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Abstract. When modelling contamination transport in the
subsurface and aquifers, it is crucial to assess the hetero-
geneities of the porous medium, including the vertical dis-
tribution of the aquifer parameter. This issue is generally ad-
dressed thanks to geophysical investigations.

As an alternative, a method is proposed using estimated
hydraulic parameters from a 2D calibrated flow model
(solely reliant on piezometric series) as parametrization con-
straints for a 3D hydrogeological model. The methodology
is tested via a synthetic model, ensuring full knowledge and
control of its structure. The synthetic aquifer is composed of
five lithofacies, distributed according to a sedimentary pat-
tern, and functions in an unconfined regime. The level of
heterogeneity for hydraulic conductivity spans 3 orders of
magnitude. It provides the piezometric chronicles used to in-
verse 2D flow parameter fields and the lithological logs used
to interpolate the 3D lithological model. Finally, the param-
eters of each facies (hydraulic conductivity and porosity) are
obtained through an optimization loop, which minimizes the
difference between the 2D calibrated transmissivity and the
transmissivity computed with the estimated 3D facies param-
eters.

The method estimates values close to the known parame-
ters, even with sparse piezometric and lithological data sam-
pling. The maximal discrepancy is 45 % of the known value
for the hydraulic conductivity and 6 % for the porosity (mean
error 26 % and 3 %, respectively). Although the methodol-
ogy does not prevent interpolation errors, it succeeds in re-
constructing flow and transport dynamics close to the control
data. Due to the inherent limitations of the 2D inversion ap-
proach, the method only applies to the saturated zone at this
point.

1 Introduction

To simulate contamination transport in the subsurface and
aquifers, it is crucial to assess and reliably describe the het-
erogeneities of the porous medium. The development of in-
verse methods in recent decades is mainly based on two-
dimensional flow models and focused on the horizontal struc-
ture of heterogeneities with the collection of piezometric data
as a cornerstone (Poeter and Hill, 1997; Carrera et al., 2005;
Hendricks Franssen et al., 2009). But the latter is less sen-
sitive to the vertical structure of the aquifer, leaving its es-
timation dependent on complex and expensive field meth-
ods, for example, pumping tests (De Caro et al., 2020), tracer
tests (Linde et al., 2006), electrical resistivity (Coscia et al.,
2011; Priyanka and Mohan Kumar, 2019), radar tomogra-
phy (Boni et al., 2020), self-potential methods (Eppelbaum,
2021), crosshole testing (Klotzsche et al., 2013; Doetsch et
al., 2010), hydraulic tomography (Sanchez-León et al., 2015;
Luo et al., 2020; Fischer et al., 2020), and/or laboratory
analysis, for example grain-size analysis from core samples
(Marini et al., 2018) and ex situ permeability tests (Zhang
and Brusseau, 2005). The collection of this information, de-
scribing the vertical heterogeneity of the aquifer, allows for
the development of 3D inversion techniques. For example,
some successful methods combine direct parameter quantifi-
cation and stochastic geological modelling (Guadagnini et
al., 2004; Fu and Gómez-Hernández, 2008; Cardiff and Ki-
tanidis, 2009), and others incorporate water head data and
more advanced geophysical measurements to the (joint) in-
version procedure (Straface et al., 2011; Lee and Kitanidis,
2014).

Hydrogeological models are usually two-dimensional, and
transmissivities are estimated through model calibration.
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Two-dimensional models are easier to handle considering
fieldwork, parameter measurements, data manipulation, and
calibration than 3D models. We question here the possibil-
ity of transferring data from a 2D calibrated hydrogeolog-
ical model to a 3D configuration. Viaroli et al. (2019) re-
cently employed a simplified 2D model to specify the bound-
ary conditions and recharge of a 3D model already designed
by other means. Incidentally, the design and parametrization
of the 3D model itself are even more seldom independent
of geophysical methods. In this line, we propose an original
method using data from a 2D calibrated flow model (solely
reliant on piezometric time series) as parametrization con-
straints for a 3D hydrogeological model resulting from in-
terpolation of borehole data. The use of 2D calibrated trans-
missivities allows our technique to be completely unrelated
to geophysical methods and less heavily computational than
3D joint inversion approaches. Moreover, the articulation of
the method also allows a pre-existing 2D calibrated model to
be taken advantage of, if any.

The method is tested on a synthetic test case constituted
by five hydrofacies, distributed according to a sedimentary
pattern, with a level of heterogeneity for hydraulic conduc-
tivity spanning 3 orders of magnitude. This work can be con-
sidered an improvement of the method proposed by Harp et
al. (2008), who also tested the combination of 2D inversion
and an interpolation method but on a two-dimensional tran-
sect model composed of only two facies.

In order to evaluate our methodology’s robustness, it is
first carried out with a very profuse data sampling (piezo-
metric for the 2D inversion and lithological for the 3D model
interpolation), assessing the consistency between the differ-
ent numerical codes. Second, a sparser sampling is tested to
approximate more realistic field conditions.

The detail of the methodology is described in Sect. 2,
including the synthetic data framework, the mathematical
background of the tools used, and the link between them.
The results for both samplings concerning the inversions, the
facies interpolation, and the final model outputs (in terms
of parameter, piezometric series, and contamination plumes)
are discussed in Sect. 3.

2 Material and methods

The methodology we propose and analyse in this paper is the
following:

1. We propose estimates of transmissivity and porosity
from a 2D calibrated flow model based on piezometric
heads. These transmissivities exist for each element/cell
of the 2D mesh. It is a huge dataset constrained by the
piezometric heads.

2. We analyse the aquifer lithology at boreholes. Lithol-
ogy is usually described at each borehole. It provides
a qualitative description of aquifer heterogeneity. This

qualitative description can be interpreted in terms of fa-
cies. This description is used here to define an optimal
number of facies that have been identified within the
aquifer.

3. The 3D discretization of the aquifer is a vertical exten-
sion of the 2D model, which avoids interpolation of the
2D parameters. Facies are interpolated over the 3D do-
main based on the borehole local data.

4. The hydraulic conductivity and porosity for each facies
are estimated through optimization using the 2D data,
which are considered to be vertical integrations of the
3D data. Optimization is required because the number
of unknowns is quite small (twice the number of facies)
compared to the number of constraints (twice the num-
ber of elements of the 2D flow model at the most). Of
course, the constraints are correlated through the flow
model and cannot be considered independent.

To evaluate this approach, we built a synthetic test case
(Fig. 1) generated by the following:

1. a 3D aquifer design;

2. computation of the 3D flow using the software TRACES
(Hoteit and Ackerer, 2004);

3. selection of representative head data, used as constraints
for the 2D inversion after vertical averaging;

4. estimation of transmissivities and mean vertical poros-
ity by a 2D flow model calibration based on the selected
head data using PINOGRI (Rambourg et al., 2020);

5. selection of representative boreholes for lithological
data and facies definition;

6. design of the 3D facies distribution using a geostatisti-
cal interpolator (GemPy; de la Varga et al., 2019) or a
deterministic interpolator (splines; Lee et al., 1997);

7. estimation of each facies’ hydrodynamic parameters
(hydraulic conductivity, porosity) using an optimization
procedure constrained by the 2D calibrated values;

8. comparison of local hydrodynamic parameters, sim-
ulated water heads, and concentrations between the
“true” aquifer and the reconstructed (estimated) aquifer.

The computations are run on a PC with Intel(R) Core(TM)
i7-6700 CPU @ 3.40 GHz processor and 16 GB RAM.

2.1 Synthetic three-dimensional dataset

2.1.1 The aquifer model

The synthetic aquifer consists of five hydrogeological facies
(also referred to as hydrofacies) distributed along a sedimen-
tary pattern over a 10× 10 km area and 20 m depth (Fig. 2).
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Figure 1. Methodology flowchart – TRACES: Transport of Radioactive Elements in Subsurface (Hoteit and Ackerer, 2004); PINOGRI: Pa-
rameter Inversion Numerically Optimized for Groundwater Issues (Rambourg et al., 2020); GEMPY: Open-source 3D geological modelling
(de la Varga et al., 2019); SPLINES: QGIS/SAGA multilevel B-spline interpolation (Lee et al., 1997).

Each hydrofacies is characterized by a hydraulic conduc-
tivity 5 times higher than the underlying facies (Table 1).
Their porosity is less heterogeneous as it is defined in the
range of permeable sedimentary materials (10 %–30 %). In
practice, a hydrofacies is defined by clustering lithofacies
with comparable hydrodynamic properties. The limitations
and pitfalls inherent in this step are not addressed in this
study, which is assumed to be flawless.

Hydraulic boundary conditions are of null-Neumann type
(no flux) except the northwest corner where a 21 m head
is imposed (Dirichlet boundary), acting as the outlet of the
aquifer. A constant pumping well (18 m3 h−1) is positioned
in the southeast part of the model, intercepting the whole
thickness. For solute transport, a zero solute flux is pre-
scribed at the boundary, except at the aquifer outlet, where
the outflow is considered purely advective.

The aquifer is exclusively fed by rainfall (720 mm yr−1

on average), which is assumed homogeneous over the whole
area. However, five different recharge patterns are imposed
according to the most superficial facies, whose hydrody-
namic parameters greatly influence the amount and dynamics
of water infiltration. Thus, recharge zone 5 (formed by the
most permeable surface facies) is subject to major and fast
infiltration, in contrast to zone 1 (least permeable), where the
seepage signal is very attenuated and spread over time (see
Sect. 3).

Figure 2. Three-dimensional facies distribution of the synthetic
aquifer and aquifer discretization – the black dot is the location of
the pumping well and the red dots the location of the contaminant
sources.
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Table 1. Synthetic hydrofacies parameters.

Facies F1 F2 F3 F4 F5

Hydraulic conductivity (m s−1) 1× 10−5 5× 10−5 2.5× 10−4 1.25× 10−3 6.25× 10−3

Effective (kinematic) porosity 10% 15% 20% 25% 30%
Global proportion1 51% 26% 10% 7% 6%
Superficial proportion2 11% 19% 23% 24% 23%
Recharge (mm yr−1) (% of rainfall) 21 (3%) 43 (6%) 64 (9%) 86 (12%) 107 (15%)

1 Proportion of facies at the scale of the whole domain. 2 Proportion of facies within the surface elements.

2.1.2 Piezometric and contamination reference data
generation

The behaviour of groundwater and dissolved contamination
is computed using TRACES (Transport of Radioactive Ele-
ments in Subsurface) software (Hoteit and Ackerer, 2004), a
numerical code written in FORTRAN 90 for the simulation
of flow and reactive transport in saturated/unsaturated porous
media.

The three-dimensional flow model is the combination of
the conservation of mass and Darcy’s laws, generalized to
also apply to the unsaturated zone (Darcy–Buckingham law),
resulting in the Jacob–Richards equation (Eq. 1):

∂θ

∂t
+ s

θ

φ

∂h

∂t
−∇ · (K∇h)= f, (1)

where θ and φ are the water content [–] and porosity [–], re-
spectively, necessary to deal with the unsaturated zone. s and
K are the specific storage coefficient [m−1] and hydraulic
conductivity tensor [m s−1], respectively. h is the water head
[m], and f is the sink–source term [s−1].

To limit inconsistencies with the 2D inversion (where un-
saturated flow is not addressed via a physical model), the 3D
model is reduced to a fully saturated approach. Therefore,
the flow equation (Eq. 1) is simplified and shown with the
adequate initial and boundary conditions as Eq. (2).
S ∂h
∂t
−∇ · (T∇h)= F

h(x,0)= h0 (x) x ε�

h(x, t)= hD (x, t) x ε 0D t ε [0,T ]
T∇h(x, t) ·n= qN (x, t) x ε 0N t ε [0,T ] ,

(2)

where S is the storativity [–], equivalent to the effective
porosity in an unconfined context. T is the transmissivity
[m2 s−1], the integration of the hydraulic conductivity over
the vertical of the model. F [m s−1] is the sink–source term,
x is a position in �, the model domain, and h0 (x) represents
the initial conditions. 0D and 0N are partitions of the do-
main boundaries that correspond to Dirichlet and Neumann
conditions, respectively, and n is the unit vector normal to
the boundary, counted positive outward. hD (x, t) is the pre-
scribed head value at the Dirichlet boundaries, and qN (x, t)

is the prescribed flux at the Neumann boundaries, both de-
fined at each time t of the simulated period T .

The assumption of a locally constant transmissivity is sat-
isfied, with water head variations of a maximum of 5.2 %
(and 3.5 % on average) of the local mean water head.

TRACES addresses the migration of contaminants via an
dispersion–diffusion equation, supporting adsorption, pre-
cipitation, and degradation (reactive transport) phenomena.
However, the study considers one inert species, giving form
to Eq. (3).

∂(θC)
∂t
−∇ · (θD∇C+ qC)=Q q =−K∇h

C (x,0)= C0 (x) x ε�

−(D∇C ·n)A(t)+B (t)C = q (t) t ε [0,T ] ,
(3)

where C is the solute concentration [kg m−3], D is the
dispersion–diffusion tensor [m2 s−1], q is Darcy’s velocity
[m s−1], and Q is the solute sink–source term [kg m−3 s−1].
C0 (x) is the initial concentration; and A(t), B (t), and q (t)
are the parameters to define the boundary conditions (see
Hoteit and Ackerer, 2004).

The dispersion and diffusion parameters are set identically
for all the facies (Table 2).

These parameters are transferred into the dispersion–
diffusion tensor as shown in Eq. (4).

θD = θDm · τ +DT ‖q‖δij +
(DL−DT)qiqj

‖q‖

with τ = θ7/3/φ2, (4)

where Dm is the molecular diffusion coefficient [m2 s−1],
and τ is the tortuosity factor of the porous medium [–] (ac-
cording to Millington and Quirk, 1961). DT and DL are the
transversal and longitudinal dispersivities [m], respectively,
while δ is the Kronecker function, with i and j the position
indexes in the tensors.

Flow and transport equations implemented in the code
TRACES are solved under transient or steady-state compu-
tation in 2D or 3D heterogeneous domains. Mixed hybrid
finite elements are used to solve the flow equation and the
diffusive–dispersive components of the transport. A mass
lumping formulation is used to limit the occurrence of nu-
merical oscillations. The advective part of the transport is
solved using a discontinuous Galerkin finite element method,
which also prevents numerical oscillations in the simula-
tions and strongly limits numerical diffusion. These numer-
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Table 2. Transport parameters.

Parameter Longitudinal Transversal dispersivity (m) Molecular diffusion

dispersivity (m) (horizontal) (vertical) (m2 s−1)

Value 1 0.1 0.1 10−9

ical schemes ensure an exact mass balance at the element
level and are very flexible in space discretization (triangu-
lar or quadrangular element in 2D, tetrahedral, prismatic of
hexahedral elements in 3D).

As shown in Fig. 2, the model consists of 10 440 triangular
prisms, 6193 nodes, and 27 544 facies. The horizontal edges
have a characteristic length of 500 m, while the vertical edges
are 2 m long.

The initial state of the water table is derived from a prelim-
inary steady-state calculation involving averaged recharge.
The aquifer is initially uncontaminated (C0 = 0 over the
whole domain) and undergoes a pollution episode from three
surface sources (Fig. 2), each discharging 0.1 g s−1 for the
first 24 h of the simulated time.

2.1.3 Structural and piezometric reference data
sampling strategies

Structural (hydrofacies) and piezometric data are sampled
following two subsequent strategies in order to validate the
method (Fig. 3).

First, the methodology is conducted with a very dense
dataset (400 control points) to assess its potential under ideal
conditions and verify the numerical approaches’ compatibil-
ity. The piezometric chronicles used for the inversion cover
the 9 years of simulation (see Sect. 3).

Second, a sparser dataset is extracted to evaluate the
method in more realistic conditions. The control points are
reduced to 40, and the piezometric chronicles are shortened
randomly (down to 2 years). Meanwhile, the hydrofacies logs
extracted at the location of the control points are kept in their
integrity.

The sparse sampling is pseudo-random so that each
recharge area is covered. The points at each corner of the
model are included in both sampling strategies to avoid ex-
trapolation issues. The sparse sampling accounts for 10 % of
the lithological information of the dense dataset and only 6 %
of the water head data.

2.2 Two-dimensional flow model inversion

The sampled piezometric data are used as inversion con-
straints for the PINOGRI (Parameter Inversion Numerically
Optimized for Groundwater Issues; see Rambourg et al.,
2020) software, developed at ITES (Strasbourg). As water
heads are less sensitive to the vertical heterogeneities of
the porous media, the inversion approach is restricted to a

Figure 3. Transmissivity map of the aquifer and location of the
wells for sparse (black dots) and dense (white dots) samplings.

two-dimensional scale, where heads are vertically averaged.
This step results in the estimation of transmissivity and aver-
age porosity fields at the scale of each mesh of the model.
The inversion procedure consists of minimizing an objec-
tive function (the quadratic difference between measured and
computed piezometric heads) with parameter optimization
guided by a gradient descent method.

Although piezometric data are subject to uncertainty in a
field context, we do not address this aspect in the present
study, and the water heads’ measurement errors are consid-
ered negligible.

2.2.1 The flow model

Two-dimensional groundwater flow in the aquifer is de-
scribed by a diffusion-type equation, akin to the TRACES
approach, but with a constant head over depth assumption
(Dupuit–Forchheimer’s hypothesis), reducing the problem’s
dimension.

The mathematical model is solved by a two-dimensional
nonconforming finite element method (Crouzeix and Raviart,
1973), ensuring flux continuity, mass balance (like the finite
volume method), flexibility in geometry, and rigorous com-
putation of full tensor transmissivity (like conforming finite
elements, as stated by Ackerer et al., 2014). The time dis-
cretization scheme is implicit, giving the direct problem the
form of Eq. (5).

Aht = F t−1, (5)
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where h is the water head vector at the calculation time t , and
F is the sink–source term vector produced at the previous
time step. A is the flow coefficient matrix, depending on the
mesh geometry and the parameter vector.

2.2.2 The inverse problem

The groundwater flow parameters are estimated through the
minimization of an objective function (Eq. 6) based on
weighted least squares (Carrera and Neuman, 1986; Taran-
tola, 2005).

J (P )=
(
h(P )−h∗

)T W−1 (h(P )−h∗) , (6)

where J is the objective function, P represents the vector
of the parameters to be estimated, h∗ is the measured piezo-
metric head (obtained from vertical averaging of 3D sam-
pled data), and h is the corresponding simulated values. T is
the transpose operator, and W is the weighting matrix, de-
pending on measurement errors, able to prioritize optimiza-
tion effort on specific locations. Therefore, in this study, all
data are weighted equally. Moreover, because no a priori hy-
draulic parameters information is added in the study, the ob-
jective function does not include the plausibility criterion of
the maximum likelihood approach.

Due to the great number of parameters and measure-
ments, the minimization of the objective function is led
by a quasi-Newton method, which is less time-consuming
compared to Gauss–Newton and other Jacobian-based ap-
proaches (Kitanidis and Lane, 1985). The gradient and an
approximate Hessian of the objective function are calcu-
lated using the discrete adjoint state method (Carter et al.,
1974) and the limited-memory BFGS (Broyden–Fletcher–
Goldfarb–Shanno) algorithm (Byrd et al., 1995), respec-
tively. In our case, the adjoint state method is used to com-
pute the gradient of the objective function (required by the
L-BFGS algorithm) as an optimization problem of a La-
grangian, constrained by the head values obtained from the
direct calculation. On the other hand, instead of calculating
the sensitivity coefficients for each parameter at each iter-
ation required by Newton methods, the L-BFGS algorithm
(quasi-Newton) approaches a Hessian approximation by con-
verging an initial matrix (e.g. the identity matrix) accord-
ing to the results from a limited number of previous itera-
tions. As the parametrization of the inversion can lead to a
high number of degrees of freedom, this set of techniques
has been found more efficient than standard sensitivity ap-
proaches (Townley and Wilson, 1985). Finally, three stop-
ping criteria are set to end the algorithm: (i) the objective
function J or its gradient is sufficiently low, (ii) the adjust-
ment of the parameters P or the decrease of J between two
iterations is too small, or (iii) the number of iterations has
reached a user-set maximum value.

Incidentally, the inverse problems generally suffer from
being ill-posed; i.e. the number of data (locally known
piezometry) is too low compared to the number of un-

knowns (hydraulic conductivity and porosity at the scale of
each mesh element). This leads to issues of non-uniqueness
and instability of solutions. One way to limit these in-
conveniences is to reduce the number of unknowns via a
parametrization technique. In PINOGRI, the parameter spa-
tial pattern is inferred using an adaptive multiscale trian-
gulation (AMT; Majdalani and Ackerer, 2011; Hassane and
Ackerer, 2017). The parameters, borne by the vertices of the
AMT mesh, are interpolated into each element of the cal-
culus mesh (see Fig. 4). If during the inversion process, the
minimization criteria are not met at the scale of a parame-
ter cell, the latter is divided into four, increasing the opti-
mization’s degrees of freedom. Refinement is halted either
when the objective function at the element level drops be-
low a user-defined threshold, when the number of iterations
reaches a user-defined maximum, or when the last iteration
fails to produce a better optimization than the previous one.
This adaptive approach allows for more flexibility and needs
fewer preconceptions about the model structure than fixed
parametrizations, such as zonation or interpolations. A de-
tailed description of the mathematical developments and the
algorithm can be found in Ackerer et al. (2014) and Hassane
and Ackerer (2017).

A maximum of three adaptive multiscale iterations is set
to ensure a satisfactory calibration while preventing over-
parametrization.

The boundary conditions of the 2D approach are exactly
the same as for the 3D synthetic model. In contrast, the initial
conditions cannot be integrally transposed, the knowledge of
the water head being limited by data sampling. Thus, the ini-
tial water head for the 2D approach is derived from prelim-
inary steady-state inversions constrained by time-averaged
water head data.

The parameter bounds of the inversion are 5×10−6
−5×

10−2 for the hydraulic conductivity [m s−1] and 6 %–30 %
for the porosity.

2.3 Facies interpolation

For comparison purposes, two interpolation methods are
used to reconstruct the 3D facies distribution, both based
on sampled lithological logs. The interpolation estimates the
distribution between control points, using statistical depen-
dency of measures in the case of geostatistical methods or
drawing geometric surfaces independently of the spatial sta-
tistical repartition in the case of deterministic methods. For
both approaches, the resulting 3D models contain only quali-
tative (indicator) data. The interpolation methods selected are
not exclusive, as the general methodology presented can ac-
commodate any interpolation tool that produces a 3D facies
model.

Hydrol. Earth Syst. Sci., 26, 6147–6162, 2022 https://doi.org/10.5194/hess-26-6147-2022
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Figure 4. Inversion algorithm (adapted from Rambourg et al., 2020) – on the left, the general algorithm, and on the right, the adaptive
parametrization and its first refinement pattern.

2.3.1 GemPy (geostatistical interpolation)

GemPy (de la Varga et al., 2019) is an open-source 3D ge-
omodelling package written in Python. It specializes in the
reconstruction of stratigraphic series, with the possibility of
modelling complex environments by adding faults, folds,
plutonic intrusions, and other anomalies. GemPy’s mathe-
matical background is a development of the work of Lajaunie
et al. (1997; Calcagno et al., 2008), using universal cokriging
methods to interpolate potential fields (scalar fields).

Kriging covers a set of exact (unbiased) linear estimation
techniques that minimize the estimation variance using the
variogram, a function representing the correlation level of a
random variable as a function of distance. Initially limited
to stationary variables (simple and ordinary kriging), univer-
sal kriging has extended the use of this type of geostatisti-
cal methods to non-stationary variables. Eventually, cokrig-
ing not only uses the spatial correlation of a variable with it-
self, but also incorporates the cross-correlations between two
or more random variables.

In the software, the interpolation concerns two types of
data: isosurfaces (including the interface between stacked
lithologies and the boundaries of fault planes or unconfor-
mities) on the one hand and surface orientation (the gradient
of the said isosurfaces) on the other hand. This last source of
data allows for the computation of a very smooth and contin-
uous sedimentary structure, which is rarely the case in other
freeware geostatistical tools (dell’Arciprete et al., 2012; Lan-
gousis et al., 2017). In our case, the orientations (geological
poles) are obtained by calculating the normal of the planes,
defined by triangulation between the hydrofacies interfaces
at the sampled data points.

Being specialized in geological modelling, GemPy han-
dles the second-order (weak) stationarity of universal krig-
ing by assuming a linear trend in the mean value of the scalar

field. In addition, the random function defined for universal
cokriging does not bear any physical meaning as it only aims
at ensuring equality at every point of the isosurface (no mat-
ter the value).

As a result, the cross-variogram, inherent to cokriging,
cannot be empirically determined. The shape of the surfaces
mainly depends on the orientations provided and on an ar-
bitrary spherical covariance function that only balances the
relative weight of the surfaces and their orientation in the
cokriging. Hence, the variogram parameters do not bear any
physical meaning as well and are arbitrarily chosen to en-
sure stability to the computation according to the GemPy’s
developers’ guidelines (De la Varga et al., 2019): the nugget
effect should be small (set to 10 in our case) and the range
equal to the domain’s extension (10 000 m in our case). As
the variogram is not differentiated according to the search
direction, the vertical component of the model must be exag-
gerated (×500 in our case) so that its dimension is compati-
ble with the previously quoted values.

Finally, GemPy produces a 3D facies model made of
50× 50× 10 hexahedron elements. After rescaling on the z
direction, it has the same extension as the mesh used for the
other models and a finer resolution. Henceforth, the facies in
the flow/transport mesh for TRACES are determined accord-
ing to the majority facies of the GemPy elements intersecting
each 3D prismatic element.

The calculation of both the scalar fields and their deriva-
tives is handled by the Theano Python library, which also al-
lows for developments toward stochastic modelling. A more
precise description of the software is available in De la Varga
et al. (2019).
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2.3.2 B-splines (deterministic interpolation)

Spline methods are also suitable for the construction of sedi-
mentary models characterized by smooth surfaces. By defini-
tion, their interpolation adjusts continuous polynomial equa-
tions to the data, ensuring no discontinuities and exact fitting
(Prautzsch et al., 2002). Splines can be assimilated to flex-
ible surfaces constrained to fit the observation values while
minimizing their bending energy. Contrary to a simpler deter-
ministic method (e.g. trend surface) that operates via a single
polynomial equation, splines represent the surface in pieces
and therefore require the computation of a large number of
equations.

However, this method is chosen for its ability to repro-
duce smooth surfaces, compatible with a sedimentary mor-
phology, and can be easily carried out through a GIS pro-
cedure (QGIS/SAGA multilevel B-spline interpolation; Lee
et al., 1997). To avoid anomalies in the stacking of the fa-
cies, the interpolation is carried on their thickness instead
of their boundaries’ z coordinates. In addition, the first un-
derlying facies is not interpolated but considered to be the
background (filling) lithology. The thicknesses of the four
remaining facies are delivered in raster format, with integer
values between 0 and 10 (i.e. the number of layers in the final
3D model) and a resolution of 200 m. Eventually, the facies
stacking is transcribed for each column of prismatic elements
in the 3D flow/transport mesh for TRACES according to the
same majority analysis as for the GemPy procedure.

2.4 Hydrofacies parametrization and 3D simulations

The lithological models resulting from the interpolations do
not have any assigned hydrodynamic parameters. Thus, an
optimization procedure is implemented to find the hydraulic
parameters of the five facies by minimizing the quadratic dif-
ference between 2D and 3D estimated transmissivities and
porosities (Fig. 1, Eq. 7). Both previous steps of the method-
ology draw continuous data over the modelled domain (2D
averaged parameters on the one hand and lithological struc-
ture on the other). Conceptually, the optimization could be
performed with as many constraints as the number of ele-
ments of the mesh. However, the inversion and interpolation
errors are expected to be minimal at the sampled data loca-
tion. Therefore, the algorithm is carried out only with the pa-
rameter values and the lithological successions in these loca-
tions, minimizing uncertainties related to lack of sensitivity
for transmissivity values or related to interpolation for litho-
logical data.

The optimization is handled thanks to a Levenberg–
Marquardt algorithm, whose unknowns are the hydraulic pa-
rameters (porosity and hydraulic conductivity) for each fa-
cies, i.e. 2×5 unknowns over the all domain. The constraints
are the 2D mean values (transmissivity and porosity) at the
sampled locations. In order to integrate the least number of
preconceptions in the method, the bounds of values within

which the algorithm can pick during the optimization are not
differentiated by facies (the bounds are 10−6 and 10−2 m s−1

for the hydraulic conductivity, 2 % and 50 % for the poros-
ity). The objective function of the optimization problem takes
the form of Eq. (7).

O =
∑

i

((∑
j
li,jpj −P i

)T
σ−1
i

(∑
j
li,jpj −P i

))
, (7)

where O is the objective function, i is the index for the con-
straint (i.e. the sampled location retained for the optimiza-
tion), j is the index for each facies, and li,j is the thickness
[m] of facies j at location i. p represents the parameters to be
optimized (the hydraulic conductivity or the effective poros-
ity of each facies) and P the 2D mean values calibrated dur-
ing the inversion stage, weighted by the matrix σ represent-
ing this calibration uncertainty. We consider only the diago-
nal of the matrix, containing the inverse of the variance given
at location i by the 2D calibration.

The final uncertainty of the optimized parameters is given
by Eq. (8).

εp = ϕ

(
Ô

m

)1/2 (
Cp
)1/2

, (8)

where εp is the uncertainty of the parameter p, Ô is the objec-
tive function at end of the optimization, and m is the number
of data. The coefficient ϕ is determined through Fisher’s dis-
tribution, assuming a normal distribution of the uncertainty
(for an estimation at 95 % of confidence, ϕ = 1.96). Cp is
the variance of the parameter p, derived from the Jacobian
(sensitivity matrix) of the model.

Once the optimization estimated each facies’ hydraulic pa-
rameters, the 3D model is parametrized. Flow and contam-
ination simulations are carried out with TRACES, as de-
scribed previously, with the new facies distribution and the
new parameter set. The boundary conditions and the recharge
distribution are kept unchanged from the reference synthetic
model. However, the initial state data are directly taken from
the 2D simulations.

3 Results and discussion

3.1 Calibrated 2D models

The inversion algorithm is run 80 times for each sampling
case to gather a set of possible solutions to the inverse prob-
lem, a model inversion lasting approximately 1 h on average
in these conditions. Each set of solutions is called a batch.

To avoid over-parametrization, the adaptive refinement of
the parameter grid, initially composed of 21 nodes (i.e. de-
grees of freedom for the minimization), is limited to three
refinements. The number of new parameter located at the pa-
rameter grid vertices is also constrained by the number and
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Table 3. Parameter variability between solutions in each batch.

Transmissivity Porosity
relative standard deviation relative standard deviation

Mean Max Mean Max

Dense sampling 0.5 % 8.7 % 1.0 % 22.1 %
Sparse sampling 0.2 % 2.1 % 1.5 % 23.4 %

Figure 5. Facies distribution of the models – the different facies are in greyscale; each model is shown with the ratio of misplaced facies at
the scale of the entire domain on the one hand and of the conditional data on the other hand.

location of the piezometric control points. Therefore, the fi-
nal average number of parameter nodes is 497 for the dense
sampling (400 control points) and 74 for the sparser sampling
(40 control points).

Each solution batch produces very stable parameter fields
(Table 3) and piezometer chronicles with a mean absolute
discrepancy of less than 5 mm compared to the sampled ref-
erence data. For the sparse sampling, the mean absolute error
increases to 37 cm when all control points from the dense
sampling are included in the evaluation.

The mean relative standard deviation of the parameter at
the element mesh scale stays at a very low level in both cases.
The variability of transmissivity is even lower for the sparse
sampling (0.2 % vs. 0.5 %), as it has fewer degrees of free-
dom.

The consistency between the estimated and the reference
parameters is described in Sect. 3.3.

3.2 Three-dimensional interpolations

As the reference model is shaped according to a simple sedi-
mentary pattern (absence of faults), both interpolation meth-
ods (geostatistical and deterministic) produce results of sim-
ilar quality.

Differences in the facies composition of the models are
marginal, even with a sparse distribution of the conditional
data (Fig. 5).

The two percentages accompanying each model in Fig. 5
represent the proportion of elements incorrectly parameter-
ized for the whole dataset and the conditional data, respec-
tively. With a dense conditional data sampling, the determin-
istic approach yields slightly better results than the geostatis-
tical one (2.6 % vs. 4.8 % of elements parametrized with the
wrong facies). The GemPy algorithm handles sparser con-
straints slightly better (9.5 % vs 11.0 % of errors). However,
the differences between the two interpolation methods can be
considered small and assumed to be dependent on the case
study.

3.3 Parameter comparison

The results of the inversions (mean 2D values and their as-
sociated variance) and the known facies distributions at the
sampling location are used to optimize 3D hydrodynamic pa-
rameters as explained in Sect. 2.4. These optimized values
and their uncertainties are shown in Fig. 6.

In all cases, the hydraulic conductivity of each facies stays
in the same order of magnitude as the reference data (the
mean errors account for 26 % of the known hydraulic con-
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Figure 6. Calibrated facies parameter values and uncertainties – on
the x axes, the reference parameter values, on the y axes, the esti-
mated values. The facies are differentiated by colours, and the types
of parameter are differentiated by markers (hollow markers are for
sparse sampling). The 95 % confidence intervals are only reported
for the sparse models.

ductivity values). The largest discrepancy (0.26 log units,
45.5 % of the reference value in a linear scale) affects the fa-
cies 4 in the sparse-sampling-based estimation. The gaps be-
tween the data and the estimated porosity are also very low,
with mean and maximal absolute errors of 1.3 % and 2.9 %
(i.e. 2.9 % and 6.4 % of the data values). These consistent re-
sults are due to the fact that the parametrization optimization
is carried out with input at the sampled data location, where
the 3D facies vertical succession is known and where the er-
rors on the 2D mean parameters are low.

The uncertainty attached to the optimization varies with
the density of the data. The values related to the dense sam-
pling are negligible (the highest uncertainties are at 0.02
log units for the hydraulic conductivity and 0.5 % for the
porosity); therefore only the ones of the sparse sampling
are shown. At the most, the uncertainty extends over 0.44
log units for the hydraulic conductivity (facies 2) and 3.3 %
for the porosity (facies 5). Consequently, the confidence in-
tervals almost always include the corresponding reference
value.

The conjunction of the parameter discrepancies and facies
misplacements results in transmissivity errors, as shown in
Fig. 7. The transmissivity discrepancies are always below
1 order of magnitude and mostly below 0.2 log units. The
large-scale heterogeneities are very well reproduced in every
case, notably in the models based on sparse data.

Comparisons between the 2D parameters and the 3D pa-
rameters show that the estimation errors in the former do not
propagate entirely in the latter. Indeed, the errors of the in-
verse models are not only located at the interfaces between
the large-scale heterogeneities, but also at smaller scales,
within the heterogeneities, when the density of the constraint
data is reduced (in the absence of local piezometric data, the
hydrodynamic parameters are less constrained; see bottom
left of Fig. 7). The 3D interpolation techniques are not sub-
ject to these small-scale errors as they generate very smooth
and continuous facies distributions (Fig. 5). Therefore, the
final discrepancies are mainly at the transitions between the
large-scale horizontal heterogeneities where the facies inter-
polation generates errors (in particular, the overestimation
of transmissivity is visible where the interpolations have ex-
tended facies 1 in excess).

3.4 Piezometric head comparison

In view of the few parametrization errors produced with the
dense sampling, the results with respect to piezometry are
shown only for the sparse sampling. In addition to the sim-
ulations incorporating the optimized hydrodynamic parame-
ters per facies, four additional runs are conducted for each
interpolation method in order to study the propagation of pa-
rameter uncertainties. For each additional run, the parameter
values are set as follows: (i) at the upper bound of the confi-
dence interval, (ii) at the lower bound, (iii) alternately at the
lower (for the facies 1, 3, 5) and upper (facies 2, 4) bounds,
and (iv) alternately at the lower (for the facies 2, 4) and up-
per (facies 1, 3, 5) bounds of the parameter confidence inter-
val. These simulations generate chronicles and maps whose
extreme values are retained to construct “envelope curves”,
showing the final uncertainty of the piezometry (Fig. 8).

The final piezometric state for each model (water head av-
eraged on the vertical) is shown in the central map of Fig. 8.
The piezometric contours are well reproduced, especially for
the 40 and 30 m isolines. Differences between the interpola-
tion strategies are marginal. The main discrepancy between
the models and the reference data is visible in the middle of
the right border of the domain, where the interpolations un-
derestimated the presence of facies 1, in favour of facies 2.
However, the narrow confidence interval on the parameters
of facies 1 is reflected by a low uncertainty on the piezome-
try in the lower right corner of the domain, where this facies
predominates. In contrast, the uncertainty in piezometry is
significant where facies 2, 3, and 4 predominate.

The water head fluctuations are also consistent with the
reference chronicles over the entire period of simulation and
for every recharge zone. Amongst the chosen piezometers,
those identified with an asterisk were not used as constraint
data in the sparse sampling. The mean absolute errors of each
model are 44.6 cm for the GemPy model and 47.6 cm for the
B-splines. The deviations mainly take the form of a shift (by
excess or by default) in the base level when the fluctuations
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Figure 7. Map of transmissivity discrepancies – the values represent the difference between the models output and the initial synthetic data;
the samplings (dots) are underlined on the 2D calibrated (inverse) models.

are well reproduced. Overall, the parametrization discrepan-
cies (Fig. 6) are too small to significantly modify the flow dy-
namics. Combined with the small differences in the model’s
composition (Fig. 5), the water head equilibrium is slightly
shifted, as shown in the charts. Therefore, a more significant
deviation would occur in a permanent flow simulation (with
averaged recharge). As with the contour map, the highest lev-
els of uncertainty are for piezometers intercepting significant
thicknesses of facies 2 (P2, P3, P6, and P7), this one having
the widest confidence intervals.

3.5 Contamination comparison

The study of contaminant transport is another prime use of
hydrogeological models. The outputs of the transport simula-
tions are shown in Fig. 9, in the form of breakthrough curves
and iso-concentration maps (10 mg L−1) at different times of
the simulation. As for the piezometric data, envelope curves
of uncertainty are deduced from the four simulations involv-
ing the parameters at the bounds of the confidence intervals.

The models’ output errors are attributable to parametriza-
tion discrepancy on individual facies, interpolation misplace-
ments, and the accumulation of these same errors upstream of
each surveyed location. The results confirm that contaminant
transport is much more sensitive to parametrization errors
than piezometry. Indeed, the latter is governed by the trans-
missivity, where individual facies misparametrization can be

buffered by the vertical integration. For contaminant trans-
port, each voxel parametrization may influence the outcome.

For instance, source 1 is located on facies 1 in the refer-
ence model and on facies 2 in the interpolated models. There-
fore, the dynamics of the breakthrough curve and the pollu-
tant plume are significantly different (i.e. a lower spike due to
a higher porosity and a faster depletion due to a higher con-
ductivity). Conversely, the facies distribution is preserved in
the location of source S2 (in facies 4), where the discrepan-
cies are mainly due to hydrodynamic parametrization errors
on this very same facies.

Overall, the results at the outlet E and the plume maps
show that, in our case, the parametrization errors have a more
significant impact on the fate of sources S2 and S3 than for
source 1.

The confidence intervals on the facies parameters (espe-
cially on facies 2, 3, and 4) generate scenarios where the
plumes disappear early on the one hand or extend in excess
on the other hand.

3.6 Perspectives regarding uncertainties

In this study, only the uncertainty related to the calibration
of the 2D parameters is calculated and propagated to the 3D
models. However, it must be emphasized that in the context
of distributed hydrogeological models, many other sources
of uncertainty occur (Pechlivanidis et al., 2011).
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Figure 8. Comparisons of the 3D piezometric head variations. Piezometric head values (chronicles and map) are differentiated by colours
(black: reference model, purple: GemPy, green: B-splines). The dashed and dotted lines give the uncertainty intervals.

First, there are data uncertainties: piezometric measure-
ments, rainfall and radiative data (leading to recharge esti-
mates), and lithological descriptions (both in terms of their
categorization and altimetry) are all subject to error. Our ap-
proach via a synthetic case encouraged us to postpone this
aspect and to concentrate on the analysis of the methodol-

ogy. These uncertainties will be taken into account in future
work dealing with real cases.

Second, all uncertainties related to the parameters have not
been addressed in this study. Focused on the determination of
hydrodynamic parameters, it did not integrate the uncertainty
related to the dispersivity and molecular diffusion parameters
inherent to the contaminant transport phenomena.
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Figure 9. Contamination breakthrough curves. GemPy (green) and B-spline (yellow) parametrized models (dashed for sparse data) are
compared to the initial synthetic dataset (black). The two columns on the left show depletion or breakthrough curves, and the last column on
the right depicts contamination plumes at four different times.
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Third, the structure of the models and the way they are
defined also involve uncertainties. In particular, interpolation
methods produce uncertainty and propagate those inherent
in the lithological data (Phillips and Mark, 1996; Lloyd and
Atkison, 2001; White, 2017). Our data sampling strategy al-
lowed this pitfall to be circumvented, but it becomes unavoid-
able when there are significant gaps in the data.

Monte Carlo simulations (Wagener and Kollat, 2007;
Beven, 2009) allow for the joint estimation of these uncer-
tainties, at great computational cost (the simulations must
cover a range of value for each input or parameter at stake).
Several random (Olsson and Sandberg, 2002) or Bayesian
(Vrugt et al., 2009) sampling strategies are at hand in order
to reduce the number of iterations needed to obtain a repre-
sentative view of the uncertainties.

Integrating this type of analysis into the framework of our
method is one the important improvements planned.

4 Conclusions

A method has been developed to assess 3D aquifer pa-
rameters by combining hydrodynamic parameters estimated
by a 2D model calibration and 3D facies interpolation.
While direct 3D parameter estimation is generally based on
a heavy geophysical survey, the proposed methodology is
based solely on piezometric series and geological logs (com-
monly available at the same locations). Both 2D flow model
calibration and 3D interpolation parts of the algorithm are
independent. Therefore, the approach is not restricted to the
tools described in the article (i.e. other interpolation methods
than GemPy and B-splines can be used) and can potentially
incorporate a pre-existing 2D model.

The synthetic test carried out with a relatively sparse
dataset yields a consistent hydrodynamic parametrization
(highest discrepancy: 45.5 % of the initial value for hydraulic
conductivity, 6.4 % for effective porosity) and quite low er-
rors in facies distribution (11 % of misplaced facies at the
most). Subsequently, the reconstructed piezometric series
show very consistent dynamics, with a maximal mean differ-
ence of 47.6 cm, mainly due to shifting the base level, while
the fluctuations and the hydraulic gradients are generally un-
altered. The discrepancies concerning the transport simula-
tions are more significant, the phenomenon being more sen-
sitive to parametrization errors at the individual voxel scale.

Comparatively to joint inversion methods, the need of data
acquisition and the computation efforts are lower. However,
in a field context, the method is very dependent on the char-
acterization of the hydrofacies and the quality of the piezo-
metric survey. Indeed, if uncertainties related to the 2D flow
calibration were propagated to the 3D parameter optimiza-
tion and, thereafter, into the piezometry and contaminant
transport simulation, other sources of uncertainty hindering
the hydrogeological modelling process were not accounted
for at the time of publication. Among them, we can cite the

uncertainties related to input data, transport parameters, or
the structure of the model itself (especially the lithology in-
terpolation step).

Another pitfall of the method, inherent to the 2D step,
lies in the fact that low-hydraulic-conductivity facies may be
masked by more permeable facies in the transmissivity term,
making their parametrization somehow difficult. Also, some
other important modelling points are not addressed in the
study, for example, the vadose zone dynamics and the trans-
port parameters, which require separate estimates. Following
this synthetic case, we plan to test the method on a real case,
in order to confirm its operational potential, completed by
comprehensive sensitivity and uncertainty analyses.
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