temperatures warm above freezing, respectively.
The timing of a freshet has been previously defined in dif-
ferent ways, each with the goal of indicating when the spring
snowmelt is strongly contributing to streamflow (Zhang et
al., 2001; Vincent et al., 2015; Woo and Thorne, 2003; Burn
et al., 2004). For each cluster and temperature perturbation,
we define an indicator of freshet timing (tfreshet) as the day
when the 30 d running mean of modelled streamflow rises
to be halfway between the winter minimum flow (Qmin) and
spring maximum flow (Qmax), as follows:

Q(tfreshet)=
Qmax−Qmin

2
. (16)

For each cluster and temperature perturbation, we also de-
fine the peak flow of the freshet to be the spring maxi-
mum flow, Qmax. By perturbing temperatures in the range
of −5≤1T ≤ 5 ◦C, we can track how well the model is
learning the links between the temperature transitions and the
peak flow and timing of the snowmelt-driven freshets.

Glacier runoff is a key contributor to streamflow in many
watersheds in the study region, and compared to non-glacier-
fed rivers, glacier-fed rivers have enhanced streamflow in late
summer due to glacier runoff contributions after much of
the seasonal snowpack has melted (Jost et al., 2012; Moore
et al., 2009; Naz et al., 2014; Comeau et al., 2009). Ad-
ditionally, glacier runoff counteracts variability in precipi-
tation as enhanced (suppressed) glacier melt compensates
for less (more) precipitation during hot and dry (cold and
wet) years, leading to reduced interannual variability of to-
tal summer streamflow (Fountain and Tangborn, 1985; Meier
and Tangborn, 1961). These effects lead to spatiotemporal
patterns of summer streamflow in glacier-fed rivers which
are markedly different than those in non-glacier-fed rivers
(Anderson and Radić, 2020). Therefore, the model should
learn a unique mapping of late summer climatic drivers to
streamflow for glacier-fed rivers as compared to non-glacier-
fed rivers, and the difference in these mappings can be ex-
ploited to interpret model learning. In particular, since tem-
perature is a strong control of melt, we assume that mean Au-
gust streamflow (QAug) is positively related to mean August
temperature (TAug) in basins with partial glacier coverage.
Again, while this is a simplification of the actual glacier melt
processes, it is a key assumption in widely used temperature
index melt models and is supported by empirical evidence in
the study region (Stahl and Moore, 2006; Moore et al., 2009).
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Figure 4. The NSE (a) and sensitive area A (b), as calculated over the test period for the fine-tuned model ensemble mean. The insets show
histograms of NSE and A across all stations. NSE values are the greatest (indicating the best model performance) throughout mainland
British Columbia and are smallest (indicating the worst model performance) in southeastern Alberta. A is smallest (indicating small sensitive
areas) in the southwestern and northwestern coastal regions in British Columbia and is largest (indicating large sensitive areas) throughout
the rest of British Columbia and near the Alberta border. The colour map in panel (a) is clipped at NSE= 0 for better visualization and is
justified since only two stations have NSE< 0.

We introduce the following hypothesis: if the model is learn-
ing to represent physical processes which drive streamflow
in August, then modelled QAug in glacier-fed rivers should
increase with increasing TAug, while modelled QAug in non-
glacier-fed rivers should not increase with increasing TAug.
To test this hypothesis, we introduce a spatially uniform tem-
perature perturbation only to days in August, 1TAug, and
add it to the maximum and minimum temperature channels.
We then compute QAug for each station. We perturb August
temperatures from −5≤1TAug ≤ 5 ◦C with an increment
of 1 ◦C and use linear regression to estimate the sensitivity
∂QAug/∂TAug for each station, as follows:

QAug =
∂QAug

∂TAug
TAug+ c+ ε(TAug), (17)

where ∂QAug/∂TAug is calculated as the slope of the linear
regression, c is a constant coefficient (intercept), and ε

(
TAug

)
is the error. We compute basin glacier cover, G, for each
stream gauge station as follows:

G=
Aglaciers

Abasin
, (18)

where Aglaciers is the total area of glaciers within the water-
shed boundaries, and Abasin is the basin drainage area, as re-
ported in HYDAT (Water Survey of Canada HYDAT data).
To calculate Aglaciers, we determine which glacier outlines
fall within the watershed boundaries and then sum their ar-
eas, where glacier locations and areas are taken from the
Randolph Glacier Inventory Version 6 (RGI Consortium,
2017).

5 Results

5.1 Evaluation of NSE

For each station, we derive ensemble mean streamflow for
the bulk model runs and fine-tuned model runs. The me-
dian fine-tuned NSE calculated over the test period is 0.68,
and 35 % of stream gauges have NSE> 0.8 (Fig. 4a). We
compare the performance of the bulk versus fine-tuned mod-
els by looking at the difference in NSE between the bulk
and fine-tuned models (1NSE) evaluated across stations for
each cluster (Fig. 5a) and in space (Fig. A5a). We find that,
overall, there is a small increase in NSE, with a median
1NSE= 0.02. The best performing stations are those in the
central, southern, and northwestern clusters, all of which
have snowmelt-dominated streamflow regimes throughout
BC (Fig. 2). For these clusters, which represent a majority
of stations, there is relatively little change in NSE between
the bulk and fine-tuned models (Fig. 5a). The eastern cluster,
which is made up of stations in the Prairie region, has the
worst overall performance and shows slight improvements
after fine-tuning. The coastal cluster, which is made up of
rainfall-dominated stations along the west coast, has a rela-
tively narrow range of NSE and shows the largest improve-
ment from fine-tuning. The northeastern cluster, which is
characterized as having comparable snowmelt- and rainfall-
driven peaks in spring and summer, respectively, also shows a
notable improvement from fine-tuning. Importantly, the me-
dian NSE is consistent across model runs in the fine-tuned
ensemble, with a range of only 0.05 across all 10 fine-tuned
model runs. This result indicates that, in terms of NSE, the
fine-tuned model runs perform similarly as evaluated across
the whole region.
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Figure 5. Comparison of metrics for both the bulk and fine-tuned
models for each cluster of stream gauge stations, coloured accord-
ing to the clusters shown in Fig. 2. (a) NSE of modelled stream-
flow of each stream gauge station (n= 226 across all six clusters).
The central and southern clusters show the least amount of change
between the bulk and fine-tuned models, while all other clusters
increase NSE through fine-tuning (indicating improved model per-
formance). For readability, the y axis was clipped at NSE=−0.25;
however, one station in the eastern cluster is below this threshold for
both bulk and fine-tuned models (NSE=−2.04 in the bulk model
and NSE=−0.70 in the fine-tuned model). This station is still in-
cluded in all analyses and is not shown here for readability. (b) The
D statistic for each model run for both bulk and fine-tuned model
types (n= 10 for each cluster). In the central cluster, the variance
of D across model runs decreases through fine-tuning, indicating
improved consistency between the fine-tuned central models. In all
other clusters,D increases, indicating improved separation between
information which is near/within basins as compared to information
which is further away. (c) Sensitive area of the input as evaluated
for each stream gauge station (n= 226 across all six clusters). In all
clusters, A decreases through fine-tuning, indicating that fine-tuned
models are sensitive to smaller areas of the input as compared to the
bulk models.

To illustrate the model’s performance in simulating differ-
ent streamflow regimes, we compare the fine-tuned model
output between a station with a snowmelt-dominated regime
and a station with a rainfall-dominated regime (Fig. 6). The
snowmelt-dominated station is well simulated by the ensem-
ble mean (NSE= 0.87), capturing the timing and magnitude
of many daily or weekly scale streamflow peaks; however,
the 2σ interval is not consistently narrow throughout the year
(Fig. 6a). Rather, it is smallest in the low-flow periods and
freshet and then larger during the recession over spring and
summer. The modelled streamflow for the rainfall-dominated
station yields a lower NSE than the snowmelt-dominated sta-
tion (NSE= 0.59), despite the ensemble mean being able to
correctly model the timing of most rainfall-induced onset,
peaks, and decay. However, the peak magnitude in stream-
flow is often under- or over-estimated, particularly for the
largest observed peaks (Fig. 6b). The 2σ interval is relatively
narrow throughout the year, indicating that the 10 fine-tuned
models output relatively similar streamflow.

5.2 Evaluation of interpretability

5.2.1 Spatial perturbations

Stream gauge stations, watershed boundaries, and sensitiv-
ity maps for each cluster are displayed in Fig. 7. The cen-
tral, southern, and coastal regions are most sensitive in the
areas near and within the watersheds of the cluster, which
means that information nearby the watersheds is most impor-
tant for the model to predict streamflow. The models’ predic-
tions are less sensitive to perturbations further from the wa-
tersheds, as indicated by the low values of S(x,y) in Alberta
for the coastal cluster and in northern British Columbia for
the southern and central clusters. This result indicates that
information far from the watersheds is less important for the
models’ decision-making. In contrast, the eastern and north-
eastern clusters are sensitive both within the watersheds of
the cluster and at a second sensitive area along the west coast
of British Columbia. These findings indicate that models for
these latter clusters are relying on links across space and time
which may be present between the input and output datasets,
but which may not be physically driving streamflow; con-
sequently, long-term forecasting may not be appropriate, as
these links may not hold in the future. Another possible ex-
planation is that there could be temporal patterns of sensitiv-
ity. For example, the eastern and northeastern regions may
be sensitive to coastal conditions when storms travel from
west to east. Alternatively, the sensitivity maps may be most
sensitive to coastal conditions during winter, when the model
could be tracking above-freezing temperatures. Future work
should investigate these links further to evaluate their mean-
ing and implications for CNN–LSTM performance.

The comparison of sensitivity between regions which are
within/near the watersheds versus areas which are outside/far
from the watersheds are summarized for each cluster (Fig. 8).

Hydrol. Earth Syst. Sci., 26, 795–825, 2022 https://doi.org/10.5194/hess-26-795-2022
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Figure 6. Examples of observed and modelled streamflow for 1 year at two stations of different streamflow regimes. The ensemble mean is
the mean across the 10 model runs, and the shaded area is plus/minus 2 standard deviations across the 10 model runs. The station with the
fifth-highest NSE is chosen in each of the southern and coastal clusters, which are snowmelt- and rain-dominated clusters, respectively. We
chose the fifth best performing station to show more typical model performance for these clusters. An arbitrary year in the test set is chosen.

Figure 7. Ensemble mean sensitivity maps. For each cluster, the mean sensitivity map S(x,y) is calculated across all stations and all days
in the test period. The (a) central, (b) southern, (d) coastal, and (e) northwestern clusters are generally most sensitive in the areas nearest
the basins where streamflow is being predicted. The (c) eastern and (f) northeastern clusters are most sensitive to perturbations both near the
stations being predicted and further away along the west coast.
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Figure 8. The sensitivity distributions for inside/near and out-
side/far from the cluster watersheds. Distribution pairs are labelled
by their corresponding D statistic from the Kolmogorov–Smirnov
test. Clusters are coloured according to Fig. 2, and the cluster wa-
tershed regions are shown in Fig. A7. While all clusters are more
sensitive to perturbations within/near their watershed regions, the
coastal cluster demonstrates the greatest difference in sensitivity be-
tween within/near the watersheds and the rest of the domain.

The steps to calculate the D statistic for one cluster is
shown in Fig. A6. The difference between the within/near
and outside/far sensitivity distributions are relatively large
for the snowmelt-dominated stations in the central, southern,
eastern, and northeastern clusters (D values of 0.69, 0.66,
0.54, and 0.52, respectively), with the mean sensitivity being
higher within/near than outside the watersheds (Fig. 8). The
sensitivity distributions are also different for the coastal clus-
ter (D = 0.77), where regions within/near the coastal water-
sheds are substantially more sensitive to perturbations than
the regions outside the watersheds. Stations in the northwest-
ern cluster have the lowest D value relative to other clusters
(D = 0.40), with the sensitivity near/within the watersheds
not being substantially different from the sensitivity outside
the watersheds.

The D statistic is further evaluated by comparing both the
bulk and fine-tuned models (Fig. 5b). All clusters except for
the central cluster show an increase inD through fine-tuning,
and in particular, southern stations show the largest increase
inD. BecauseD is a metric which indicates how different the
inside/outside sensitivity distributions are from one another,
the widespread increase in D through fine-tuning indicates
that fine-tuning helps the model separate more relevant in-
formation (within/near watershed regions having higher sen-
sitivity) from less relevant information (outside/far from wa-
tershed regions having lower sensitivity).

The eastern, coastal, and northwestern stations have
smaller sensitive areas, while the southern, central, and
northeastern stations have larger sensitive areas (Figs. 4b

and 5c). We also compare the values of A between the bulk
and fine-tuned models per cluster (Fig. 5c) and in space
(Fig. A5b). Here, all clusters have their meanA decrease with
fine-tuning, and the median difference in A between the bulk
and fine-tuned models is1A=−0.09, meaning that the fine-
tuned models are sensitive to smaller areas of the input rela-
tive to the bulk model. Because A is a metric which indicates
the area that is most sensitive to perturbation, the widespread
decrease in A indicates that the process of fine-tuning helps
the model to focus on smaller areas of the input space. No-
tably, the clusters which are sensitive to the smallest areas
of the input (eastern, coastal, and northwestern; Fig. 4b) all
experience a substantial decrease in A through fine-tuning
(Figs. A5b and 5c). This indicates that fine-tuning may be
necessary for the model to focus on small areas of the input
space.

It has been shown that fine-tuning an LSTM-based hydro-
logical model can lead to a moderate improvement in per-
formance which is heterogeneous in space (Kratzert et al.,
2018). Here we build on this understanding to show also that
fine-tuning substantially influences what the model is learn-
ing. Comparing the results between clusters in terms of NSE,
D, andA, we find that the process of fine-tuning does not im-
pact model performance equally across all clusters (Fig. 5).
Specifically, the central cluster is the least impacted by fine-
tuning, as indicated by the small differences in NSE, D,
and A between the bulk and fine-tuned models. The bulk
model focuses on large areas of the input, and since the cen-
tral cluster spans a large area of the input space (the largest
area of all the clusters), the bulk model is already effective
in learning the weather-to-streamflow mapping, and further
fine-tuning does not substantially change its learning. On
the other hand, the coastal cluster is more impacted by fine-
tuning, with simulated streamflow better matching observa-
tions (increase in NSE) with more realistic learning (increase
in D and a substantial decrease in A). In other words, fine-
tuning has made the model focus on smaller regions nearby
the watersheds, which has led to better performance. Con-
sidering the processes which drive streamflow, fine-tuning
has minimal impact on NSE at southern and central clusters
(which are snowmelt-dominated flow) and mostly improves
NSE at the coastal, northwestern, northeastern, and eastern
clusters (where a rain-driven flow peak is present in the sea-
sonal hydrograph; Figs. 2 and 5a). Seeing as fine-tuning also
more substantially decreases A at these latter clusters, and
that rainfall occurs over smaller spatial scales as compared
to snowmelt, we suggest that the process of fine-tuning al-
lows the model to better learn rainfall–runoff processes.

Interestingly, it is not necessarily true that the model run
which performs best according to NSE is the model which
has best learnt to focus within the watersheds being pre-
dicted. All models in the fine-tuned ensemble achieve similar
performance, as evaluated by the median NSE (range of 0.05
across the 10 models), while there is a much larger range
of median D (range of 0.25 across the 10 models). Further-
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more, NSE and D are not significantly correlated (correla-
tion coefficient R = 0.05, with p value> 0.1). In fact, the
model with the highest median NSE has the lowest median
D (NSE= 0.69 and D = 0.41). The range in D across the
models in the ensemble and the lack of significant correla-
tion between NSE and D indicate that, while all model runs
can output streamflow to a similar degree of accuracy, the
internal learning processes are different among model runs.

5.2.2 Annual temperature perturbations

The peak flow and timing of the modelled freshet, as well as
the timing of transition from below- to above-freezing tem-
perature, reveals characteristic patterns of snowmelt for the
snowmelt-dominated clusters (Fig. 9). When no temperature
perturbation is added (e.g. 1T = 0), the snowmelt-driven
streamflow in the southern, central, northwestern, northeast-
ern, and eastern clusters experiences a large increase in mod-
elled streamflow after temperatures increase above freezing.
For these snowmelt-driven streamflow regimes, a positive
temperature perturbation (1T > 0 ◦C) advances the freshet
timing indicator, while the peak flow of the freshet decreases
(Fig. 10). A possible physical interpretation of this result is
that a warmer climate would lead to both a smaller fraction of
precipitation falling as snow rather than as rain and a shorter
cold season, leading to a thinner seasonal snowpack, an ear-
lier onset to snowmelt, and less water to drive streamflow in
spring. Similarly, a decrease in temperature (1T < 0 ◦C) de-
lays the freshet timing indicator while the peak flow of the
freshet increases (Fig. 10). Notably, fall and winter stream-
flow is suppressed when temperatures are lowered and en-
hanced when temperatures are raised in the more rainfall-
driven coastal and northwestern clusters (approximately be-
fore April and after December; Fig. 9d and e). These re-
sults are consistent with the rationale that a colder climate
would lead to both a larger fraction of precipitation falling
as snow rather than rain and a longer cold season, build-
ing a deeper snowpack which can deliver a larger volume
of water to streamflow in spring. Similarly, when tempera-
tures are raised (1T > 0 ◦C), winter and fall streamflow in-
creases, which can physically be explained by more precip-
itation falling as rain, which leads to a faster streamflow re-
sponse. Importantly, while the freshet timing indicator rel-
ative to the timing of above-freezing maximum/minimum
temperatures may not be the same for all clusters (Figs. 9
and 10), all clusters respond similarly to a change in the tim-
ing of this temperature transition, and this response is consis-
tent with a physical understanding of the drivers of stream-
flow.

5.2.3 August temperature perturbations

When August temperatures are perturbed with 1TAug > 0,
modelled mean August streamflow in partially glacierized
watersheds increases, while when August temperatures are

Figure 9. Modelled streamflow for a range of temperature pertur-
bations averaged across all stream gauges in each cluster and all
years in the test set. Black lines indicate the transition from below-
freezing to above-freezing maximum (dashed) and minimum (solid)
daily temperatures. In the (a) central, (b) southern, (c) eastern, (e)
northwestern, and (f) northeastern clusters, 1T > 0◦C leads to an
earlier freshet with a smaller peak flow, while 1T < 0◦C leads to
a later freshet with a larger peak flow. In the (d) coastal cluster,
1T > 0◦C leads to enhanced streamflow in winter and fall and
suppressed streamflow in summer, while 1T < 0◦C leads to sup-
pressed streamflow in winter and fall and enhanced streamflow in
summer.

perturbed with 1TAug < 0, modelled mean August stream-
flow in partially glacierized watersheds decreases. This is
indicated by ∂QAug/∂TAug > 0 for stations where water-
shed glacier cover is non-zero (Fig. 11). In contrast, pertur-
bations of mean August temperature (positive or negative)
do not (or negligibly) influence modelled QAug for stations
where watersheds have no glacier coverage, which is indi-
cated by ∂QAug/∂TAug being narrowly distributed around
zero for these stations (Fig. 11). Additionally, we investi-
gate how ∂QAug/∂TAug varies for three ranges of water-
shed glacier cover, G, here defined as light glacier cover
(0%<G≤ 1%), moderate glacier cover (1%<G≤ 10%),
and substantial glacier cover (10%<G≤ 100%). We find
that the median ∂QAug/∂TAug increases as G increases from
light and moderate to substantial glacier cover (Fig. 11b), in-
dicating that mean August streamflow is more sensitive to
August temperature perturbations at higher glacier coverage.
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Figure 10. Modelled (a) freshet timing indicator and (b) peak magnitude are both positively correlated with the day that minimum tempera-
tures rise above freezing. The coastal cluster is not shown as it is dominated by winter rainfall rather than a spring freshet.

Figure 11. Modelled sensitivity of mean August streamflow to
mean August temperature. (a) ∂QAug/∂TAug increases nonlinearly
with watershed glacier cover, G, indicating that greater water-
shed glacier coverage is related to more positive ∂QAug/∂TAug.
(b) Probability distributions of ∂QAug/∂TAug for different ranges
of watershed glacier coverage, indicating that ∂QAug/∂TAug for
glacier-fed rivers is both greater than non-glacier-fed rivers and
greater at increasing glacier coverage. All probability distributions
are normalized to have unit area.

6 Discussion

Our model achieves comparable performance to previous
studies which have used deep learning for modelling stream-
flow across a region using meteorological inputs; for exam-
ple, LSTMs have been used to achieve median NSE of 0.72
across 241 catchments in the United States (Kratzert et al.,
2018), with the worst performance in the more arid regions
(similar to our model’s poor performance in the eastern clus-
ter). Additionally, Kratzert et al. (2019b) achieved a median
NSE of 0.63 across 531 catchments in the United States
and found that model performance was improved (to median
NSE of 0.74 across 531 catchments) when catchment char-
acteristics were included in the input to incorporate informa-
tion related to the climate, topography, vegetation, and sub-
surface. The CNN–LSTM modelling framework introduced
here could be extended to include spatially discretized vari-
ables which are constant in time (such as topography and

permeability) by using these variables as additional channels
in each frame of the input video, for example.

One of our key findings is that the model performs well
(high NSE values) in all clusters, except for the eastern clus-
ter. We compare our results with findings from process-based
models used to predict streamflow at 45 of the same stations
as in our study (Table 2). We identify studies which mod-
elled streamflow at daily temporal resolution and evaluated
performance using the NSE or correlation between observed
and modelled streamflow over at least a 1-year period. In to-
tal, we selected 45 stations for this comparison, keeping in
mind that this is not an exhaustive comparison of all studies
across the region, nor do we claim that the identified studies
are necessarily directly comparable with our results, as each
process-based model defines calibration and validation peri-
ods differently. We note a difference in terminology between
the process-based model results and our CNN–LSTM re-
sults. Both evaluate models on unseen data that were not used
to determine the model parameters; however, the process-
based models refer to this dataset as validation data, while
we refer to this dataset as testing data. As our goals are to
explore the CNN–LSTM model architecture and interpret its
decision-making, and not necessarily to outperform existing
process-based models, we do not need to compare every indi-
vidual station to process-based models. The intercomparison
shows that the CNN–LSTM model performance is at least
similar to, and often outperforms, many process-based mod-
els existing in the literature for the southern, central, coastal,
northwestern, and northeastern clusters (Table 2). Our model
achieves higher values of NSE or correlation at 37 of the 45
identified stream gauge stations, indicating generally good
performance in all clusters, except for the eastern cluster.

Prior studies have modelled daily streamflow at the En-
glishman River near Parksville (08HB002), one of the loca-
tions in our study; for example, Fleming et al. (2015) use
an ensemble of ANNs to forecast streamflow and achieve
NSE values in the range of 0.7–0.8, while Lima et al.
(2016) use nonlinear extreme learning machines and achieve
NSE> 0.8. These examples outperform the NSE value of
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Table 2. Comparison to select process-based models. Metrics for comparison are Nash–Sutcliffe efficiency (NSE) or correlation coefficient
(R). For our CNN–LSTM model, the performance metrics are calculated from the test set (between 2011–2015). For the reference models,
performance metrics are as reported for the validation set (various validation periods). Indicated in italics is the better performing (higher)
value between the two models.

Station name Station ID Cluster Reference CNN–LSTM Reference CNN–LSTM Reference
NSE NSE R R

Bridge River below Bridge Glacier 08ME023 Central 0.95 0.94 Stahl et al., 2008

Lillooet River near Pemberton 08MG005 Central 0.70 0.88 Whitfield et al., 2002

Quesnel River near Quesnel 08KH006 Central 0.83 0.90 Shrestha et al., 2012

North Thompson River at McLure 08LB064 Central 0.85 0.92 Shrestha et al., 2012

South Thompson River at Chase 08LE031 Central 0.87 0.91 Shrestha et al., 2012

Thompson River near Spences Bridge 08LF051 Central 0.89 0.93 Shrestha et al., 2012

Harrison River near Harrison Hot 08MG013 Central 0.66 0.83 Shrestha et al., 2012
Springs

Columbia River at Nicholson 08NA002 Central 0.899 0.980 Bingeman et al., 2006

Kicking Horse River at Golden 08NA006 Central 0.77 0.91 0.884 0.961 Bingeman et al., 2006;
Schnorbus et al., 2011

Columbia River at Donald 08NB005 Central 0.91 0.96 0.924 0.984 Bingeman et al., 2006;
Schnorbus et al., 2011

Goldstream River below Old 08ND012 Central 0.689 0.961 Bingeman et al., 2006
Camp Creek

Duncan River below B.B. Creek 08NH119 Central 0.863 0.959 Bingeman et al., 2006

Illecillewaet River at Greely 08ND013 Central 0.906 0.959 Bingeman et al., 2006

Gold River above Palmer Creek 08NB014 Central 0.813 0.957 Bingeman et al., 2006

Split Creek at the mouth 08NB016 Central 0.744 0.954 Bingeman et al., 2006

Miette River near Jasper 07AA001 Central 0.86 0.84 Chernos et al., 2020

Athabasca River near Jasper 07AA002 Central 0.93 0.90 Chernos et al., 2020

Athabasca River at Hinton 07AD002 Central 0.91 0.88 Chernos et al., 2020

Athabasca River near Windfall 07AE001 Central 0.80 0.86 Eum et al., 2017

Englishman River near Parksville 08HB002 Coastal 0.65 0.59 Whitfield et al., 2002

Athabasca River at Athabasca 07BE001 Northeastern 0.75 0.81 Eum et al., 2017

Pembina River at Jarvie 07BC002 Northeastern 0.48 0.63 Eum et al., 2017

Stuart River near Fort St. James 08JE001 Northwestern 0.82 0.86 Shrestha et al., 2012

Fraser River at Shelley 08KB001 Northwestern 0.75 0.87 Shrestha et al., 2012

Omineca River near the mouth 07EC002 Northwestern 0.81 0.89 Schnorbus et al., 2011

Parsnip River above Misinchinka 07EE007 Northwestern 0.81 0.87 Schnorbus et al., 2011
River

Pine River at East Pine 07FB001 Northwestern 0.71 0.84 Schnorbus et al., 2011

Murray River above Wolverine 07FB006 Northwestern 0.67 0.86 Schnorbus et al., 2011
River

Murray River near the mouth 07FB002 Northwestern 0.58 0.86 Schnorbus et al., 2011

Sukunka River near the mouth 07FB003 Northwestern 0.78 0.80 Schnorbus et al., 2011

Kuskanax Creek near Nakusp 08NE006 Southern 0.819 0.968 Bingeman et al., 2006

Kaslo River below Kemp Creek 08NH005 Southern 0.864 0.938 Bingeman et al., 2006

Barnes Creek near Needles 08NE077 Southern 0.797 0.911 Bingeman et al., 2006

Mather Creek below Houle Creek 08NG076 Southern 0.795 0.868 Bingeman et al., 2006
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Table 2. Continued.

Station name Station ID Cluster Reference CNN–LSTM Reference CNN–LSTM Reference
NSE NSE R R

St. Mary River below Morris Creek 08NG077 Southern 0.871 0.926 Bingeman et al., 2006

Fry Creek below Carney Creek 08NG130 Southern 0.816 0.936 Bingeman et al., 2006

Keen Creek below Kyawats Creek 08NH132 Southern 0.774 0.931 Bingeman et al., 2006

Lemon Creek above South Lemon 08NJ160 Southern 0.784 0.945 Bingeman et al., 2006
Creek

Kootenay River at Kootenay 08NF001 Southern 0.75 0.89 Schnorbus et al., 2011
Crossing

Kootenay River at Fort Steele 08NG065 Southern 0.85 0.86 Schnorbus et al., 2011

Elk River at Fernie 08NK002 Southern 0.81 0.73 Schnorbus et al., 2011;
0.92 Chernos et al., 2017

Elk River near Natal 08NK016 Southern 0.75 0.73 Schnorbus et al., 2011;
0.91 Chernos et al., 2017

Fording River at the mouth 08NK018 Southern 0.72 0.71 Schnorbus et al., 2011;
0.84 Chernos et al., 2017

Slocan River near Crescent Valley 08NJ013 Southern 0.78 0.88 Schnorbus et al., 2011

Salmo River near Salmo 08NE074 Southern 0.73 0.83 Schnorbus et al., 2011

0.59 achieved by our CNN–LSTM. Their success could be
in part due to the inclusion of more locally specific input
data (e.g. Fleming et al., 2015, include snow pillow and an-
tecedent streamflow data, while Lima et al., 2016, include
predictors such as sea level pressure, wind speed, and hu-
midity, among others), a decision which can be more eas-
ily implemented for modelling at a single stream gauge sta-
tion as compared to a regional-scale model. These examples
highlight what may be a trade-off between scale and detail in
the modelling approach, where the advantage of simultane-
ous streamflow modelling at multiple stream gauge stations
across a region as done by the CNN–LSTM network may
be met by the disadvantage of weaker performance on one
particular river of interest.

We compare our fine-tuned CNN–LSTM models against
linear models to evaluate the extent to which the nonlin-
earities introduced by the CNN–LSTM approach improve
streamflow predictions. We create an ensemble of 10 linear
models for each cluster of stream gauge stations. Each lin-
ear model is a fully connected ANN with an input layer, an
output layer, and linear activation functions (essentially re-
ducing to multiple linear regression). We use the same train-
ing, validation, and testing data as in the CNN–LSTM ap-
proach. The CNN–LSTM is designed to receive an input
structured as a weather video, while, in comparison, ANNs
are designed to receive an input structured as a single vec-
tor. The input neurons in the ANN correspond to each vari-
able at each grid point and each day in a single weather
video, meaning that there are 420 480 input neurons. For
example, the input to predict flow on 30 September 2011
is daily maximum temperature, minimum temperature, and

precipitation from 30 September 2010 through 29 September
2011 at each grid point in the study region. For the CNN–
LSTM, these data are structured as a weather video with
shape 365× 12× 32× 3 (e.g. day × latitude × longitude ×
variable), but for the ANN, these data are structured as a vec-
tor with length 420 480. The target output is the next day of
streamflow at all stations in the cluster. Therefore, for each
model for cluster i, there are 420 480 input neurons and N
output neurons (where N is the number of stations in clus-
ter i). This approach was chosen to keep as much similarity
as possible between the CNN–LSTM and linear model set-
up. The two approaches use the same input data, the same
target data, and the same number of ensemble members,
while the key difference is the nonlinearity and architecture
of the CNN–LSTM model. We find that the CNN–LSTM
model outperforms this simple linear benchmark, achieving
a greater NSE at 222 out of 226 stations. The linear model
has a minimum NSE of −13.33, a median NSE of 0.35, and
a maximum NSE of 0.76, while the CNN–LSTM model has
a minimum NSE of−0.7, a median NSE of 0.68, and a max-
imum NSE of 0.96.

The eastern cluster is unique among our six clusters in
terms of our model’s poor performance, and also in terms
of the region’s hydrology, and a lack of studies in the lit-
erature at the same locations and with the same metrics as
our study for direct comparison. One possible contribution
to our model’s inability to successfully simulate streamflow
in the eastern cluster (Fig. 5a) could be the effect of non-
contributing areas within Prairie basins. Prairie topography
is characterized by small surface depressions which result in
intermittent water connectivity and variable-sized drainage
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basins (Shaw et al., 2012). When the depressions are not
full, rainfall and snowmelt can be stored in upstream de-
pressions rather than contributing to streamflow (i.e. non-
contributing areas), and so there may not be a substantial
streamflow response even if there is rainfall or snowmelt
within the basin. In the eastern cluster, 30 out of 34 basins
have non-contributing areas, ranging from 1 % to 79 % of
the total basin area, with a mean of 20 % of the total basin
area not contributing to streamflow on average (Government
of Canada, 2020). Additionally, there is hysteresis between
the contributing area and water storage within these depres-
sions, meaning that the area which contributes to streamflow
is determined by both the presence of depressional storage
and if the storage is increasing (wetting) or decreasing (dry-
ing; Shook and Pomeroy, 2011). Storage in ponds can vary
on both seasonal and decadal timescales (Shaw et al., 2012;
Hayashi et al., 2016), but only a single year of daily tem-
perature and precipitation is used to predict the next day of
streamflow. It could be that the CNN–LSTM model cannot
accurately predict the streamflow response in eastern basins
because 1 year of temperature and precipitation is insuffi-
cient information to know the state of depressional storage
(e.g. seasonal and decadal fluctuations in wetting or drying).
Several studies have developed process-based models for ap-
plication to different stations than ours in the Prairie region,
which have outperformed our DL-based approach. While
our model had a median NSE= 0.17, process-based mod-
els achieve higher values, for example, NSE> 0.4 (Unduche
et al., 2018; Mengistu and Spence, 2016) and NSE> 0.7
(Muhammad et al., 2019).

Considering the complexity of hydrology in real catch-
ments and the dependence of streamflow on locally resolved
processes, it is possible that the model’s performance is lim-
ited by an inability to learn processes beyond those which
could be better inferred from streamflow, temperature, and
precipitation, such as advective fluxes (e.g. wind transport of
snow), evaporative fluxes (e.g. sublimation of the snowpack
and evapotranspiration), and interactions between ground
and surface water. Nevertheless, the model could still be suc-
cessful in regions where the importance of such processes is
less than those which can be inferred from coarse-resolution
temperature and precipitation alone. For example, winters are
generally warmer and wetter in British Columbia (where the
model performs better) as compared to Alberta (where the
model performs worse), which may limit the importance of
processes such as blowing snow transport and sublimation
by increasing cohesion of the snowpack (Pomeroy and Gray,
1990).

When the input temperature series is made warmer
(cooler), the indicator of freshet timing and peak flow
advances (delays) and decreases (increases), respectively
(Figs. 9 and 10). This finding is consistent with previous
studies of climate change impacts in the region. For ex-
ample, Shrestha et al. (2012) used the macro-scale variable
infiltration capacity (VIC) hydrological model forced by a

suite of global climate models in the Fraser River basin
(which spans the central cluster in our study), finding that
spring peak flows occur earlier in the year and with lower
magnitude under a warmer future climate (Shrestha et al.,
2012). Schnorbus et al. (2014) used the VIC model to project
streamflow in the Peace, Campbell, and Columbia water-
sheds in British Columbia (primarily in the northwestern,
coastal, central, and southern clusters in our study) under a
range of climate change scenarios (Schnorbus et al., 2014).
They found greater spring flows and lower summer flows in
the snowmelt-dominated locations, while the coastal loca-
tion was projected to experience enhanced winter flows and
depressed summer flows. It is promising that not only does
the CNN–LSTM model perform well in the historical period
(e.g. the test period of 2011–2015), but it produces concep-
tually similar projections for a warmer climate as compared
to existing physically based models.

When August temperatures are made warmer (cooler),
modelled streamflow in partially glacierized watersheds in-
creases (decreases), and the sensitivity of modelled August
streamflow to these temperature perturbations is greater in
more glacierized watersheds as compared to less glacier-
ized watersheds (Fig. 11). The positive relationship between
QAug and TAug in glacierized watersheds indicates that the
model has learnt that glacierized watersheds have an in-
put to streamflow which is positively related to tempera-
ture in August, while non-glacierized watersheds do not.
We interpret this result as the model learning to represent
glacier runoff as a temperature-dependent source. Interest-
ingly, the relationship between ∂QAug/∂TAug and watershed
glacier cover, as derived from the sensitivity test of the CNN–
LSTM model (Fig. 11a), is similar in form to an empirically
derived relationship between ∂QAug/∂TAug and watershed
glacier cover in British Columbia (Fig. 5 in Moore et al.,
2009, from the analysis in Stahl and Moore, 2006). Both
analyses identify a positive nonlinear relationship between
∂QAug/∂TAug and G when G> 0, while ∂QAug/∂TAug is
distributed around zero when G= 0. Note, however, that the
raw values of ∂QAug/∂TAug differ between our approach and
that in Fig. 5 of Moore et al. (2009) due to differing normal-
ization schemes. While it is interesting that the model has
learnt the unique characteristics of temperature-driven Au-
gust flow of glacierized watersheds, it also highlights a chal-
lenge when applying the CNN–LSTM model in its current
realization for applications such as long-term forecasting un-
der climate change. Under warmer future climate forcing, the
model would associate higher temperatures with greater flow.
However, projections of future glacier volume indicate that
70 %–90 % of glacier ice volume will be lost by 2100 in west-
ern Canada (Clarke et al., 2015; Marshall et al., 2011), and
so it is expected that the learnt temperature–flow relationship
from the past will no longer hold under such conditions.

It is notable that the CNN–LSTM model achieves good
streamflow simulation with only coarse-resolution climate
forcing data and localized streamflow data, with no knowl-
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edge of features such as basin characteristics, topography,
or land use and no explicit climate downscaling steps. Our
model uses forcing data at relatively coarse spatial resolu-
tion (0.75◦× 0.75◦ or ∼ 75 km resolution) as compared to
studies identified in Table 2 (e.g. 0.0625◦× 0.0.0625◦ in
Shrestha et al., 2012; 10 km resolution in Eum et al., 2017).
Studies that employ a climate downscaling step first map
coarse-resolution climate data to fine-resolution climate data,
and then map the downscaled fine-resolution climate data to
streamflow. Here, the CNN–LSTM is effectively represent-
ing a single transfer function that maps coarse-resolution cli-
mate data directly to streamflow, and it is possible that an
effective downscaling of climate data is learnt by the model.
This indirect downscaling is plausible since statistical meth-
ods are often used for climate downscaling, including CNNs
(Vandal et al., 2017).

7 Summary and conclusions

This study investigated the applicability of a sequential
CNN–LSTM model for regional-scale hydrological mod-
elling, where the model was forced by gridded climate data to
predict streamflow at multiple stream gauge stations simulta-
neously. We focused on using a relatively simple deep learn-
ing model, with the input data represented by temperature
and precipitation reanalysis given on relatively coarse spatial
resolution (0.75◦×0.75◦). The deep learning model is used to
predict daily streamflow between 1980–2015 at 226 stream
gauge stations. We investigated how well the model learns
different streamflow regimes and how physically realistic the
model’s learning was for each streamflow regime. To reach
these goals, the model was trained, validated, and tested on a
set of stream gauge stations across western Canada, initially
partitioned into six clusters based on the similarity in both
seasonal streamflow and proximity in space. A set of metrics
was introduced and developed to evaluate the model perfor-
mance and to investigate the model’s learning. We summa-
rize the major findings as follows:

1. The model successfully simulated streamflow at multi-
ple stations simultaneously, with a median NSE of 0.68
and 35 % of stations having NSE> 0.8. The best model
performance was for stations with snowmelt-dominated
streamflow in British Columbia, and the worst perfor-
mance was for the eastern cluster of stations in the
Prairie region. The poor performance in the Prairie re-
gion may be due to the importance of processes which
are underrepresented or not represented in the training
data, such as processes occurring over longer than an-
nual timescales, at smaller spatial scales, or which are
not able to be described from temperature and precipi-
tation alone.

2. For a majority of stations, the model was most sensi-
tive to perturbations in the input data prescribed near
and within the basins being predicted, demonstrating
that the model’s spatial learning focused on areas where
the physical drivers of streamflow are occurring. For the
eastern and northeastern clusters, the model was sen-
sitive to perturbations that are far from the watersheds
where streamflow was being predicted, thus linking the
streamflow to weather fields far away (> 500 km apart).
In these cases, the model may be more appropriate for
short-term rather than long-term prediction, as the learnt
links over far distances may not hold in the future.

3. Fine-tuning by streamflow regime led to modest im-
provements in model performance as evaluated by NSE
but allowed the model to focus on smaller areas which
are near and within the watersheds where streamflow is
being predicted. We conclude that fine-tuning is benefi-
cial for directing the model to focus on the areas where
streamflow-driving processes are taking place.

4. To investigate the learning of temporal patterns, we fo-
cused on the timing and peak flow of the spring freshet.
By uniformly perturbing temperature input to drive the
model with warmer and colder climates relative to the
present, the model responded by changing the peak flow
and timing of the freshet in accordance with the timing
of the transition from below- to above-freezing temper-
atures.

5. To investigate the learning of unique processes in par-
tially glacierized basins, we focused on the sensitivity
of August flow to August temperature. By increasing
the August temperature input to drive the model, the
model responded by increasing August flow in partially
glacierized basins while not increasing August flow in
non-glacierized basins. The sensitivity of flow to tem-
perature was found to be greater in more glacierized
basins as compared to less glacierized basins.

The CNN–LSTM model presented has been able to ex-
plicitly incorporate both spatial and temporal information for
predicting streamflow across a region. In addition to suc-
cessfully simulating streamflow across a range of streamflow
regimes, we are able to interpret key aspects of the model’s
learning. Interpretability of model learning builds trust in the
model’s predictions, leading to further applications whether
for prediction or as a complement to process based or empir-
ical models. Considering that ERA5 climate reanalysis has
global spatial coverage and is temporally complete to 1979,
there are many opportunities to investigate the transferability
of this approach to different regions, using different predictor
variables and using different spatial and temporal resolutions
of both input and target data.
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Appendix A

Figure A1. Example of one observation input into the clustering algorithm. The first half of the input vector is the seasonal streamflow
(normalized at each station), the third quarter is latitude (normalized across all stations), and the fourth quarter is longitude (normalized
across all stations).

Figure A2. Dendrogram of stream gauge clustering. The dashed grey line indicates the level at which the cluster members were grouped.

Figure A3. Elevation and drainage area of stations within each of the identified clusters. Station elevation is calculated from a digital
elevation model from the Shuttle Radar Topography Mission (SRTM) at 90 m resolution (Farr et al., 2007). The drainage area is taken from
the Environment Canada HYDAT database (Water Survey of Canada HYDAT data). The coastal cluster is at the lowest elevation and with
the smallest drainage areas. Clusters in mainland British Columbia (central, southern, and northwestern) span wide ranges of elevation and
drainage area, while clusters in Alberta (eastern and northeastern) span narrower ranges of elevation and drainage area.
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Figure A4. Perturbing the maximum temperature field of 1 d. (a) The perturbation to be added to the test weather data. (b) The unperturbed
maximum temperature field for 3 August 2011. (c) The perturbed maximum temperature field for 3 August 2011. (d) The magnitude of the
difference between the unperturbed streamflow and the perturbed streamflow, averaged across all model runs.

Figure A5. The difference in model performance between the bulk model and fine-tuned model for both (a) NSE and (b) sensitive area A.
The insets show histograms of1NSE and1A across all stations. Negative values indicate that fine-tuning reduced NSE or A, while positive
values indicate that fine-tuning increased NSE or A. 1NSE is most positive (indicating the greatest improvement through fine-tuning) along
the west coast and northern regions of both British Columbia and Alberta. 1A is most negative (indicating that fine-tuning reduces the size
of the sensitive areas) along the west coast, in northern British Columbia, and throughout Alberta. One stream gauge station experienced a
substantial increase in NSE from fine-tuning (1NSE> 1.0), but the histogram and colour bar are clipped for readability.
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Figure A6. Steps of calculating the D statistic from the Kolmogorov–Smirnov test. (a) The mask of pixels which are either within/near the
cluster watersheds (pink) or are outside/far from the watershed boundaries (blue). (b) The mean sensitivity evaluated over the test period
for the ensemble of models is shown, with red indicating more sensitive and blue indicating less sensitive. (c) The sensitivity distributions
(within/near in pink and not within/near in blue), calculated by kernel density estimation (KDE), using Gaussian kernels and Scott’s rule
for kernel bandwidth calculation. (d) The Kolmogorov–Smirnov D statistic is calculated from the sensitivity cumulative density functions
(CDFs).

Figure A7. The areas of the study region which are within/near watersheds (pink) of each cluster and those which are outside/far from
the watersheds (blue). Watershed boundaries are shown in white and are accessed through the Water Survey of Canada (Environment and
Climate Change Canada, 2016).
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822 S. Anderson and V. Radić: Evaluation of convolutional long short-term memory networks for RHM

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning,
MIT Press, ISBN 0262035618, https://www.deeplearningbook.
org/ (last access: 20 November 2021), 2016.

Government of Canada: Areas of Non-Contributing Drainage
within Total Gross Drainage Areas of the AAFC Wa-
tersheds Project – 2013, https://open.canada.ca/data/en/
dataset/adb2e613-f193-42e2-987e-2cc9d90d2b7a (last access:
11 May 2021), 2020.

Halverson, M. J. and Fleming, S. W.: Complex network theory,
streamflow, and hydrometric monitoring system design, Hydrol.
Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-
3301-2015, 2015.

Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning
for multi-year ENSO forecasts, Nature, 573, 568–572,
https://doi.org/10.1038/s41586-019-1559-7, 2019.

Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements
of statistical learning: data mining, inference, and prediction,
2nd Edn., Springer, New York, https://doi.org/10.1007/978-0-
387-84858-7, 2009.

Hayashi, M., van der Kamp, G., and Rosenberry, D. O.: Hydrol-
ogy of Prairie Wetlands: Understanding the Integrated Surface-
Water and Groundwater Processes, Wetlands, 36, 237–254,
https://doi.org/10.1007/s13157-016-0797-9, 2016.

Hedstrom, N. R. and Pomeroy, J. W.: Measurements and mod-
elling of snow interception in the boreal forest, Hydrol.
Process., 12, 1611–1625, https://doi.org/10.1002/(SICI)1099-
1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4,
1998.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., de Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy,
S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-
aux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hochreiter, S. and Schmidhuber, J.: Long Short-
Term Memory, Neural Comput., 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hock, R.: Temperature index melt modelling in mountain ar-
eas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-
1694(03)00257-9, 2003.

Hoinkesand, H. and Steinacker, R.: Hydrometeorological im-
plications of the mass balance of Hintereisferner, 1952–53
to 1968–69, in: Snow and Ice-Symposium-Neiges et Glaces,
Proceedings of the Moscow Symposium, August 1971: Actes
du Colloque de Moscou, aoüt 1971,: IAHS-AISH Publ.
No. 104, 144–149, https://www.researchgate.net/publication/
265083119_Hydrometeorological_implications_of_the_mass_
balance_of_Hintereisferner_1952-53_to_1968-69 (last access:
10 February 2022), 1975.

Hsieh, W. W. and Tang, B.: Interannual variability of accumulated
snow in the Columbia Basin, British Columbia, Water Resour.
Res., 37, 1753–1759, https://doi.org/10.1029/2000WR900410,
2001.

Hsieh, W. W., Yuval, Li, J., Shabbar, A., and Smith, S.: Seasonal
Prediction with Error Estimation of Columbia River Streamflow
in British Columbia, J. Water Resour. Pl. Manage., 129, 146–
149, https://doi.org/10.1061/(asce)0733-9496(2003)129:2(146),
2003.

Hsu, K., Gupta, H. V., and Sorooshian, S.: Artificial Neural Network
Modeling of the Rainfall-Runoff Process, Water Resour. Res.,
31, 2517–2530, https://doi.org/10.1029/95WR01955, 1995.

Hussain, D., Hussain, T., Khan, A. A., Naqvi, S. A. A., and Jamil,
A.: A deep learning approach for hydrological time-series pre-
diction: A case study of Gilgit river basin, Earth Sci. Inform., 13,
915–927, https://doi.org/10.1007/s12145-020-00477-2, 2020.

Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantify-
ing the contribution of glacier runoff to streamflow in the up-
per Columbia River Basin, Canada, Hydrol. Earth Syst. Sci., 16,
849–860, https://doi.org/10.5194/hess-16-849-2012, 2012.

Karpathy, A., Johnson, J., and Li, F.-F.: Visualizing and Un-
derstanding Recurrent Networks, arXiv: preprint, abs/1506.0,
1506.02078, https://arxiv.org/abs/1506.02078v2 (last access:
10 February 2022), 2015.

Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Ku-
mar, V.: Machine Learning for the Geosciences: Challenges and
Opportunities, IEEE T. Knowledge Data Eng., 31, 1544–1554,
https://doi.org/10.1109/TKDE.2018.2861006, 2019.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimiza-
tion, arXiv: preprint, abs/1412.6980, https://arxiv.org/abs/1412.
6980 (last access: 10 February 2022), 2017.

Kiros, R., Salakhutdinov, R., and Zemel, R. S.: Unifying Visual-
Semantic Embeddings with Multimodal Neural Language Mod-
els, arXiv: preprint, abs/1411.2, https://arxiv.org/abs/1411.2539
(last access: 10 February 2022), 2014.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K.,
Hochreiter, S., and Nearing, G. S.: Toward Improved Pre-
dictions in Ungauged Basins: Exploiting the Power of
Machine Learning, Water Resour. Res., 55, 11344–11354,
https://doi.org/10.1029/2019WR026065, 2019a.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019b.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classifi-
cation with Deep Convolutional Neural Networks, in: Advances
in Neural Information Processing Systems 25, edited by: Pereira,
F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran
Associates, Inc., 1097–1105, https://papers.nips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (last
acces: 10 February 2022), 2012.

LaBaugh, J. W., Winter, T. C., and Rosenberry, D. O.: Hydrologic
functions of prairie wetlands, Great Plains Res., 8, 17–37, 1998.

LeCun, Y., Boser, B., Denker, J. S., Howard, R. E., Hab-
bard, W., Jackel, L. D., and Henderson, D.: Handwrit-
ten Digit Recognition with a Back-Propagation Network,
in: Advances in Neural Information Processing Systems,
Morgan Kaufmann Publishers Inc., San Francisco, CA,

Hydrol. Earth Syst. Sci., 26, 795–825, 2022 https://doi.org/10.5194/hess-26-795-2022

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://open.canada.ca/data/en/dataset/adb2e613-f193-42e2-987e-2cc9d90d2b7a
https://open.canada.ca/data/en/dataset/adb2e613-f193-42e2-987e-2cc9d90d2b7a
https://doi.org/10.5194/hess-19-3301-2015
https://doi.org/10.5194/hess-19-3301-2015
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/s13157-016-0797-9
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
https://doi.org/10.1002/qj.3803
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1016/S0022-1694(03)00257-9
https://www.researchgate.net/publication/265083119_Hydrometeorological_implications_of_the_mass_balance_of_Hintereisferner_1952-53_to_1968-69
https://www.researchgate.net/publication/265083119_Hydrometeorological_implications_of_the_mass_balance_of_Hintereisferner_1952-53_to_1968-69
https://www.researchgate.net/publication/265083119_Hydrometeorological_implications_of_the_mass_balance_of_Hintereisferner_1952-53_to_1968-69
https://doi.org/10.1029/2000WR900410
https://doi.org/10.1061/(asce)0733-9496(2003)129:2(146)
https://doi.org/10.1029/95WR01955
https://doi.org/10.1007/s12145-020-00477-2
https://doi.org/10.5194/hess-16-849-2012
https://arxiv.org/abs/1506.02078v2
https://doi.org/10.1109/TKDE.2018.2861006
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1411.2539
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1029/2019WR026065
https://doi.org/10.5194/hess-23-5089-2019
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
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