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Abstract. Based on the assessment from 230 flux site ob-
servations, intra-day and daytime ground heat flux (G) ac-
counted for 19.2 % and 28.8 % of the corresponding net radi-
ation, respectively. This indicates that G plays an important
role in remote-sensing (RS) energy-balance-based evapo-
transpiration (ET) models. TheG empirical estimation meth-
ods have been evaluated at many individual sites, while there
have been relatively few multi-site evaluation studies. The
accuracy of the five empirical G simulation methods in the
surface-energy-balance-based RS–ET models was evaluated
using half-hourly observations. The linear coefficient (LC)
method and the two methods embedded with the normal-
ized difference vegetation index (NDVI) were able to ac-
curately simulate a half-hourly G series at most sites. The
mean and median Nash–Sutcliffe efficiency (NSE) values of
all sites were generally higher than 0.50 in each half-hour
period. The accuracy of each method varied significantly at
different sites and at half-hour intervals. The highest accu-
racy was exhibited during 06:00–07:00 LST (all times here-
after are LST), followed by the period of 17:00–18:00. There
were 92 % (211/230) sites with an NSE of the LC method
greater than 0.50 at 06:30. It showed a slightly higher ac-
curacy during nighttime periods than during daytime peri-
ods. The lowest accuracy was observed during the period of
10:00–15:30. The sites with an NSE exceeding 0.50 only ac-
counted for 51 % (118/230) and 43 % (100/230) at 10:30 and
13:30, respectively. The accuracy of the model was gener-
ally higher in Northern Hemisphere sites than in Southern
Hemisphere sites. In general, the highest and lowest accu-
racies were observed at the high- and low-latitude sites, re-

spectively. The performance of the LC method and the meth-
ods embedded with NDVI were generally satisfactory at the
Eurasian and North American sites, with the NSE values of
most sites exceeding 0.70. Conversely, it exhibited relatively
poor performance at the African, South American, and Ocea-
nian sites, especially the African sites. Both the temporal and
spatial distributions of the accuracy of theG simulation were
positively correlated with the correlation between G and the
net radiation. Although theG simulation methods accurately
simulated the G series at most sites and time periods, their
performance was poor at some sites and time periods. The
application of RS ET datasets covering these sites requires
caution. Further improvement of G simulations at these sites
and time periods is recommended for the RS ET modelers.
In addition, variable parameters are recommended in empiri-
cal methods of G simulation to improve accuracy. Instead of
the Rn, finding another variable that has a physical connec-
tion and strong correlation with G might be a more efficient
solution for the improvement, since the weak correlation be-
tween G and Rn is the main reason for the poor performance
at these regions.

1 Introduction

Accurate simulations of evapotranspiration (ET) represent
the core of hydrological processes, crop growth, and ecosys-
tem water efficiency simulations (Ponce-Campos et al.,
2013). Remote sensing (RS) is the only viable technique
that can provide relatively frequent and spatially contigu-
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ous ET measurements on global and regional scales (Zhang
et al., 2016; Ait Hssaine et al., 2020). Surface energy bal-
ance is the main method used in RS ET modeling (Zhang
et al., 2016; Chen and Liu, 2020). Ground heat flux (G) ac-
counts for a significant fraction of the surface energy balance
(Pauwels and Daly, 2016), but there is insufficient research
on these models compared with sensible heat flux (H ) (Mo-
han et al., 2020; Wu et al., 2020). Over bare soils or sparsely
vegetated surfaces,G can reach half of the net radiation (Rn)
(Heusinkveld et al., 2004). Even under full vegetation cover,
G is significant, especially when turbulent processes are less
active (Gentine et al., 2012).

Soil heat flux is the heat flux that occurs in a layer of soil.
G, which is the soil heat flux at the surface, is difficult to
observe directly due to technical limitations (Wang and Bou-
Zeid, 2012; Gao et al., 2017), and direct estimation of G us-
ing RS data is not possible (Kalma et al., 2008; Allen et al.,
2011; Saadi et al., 2018). Soil heat flux is generally measured
using heat flux plates near the surface (within a few millime-
ters of the surface). This measurement is referred to as G′ in
this study. However, the difference between G′ and G could
be 50 % because of the soil heat storage within the layer from
the surface to the flux plate (Heusinkveld et al., 2004; Yue
et al., 2011; Wu et al., 2020). A large error is produced if the
soil heat storage is ignored in the G calculation (Meyers and
Hollinger, 2004; Lu et al., 2018). In addition, the soil above
the heat flux plates can lose contact with the rest of the near-
surface soil matrix, adversely affecting the water and heat
flow (Leuninget al., 2012; Russell et al., 2015). The spatial
scale of the G observation is also much smaller than that of
the H and latent heat flux (LE) estimates (Shao et al., 2008;
Verhoef et al., 2012).

There are numerous schemes for estimating G (Wang and
Bou-Zeid, 2012; Gao et al., 2017; Wu et al., 2020); these
can be classified into two categories. According to physical
mechanisms, G can be calculated from the soil heat conduc-
tivity and the vertical gradient of temperature using the so-
called gradient approach (Yang and Wang, 2008). A more
common approach is to combine G′ at a specific reference
depth with the soil heat storage above (Kustas et al., 2000;
Wu et al., 2020). G′ can be simulated using the gradient ap-
proach or observed by heat flux plates. Soil heat storage in
the soil layer above the measured depth can be calculated as
the integral over the change in temperature with time mul-
tiplied by the volumetric heat capacity of the soil – this is
called the calorimetry method (Liebethal and Foken, 2007;
Agam et al., 2019). However, applications of these physi-
cal mechanism-based approaches are restricted to only a few
sites due to the limitations of field observations of soil ther-
mal properties (Mayocchi and Bristowa, 1995; Kustas et al.,
2000). Soil thermal properties are affected by soil texture,
mineralogical composition, bulk density, and the surround-
ing environment (e.g., soil moisture and temperature) (Peng
et al., 2017; Ju and Hu, 2018). In other words, soil ther-
mal properties vary with time and space. In addition to these

physical mechanism-based approaches, G can also be esti-
mated using empirical methods based on Rn, H , or G′ (Cel-
lier et al., 1996; Leuning et al., 2012; Purdy et al., 2016).

To estimate ET in RS models, G is usually obtained from
empirical relations with Rn. Choudhury et al. (1987) estab-
lished an empirical function between G and Rn for bare and
vegetated soils. They found that the ratio of G to Rn (G/Rn)
was 0.4 for bare soils. For vegetated land cover, the ratio
could be described by an exponential relationship with the
leaf area index. Kustas and Daughtry (1990) also calibrated
the ratio by ground-based measurements for bare soil, al-
falfa, and cotton and found the corresponding values to be
0.29± 0.05, 0.16± 0.035, and 0.27± 0.02, respectively. The
constant G/Rn has been used in several RS-based ET mod-
els, including the two-source energy balance (TSEB) (Nor-
man et al., 1995), the Atmosphere–Land Exchange Inverse
(ALEXI) (Anderson et al., 1997), and the disaggregated
ALEXI (DisALEXI) (Norman et al., 2003) models. The ratio
values in these models ranged from 0.15 to 0.35. The Global
Land Evaporation Amsterdam Model (GLEAM) used 0.05,
0.20, and 0.25 for tall canopy, short vegetation, and bare soil,
respectively (Miralles et al., 2011). TheG/Rn is also usually
parameterized as an empirical function with the vegetation
index in other RS-based ET models, including but not limited
to the Surface Energy Balance Algorithm for Land (SEBAL)
(Bastiaanssen et al., 1998), Surface Energy Balance System
(SEBS) (Su, 2002), Mapping Evapotranspiration at high Res-
olution with Internalized Calibration (METRIC) (Allen et al.,
2007), and Simplified TSEB (STSEB) (Sánchez et al., 2008)
models. The solutions of G in the first two models were
also applied to the Simplified Surface Energy Balance In-
dex (S-SEBI) (Roerink et al., 2000) and four-source surface
energy balance (SEB-4S) (Merlin et al., 2014) models, re-
spectively. Some studies have modified the parameter values
in these empirical relationships, such as in the modified SE-
BAL (Singh et al., 2008; Faridatul et al., 2020) and TSEB
models (Ait Hssaine et al., 2020). In addition, the empiri-
cal relations between G and Rn were applied to simulate G
in several RS-based global ET datasets. These ET datasets
include, but are not limited to, the Breathing Earth System
Simulator (BESS) (Jiang and Ryu, 2016), Moderate Resolu-
tion Imaging Spectroradiometer (MODIS; MOD16A2) (Mu
et al., 2011), GLEAM (Miralles et al., 2011), Numerical Ter-
radynamic Simulation Group (NTSG) (Zhang et al., 2010),
and thermal energy balance (Chen et al., 2014; 2021) prod-
ucts. More G empirical estimation methods can be found in
Sun et al. (2013) and Bonsoms and Boulet (2022).

Several studies have evaluated the empirical methods in
the simulation of G. Liebethal and Foken (2007) evaluated
six parameterization approaches for G by using the refer-
ence dataset, in which G′ at a depth of −0.2 m and the heat
storage in the soil layer above −0.2 m were calculated by
the gradient and calorimetry approaches, respectively. They
found that the physical mechanism-based calorimetric and
simple measurement approaches showed better performance
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than empirical methods. Similar results were also found in
evaluations by Russell et al. (2015) and Gao et al. (2017) for
eddy covariance tower measurements in Idaho and Washing-
ton, respectively. Saadi et al. (2018) evaluated three empiri-
cal methods using flux station measurements and determined
that the best results were obtained using the SEBAL method.
However, these evaluations were limited to a single-site scale
because field observations of soil thermal properties were
available only at a few sites. Purdy et al. (2016) evaluated
six empirical methods of G simulation against G′ observa-
tions at 88 flux sites. This was a very meaningful study on a
global scale. However, there is a large difference betweenG′

and G, which has been described above.
The surface energy balance method provides an alterna-

tive solution for assessing theG simulation schemes (van der
Tol, 2012). This method could avoid the inconsistent spatial
scale ofG with that of LE andH in field measurements. The
FLUXNET dataset, which contains global flux tower obser-
vations, provides a good opportunity to evaluate G simula-
tion methods on a global scale (Knox et al., 2019; Pastorello
et al., 2020; Liu, 2021). According to the surface energy bal-
ance method, this study uses the FLUXNET dataset to com-
prehensively evaluate the ability of various schemes to ac-
curately simulate half-hourly G at global flux measurement
sites.

This study addresses four key objectives: (1) investigating
the temporal and spatial variations and common characteris-
tics of the empirical relationship betweenG and Rn; (2) eval-
uating the accuracy of five empirical methods in simulating
half-hourlyG fromRn; and (3) investigating the performance
of five methods at different times during the day and the spa-
tial distribution of simulation accuracy at global flux obser-
vation sites. The evaluation results of this study are expected
to provide a reference for RS–ET model application and de-
velopers.

2 Materials and methods

2.1 Data

This study used FLUXNET eddy covariance observations
that cover all continents, including FLUXNET2015 (Pas-
torello et al., 2020) and FLUXNET-CH4 community prod-
ucts (Knox et al., 2019). FLUXNET2015 contains 212 ob-
servation sites from 1991 to 2014, while the FLUXNET-CH4
community product contains 81 sites from 2006 to 2018. The
longest observational record was 25 years, whereas the short-
est was less than one year. Half-hourly data series for LE,
H , Rn, and G′ were used. All missing values were elimi-
nated. For example, if there were missing values on a cer-
tain day, all data on that day were discarded. Therefore,
only days with fully available half-hourly data were used in
the analysis. Only sites with a data series longer than 360 d
were used. These eliminations ultimately meant that a total

of 189 FLUXNET2015 sites and 60 FLUXNET-CH4 sites
were used in the analysis because of the lack of observations
(Table S1 in the Supplement). There were 19 sites belong-
ing to both FLUXNET2015 and FLUXNET-CH4. G′ was
not observed at 63 sites (Table S1). Flux observation data
from four sites in Australia were obtained from the TERN
OzFlux dataset. These four sites were included in FLUXNET
products but with a longer and continuous series up to 2019
(Beringer et al., 2016). In addition, the normalized difference
vegetation index (NDVI) data (Vermote et al., 2014), which
were derived from surface reflectance data acquired by the
advanced very high-resolution radiometer sensor, were used
in this study. The dataset had a spatial resolution of 0.05◦×
0.05◦ and temporal coverage from June 1981 to the present.

2.2 Methods

2.2.1 The surface energy balance residual method for
estimating G

The surface energy balance residual (SEBR) method (Eq. 1)
is an effective tool for estimating G using the measurements
of other components with a flux tower (van der Tol, 2012).
Energy balance is an independent means of assessing G. In
the surface energy balance, heat storage in the air between
the ground and the height of the eddy covariance system is
neglected, as is the horizontal advection of heat and other
minor energy sources and sinks (Wilson et al., 2002; Leuning
et al., 2012; Stoy et al., 2013). The SEBR method equation
is expressed as follows:

G= Rn−LE−H, (1)

where G is ground heat flux, Rn is net radiation, and LE and
H are latent and sensible heat flux, respectively. The esti-
mated time series were used as referenced G for evaluating
simulations of G in RS–ET models. The mean and standard
deviation approach was applied to detect outliers (Liu et al.,
2019).

2.2.2 Simulations of G in RS–ET models

Based on the half-hourly series of G simulated by the SEBR
method at globally observed sites, the G simulation methods
commonly used in five RS ET models were evaluated. The
first is the linear coefficient (LC) method. It has been applied
in the TSEB, ALEXI, DisALEXI, GLEAM, and other RS
ET models to simulate G, but different models use differ-
ent linear coefficient values. Then the linear models of em-
bedding the NDVI in the form of the power (Bastiaanssen,
1995) and exponential (Choudhury et al., 1987) functions
(referenced as LC_NDVI_P and LC_NDVI_E), which were
typically applied in the SEBAL (Bastiaanssen et al., 1998)
and modified SEBAL (Singh et al., 2008) and SEBS (Chen
et al., 2019) ET models, respectively, were evaluated. Finally,
the linear models embedded with fractional vegetation cov-
erage, which were applied in the SEBS and STSEB models
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(referenced as LC_fc_SE and LC_fc_ST), were also evalu-
ated. LC methods embedded with the vegetation index have
also been applied in many other RS–ET models, such as the
S-SEBI, NTSG, BESS, METRIC, MOD16A2, and SEB-4S
models. However, different models may use different param-
eter values.

In this study, the parameters in these five methods were
calibrated rather than the fixed parameter values in the orig-
inal models. The half-hourly series of the observed Rn and
simulated G by the SEBR method at each flux tower site
were used for the optimal calibration of the parameters.
These five methods are represented as LC, LC_NDVI_P,
LC_NDVI_E, LC_fc_SE, and LC_fc_ST. The expressions
are as follows:

G= α ·Rn, (2)

G= α · [1− 0.98 ·NDVI4
] ·Rn, (3)

G= [α · exp(−b ·NDVI)] ·Rn, (4)
G= [α1+ (α2−α1) · (1− fc)] ·Rn, (5)
G= α · (1− fc) ·Rn, (6)

where α, α1, α2, and b are parameters to be calibrated within
the range of [0.01, 1.5], [0.01, 1.5], [0.01, 0.1], and [0.1, 1.5],
respectively. At each site, daily series of each half hour were
divided into two parts: the first 80 % of the data were used
for parameter calibration, and the rest were used for valida-
tion. The parameters of these methods were calibrated by the
Nash–Sutcliffe efficiency (NSE) at each observation site.

2.2.3 Evaluation criteria

The simulations of G were evaluated using the G series es-
timated using the SEBR method for each site in each half-
hourly period. The criteria tried to evaluate these simula-
tions included the relative error (RE), root mean square error
(RMSE), Kling–Gupta efficiency (KGE; Gupta et al., 2009),
and NSE (Nash and Sutcliffe, 1970). The RE and RMSE rep-
resent the bias deviation from the observed values, whereas
the KGE and NSE are indicative of the goodness of fit of
the simulated and observed data series. The best-fit value
was 1.0, and the goodness of fit deteriorated with increasing
deviation from 1.0. The evaluation criteria were calculated as
follows:

RE=
1
n

∑n

i=1

Xsi−Xri

Xri
, (7)

RMSE=

√
1
n

∑n

i=1
[(Xsi−Xs)− (Xri−Xr)]

2, (8)

KGE= 1−

√
(1−CC)2+RE2+

(
1−

SDs

SDr

)2

, (9)

SD=

√
1

n− 1

∑n

i=1
(Xi −X)

2, (10)

NSE= 1−
∑n
i=1(Xsi−Xri)

2∑n
i=1(Xri−Xr)2

, (11)

where Xsi and Xri are the ith values of the simulated and
referenced G time series, respectively; n is the time series
length; Xs and Xr are the means of the simulated and ref-
erenced G, respectively; and SDs and SDr are the standard
deviations of the simulated and referenced G, respectively.

3 Results

3.1 Intra-day distribution of observed surface energy
balance items and G/Rn

The intra-day distribution characteristics of each flux vari-
able were analyzed based on field observation data. Figure 1
shows the intra-day distribution of half-hourly Rn, H , LE,
G, and G′. The first four variables and G′ were derived from
the mean of 230 and 167 FLUXNET sites (Table S1), respec-
tively. Overall, LE, H , and G accounted for 34.5 %, 46.3 %,
and 19.2 % ofRn, respectively.G accounted for 28.8 % ofRn
when only daytime periods were considered. This indicates
that ignoring G in energy-based models greatly overesti-
mates the ET values. The observed daytime G′ value was
only 24.1 % of that of G. Considering the intra-day peri-
ods, G′ was only 4.7 % of G. All flux variables were sta-
ble and showed little variance from 20:00–06:00 LST (all
times hereafter are LST). During this period, the LE was
positive and accounted for only 7 % of the total daily LE,
whereas other flux variables were negative. It showed a uni-
modal distribution for all flux variables during the day. The
intra-day distribution of H showed the best agreement with
the measured Rn (Fig. 1a). However, the intra-day distribu-
tions of LE, G, and G′ showed an overall deviation from
the measured Rn. The distribution of LE and G′ was gen-
erally delayed by half an hour compared to the measured Rn,
while that of G was half an hour earlier. The intra-day dis-
tribution of each flux variable during the daytime was com-
pared with the sine and Gaussian functions (Fig. 1b–f). The
results showed that daytime flux variables were more con-
sistent with the latter than with the sine function, which is
commonly used to upscale instantaneous ET to daily values
in RS applications. The Gaussian function perfectly matched
each flux variable at any time during the day.

The intra-day distribution characteristics of G/Rn and the
ratio of G and H (G/H ) were also analyzed based on field
observation data. The intra-day distributions of G/Rn and
G/H at each site are shown in Fig. 2. During data process-
ing, data points with absolute values greater than 10 in the
G/Rn orG/H daily series of each period were deleted. Out-
liers in the G/Rn or G/H series were then removed using
the outlier detection method. The G/Rn varied significantly
in different half-hour periods of the intra-day and among the
different sites (Fig. 2a). The variation in G/Rn among the
sites was lower during the daytime than that at night. The
variation range of G/Rn among all sites was generally ap-
proximately 0.2 in the daytime. This indicates that the G/Rn

Hydrol. Earth Syst. Sci., 26, 6207–6226, 2022 https://doi.org/10.5194/hess-26-6207-2022



Z. Liu: Accuracy of ground heat flux simulation methods in RS ET models 6211

Figure 1. Intra-day distribution of raw and normalized Rn, H , LE, G, G′, and the values from the sine and Gaussian functions (a is raw Rn,
H , LE, G, and G′; b–f are normalized Rn, H , LE, G, and G′, respectively).

of all sites showed high consistency during these periods. At
night, the variation mostly ranged between 0.6 and 0.8. In
other words, G/Rn was more consistent across sites during
the daytime than at night. The slope and R2 of the linear-
fitting curve were −0.012 and 0.92, respectively. The R2 of
the polynomial fitting curve reached 0.98 (Fig. 2c).
G/H also varied significantly in different half-hour peri-

ods of the intra-day and among the different sites (Fig. 2b).
The variation in G/H during each period was greater than
that ofG/Rn. In other words,G/H was less consistent across
sites than G/Rn. Like G/Rn, the variation of G/H among

sites during the daytime was significantly lower than that at
night. The variation range ofG/H among all sites in the day-
time was approximately 1.0, while the corresponding range
at night was approximately 2.0. In most half-hour periods,
the mean and median values of G/H at all sites showed
significant differences, with the former generally being ap-
proximately 0.5 higher than the latter. During the period of
06:30–16:30, the median and mean values generally showed
a unimodal distribution, and the R2 of the polynomial fitting
curve for the mean series was 0.95 (Fig. 2d).
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Figure 2. Intra-day distribution of the ratio of G and Rn (G/Rn) and the ratio of G and H (G/H ) at each site (a and b are intra-day
distributions of G/Rn and G/H ratios at each site, respectively; c and d are the fitted lines of the mean values of G/Rn and G/H in the
daytime, respectively).

3.2 Temporal and spatial analysis of the empirical
relationship between G and Rn and between G/Rn
and NDVI

The empirical relationship between G, Rn, and H was ana-
lyzed based on the measured data. Overall, G had a strong
correlation with Rn but a relatively weak correlation with H .
Figure 3 shows the R2 and slope of the linear fitting between
G and Rn in each half-hour period of the intra-day. In each
period, G and Rn showed a strong linear correlation at most
sites, with a fitted R2 generally above 0.4. The mean and me-
dian R2 values of all sites were mainly between 0.5 and 0.8.
The strong correlation between G and Rn indicates that it is
reasonable to use Rn to calculate G in the RS-based energy
balance ET models. However, the correlation betweenG and
Rn varied during the different periods. The correlation is rela-

tively high in the periods around 06:00 and 18:00. Especially
around 06:00, the R2 of the linear fitting between G and Rn
was greater than 0.7 at most sites, and the median R2 of all
sites reached 0.8. The correlation between G and Rn in the
night periods (20:00–04:30) was slightly stronger than that in
the daytime periods (08:00–16:00). During the night periods,
the R2 of most sites was generally between 0.45 and 0.70,
and the mean and median R2 of all sites were mainly be-
tween 0.55 and 0.60. The R2 of most sites generally ranged
from 0.40 to 0.65 in the daytime periods, and the mean and
median R2 of all sites were concentrated around 0.50. The
correlation between G and Rn was relatively low in the pe-
riod from 10:00 to 15:00, andR2 was lower than 0.65 at most
sites, especially in the periods around 14:00, with the mean
and median R2 below 0.50.
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Figure 3. Intra-day distribution of the linear fitted R2 (a, c) and slope (b, d) between G and Rn (c and d are classified by land cover types).

The slope of the linear fitting of G and Rn in each half-
hour intra-day period is shown in Fig. 3b. The fitting slope
showed significant differences among the different sites,
ranging from 0.1 to 1.1. However, the slopes fitted at most
sites also exhibited certain characteristics of a centralized
distribution. In each period, the range of the slope at most
sites was within 0.3, especially during the daytime periods
(08:00–17:30), when the range of the slope was within 0.15.
The slopes of most sites were relatively stable during all peri-
ods, except for the periods of 06:00–07:00 and 17:00–18:00.

In terms of the seven land cover types, the intra-day per-
formance of each land type was similar to that of all sites ex-
cept the other type (Fig. 3c and d). The correlation between
G andRn was relatively high during 06:00–07:00 and 17:00–
18:00. The correlation in other and wetland types is generally
higher than that of other land cover types. In each period, the
median R2 of all sites in the two types generally exceeded
0.60, and the highest value even exceeded 0.80. Except for
the other type, the difference in the correlation between G
and Rn in different land types is mainly reflected in the day-
time period. The correlation in the forest and savanna types
was significantly lower than that of other types during the
daytime, especially for savanna sites, most of which had R2

lower than 0.5 during the daytime. In other-type sites, the
correlation betweenG and Rn in the daytime is stronger than
that in the nighttime periods. The slope value of each land
cover type in the daytime is lower than that in the night. This
intra-day distribution of slope was consistent with that of all
sites.

The empirical relationship between G and Rn not only
varied significantly at different intra-day periods but also
showed great spatial differences among the different sites.
The linear fitted R2 between the daily series of G and Rn
at each site is shown in Fig. 4. As the median R2 of 48 half-
hour periods at each site (Fig. 4a), 91 % of the sites (210/230)
showed an R2 > 0.4. The linear-fitting R2 betweenG and Rn
was > 0.6 for 49 % of the sites (114/230). The mean R2 for
all sites was 0.58. This indicated that the G in most half-
hour periods had a strong correlation with Rn at most ob-
served sites. However, there were also 20 sites where the
R2 ranged from 0.2 to 0.4. These sites were mainly located
in the middle- and low-latitude regions but were distributed
across all observed continents. The correlation was gener-
ally stronger in the Northern Hemisphere than in the South-
ern Hemisphere, with the mean R2 of the northern sites be-
ing significantly higher than that of the southern sites. There
was a strong correlation betweenG and Rn at most Eurasian,
North American, and Oceanian sites, with a linear fitted R2

generally exceeding 0.4. There was a relatively weak corre-
lation at many African and South American sites, with an
R2 value of less than 0.4. At different latitudes, the strongest
correlation between G and Rn was found at the middle- and
high-latitude (> 45◦) sites with the highest R2 values. The
R2 values of these sites exceeded 0.4, with a mean value
of 0.65. There was a relatively weak correlation at tropical
(< 23.4◦) sites. The R2 values of these sites were relatively
low, with a mean value of 0.48.
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Figure 4. The linear- or exponential-fitting R2 between daily series of G and Rn and that between monthly series of G/Rn and NDVI at
each observed site (a is the median R2 of 48 half-hour periods at each site; b and c are the R2 values between G and Rn at 10:30 and 13:30,
respectively; d and e are linear and exponential functions fitting R2 between G/Rn and NDVI, respectively).

The spatial distribution of the linear-fitting R2 of G and
Rn at 10:30 and 13:30 (Fig. 4b and c) was consistent with
that in Fig. 4a, while the R2 value was generally lower than
the median of each half-hour period. At 10:30, the mean R2

of all sites was 0.52. A total of 26 % of the sites (60/230)
had R2 values lower than 0.4, and 11 sites had R2 values
lower than 0.2. Although mainly distributed at low latitudes
(< 30◦), these sites were found on all the observed conti-
nents. The highest R2 values were at high-latitude (> 60◦)
sites, with an average of 0.70. The R2 values of low-latitude
sites were significantly lower than those of other sites, with
a value of less than 0.4 for most sites and an average of only
0.33. The correlation betweenG and Rn at 13:30 was weaker
than that at 10:30, with R2 values slightly lower than those
at 10:30. There was a relatively weak correlation between G
and Rn at all African sites (R2 < 0.4). Overall, the results
showed a strong correlation between G and Rn at most ob-
served sites. It is reasonable to simulate a daily series of G
values from Rn in most areas. However, it is necessary to
apply this relationship cautiously in some areas at mid–low
latitudes, especially in tropical areas.

For different land cover types, the correlation between G
and Rn was the strongest at other and wetland sites. The
mean value of the median R2 of statistical sites was 0.71
and 0.67 for these two types, respectively. There was also

a strong correlation between G and Rn at cropland, shrub-
land, and grassland sites. The mean value of corresponding
R2 is about 0.60. There was only one site with a median R2

lower than 0.4 in each of the three land cover types. The mean
value of correspondingR2 was 0.55 for forest sites. However,
the correlation was relatively weak in the savanna-type sites,
and the mean value of corresponding R2 is 0.49. The weak
correlations between G and Rn (R2 < 0.4) were mainly dis-
tributed in the forest (6/97), grassland (7/42), and savanna
(3/15) sites.

The empirical correlation between G/Rn and NDVI was
also analyzed. The results showed that the correlation be-
tween G/Rn and NDVI was weak in the daily series but
strong in the monthly series. Figure 4d and e show the linear-
and exponential-fitted R2 values between the monthly series
of G/Rn and NDVI, respectively, at each observed site. Dur-
ing data processing, only monthly values of observation days
greater than 15 d were used, and monthly values affected
by frozen soil or snow cover (mean air temperature below
−5 ◦C) were excluded. In general, there was a strong correla-
tion between the monthly G/Rn series and NDVI. The fitted
R2 values of the linear and exponential functions were con-
sistent. The median and mean R2 of all sites were 0.71 and
0.65, respectively, and 72 % of the sites (157/218) had an
R2 above 0.60. The exponential correlation between G/Rn
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Figure 5. The RE, RMSE, and KGE simulated by the LC method at each site and at half-hour intervals.

and NDVI was stronger than the linear correlation at several
sites, including US-Gle and US-Twt. The exponential-fitted
R2 of the two sites could be increased from 0.55 and 0.31
of the linear R2 to 0.77 and 0.50, respectively. Conversely,
the linear correlation was stronger than the exponential cor-
relation at other sites, such as ES-AMO and CN-QIA. The
linear fitted R2 of the two sites could be increased from 0.21
and 0.68 of the exponential R2 to 0.43 and 0.83, respectively.
Overall, the spatial distribution of the linear- or exponential-
fitted R2 of G/Rn and NDVI was similar to the linear fit-
ted results of G and Rn. The correlation between G/Rn and
NDVI was stronger in the Northern Hemisphere than in the
Southern Hemisphere. The mean R2 value of the northern
sites (0.69) was higher than that of the southern sites (0.38).

It showed the strongest correlation at the middle- and high-
latitude (> 50◦) sites. The R2 values for these sites were gen-
erally higher than 0.6, with an average of 0.76. A relatively
weak correlation between G/Rn and NDVI was found at the
low-latitude sites, with a meanR2 of 0.38. There were 13 and
15 sites showing weak linear and exponential correlations be-
tween G/Rn and NDVI, respectively, with a fitted R2 lower
than 0.2. These sites were mainly located in Australia and
southeast Asia.
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3.3 Temporal and spatial accuracy of five G simulation
methods

In this study, four criteria were tried to evaluate the model.
The results showed that only NSE was suitable for the eval-
uation of different sites and time periods, whereas RE and
KGE were not suitable for the evaluation of different sites,
and the RMSE was unsuitable for the evaluation of differ-
ent time periods. The RE, RMSE, and KGE simulated by the
LC method at each site and time period are shown in Fig. 5.
The RE values tended to be affected by the mean value of
the referenced G in Eq. (7). The RE values of all sites were
within± 3 % (Fig. 5a) during the daytime periods from 07:00
to 16:00 because of the relatively large mean value ofG dur-
ing these periods (Fig. 1a). However, when the mean value
of the referenced G was low during the period from 17:00 to
06:30, the RE value at each site was generally greater than
that during the daytime periods. In particular, if the mean
value of the referenced G is much lower (e.g., close to 0)
in a half-hour period for a site, even a small simulation bias
could result in an extremely large RE value; for example,
the RE of some sites exceeded 8000 % at 05:00 and 05:30
(Fig. 5a). The mean RE value of all sites was also too high
(e.g., 300 %) during these periods. Therefore, RE is unsuit-
able for evaluating different time periods or sites. However,
the median RE values of all sites may be more robustly used
for evaluation than the mean values. Because the RE is in-
cluded in the formula of the KGE, the shortcomings of the
RE are introduced into the KGE. Therefore, KGE is also un-
suitable for the evaluation of different time periods or sites.
According to Figs. 1a and 5b, there was a positive relation-
ship between the RMSE and G values during half-hour peri-
ods in the intra-day period. The RMSE values were directly
affected by the G values. Due to the significant variations
in G values in each period, the RMSE was not suitable for
a comparison evaluation of the simulation accuracy between
different periods. The RE, RMSE, and KGE simulated by the
LC method in each land cover type are shown in Fig. S1 in
the Supplement.

The NSE was used to evaluate the accuracy of the five
G simulation methods at different sites and at half-hour in-
tervals. Daily series were randomly assigned to one of two
datasets: 80 % were assigned to the calibration dataset, and
20 % were assigned to the validation dataset. The process of
random assignment was repeated to generate 100 indepen-
dent datasets. Results showed that there was little difference
between the performance of the models in the calibration and
validation datasets. It indicated that these methods are robust.
The performance of the LC_NDVI_P in the calibration and
validation datasets at some sites can be found in Fig. S2 in the
Supplement. Figure 6 shows the NSE values simulated by the
LC, LC_NDVI_P, LC_NDVI_E, LC_fc_SE, and LC_fc_ST
methods. In general, the performance of each method varies
significantly among different sites and time periods. The sim-
ulation accuracy of each method showed high consistency

among the different half-hour intervals within the intra-day
period. It was highest in the period of 06:00–07:00, fol-
lowed by the period of 17:00–18:00, whereas it was low-
est in 10:00–15:30. Regarding the different methods, the
accuracy of the first three methods (LC, LC_NDVI_P, and
LC_NDVI_E) was significantly higher than that of the last
two methods (LC_fc_SE and LC_fc_ST).

The LC method generally demonstrated its ability to accu-
rately simulate the daily series of G at the site scale in each
half-hour period, with the NSE of most sites exceeding 0.40.
The mean and median NSE values of all sites were generally
higher than 0.50 in each time period. It showed the highest
accuracy at 06:00 and 06:30, with the NSE of most sites be-
ing above 0.70. The accuracy was the lowest from 11:30 to
15:00, with the mean and median NSE values of all stations
being between 0.45 and 0.50. The mean and median NSE val-
ues of all the sites in the other periods were generally greater
than 0.50. This indicates that the simple LC method was able
to accurately simulate a half-hourly series of G from Rn at
most sites but also lost this ability, with unsatisfactory accu-
racy, at a few sites.

Although NDVI was embedded in the LC method, the per-
formances of the LC_NDVI_P and LC_NDVI_E methods
were similar to those of the LC method. In other words, the
consideration of NDVI resulted in limited improvement in
the accuracy of the LC method. In addition, the accuracy of
the LC_NDVI_E method was significantly lower than that of
the first two methods at 14:30 and 15:00, with mean NSE
values of only 0.28 and 0.33, respectively. This was because
of the low accuracy (NSE< 0.2) of the LC_NDVI_E method
at more sites during these two periods.

The accuracy of the LC_fc_SE and LC_fc_ST methods
based on fractional vegetation coverage was relatively low
(Fig. 6d and e). The two methods showed little difference
across sites and periods. The two methods were able to ac-
curately simulate G only at 05:30–07:00 and 17:30–18:00,
with the median NSE values of all sites exceeding 0.5. Con-
versely, the performance was poor in most night and daytime
periods, such as 20:00–04:30 and 08:30–15:30. The NSE of
most sites was below 0.4, and the mean and median NSE val-
ues of all sites were below 0.2. This indicates that the applica-
tion of these two methods, considering fractional vegetation
coverage, requires caution in the G simulation.

Figure 7 shows the NSE simulated by each method in
seven land cover types. The intra-day performance of each
land cover type was similar to that of all sites, except for the
other type, with the highest simulation accuracy in the peri-
ods of 06:00–07:00 and 17:00–18:00. The intra-day accuracy
varied most greatly at the forest and savanna sites. The me-
dian NSE of all sites simulated by the LC_NDVI_E method
was close to 0.8 in the period of 06:00–07:00, while the cor-
responding NSE was only approximately 0.4. It varied little
at other land cover types, especially for wetland and shrub-
land types. The greatest and lowest values of median NSE
for all sites simulated by the LC_NDVI_E method were ap-
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Figure 6. The NSE simulated by the (a) LC, (b) LC_NDVI_P, (c) LC_NDVI_E, (d) LC_fc_SE, and (e) LC_fc_ST methods based on
optimized parameters in each site and half-hour intervals.

proximately 0.7 and 0.6, respectively. The NSE of the LC,
LC_NDVI_P, and LC_NDVI_E methods showed a unimodal
distribution in the other-type sites. The NSE was significantly
higher in the daytime than during night periods. The highest
value was in the morning and noon periods, with the median
NSE of all sites exceeding 0.8. The model performance was
significantly better than other land cover types. In the other-
type sites, the LC_NDVI_E method performed better than
other methods, with the median NSE being higher than 0.6
in each time period.

The spatial distribution of the NSE simulated by the
LC method at each site is shown in Fig. 8. Overall, there were
significant differences in the performance of the LC method
among sites, with the lowest and highest NSE values of each
site being −0.37 and 0.94, respectively. As for the median
NSE of 48 half-hour periods at each site (Fig. 8a), the per-
formance of the LC method was satisfactory at most sites,

with the mean NSE of all sites being 0.58. The NSE values
of 70 % of the sites (160/230) were higher than 0.5. How-
ever, 27 sites had NSE values lower than 0.4, and 5 sites
had NSE values lower than 0.2, indicating that the perfor-
mance was poor at these sites. For different latitudes, the per-
formance was generally satisfactory at the middle and high
latitudes, with NSE values above 0.4. The best performance
was observed at high latitudes, with a mean NSE value of
0.69. The accuracy of the LC method was generally low at
tropical sites, with a mean NSE of 0.47. The performance
was generally satisfactory at most sites in Eurasia and North
America, with NSE values higher than 0.5. The NSE val-
ues of many sites exceeded 0.7 in these regions. Conversely,
relatively poor performance was found in the African, South
American, and Oceanian sites, especially in the African sites.

The LC method accurately simulated G at 06:30 in most
sites (Fig. 8b), with the mean and median NSE values of all
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Figure 7. The NSE simulated by the (a) LC, (b) LC_NDVI_P, (c) LC_NDVI_E, (d) LC_fc_SE, and (e) LC_fc_ST methods in each land
cover type.

sites being 0.73 and 0.78, respectively. The sites with the
NSE higher than 0.5 and 0.6 took up 92 % (211/230) and
84 % (193/230), respectively. The NSE was higher than 0.5
at all sites of Eurasia and North America, and the NSE of
most sites exceeded 0.7. The method was also able to ac-
curately simulate G at 18:00 in most sites (Fig. 8e), with a

mean NSE of all sites being 0.62. A total of 82 % (188/230)
and 59 % (135/230) of sites had NSE values exceeding 0.5
and 0.6, respectively.

The LC method performed poorly at many sites at 10:30
(Fig. 8c) and 13:30 (Fig. 8d), where the mean NSE values
of all sites were 0.49 and 0.47, respectively. The sites with
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Figure 8. Spatial distribution of NSE values simulated by the LC method (a is the median NSE of 48 half-hour values; b–e represent the
NSE values at 06:30, 10:30, 13:30, and 18:00, respectively).

an NSE exceeding 0.5 only accounted for 51 % (118/230)
and 43 % (100/230) during the two half-hour periods, respec-
tively. The method still performed well at high-latitude sites,
with mean NSEs of 0.69 and 0.65, respectively. Conversely, it
lost the ability to accurately simulate G at tropical sites. The
NSE values at most sites were lower than 0.5, with a mean
NSE of only 0.29. The performance of the method was poor
at the African and South American sites, with NSE values of
each site being below 0.5.

For different land cover types, the LC method performed
better in the cropland-, wetland-, and other-type sites. The
mean values of the median NSE of wetland and other sites
were 0.66 and 0.69, respectively. The method was also
able to accurately simulate G in the forest-, grassland-, and
shrubland-type sites, with the corresponding mean NSE of
0.57 or 0.56. The method performed the worst at the savanna
sites, with the corresponding mean NSE being only 0.47.
Since the savanna sites are mainly distributed in tropical re-
gions, this is consistent with the relatively poor performance
of the tropical-region site, as mentioned above. The perfor-
mance of the method varied significantly in each land cover
type, except in the other type sites. In the wetland-type sites,
there were three sites in the United States with an NSE value
lower than 0.3. The NSE of the other 35 sites was higher than
0.50, with the highest value being close to 0.90. The grass-

land sites were distributed in Asia, Europe, North America,
and Oceania. The NSE value was greater than 0.5 at each
grassland site in Europe. Cropland sites were distributed in
Asia, Europe, and the United States. The NSE value was
lower than 0.60 at eight sites in the United States, with a
mean NSE value of only 0.45. The method was able to accu-
rately simulate G at 11 sites in Europe, except for one site in
Mediterranean region, with a mean NSE value of 0.74. The
NSEs for the two Asian sites were 0.54 and 0.71, respec-
tively.

According to the evaluation of the five methods mentioned
above, LC, LC_NDVI_P, and LC_NDVI_E performed well.
Figure 9 shows the optimal values of the parameters of the
three methods at each site and at half-hour periods. As for the
results of the LC method (Fig. 9a), on the one hand, the op-
timal parameter values varied significantly in different sites
and half-hour periods. The median optimal parameter of all
sites was generally around 0.4 in daytime periods and 0.7 at
night. The optimal parameter of each site ranged from 0.4 to
1.1 in the night periods. In contrast, the optimal parameters of
most sites showed a concentrated distribution. For example,
the optimal parameter values of most sites were generally
concentrated in the range of 0.25–0.45 during 08:30–16:30,
while the corresponding optimal values were generally con-
centrated in the range of 0.6–0.85 during 19:30–05:30. The
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Figure 9. The optimal parameters of the (a) LC, (b) LC_NDVI_P,
and (c) LC_NDVI_E methods in each site and half-hour period.

median optimal values of all sites were stable at about 0.35
and 0.75 during these two time periods, respectively. The op-
timal parameter values of the LC_NDVI_P method showed
little difference from those of the LC method at each site
and half-hour period (Fig. 9b). The optimal parameter (b in
Eq. 4) values of the LC_NDVI_E method ranged from 0.01
to 1.4 among different sites and half-hour periods (Fig. 9c).
Similar to the LC and LC_NDVI_P methods, the optimal pa-
rameter values of the LC_NDVI_E method also showed a
concentrated distribution in each period, especially during
7:30–15:00 and 19:30–05:00. Almost all sites with the op-
timal parameter values ranged from 0.01 to 0.4, and the op-
timal values of most sites were concentrated in the range of
0.06 to 0.25 during these two periods.

4 Discussion

4.1 Limitations and uncertainties

Theoretically, surface energy is balanced. The energy unclo-
sure might be caused mainly by the error of the observed

data. The observedG′ instead ofG was generally used to in-
vestigate the energy balance ratio (Wilson et al., 2002). The
energy balance closure problem might be largely caused by
the soil heat storage (Foken, 2008). Compared with G, other
energy terms can be observed more accurately. The eddy co-
variance measurements of H and LE are generally consid-
ered to be the most accurate observations available and have
been widely used as references to evaluate other simulation
methods. Eq. (1) makes full use of the surface energy term
that can be accurately measured at present. In other words, it
assumes that the measurements of Rn, H , and LE are accu-
rate in this study. The uncertainties of the measurements are
not considered in this study. However, the uncertainty of G
estimated by the SEBR method could be very large at some
sites that have a low magnitude of G. Although the major-
ity of sites have G values greater than 10 W/m2 and take up
more than 15 % of Rn, there are some sites (20/230) with G
values lower than 5 W/m2. There would be great uncertain-
ties in the SEBR method when simulating G values at these
sites.

The accuracies of the LC_fc_SE and LC_fc_ST methods,
which embed fractional vegetation coverage in theG simula-
tion, were satisfied for monthly simulations but were signif-
icantly lower than those of the other three methods in simu-
lating daily values. The weak correlation between G/Rn and
NDVI might be the main reason for the poor performance
of these methods. However, the coarse-resolution NDVI data
used in this study are not sufficient to represent the scale of
flux measurements, especially for sites with heterogeneous
land surface. This might be the main reason for this weak
correlation. The application of higher-resolution and contin-
uous vegetation index data series is expected to improve the
simulation accuracy of these methods. A large error in the
G simulation might be induced in the ET modeling process,
thereby reducing the accuracy of the ET estimates. In RS–
ET models, Rn is generally calculated using radiation bal-
ance with RS images and meteorological inputs. However,
observed Rn was used for simulatingG in this study. In other
words, it was assumed that Rn is accurately simulated by the
RS–ET models. Therefore, it should be noted that the uncer-
tainty in Rn calculation was also a source of error in G sim-
ulations in ET models.

The evaluation results of this study are expected to pro-
vide a reference for RS–ET model application and devel-
opers. For example, the performance of these methods was
good and poor at some sites and time periods and at some
land cover types. RS–ET modelers could check the advan-
tage of the models at good-performance regions and find why
the models are poor at some other areas, then they should re-
vise the models to improve the accuracy at poor-performance
regions. However, how to improve the model to improve the
accuracy needs further research.
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4.2 Temporal and spatial variations in the simulation
of G

Intra-day and daytime G accounted for 19.2 % and 28.8 %
of Rn, respectively. This indicates that G plays an important
role and cannot be ignored in RS–ET models. Ignoring G
would lead to a great deviation in ET estimates, including
the term Rn−G. The intra-day and daytime G′ values were
only 4.7 % and 24.1 % of the corresponding G, respectively.
This indicates that the measuredG′ must be carefully used in
the application of the surface energy balance equation. If G′

was used instead ofG in the equation, the actualG would be
largely underestimated. This is consistent with the results of
Meyers and Hollinger (2004) and of Lu et al. (2018).

Several methods for simulating G from Rn in energy-
balance-based RS–ET applications have been evaluated in
this study.G/Rn, which varied intra-day, was the key to these
methods. Santanello and Friedl (2003) provided diurnal co-
variations in G and Rn. In this study, more concise linear
and polynomial functions of the G/Rn daytime distribution
were fitted (Fig. 2) from 230 observation sites worldwide.
The linear- and polynomial-fitted R2 values were 0.92 and
0.98, respectively.

The evaluation results show that the accuracy of theG sim-
ulation varied significantly in different half-hour intra-day
periods. The highest accuracy was exhibited during 06:00–
07:00 and 17:00–18:00. It also showed a slightly higher ac-
curacy during night periods than during daytime periods. The
lowest accuracy is observed at noon. This is consistent with
the correlation between G and Rn, indicating that the accu-
racy of the G simulation is affected by the correlation be-
tween Rn and G. In other words, the stronger the correlation
between Rn and G, the higher the accuracy of the simula-
tion of G from Rn. However, RS–ET models are generally
applied during daytime periods. For example, MODIS data
represent conditions around 10:30 and 13:30, but the simula-
tion accuracy of these two periods is the lowest during intra-
day periods. This is an urgent issue to be solved for G simu-
lation in RS–ET applications, which requires the attention of
RS–ET modelers.

The performance of G simulation methods also showed
significant spatial variation. The accuracy of the G simula-
tion varied significantly among the observation sites, with the
corresponding NSE ranging from 0.2 to 0.9. The G simula-
tion of most sites showed high accuracy in most half-hour
periods. This verified the reliability of global RS–ET prod-
ucts in these regions because the more accurate G simula-
tion provided a guarantee for an accurate ET simulation, such
as in Eurasia and North America. However, there were also
some sites with low simulation accuracy, such as most sites
in Africa, South America, and Oceania. A large error in the
G simulation would be induced in the ET simulation results
and reduce the reliability of ET estimates. Therefore, the ap-
plication of RS–ET estimates and products in these areas
needs more caution for its accuracy. The spatial distribution

of the model accuracy was also consistent with the correla-
tion betweenG andRn. The sites with satisfied model perfor-
mance were generally characterized by seasonal variations in
G and Rn due to the climate in these regions. Conversely, the
sites with poor model performance showed little seasonality.
Whether G and Rn have seasonal variations was also an im-
portant factor affecting the accuracy of empirical methods in
simulatingG. This was consistent with the evaluation results
of the LE simulation accuracy (Liu, 2021; 2022). This study
analyzed the performance of the five methods in seven land
cover types. The methods performed better in the wetland-
and other-type sites than in other ones. RS–ET modellers
are recommended to take more cautions in G simulation at
the savanna-type sites because the simulation accuracy was
generally lowest at this site type. In addition to climate and
land cover factors, regional soil and other environmental fac-
tors might also be important factors affecting the accuracy of
G simulation. More evaluations ofG simulation at a regional
scale are recommended for further research.

4.3 Applicability of common G simulation methods in
RS–ET models

Daytime RS images are generally applied in ET models. The
evaluation results of 230 worldwide observation sites showed
that the optimal parameter values of most sites were gener-
ally concentrated in the range of 0.25–0.45 during daytime
periods, with the median of all sites being stable at approxi-
mately 0.34. This indicates that the coefficient values applied
in most ET models were reasonable, but the coefficient val-
ues applied in the GLEAM model were relatively low.

In the RS–ET models, fixed empirical parameters were ap-
plied to the global terrestrial G simulation. The fixed param-
eters might be suitable for some regions but not on a global
scale. This study confirmed that the optimal parameter val-
ues vary significantly from site to site. Fixed parameter val-
ues induced large errors in theG simulations in other regions.
Therefore, it is recommended that model developers consider
the spatial variations of G simulation parameters in RS–ET
modeling on a global scale.

Some RS–ET models embed vegetation indices (e.g.,
NDVI, leaf area index (LAI) , or fractional vegetation cov-
erage) or land surface temperature (LST) into the coefficient
of the LC method, such as the SEBAL and SEBS models.
Evaluation of the LC_NDVI_P and LC_NDVI_E methods,
which are the LC methods embedded by the NDVI, showed
that the improvement in the simulation accuracy was limited
by considering the NDVI. The mismatch between flux ob-
servations at the site scale and vegetation index data at the
grid scale may be one of the reasons for this result. In addi-
tion, the term containing the NDVI in these methods could
be taken as a whole, which is similar to the coefficient in the
LC method. Therefore, the performance of this method is ex-
pected to differ slightly from that of the LC method when the
parameter is optimally calibrated. Other models embedded
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by the LAI (Choudhury, et al., 1987; Allen et al., 2011) and
LST (Bastiaanssen, 1995; Faridatul et al., 2020), which were
not evaluated in this study due to data limitations, may have
similar performances, such as the METRIC model embedded
by the LAI and the modified SEBAL model (Faridatul et al.,
2020) embedded by the LST and NDVI. Saadi et al. (2018)
evaluated three such methods using data from a single ob-
servation site. Their results showed that the accuracy order
was as follows: (1) Bastiaanssen’s (1995) method, (2) Jack-
son et al.’s (1987) method, and (3) Choudhury et al.’s (1987)
method, with RMSE values of 0.09, 0.15, and 0.2, respec-
tively. Evaluation of such methods embedded with the LST
data is recommended for further research where data is avail-
able. The results of this study indicate that the performance
of the different methods varied at some sites. However, the
differences among the methods were not significant at global
sites as a whole.

In general, the LC method and the methods embedded
with the NDVI accurately simulated half-hourly G series at
most global sites. There was little difference in simulation
accuracy between the different models. However, the perfor-
mance was poor at some sites. Moreover, the optimal values
of the model parameters differed among the different sites.
This has also verified by Chen et al. (2019). These issues
need to be considered in RS–ET models to improve simu-
lation accuracy. The optimal parameter values for each site
showed relative stability between different half-hour periods
in the daytime, indicating that it was feasible to apply the
same coefficient value in different daytime periods.

5 Conclusions

Intra-day and daytime G accounted for 19.2 % and 28.8 %
of Rn, respectively. This indicates that G plays an important
role and cannot be ignored in RS–ET models. The accuracy
of the five G simulation methods in energy-balance-based
RS–ET models was evaluated using half-hourly observations
from 230 flux sites. The LC method and the methods embed-
ded with the NDVI could accurately simulate a half-hourly
G series at most sites. The mean and median NSE values of
all sites were generally higher than 0.50 in each half-hour
period. However, the two methods embedded by fractional
vegetation coverage in theG simulation showed poor perfor-
mance in most half-hour periods, except for the periods of
06:00–07:00 and 17:00–18:00, with mean and median NSE
values of all sites being below 0.20. The poor performance
might be caused mainly by the coarse-resolution vegetation
index data, which could not represent the scale of flux mea-
surements. The performance of each method was generally
consistent at different sites and time periods.

The accuracy of each method varied significantly at dif-
ferent sites and at half-hour intervals. The highest accuracy
was exhibited during 06:00–07:00, followed by the period of
17:00–18:00. A total of 92 % (211/230) of sites exhibited an

NSE of the LC method greater than 0.50 at 06:30. It showed
a slightly higher accuracy during night periods than during
daytime periods. The lowest accuracy was observed at noon
periods (10:00–15:30). For example, the sites with an NSE
exceeding 0.50 only accounted for 51 % (118/230) and 43 %
(100/230) at 10:30 and 13:30, respectively. The NSE values
of the different sites ranged from −0.37 to 0.94. The accu-
racy of the Northern Hemisphere sites was generally higher
than that of the Southern Hemisphere sites. In general, it
showed the highest accuracy at high-latitude sites and then
at middle-latitude sites, while it exhibited the lowest accu-
racy at low-latitude sites, especially at tropical sites. As for
the median NSE of 48 half-hour periods in the LC method,
the mean NSE values of the high latitudes and tropical sites
were 0.69 and 0.47, respectively. The performance of the
LC method and the methods embedded with the NDVI were
generally satisfactory at the Eurasian and North American
sites, with the NSE values of most sites exceeding 0.70.
Conversely, they exhibited relatively poor performance at the
African, South American, and Oceanian sites, especially the
African sites. Both the temporal and spatial distributions of
the accuracy of the G simulation were positively correlated
with the correlation between G and Rn. In other words, the
sites or periods with stronger correlations betweenG and Rn
have higher simulation accuracy.

Overall, the LC, LC_NDVI_P, and LC_NDVI_E methods
accurately simulated the G series at most observation sites
and half-hour periods in the intra-day, with an NSE value
exceeding 0.50. However, the performance of these methods
was poor at some sites and time periods. This negatively af-
fects the accuracy of energy-balance-based RS–ET simula-
tions. The application of RS–ET datasets covering these sites
requires caution. The performance was best in the wetland-
and other-type sites and was worst at the savanna-type sites.
Improvement of G simulation at low-accuracy regions, such
as low-latitude regions and savanna-type sites, is recom-
mended for the RS–ET modelers. The weak correlation be-
tween the G and Rn is the physical reason for the poor ac-
curacy of G simulation in these regions and sites. Instead of
the Rn, finding another variable that has a physical connec-
tion and a strong correlation withGmight be a more efficient
solution to improve the accuracy of the empirical estimation
method for G. In addition, the optimal parameter value of
each method varied significantly at different sites. Therefore,
the fixed parameter values in the G simulation methods do
not match the actual situation. Variable parameters are rec-
ommended in empirical methods ofG simulation to improve
accuracy.
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