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Abstract. Developing an ensemble hydrological prediction
system is essential for reservoir operations and flood early
warning. However, efforts to build hydrological ensemble
prediction systems considering the influence of reservoirs
have been lacking in India. We examine the potential of the
Extended Range Forecast System (ERFS, 16 ensemble mem-
bers) and Global Ensemble Forecast System (GEFS, 21 en-
semble members) forecast for streamflow prediction in In-
dia using the Narmada River Basin as a test bed. We use the
variable infiltration capacity (VIC) with reservoir operations
(VIC-Res) scheme to simulate the daily river flow at four lo-
cations in the Narmada Basin. Streamflow prediction skills of
the ERFS forecast were examined for the period 2003–2018
at 1–32 d lead. We compared the streamflow forecast skills of
raw meteorological forecasts from ERFS and GEFS at a 1–
10 d lead for the summer monsoon (June–September) 2019–
2020. The ERFS forecast underestimates extreme precipita-
tion against the observations compared to the GEFS fore-
cast during the summer monsoon of 2019–2020. However,
both forecast products show better skills for minimum and
maximum temperatures than precipitation. Ensemble stream-
flow forecast from the GEFS performs better than the ERFS
during 2019–2020. The performance of GEFS-based ensem-
ble streamflow forecast declines after 5 days lead. Overall,
the GEFS ensemble streamflow forecast can provide reliable
skills at a 1–5 d lead, which can be utilized in streamflow
prediction. Our findings provide directions for developing a
flood early warning system based on ensemble streamflow
prediction considering the influence of reservoirs in India.

1 Introduction

Floods are one of India’s most destructive and frequently oc-
curring natural disasters. Floods accounted for about 47 %
of natural disasters in India during the last 100 years (Tri-
pathi, 2015). Riverine floods occur during the summer mon-
soon season affecting approximately 5 million people annu-
ally (Luo et al., 2015). Singh and Kumar (2013) reported an
increase in the frequency of floods in India. About 20 % of
the total flood-prone area gets affected every year (Ray et al.,
2019). Floods in 2018 caused an economic loss of more than
12 billion dollars (USD) and resulted in the loss of 1808 lives
(Joshi, 2020). In addition, climate warming is projected to in-
crease the frequency and intensity of riverine floods (Field et
al., 2011; Luo et al., 2015; Nanditha and Mishra, 2022; Ali
et al., 2019).

Preparedness for disasters like floods can help in mitigat-
ing economic loss and reducing flood mortality (Jain et al.,
2018). While losses due to floods are projected to rise under
the warming climate, human mortality can be reduced with
flood early warning systems and effective communication
(Dipti, 2017; Nanditha and Mishra, 2021). Therefore, devel-
oping a robust flood prediction system is necessary for early
warning and preparedness. Streamflow prediction is an es-
sential component of flood forecasting, which helps in plan-
ning and decision making (Georgakakos et al., 2012; Alfieri
et al., 2013). Most of the streamflow prediction systems in In-
dia are based on the deterministic approach (Harsha, 2020a;
Todini, 2017; Nanditha and Mishra, 2021), which do not ac-
count for perturbations in initial conditions to quantify the
uncertainty (Bowler et al., 2008). Uncertainty quantification
in streamflow prediction can reduce the risk of false alarms
based on deterministic forecast (Todini, 2017). In addition,
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ensemble streamflow prediction is essential for the proba-
bilistic flood forecast. The probabilistic approach performs
better than the deterministic approach by quantifying uncer-
tainties associated with flood prediction and early warning
systems (Krzysztofowicz, 2001). Previous studies used en-
semble streamflow prediction in flood forecasting (Cloke and
Pappenberger, 2009; Wu et al., 2020) using ensemble mete-
orological forecast and hydrological models (Zhang et al.,
2020). Ensemble weather forecast provides multiple mem-
bers at the same location and time that can be used for
probabilistic hydrological prediction. However, several chal-
lenges are associated with the operational ensemble stream-
flow forecast, including computational limitations, explana-
tion of ensemble forecasts to non-experts, and up-gradation
in the policy to use the forecast for decision making (De-
meritt et al., 2010; Arnal et al., 2020). Despite these chal-
lenges, ensemble flood forecasts consider the uncertainty that
can be used for preparedness and planning compared to the
deterministic forecast approach (Pappenberger et al., 2012;
Cloke and Pappenberger, 2009).

Indian river basins are considerably affected by human in-
terventions including the presence of reservoirs, water with-
drawal for irrigation, and interbasin and intrabasin water
transfer (Nanditha and Mishra, 2021; Madhusoodhanan et
al., 2016; Gosain et al., 2006). India has more than 5000
large dams while about 450 are currently under construction
(NRLD, 2017). Reservoirs and irrigation can considerably
modulate terrestrial water and energy budgets in India (Shah
et al., 2019). For instance, Shah et al. (2019) showed that
evapotranspiration and latent heat flux are increased under
the presence of irrigation and reservoirs in Indian river basins
compared to their natural conditions. Dong et al. (2022) re-
ported that reservoirs can significantly (∼ 25 %) contribute to
the variation of terrestrial water storage in China. In addition,
the presence of reservoirs can considerably affect streamflow
variability in the downstream regions (Zajac et al., 2017; Yun
et al., 2020; Chai et al., 2019). Reservoirs in India are mul-
tipurpose as these store water for the dry season, generate
hydropower, and attenuate floods in the downstream regions
(Tiwari and Mishra, 2022). Reservoirs store water during the
summer monsoon season and release water during the dry
season for irrigation. Similarly, based on the reservoir rule
curve, a buffer storage is kept during the wet season to ac-
commodate high inflow so that flood risk can be minimized
in the downstream region. Therefore, there are several chal-
lenges associated with the streamflow forecast in the river
basins that are affected by reservoirs. Most often hydrologi-
cal model-based flood and streamflow forecasts do not con-
sider the influence of reservoirs that could lead to underes-
timation or overestimation of flow depending on the season
(Nanditha and Mishra, 2021; Dang et al., 2020a). Incorpo-
rating reservoir influence in hydrological models is essential
as reservoirs significantly affect the magnitude and timing
of streamflow (Zajac et al., 2017; Yassin et al., 2019; Dang
et al., 2020a). Several efforts have been made to incorpo-

rate the influence of reservoirs in the hydrological models
(Boulange and Hanasaki, 2013; Dang et al., 2020a; Hanasaki
et al., 2018). However, most of the previous studies on flood
forecasts and early warnings in India did not consider the in-
fluence of reservoirs (Goswami et al., 2018; Sikder and Hos-
sain, 2019).

The Central Water Commission (CWC) manages flood
forecast systems in India. The flood forecast network mon-
itors 325 stations across India. The CWC observes real-time
water levels and discharges along the major rivers of India
during the designated flood period. The flood forecast is per-
formed using statistical correlation methods from gauge to
gauge. Moreover, quantitative precipitation forecast (QPF)
from the India Meteorological Department (IMD) is used
to forecast floods at a 3 d lead time (Teja and Umamahesh,
2020). The current model-based flood forecast approach used
by CWC is deterministic, which lacks the incorporation of
uncertainties in the forecast and early warning systems. An
ensemble forecast system can help in flood early warning
and decision making (Harsha, 2020b; Nanditha and Mishra,
2021). Various ensemble forecast products are available from
the IMD and the Indian Institute of Tropical Meteorology
(IITM). However, the utility of these forecast products for
streamflow prediction and flood early warning at the river
basin scale has not been examined. In addition, despite the
advantages of ensemble hydrological prediction, India’s cur-
rent hydrological forecast systems are mainly deterministic.
Given the increasing flood damage in India, the overarching
aim of this work is to explore the utility of ensemble fore-
cast products for streamflow prediction in India. We consid-
ered the Narmada River basin as a test bed to examine the
potential of ensemble hydrological prediction. We used the
variable infiltration capacity (VIC) with reservoir operations
(VIC-Res) scheme, which incorporates the effect of reser-
voirs (Dang et al., 2020a). Extended Range Forecast System
(ERFS) and Global Ensemble Forecast System (GEFS) en-
semble forecasts developed by the IITM are used to examine
the hydrological prediction skills at the selected gauge sta-
tions in the Narmada basin.

2 Data and methods

2.1 Study region and datasets

The Narmada is the fifth biggest and the largest west-flowing
river in India. The Narmada River Basin falls in two states,
Gujarat and Madhya Pradesh. Many tributaries contribute
to the river through its way to the Arabian Sea, with the
Tawa River being its longest tributary. The catchment area
of the river basin at the outlet is approximately 98 796 km2.
The upper portion of the basin falls in Madhya Pradesh.
The mean annual rainfall in the Narmada Basin is 1064 mm.
Most of the total annual precipitation occurs during the sum-
mer monsoon season (June–September). We used observed
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daily streamflow at four stations: Sandia, Handia, Mandlesh-
war, and Garudeshwar (Fig. 1). There are several ongoing
hydropower and irrigation projects in the Narmada Basin.
Our hydrological modeling framework has considered four
dams: Bargi, Tawa, Indira Sagar, and Sardar Sarovar (Ta-
ble 1). The Bargi and Tawa reservoirs were primarily con-
structed for irrigation purposes (Table 1). At the same time,
Indira Sagar (0.975 billion cubic meters, BCM) and Sardar
Sarovar (5.8 BCM) are the two largest reservoirs that are used
for multiple purposes.

We used 0.25◦ (approximate spatial resolution;
∼ 27.5× 27.5 km) gridded daily precipitation from IMD for
the 1951–2020 period (Pai et al., 2014). The daily gridded
precipitation product is developed using observations from
6955 rain gauge stations (Pai et al., 2015). Pai et al. (2015)
examined daily rainfall trends, long-term climatology, and
variability over the central Indian region. The high resolution
(0.25◦) gridded precipitation captures spatial variability in
better manner compared to previous coarse-gridded rainfall
products. We obtained daily 1◦ gridded maximum and
minimum temperatures from IMD (Srivastava et al., 2009).
Srivastava et al. (2009) developed the gridded temperature
dataset using observations from 395 stations. We used
bilinear interpolation to convert the 1◦ gridded temperature
to 0.25◦ resolution to make it consistent with the gridded
precipitation. The VIC model also requires daily wind speed
as an input. We obtained the wind speed from the National
Centers for Environmental Prediction (NCEP)-National
Center for Atmospheric Research (NCAR) (https://psl.
noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html,
last access: 4 October 2022). The wind speed at a coarser
(1.875◦× 1.905◦) resolution was interpolated using bilinear
interpolation to 0.25◦ to make it consistent with the other
meteorological datasets. The VIC model vegetation parame-
ters were obtained from the Advanced Very High-Resolution
Radiometer (AVHRR) global land cover, which is available
at 1 km spatial resolution (Sheffield and Wood, 2007). Soil
parameters at 0.25◦ were developed using the Harmonized
World Soil Database (HWSD version 1.2) (Gao et al., 2010).
We used digital elevation model data from Shuttle Radar
Topography Mission (SRTM) at 90 m spatial resolution
(Jarvis, 2008). The hydrological model considers sub-grid
variability of topography and vegetation (Gao et al., 2010).
Therefore, the high-resolution vegetation and elevation
datasets were used to extract values for different tiles within
a grid.

We obtained observed daily streamflow, reservoir water
level, and reservoir live storage data from the India Wa-
ter Resources Information System (IWRIS; https://indiawris.
gov.in/wris/, last access: 4 October 2022), which is a joint
venture of the CWC, the Ministry of Jal Shakti, and the In-
dian Space Research Organization (ISRO). Streamflow and
reservoir levels are monitored at various locations in the Nar-
mada Basin by CWC. We selected the gauge stations (Sandia,
Handia, Mandleshwar, and Garudeshwar) that have observed

flow data for at least 15 years. The reservoir storage and wa-
ter level data were obtained for different periods depending
on the data availability.

We obtained the ERFS meteorological forecast for the
2003–2020 period. In addition, GEFS meteorological fore-
cast was obtained for the summer monsoon season (July–
September) of 2019–2020 from the IITM. Both the ERFS
and GEFS forecast products are developed at IITM and are
currently being used for the operational weather forecast by
the IMD. In June 2018, the high-resolution GEFS forecast
was developed and then transferred to the IMD for opera-
tional forecasting (Mukhopadhyay et al., 2018). The GEFS
dataset has a horizontal resolution of T1534 (∼ 12.5 km) and
consists of 21 ensemble members (1 control and 20 per-
turbed). The dynamic core of the model is based on semi-
Lagrangian framework, which reduces considerable compu-
tational requirements. The initial conditions (IC) for meteo-
rological forecasts are obtained from Global Data Assimila-
tion System (GDAS). The GEFS is being run operationally
for the 10-day lead forecast using daily ICs during the sum-
mer monsoon period. The GEFS forecast successfully pre-
dicted the 2018 Kerala extreme rainfall at 2–3 d lead and
showed reasonable forecast skills at 5–7 d lead (Mukhopad-
hyay et al., 2018).

The ERFS multimodel system consists of four
(CFSv2T382, CFSv2T126, GFSbcT382 and GFSbcT126)
suites, each having four ensemble members (one control
and three perturbed). Therefore, 16 ensemble members are
available for the ERFS forecast. The model is being run
operationally for 32 d lead based on the initial conditions of
every Wednesday. Atmospheric and oceanic initial condi-
tions from the National Center for Medium-Range Weather
Forecasting (NCMWRF) and the Indian National Centre for
Ocean Information Services (INCOSIS) assimilation system
are used by the models in ERFS. We used the 16 ensemble
meteorological forecasts to simulate the daily streamflow at
1–32 d leads at selected stations in the Narmada River Basin.
Shah et al. (2017) reported that ERFS performed better
than the Global Ensemble Forecast System v2 (GEFSv2)
and Climate Forecast System v2 (CFSv2) in precipitation
forecast during the summer monsoon season over India.

2.2 The VIC-Res hydrological model

We used the VIC-Res hydrological model (Dang et al.,
2020a), a novel variant of the VIC model (Liang et al., 1994),
to simulate streamflow. A combination of the VIC model
and the routing model developed by Dang et al. (2020a) was
used to simulate streamflow at the selected locations in the
basin. Dang et al. (2020a) incorporated the effect of reser-
voirs by considering the reservoir storage dynamics and op-
erating rules within the streamflow routing model in the VIC-
Res model. The rainfall-runoff model generates water and
energy fluxes within each grid using climate forcing, soil pa-
rameters, land use and land cover, and the digital elevation
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Table 1. Parameters of reservoirs that were considered in hydrological simulations.

Sr No Name of dam Year of Height above lower Length of Gross storage Effective storage
completion foundation (m) dam (m) capacity (BCM) capacity (BCM)

1 Bargi 1988 69.8 5357 3.92 3.18
2 Tawa 1978 57.92 1944.92 2.312 1.94
3 Indira Sagar 2006 91.4 654 12.22 9.75
4 Sardar Sarovar 2017 163 1210 9.5 5.8

Figure 1. Basic information about (a) location in India, (b) topography, (c) streamlines, location of streamflow gauge stations and reservoirs.

model. The model uses vegetation cover for each tile and
three soil layers for each grid cell. The upper two soil layers
control runoff, infiltration, and evaporation, while the bottom
layer governs baseflow. The routing model uses water fluxes
(runoff and baseflow) from each grid to simulate streamflow
at selected gauge stations using the linearized Saint-Venant
equations. The routing model uses flow direction, fractional
area within a grid, and station location as input to generate
streamflow. In addition, the VIC-Res model requires reser-
voir parameters and location as inputs. The reservoir param-
eters include full reservoir level (FRL), dead water level, stor-
age capacity, dead storage, rated head, and the year when the
reservoir became operational. The VIC-Res considers a grid
as a reservoir and the incoming streamflow to that reservoir
is considered as the inflow. In addition to the reservoir pa-
rameters, the observed seasonal cycle is also required as in-
put to the routing scheme. The model implements mass bal-
ance equations at each time step to calculate storage, outflow
and release from the reservoir. The VIC-Res model simulates
daily reservoir inflow, outflow, live storage, and water level.
Dang et al. (2020a) reported that even the model without a
reservoir exhibits almost the same level of accuracy. How-

ever, as the parameterization is inappropriate when the model
is calibrated using the observed flow that is affected by reser-
voirs, hydrological processes simulated by the model can be
erroneous.

We used observed daily precipitation, maximum and min-
imum temperatures from IMD, and wind speed from NCEP-
NCAR reanalysis as meteorological forcing. We used reser-
voir storage observations to input the seasonal cycle for each
reservoir into the model. An autocalibration module devel-
oped by Dang et al. (2020b) was used to calibrate soil pa-
rameters of the VIC-Res model for the Narmada River Basin.
The autocalibration module uses the ε-NSGAII multiobjec-
tive evolutionary algorithm (Reed et al., 2013) to adjust the
values of sensitive soil parameters. The autocalibration mod-
ule can be used to calibrate model parameters at the outlet
of different sub-basins within a river basin. First, we used
autocalibration to calibrate parameters of upstream basins,
then the parameters for the downstream basins were cali-
brated for the grids that are not part of the upstream basins.
We used five soil parameters (Binf, Ds, Dsmax, Ws, and depth
of three soil layers) to calibrate daily streamflow at the se-
lected gauge stations in the basin as described in Mishra et
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Figure 2. Evaluation of ERFS precipitation forecast against observations for the 2003–2018 period. Forecast skills were evaluated using
bias, NRMSE, and correlation for each ensemble member and the median skill is presented.

Figure 3. Evaluation of extreme precipitation (>90th percentile) forecast skill from ERFS for the 2003–2018 period. Forecast skills were
evaluated using bias, NRMSE, and correlation for each ensemble member and the median skill is presented.

al. (2010), where Binf is the variable infiltration curve pa-
rameter, Dsmax is the maximum velocity of baseflow, Ds is a
fraction of Dsmax where non-linear baseflow begins and Ws is
a fraction of maximum soil moisture where non-linear base-
flow occurs (Liang et al., 1994). Further details of the cali-
bration parameters can be obtained from Mishra et al. (2010).
The autocalibration module optimizes the model’s perfor-
mance in simulating streamflow at selected stations consid-

ering reservoir dynamics. We set our objective to maximize
Nash-Sutcliffe Efficiency (NSE) (Dawson et al., 2007; Nash
and Sutcliffe, 1970). The model performance was evaluated
for daily streamflow, the water level of reservoirs, and the
live storage of reservoirs using NSE and the coefficient of de-
termination (R2). Daily streamflow was calibrated and eval-
uated at Sandia, Handia, Mandleshwar, and Garudeshwar.
We selected different periods for the calibration and evalu-
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Figure 4. Comparison of the precipitation forecast skills from ERFS and GEFS for the summer monsoon period during 2019–2020. Forecast
skills were evaluated using bias, NRMSE, and correlation for each ensemble member of ERFS and GEFS and the median skill is presented.

ation of the VIC-Res model based on the availability of ob-
served streamflow. For instance, we selected the years 1986–
2000, 1986–2000, 1998–2005, 1998–2005 as the calibration
period, while the years 2001–2018, 2001–2018, 2015–2018,
2015–2018 as the evaluation period for stations Sandia, Han-
dia, Mandleshwar, and Garudeshwar, respectively. The VIC-
Res model performance was also evaluated against water
level and live storage for Bargi, Tawa, Indira Sagar, and Sar-
dar Sarovar reservoirs.

We first generated daily meteorological forcing of both
ERFS and GEFS forecasts. The ERFS forecast is available
for the extended range (1–32 d lead), while the GEFS fore-
cast is available at 1–10 d lead. We developed observed initial
conditions for each forecast date by forcing the long-term

(20 years) observed meteorological forcing from IMD into
the calibrated VIC-Res model. Therefore, the model spin-
up is considered in the observed initial state. We simulated
a daily streamflow forecast at all the four selected gauge
stations using the meteorological forcing and initial condi-
tions. The VIC-Res simulations were run for all the ensem-
ble members for ERFS and GEFS forecasts. The ensemble
streamflow forecasts were simulated for 1–32 d lead and 10 d
lead for ERFS and GEFS datasets. The ERFS forecast simu-
lations were run for 1–32 d lead with the initial conditions of
every Wednesday generated from the VIC-Res model using
the observed forcings. Similarly, GEFS streamflow forecast
simulations were performed for 1–10 d lead with initial con-
ditions 1 d before the forecast.
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Figure 5. Comparison of the extreme precipitation (exceeding 75th percentile) forecast skills from ERFS and GEFS for the summer monsoon
period during 2019–2020. Forecast skills were evaluated using bias, NRMSE, and correlation for each ensemble member of ERFS and GEFS
and the median skill is presented.

2.3 Forecast skill evaluation

We evaluated the skills of the streamflow forecast gener-
ated using the ERFS and GEFS meteorological forecast
by comparing the simulated streamflow forecast to the ob-
served daily streamflow at each of the four locations. The
model-simulated streamflow forecast was evaluated against
the VIC-Res model-simulated daily streamflow using the
observed forcing due to the unavailability of the observed
streamflow for the years 2019–2020. The ERFS meteorolog-
ical forcing was used to run the VIC-Res model for 1–32 d
from each forecast date using the initial conditions generated
using the observed forcing from IMD. Similarly, we ran the

GEFS ensemble members for a 1–10 d lead for each forecast
date. We used bias and normalized root mean square error
(NRMSE) to evaluate the performance of individual ensem-
ble forecast members, which can be estimated as follows:

Bias=
n∑

i=1

(
Qsim,i −Qobs,i

)
, (1)

NRMSE=
RMSE

O
, (2)

where O =mean of observations.

RMSE=

√∑n
i=1
(
Qsim,i −Qobs,i

)2
n

, (3)
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where Qobs,i and Qsim,i are observed and simulated stream-
flow, respectively. Bias provides a measure of correspon-
dence between the mean of observations and the mean of
the VIC-Res model simulations, while NRMSE represents
the relative magnitude of the squared error. We also evalu-
ated the skills of ERFS forecast using the continuous ranked
probability score (CRPS) (Hersbach, 2000), which measures
the closeness between the distributions of forecast and obser-
vations. The CPRS can be estimated as follows:

CRPS(F,x)=

∫
∞

−∞

(F (y)−H (y− x))2dy, (4)

where F(x) is the cumulative distribution function (CDF) as-
sociated with probabilistic forecast and H(x) is the Heavi-
side function (H(x)= 1 for x ≥ 0 and zero otherwise). The
unit of CRPS is the same the of observations. Gneiting and
Raftery (2007) suggested CPRS as a direct measure to com-
pare deterministic and probabilistic forecasts.

3 Results

3.1 Skill evaluation of ERFS and GEFS meteorological
forecasts

First, we evaluated ERFS precipitation and temperature fore-
cast skills for 1, 7, 15, and 31 d leads. We used bias, NRMSE,
and the correlation coefficient (r) to estimate the forecast
skills. The forecast skill was evaluated for the period 2003–
2018. We estimated the forecast skill for each ensemble
member and then calculated the median of the forecast skill
of all the 16 members for each grid in the Narmada River
Basin. Precipitation forecast from ERFS shows a negative
bias indicating an underestimation compared to observed
rainfall. The dry bias in precipitation forecast increases with
the lead time (Fig. 2). For the 1 d lead, precipitation fore-
cast from ERFS showed a moderate positive correlation (me-
dian ∼ 0.49), which declines with the lead time. Similarly,
NRMSE in the precipitation forecast is large (>2.0) over the
river basin. We also estimated bias in the precipitation fore-
cast exceeding the 90th percentile (Fig. 3). The extreme rain-
fall in the raw ERFS forecast dataset exhibited a weaker cor-
relation with the observed extreme precipitation. Moreover,
a considerable dry bias in the extreme precipitation forecast
was found. We also evaluated forecast skills for maximum
and minimum temperatures against the observed tempera-
tures from IMD for the 2003–2018 period (Figs. S1 and S2
in the Supplement). The daily temperature forecast showed a
relatively higher positive correlation with the observed tem-
peratures from IMD. Moreover, a lower NRMSE was noted
for the temperature forecast than the observed maximum and
minimum temperatures. However, a positive bias of∼ 1.5 ◦C
(median of all grids in the basin) was found in the minimum
temperature forecast at all the lead times.

Next, we compared the ERFS and GEFS ensemble fore-
cast skills for the summer monsoon (June–September) of the

2019–2020 period. We limit the comparison to the 2 years
as the GEFS ensemble forecast is available only for 2019–
2020. We evaluated forecast skills for 1, 5, and 10 d leads
(Fig. 4). Our results show that the ERFS precipitation fore-
cast has a dry bias across the river basin and all the leads
(Fig. 4). The GEFS precipitation forecast showed a posi-
tive (wet) bias in the majority of the Narmada River Basin.
The forecast products (ERFS and GEFS) underestimate ex-
treme rainfall in the Narmada Basin (Fig. 5). The dry bias
in extreme rainfall increases with lead time in the ERFS and
GEFS forecasts (Fig. 5). The forecast products showed a poor
correlation with the observed extreme precipitation in the
Narmada River Basin (Fig. 5). However, both the forecast
products demonstrated relatively better skills for maximum
and minimum temperatures than precipitation (Figs. S3 and
S4).

3.2 Calibration and evaluation of the VIC-Res model

We performed calibration of reservoir level and storage and
calibration of daily streamflow. Daily storage and water lev-
els were used to calibrate the VIC-Res model for four ma-
jor reservoirs (Bargi, Tawa, Indira Sagar and Sardar Sarovar)
in the Narmada Basin. The upstream catchment area of all
the gauge locations and calibration parameters are shown
in Supplement Fig. S5. We evaluated the VIC-Res model’s
performance using the coefficient of determination (R2) and
NSE (Fig. 6). The VIC-Res model simulates daily stream-
flow at the selected stations in the basin. The R2 and NSE
values were above 0.65 at Sandia, Handia, and Mandlesh-
war stations for the calibration period, while at Garudesh-
war the VIC-Res model performed comparatively weaker
(R2
= 0.55 and NSE= 0.53) for the calibration period.

We considered the influence of major reservoirs on the
simulated daily streamflow. Therefore, the VIC-Res model’s
performance in simulating daily reservoir storage and the wa-
ter level was evaluated against the streamflow observations.
We selected 2000–2016, 2000–2016, 2007–2016, and 2008–
2013 as evaluation periods for Bargi, Tawa, Indira Sagar, and
Sardar Sarovar reservoirs, respectively, based on the avail-
ability of observations. We estimated R2 and NSE to evalu-
ate the model’s performance (Fig. 7). The model performed
well in simulating all the reservoirs’ water levels and storage
(R2>0.78 and NSE >0.62). We also compared the seasonal
cycle of the observed and simulated reservoir storage for all
the four major reservoirs (Fig. 8). The monthly seasonal cy-
cle of reservoir storage simulated by the model compares
well with the observed storage for all the dams with R2 of
more than 0.77. We find that the model underestimates stor-
age for the Bargi reservoir, which can be due to the relatively
smaller upstream catchment area that might not capture the
spatial variability of rainfall. Overall, we found that the VIC-
Res model can evaluate the ensemble streamflow forecast in
the Narmada River Basin.
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Figure 6. Calibration and evaluation of the VIC-Res model against observed daily streamflow at gauge stations at Sandia, Handia, Man-
dleshwar and Garudeshwar. The performance of the VIC-Res model in simulating daily streamflow was evaluated using the R2 and NSE.

3.3 Evaluation of ensemble streamflow forecast skills of
ERFS

We estimated forecast skills of daily streamflow for 2003–
2018 generated from each ensemble member of ERFS for
the 12 lead times (1–10, 15, and 31 d). We selected a 1–10 d
lead as the GEFS forecast is also available with the same
lead. In addition, 2 other lead times (15 and 31 d) were se-
lected to evaluate the skill of streamflow forecast from all
the 16 members of ERFS (Fig. 9). Both bias and NRMSE
showed a relatively lesser spread for the shorter lead (1–3 d)
streamflow forecast from all the ensemble members of ERFS
(Fig. 9). However, uncertainty in streamflow forecast due to
different ensemble members increases with the lead time.
The NRMSE of streamflow forecast from ERFS also rises
with the lead at all the stations. Ensemble streamflow fore-
cast from ERFS showed a positive bias for Sandia, Handia,
and Garudeshwar, while a negative bias was found for Man-
dleshwar station (Fig. 9). We estimated the CRPS, which is
higher for a 1 d lead compared to 3 d leads and increases with
the lead time (Fig. S6).

We estimated the forecast skill in streamflow exceeding
certain thresholds (50th, 70th, 80th, 90th, and 95th per-
centiles) (Fig. 10). We find less spread in bias among differ-

ent ensemble members for 1 d lead streamflow forecast from
ERFS. However, the spread of bias in streamflow forecast
due to different ensemble members increases with the lead
time (Fig. 10). Moreover, bias in streamflow forecast remains
stable for all the selected percentile thresholds at a 1 d lead
at all 4 gauge stations. On the other hand, bias in streamflow
forecast increases for higher percentiles at longer lead times.
For instance, dry bias in streamflow forecast in all the en-
semble members is higher for the 95th percentile than for the
50th percentile. Therefore, our results show that regardless of
the spread among the ensemble members from ERFS, almost
all the ensemble members underestimate the high flow at all
the gauge stations in the Narmada River Basin (Fig. 10).

3.4 Comparison of ensemble streamflow forecast skills
ERFS and GEFS

We compared the streamflow forecast skills of 16 ensem-
ble members from ERFS and 21 ensemble members from
GEFS. As GEFS meteorological forecast is available only
for 2019–2020, we compared the summer monsoon season of
these 2 years. The ERFS forecast is available weekly for 1–
32 d, while the GEFS forecast is generated every day. There-
fore, we compared the daily streamflow forecast from both
the products for the weeks for which the ERFS forecast was
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Figure 7. Evaluation of the VIC-Res model in simulating daily water level and daily live storage at four major reservoirs Bargi, Tawa, Indira
Sagar and Sardar Sarovar.

Figure 8. Comparison of observed and the VIC-Res model simulated reservoir water levels for four reservoirs in Narmada River Basin.
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Figure 9. Ensemble streamflow forecast skill based on the ERFS forecast for 2003–2018. The forecast was evaluated using bias (%) and
NRMSE. Box and whisker plots show the skill for all 16 ensemble members at leads 1–10, 15 and 31 d at 4 gauge stations.

available for the summer monsoon of the 2019–2020 period.
We compared the streamflow forecast skills for all the en-
semble members at 1–10 d leads at Sandia, Handia, Man-
dleshwar, and Garudeshwar (Fig. 11). We find that the GEFS
forecast has a better skill for the short lead time (∼ 1–5 d)
with less bias and NRMSE. On the other hand, the ERFS en-
semble forecast showed higher bias and NRMSE at shorter
leads for most of the selected locations in the Narmada Basin.
Streamflow forecast skill of GEFS declines rapidly after the
3–4 d lead time for most of the locations in the Narmada
Basin. The forecast products showed a larger spread among
the streamflow forecast ensemble members after 5 days lead.
For short to medium range (∼ 1–5 d), the streamflow fore-
cast from GEFS performed better with low NRMSE and bias
for streamflow exceeding the 75th percentile of the summer
monsoon period (Fig. S7). Moreover, streamflow forecast
skill from the ERFS was considerably lower than the GEFS
at most of the locations for flow exceeding 75th percentiles
(Fig. S7).

We examined the daily streamflow forecast skill at 3, 5 d,
and 10-leads from ERFS and GEFS forecasts for the summer

monsoon season of 2019 and 2020 against VIC-Res simu-
lated streamflow using the observed meteorological forcing
at all the four gauge stations (Figs. 12 and S8). As observed
daily streamflow was unavailable for skill assessment, the
comparison was made against the VIC-Res model simulated
flow with the observed meteorological forcing (Figs. 12 and
S8). The GEFS forecast successfully captured streamflow
peaks in both 2019 and 2020 at a 3 d lead. In 2019, GEFS
forecasts overestimated streamflow peaks at 3 and 5 d leads
during the summer monsoon. On the other hand, the ensem-
ble streamflow forecast developed using the ERFS meteoro-
logical forecast showed a higher spread than GEFS (Figs. 12,
S8). The spread in ensemble streamflow forecast increases
for both ERFS and GEFS forecast at a 10 d lead. However,
the ERFS streamflow forecast showed a better skill at the
10 d lead. Despite having fewer ensemble members than the
GEFS, the ERFS forecast showed a broader spread in stream-
flow prediction, highlighting a higher uncertainty in predic-
tion. We find that GEFS overestimates while ERFS underes-
timates streamflow at most of the locations and lead times.
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Figure 10. Bias in ensemble streamflow forecast estimated using ERFS for 2003–2018 for streamflow percentiles exceeding 50th, 70th, 80th,
90th, and 95th thresholds. Bias in ensemble streamflow forecast was evaluated at 1, 7, 15, and 31 d lead.

We examined the streamflow forecast generated by all the
ensemble members of ERFS and GEFS for a few events us-
ing the VIC-Res model (Fig. 13). The ensemble streamflow
prediction was compared considering the model simulated
streamflow with the observed forcing from IMD. In 2019,
the ensemble mean streamflow from all the ensemble mem-
bers of ERFS considerably underestimated the peak flow
(Fig. 13). However, a few ensemble members of the ERFS
forecast captured the peak flow at the four locations of the
Narmada River Basin (Fig. 13). At Handia station, 1 out of
16 ensemble members exceeded the observed streamflow.
Moreover, GEFS forecasts at short leads (3–5 d) performed
well in capturing peaks (Fig. 13). However, GEFS forecasts
showed a smaller spread in ensemble streamflow at the short
lead time (1–5 d). Overall, we find that ensemble forecasts
can be used for probabilistic streamflow prediction.

4 Discussion and conclusions

Streamflow forecast plays an essential role in efficient reser-
voir operations and flood mitigation (Chen et al., 2016; Me-
diero et al., 2007). A reliable streamflow forecast can reduce
uncertainty in reservoir operations and enhance the devel-
opment of a flood early warning system. Notwithstanding
the considerable progress in an operational meteorological

forecast from different agencies, efforts to establish an en-
semble streamflow forecast system at river basin scales have
been limited for India. Moreover, it remains unclear if other
meteorological forecast products have different streamflow
forecast skills. We used the two meteorological ensemble
forecast products from IMD to examine streamflow forecast
skills in the Narmada River Basin. The presence of reser-
voirs influences the water budget and streamflow (Shah et al.,
2019; Zajac et al., 2017; Yun et al., 2020; Chai et al., 2019).
Hydrological model parameters calibrated without consider-
ing the role of reservoirs can be erroneous and lead to errors
and uncertainty in simulated hydrological processes (Dang
et al., 2020a). Therefore, we used the ensemble streamflow
prediction approach to generate the daily streamflow simula-
tions considering the influence of reservoirs in the Narmada
River Basin. We compared the performance of ERFS and
GEFS ensembles for the summer monsoon period of 2019–
2020. We also assessed the skills of the ERFS dataset solely
for a more extended period from 2003 to 2018.

The ERFS ensemble forecast is available once a week at
1–32 d lead times. On the other hand, GEFS ensemble fore-
casts are available daily at 1–10 d leads for the summer mon-
soon period of 2019–2020. Hagedorn et al. (2005) reported
that bias correction of the raw forecast does not necessarily
increase the forecast skill. Moreover, statistical correction of
the raw forecast is inappropriate, which can lose its effect
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Figure 11. Comparison of ensemble streamflow forecast skills from ERFS and GEFS for 2019–2020. The forecast skill was evaluated
considering the VIC-Res simulated streamflow with the observed forcing from IMD due to unavailability of observed flow.

by propagating through the hydrological model (Zalachori et
al., 2012; Crochemore et al., 2016; Benninga et al., 2017;
Hagedorn et al., 2005). Therefore, we did not correct the raw
meteorological ensemble forecasts from ERFS and GEFS for
bias. The skills of ERFS and GEFS precipitation and tem-
perature (minimum and maximum) forecasts were estimated
for 1, 5 and 10 d leads. The GEFS raw forecast showed bet-
ter skills than the ERFS forecast for mean and extreme pre-
cipitation. As precipitation plays a vital role in streamflow
forecast (Meaurio et al., 2017; Demargne et al., 2014; Pap-
penberger et al., 2005), our results show that GEFS forecast
provides better skills for streamflow prediction in the Nar-
mada River Basin. The postprocessing of streamflow data
can significantly improve performance (Tiwari et al., 2021;
Muhammad et al., 2018), which can be used in the future to
examine the improvements in streamflow prediction. More-
over, a multimodel approach can be used to reduce the errors
and uncertainty in streamflow forecasts that could arise due
to the parameterization of hydrological models (Velázquez et
al., 2011; Zarzar et al., 2018; Muhammad et al., 2018).

The skills of ERFS and GEFS ensemble forecasts were
estimated for 1, 5 and 10 d leads. The GEFS raw forecasts

illustrated better skills than ERFS forecasts for overall rain-
fall and extreme precipitation. Studies showed that rain plays
a vital role in streamflow forecast (Demargne et al., 2014;
Meaurio et al., 2017; Pappenberger et al., 2005) and we also
observed the same results. The ensemble forecast with bet-
ter skills performed well in predicting daily streamflow. Cor-
recting the bias of the input forecast may shrink the variabil-
ity range of the result. However, ensemble forecasts aim to
capture uncertainties. Studies suggest that the postprocessing
of streamflow data can significantly improve performance
(Muhammad et al., 2018; Tiwari et al., 2021). A multimodel
approach, where more than one hydrological model is used,
can generalize the uncertainty introduced by the hydrological
model. Various studies have reported improved forecast skills
using the multimodel approach (Muhammad et al., 2018;
Velázquez et al., 2011; Zarzar et al., 2018). Also, our analysis
is based only on 2019–2020 as the GEFS hindcast is avail-
able only for this period. Availability of longer hindcast from
the GEFS can help to understand the forecast skills for hy-
drological extremes (drought and floods). Moreover, we did
not examine the forecast skill of reservoir storage, which can
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Figure 12. Comparison of ensemble streamflow simulated using the VIC-Res model with ERFS and GEFS forecast products during the
summer monsoon of 2019. The forecast skill was evaluated considering the VIC-Res simulated streamflow with the observed forcing from
IMD due to unavailability of observed flow.

provide a better understanding of the impacts of storage dur-
ing the floods.

Flood forecasting using the available meteorological fore-
cast products can help in mitigating the losses through early
warnings. To account for the uncertainty arising from initial
state and model parameterization, the individual members of
the ensemble weather forecast can provide better informa-
tion than their ensemble mean (Saleh et al., 2019). The prob-
abilistic approach over the deterministic method provides the
range of variability, which can help determine the probability
of exceeding a specific threshold of streamflow (Hsiao et al.,
2013). The shift from the existing flood forecast system to
the ensemble-based probabilistic forecast requires modifica-
tions in the current flood forecast practice. The transition is
expected to change various aspects of the existing decision-
making process. The forecasters need to adequately train the
on duty officers and the authorities on probabilistic forecasts.
We evaluated the streamflow forecast skills at 1–32 d leads in
the Narmada River Basin. The increased lead time in stream-
flow forecast can assist in developing efficient methods for
communication of information (Arnal et al., 2020; Ramos et
al., 2010). Moreover, ensemble streamflow forecast at longer
leads can be effectively used in optimizing reservoir opera-
tions (Alemu et al., 2011). Our results show that while the
mean of the ensemble members failed to capture the high

flows, a few individual ensemble members performed better
in capturing peak flow, which can be used to develop proba-
bilistic early warning systems.

Based on our findings, the following conclusions can be
made.

1. The raw precipitation forecast from both GEFS and
ERFS datasets showed moderate skills (bias, NRMSE
and correlation) against observations from IMD at 1, 5
and 10 d lead times. While both (ERFS and GEFS) fore-
cast products underestimated extreme precipitation, dry
bias in the ERFS forecast was more prominent than the
GEFS forecast. For instance, raw precipitation forecast
from ERFS showed negative bias across the Narmada
River Basin. On the other hand, the raw precipitation
forecast from GEFS exhibited both negative and posi-
tive bias. Both the forecast products showed better skills
for maximum and minimum temperatures than precipi-
tation.

2. We calibrated and evaluated the VIC-Res model to sim-
ulate streamflow, considering the influence of reservoirs
at four gauge stations in the Narmada River Basin.
The model reproduced daily streamflow, reservoir water
level, and storage reasonably well against the observa-
tions.
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Figure 13. Ensemble streamflow simulations using the ERFS forecast at 5–11 d leads and GEFS forecast at 3–5 d leads against the VIC-Res
simulated streamflow with the observed meteorological forcing for 2019 and 2020.

3. Comparing the streamflow forecast skills of both en-
semble forecasts showed that GEFS forecasts per-
formed better than the ERFS at all the locations in the
basin. However, both of the forecast products underes-
timated the extremes, which can be due to dry bias in
extreme precipitation. The spread in streamflow due to
different ensemble members increased with the forecast
lead time. Overall, an ensemble forecast can be used to
develop a probabilistic forecast-based flood early warn-
ing system.
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