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Abstract. While the calibration-free complementary rela-
tionship (CR) has performed excellently in predicting ter-
restrial evapotranspiration (ETa), how to determine the
Priestley–Taylor coefficient (αe) is a remaining question. In
this work, we evaluated this highly utilizable method, which
only requires atmospheric data, with in situ flux observations
and basin-scale water-balance estimates (ETwb) in Australia,
proposing how to constrain it with a traditional Budyko equa-
tion for ungauged locations. We found that the CR method
with a constant αe transferred from fractional wet areas per-
formed poorly in reproducing the mean annual ETwb in un-
regulated river basins, and it underperformed advanced phys-
ical, machine-learning, and land surface models in closing
grid-scale water balance. This problem was remedied by
linking the CR method with a traditional Budyko equation
that allowed for an upscaling of the optimal αe from gauged
basins to ungauged locations. The combined CR–Budyko
framework enabled us to reflect climate conditions in αe,
leading to more plausible ETa estimates in ungauged areas.
The spatially varying αe conditioned by local climates en-
abled the CR method to outperform the three ETa models in
reproducing the grid-scale ETwb across the Australian conti-
nent. We argued here that the polynomial CR with a constant
αe could result in biased ETa, and it can be constrained by a
traditional Budyko equation for improvement.

1 Introduction

Evapotranspiration (ETa) plays a pivotal role in water and en-
ergy exchanges between the land and the atmosphere. On the
global scale, more than 60 % of terrestrial precipitation (P )
returns to the atmosphere through plants’ vascular systems
and soil pores while consuming over 70 % of surface net ra-
diation (Trenberth et al., 2007, 2009). Since it is tightly cou-
pled with carbon cycles, abnormally low ETa would indicate
food insecurity and low ecosystem sustainability (Jasechko,
2018; Kyatengerwa et al., 2020; Pareek et al., 2020; Swann
et al., 2016). In severe cases, ETa limited by deficient soil
moisture can lead to extreme heatwaves that further propa-
gate the water deficit in space and time (Miralles et al., 2014;
Mueller and Seneviratne, 2012; Schumacher et al., 2022).

Despite great community efforts for sharing in situ ob-
servations (e.g., Baldocchi, 2020; Novick et al., 2018), ETa
gauging networks are unevenly established over land sur-
faces and often subjected to error sources (e.g., unclosed
energy balance) and limited data lengths (Ma et al., 2021).
Inevitably, modeling approaches are needed to predict ETa
in ungauged or poorly gauged areas or to characterize it
on a long timescale in a large area. Hence, various ap-
proaches have been proposed, including physical models
(e.g., Martens et al., 2017; Zhang et al., 2016), machine-
learning techniques (e.g., Jung et al., 2019; Tramontana et
al., 2016), and conceptual land surface schemes (e.g., Guim-
berteau et al., 2018; Haverd et al., 2018).
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Those modeling approaches typically require P data and
land surface information (e.g., remote-sensing vegetation in-
dices) to quantify available soil moisture to the vaporization
process. However, due in part to uncertainty associated with
P data (Sun et al., 2018) and model structures (Samaniego
et al., 2017; Zhang et al., 2019), resulting ETa estimates
have shown substantial disparities. In the comprehensive in-
tercomparison by Pan et al. (2020), for example, the 14 ad-
vanced land surface models generated the global mean ETa
varying widely between 450 and 700 mm a−1. Such a large
incongruity in modeled ETa was also found by the earlier
Global Soil Wetness Project (Schlosser and Gao, 2010), sug-
gesting that an alternative method is necessary to circumvent
the uncertainty sources.

A practical method to simulate ETa without P data and
land surface schemes is the complementary relationship (CR)
of evaporation (Bouchet, 1963). It uses the evident fact that
the air over a water-limited surface amplifies its vapor pres-
sure deficit (VPD), while this effect disappears when the
same surface is amply wet (Chen and Buchberger, 2018;
Ramírez et al., 2005; Zhou et al., 2019). Based on the at-
mospheric self-adjustment, numerous equations have been
formulated to predict ETa only using routine meteorological
data (e.g., Anayah and Kaluarachchi, 2014; Crago and Crow-
ley, 2005; Crago and Qualls, 2013; Hobbins et al., 2004;
Huntington et al., 2011; Kahler and Brutsaert, 2006 among
others). In particular, the definitive derivation by Brutsaert
(2015) and the following modifications (Crago et al., 2016;
Crago and Qualls, 2021; Szilagyi, 2021; Szilagyi et al., 2017)
provided strong physical foundations to the early principle of
Bouchet (1963). They have excellently predicted ETa at var-
ious spatial and temporal scales (e.g., Brutsaert et al., 2017,
2020; Crago and Qualls, 2018; Ma et al., 2019, 2021; Ma
and Szilagyi, 2019) and allowed users to assess vegetation
droughts over national and continental areas (e.g., Kim et al.,
2019, 2021; Kyatengerwa et al., 2020).

Nevertheless, definitive CRs still require at least some ETa
data to calibrate the parameters that determine the hypotheti-
cal wet-surface evaporation (ETw; Qualls and Crago, 2020);
thus, they are not fully free of P data or parameterization.
For instance, Brutsaert et al. (2020) calibrated the single pa-
rameter of the CR of Brutsaert (2015) with flux observations
and basin-scale P and runoff (Q) data to estimate mean an-
nual ETa across the globe. For evaluating four definitive CRs
from the derivation of Brutseart (2015), Crago et al. (2022)
also calibrated their parameters against eddy-covariance flux
observations. To date, Szilagyi et al. (2017) have proposed
the only CR formulation that purely uses routine meteorolog-
ical data; however, it depends on a questionable assumption
that the parameter for ETw is constant over a large conti-
nental area, being counterfactual to experimental studies on
the Priestley and Taylor (1972) coefficient (e.g., Assouline et
al., 2016; Baldocchi et al., 2016; Parlange and Katul, 1992;
Wang et al., 2014). Given the complex space–time links be-
tween climate, soil, and vegetation (Hagedorn et al., 2019;

Mekonnen et al., 2019; Rodriguez-Iturbe, 2000), the aerody-
namic component of ETw is unlikely represented by a fixed
fraction of the net radiation.

Owing to the data required for parameter calibration, the
state-of-the-art CR formulations might not be applicable in
ungauged locations. In part, this problem can be mended
by an additional constraint for determining the essential pa-
rameters, and the traditional Budyko framework can come
into play. A Budyko function (e.g., Fu, 1981; Yang et al.,
2008) explains the mean ratio of ETa to P (i.e., surface
water balance) simply by climatological aridity and a few
implicit parameters, simultaneously closing the surface en-
ergy budget (Mianabadi et al., 2020). Although Bouchet’s
principle has often been linked with the water balance de-
scribed by Budyko functions (e.g., Carmona et al., 2016;
Chen and Buchberger, 2018; Lhomme and Moussa, 2016;
Zhang and Brutsaert, 2021), this theoretical link has been
ignored when predicting ETa by the definitive CRs. Kim
and Chun (2021) explicitly showed that the atmospheric self-
adjustment is tightly coupled with the climatological aridity
within a Budyko function. This implies that the optimal pa-
rameter for a definitive CR should vary with climates rather
than staying constant.

In this work, we showed that a Budyko equation could be-
come an important physical constraint when predicting ETa
by a definitive CR over a continental area. Here, a practi-
cal approach was proposed to determine the parameter rea-
sonably in ungauged locations via a case study for the Aus-
tralian continent, where the performance of the CR method
remained unknown in many parts. Based on the analytical
relationship between the CR and the Budyko framework, we
showed why the parameter of the CR is not independent of
local climate conditions and addressed how to reflect spa-
tially varying climates in its essential parameter.

2 Methodology and data

2.1 The polynomial CR by Szilagyi et al. (2017)

For the case study, we employed the calibration-free CR
formulated by Szilagyi et al. (2017). It describes the atmo-
spheric self-adjustment to surface moisture conditions using
three evaporation rates, namely, ETa, ETw, and the poten-
tial evaporation (ETp). ETa is the actual moisture flux from
a land surface to the atmosphere, and ETw is the hypothet-
ical ETa rate that should occur with ample water availabil-
ity. ETp is the atmospheric capacity to receive water vapor
that responds actively to soil moisture conditions. By defin-
ing the two dimensionless variables as x ≡ ETw/ETp and
y ≡ ETa/ETp, Szilagyi et al. (2017) derived a polynomial
function from four definitive boundary conditions.

Under ample water conditions, ETp does not deviate from
ETw and ETa (i.e., ETp=ETw=ETa); hence, the corre-
sponding zero-order boundary condition is (i) y = 1 for x =
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1. In contrast, ETa must be nil over a desiccated surface
(i.e., y = 0), and by energy balance, the surface net radia-
tion should be fully transformed to the sensible heat flux.
Then, the atmospheric VPD would be amplified at the max-
imum level with the same net radiation and wind speed.
Defining the maximum ETp rate as Epmax, another zero-
order boundary condition is given as (ii) y = 0 for x =
xmin ≡ ETw/Epmax. When x = 1 (i.e., ample water), changes
in ETa would be controlled by changes in ETw, yielding a
first-order boundary condition as (iii) dy/dx = 1 for x = 1.
Over a desiccated surface, ETa stays at zero, even when
ETw changes; thus, another first-order boundary condition
becomes (iv) dy/dx = 0 for x = xmin. The simplest polyno-
mial equation satisfying the four boundary conditions is

y = 2X2
−X3, (1)

where X rescales the variable x into [0, 1] as

X =
x− xmin

1− xmin
=
Epmax−ETp

Epmax−ETw

ETw

ETp
. (2)

Equation (1) allows users to estimate ETa with no land sur-
face information because ETp, ETw, andEpmax are all obtain-
able from a set of net radiation, air temperature, dew-point
temperature, and wind speed data. ETp and Epmax can be es-
timated by the Penman (1948) equation:

ETp =
1(Ta)

1(Ta)+ γ

Rn

λv
+

γ

1(Ta)+ γ
fuVPD, (3)

Epmax =
1
(
Tdry

)
1
(
Tdry

)
+ γ

Rn

λv
+

γ

1
(
Tdry

)
+ γ

fues
(
Tdry

)
, (4)

where1(·) is the slope of the saturation vapor pressure curve
(kPa ◦C−1); Ta is the mean air temperature (◦C); γ is the psy-
chrometric constant (kPa ◦C−1); Rn is the surface net radi-
ation less the soil heat flux (MJ m−2 d−1); λv is the latent
heat of vaporization (MJ kg−1); fu = 2.6 (1+0.54u2) is the
Rome wind function (mm d−1 kPa−1), where u2 is the 2 m
wind speed (m s−1); and VPD is calculated by es (Ta) minus
es (Tdew), where es(·) is the saturation vapor pressure (kPa),
and Tdew is the dew-point temperature (◦C).
Tdry in Eq. (4) is the air temperature (◦C) at which the

lower atmosphere is devoid of humidity presumably by the
adiabatic drying process:

Tdry = Twb+
es (Twb)

γ
= Ta+

es (Tdew)

γ
, (5)

where Twb is the wet-bulb temperature (◦C) at which the satu-
ration vapor pressure curve intersects with the adiabatic wet-
ting line. Thus, it is obtained by

γ
Twb− Tavg

es (Twb)− es(Tdew)
=−1. (6)

To estimate ETw in Eq. (2), the Priestley–Taylor (1972) equa-
tion has been a typical choice (e.g., Brutsaert, 2015; Crago et

al., 2016; Han and Tian, 2018; Szilagyi et al., 2017):

ETw = αe
1(Tw)

1(Tw)+ γ

Rn

λv
, (7)

where αe is the Priestley–Taylor coefficient ranging usually
within [1.10, 1.32] (Szilagyi et al., 2017), and Tw is the wet-
environment air temperature (◦C). Tw can be approximated
with the wet-surface temperature (Tws) because the vertical
air temperature gradient is negligible under a wet environ-
ment. Given its independence on areal extent (Szilagyi and
Schepers, 2014), Tws can be approximated by the implicit
Bowen ratio (β) of a small wet patch:

β =
Rn−ETp

ETp
≈ γ

Tws− Ta

es (Tws)− es (Tdew)
. (8)

Equation (8) assumes that the available radiation for the wet
patch is close to that of the drying surface (Szilagyi et al.,
2017). Tws might be higher than Ta when the air is close to
saturation. In such a case, Tws should be capped by Ta when
calculating ETw.

The single parameter of the polynomial CR, i.e., αe, is an-
alytically obtainable by inserting the Priestley–Taylor equa-
tion into the Bowen ratio of a wet environment (Szilagyi et
al., 2017) as

αe =

[
1(Ta)+ γ

]
[es (Tws)− es (Tdew)]

1(Ta) {[es (Tws)− es (Tdew)]+ γ [Tws− Ta]}
, (9)

where αe must fall within the theoretical limit of [1, 1+
γ /1(Ta)] (Priestley and Taylor, 1972).

2.2 The analytical relationship between the polynomial
CR and a Budyko function

Since Eq. (9) is only applicable in a wet environment, Szi-
lagyi et al. (2017) identified wet locations in a continental
area based on the fact that the air close to saturation should
have high relative humidity (RH) with Tws > Ta. Thus, they
calculated αe values at locations with RH> 90 % and Tws >

Ta+ 2 ◦C, and the average value was used to predict ETa for
a continental area. However, the spatially constant αe is un-
likely suitable in such a large area under diverse climates be-
cause the equilibrium between the atmosphere and the under-
lying surface is intertwined with the partitioning of P to ETa
and Q over the surface.

Kim and Chun (2021) analytically related Eq. (1) with the
traditional Turc–Mezentsev equation and found that the self-
adjustment of ETp (i.e., x) is tightly linked with climatolog-
ical aridity and land properties. For the independence be-
tween P and “the possible maximum ETa” of the Budyko
framework, Kim and Chun (2021) reformulated the tradi-
tional equation with 80 ≡ ETw/P instead of the commonly
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used aridity index (8≡ ETp/P ) as

ETa

P
=

ETw

P

 1

1+
(

ETw
P

)n


1
n

=
xETp

P

 1

1+
(

xETp
P

)n


1
n

,

(10)

where the parameter n implicitly represents the factors af-
fecting the P partitioning other than the climatic drivers.
When dividing Eq. (10) by 8, it is found that the Budyko
Eq. (10) is intertwined with the Eq. (1) of the CR:

y =
ETa

ETp
= 2X2

−X3
=

[
xn

1+ xn8n

] 1
n

. (11)

Equation (11) implies that the self-adjustment of ETp (i.e.,
x) is tightly related with the climatic condition (i.e., 8) and
the implicit land property (i.e., n).

While the x and n can be achievable from a set of ETa,
ETp, Epmax, and P values by inverting Eq. (11), such an ap-
proach is not applicable in locations with no ETa data. To
quantify x values only using ETp, Epmax, and P , Kim and
Chun (2021) developed a regression equation between x and
8, xmin, and n values from 513 gauged river basins around
the world. We used the same regression-based regionaliza-
tion. Considering xmin = xETp/Epmax, the nonlinear expres-
sion in Eq. (11) can be approximated by a multiple regression
as

x̃ = b0+ b1 ln(8)+ b2 ln
(
ETp/Epmax

)
+ b2 ln(n), (12)

where x̃ is the approximate ratio of ETw to ETp, and b0, b1,
and b2 are the intercept and the regression coefficients. Since
the implicit parameter n is unavailable in ungauged locations,
Eq. (12) needs to be further simplified by neglecting the last
term:

x̃ ≈ c0+ c1 ln(8)+ c2 ln
(
ETp/Epmax

)
, (13)

where c0, c1, and c2 are the intercept and the coefficients of
the approximated regression.

If x̃ is known by the regression by Eq. (13), the parameter
αe can be estimated using the Priestley–Taylor equation as

α̃e = x̃
ETp

ETeq
(14)

ETeq =
1(Tw)

1(Tw)+ γ

Rn

λv
, (15)

where α̃e is the Priestley–Taylor coefficient that approxi-
mately satisfies the CR and the Budyko equations together,
and ETeq is the equilibrium ETa (mm d−1) at which VPD
is nil under a wet environment. It should be noted that P ,
ETp, Epmax, and ETeq within Eqs. (10)–(13) must be on a
timescale where the Turc–Mezentsev equation is valid (typ-
ically longer than a year), and α̃e is still bounded within [1,
1+ γ /1(Ta)].

2.3 Atmospheric forcing, eddy-covariance, and runoff
data

We examined the CR–Budyko combined framework in the
Australian continent lying within (10–45◦ S, 113–155◦ E).
The required atmospheric forcing data (Rn, Ta, Tdew, and
u2) were collected from the advanced ERA5-Land reanal-
ysis archive (Muñoz-Sabater et al., 2021) of the European
Centre for Medium-Range Weather Forecasts (https://cds.
climate.copernicus.eu; last access: 10 December 2021). The
monthly averages of surface latent and sensible heat fluxes,
2 m air temperature, 2 m dew-point temperature, and 10 m U

and V wind speed components at 0.1◦× 0.1◦ were down-
loaded for 1981–2020. Rn was calculated by summing the
two heat fluxes, and the 10 m wind speed components were
converted to u2 using the logarithmic wind profile (Allen et
al., 1998).

We also collected the Australian edition of the Catch-
ment Attributes and Meteorology for Large sample
Studies (CAMELS; Fowler et al., 2021) series of
datasets (https://doi.org/10.1594/PANGAEA.921850).
The CAMELS datasets comprise daily time series of 19
hydrometeorological variables at 222 unregulated river
basins in Australia up to 2014, and we selected the 71 basins
larger than 500 km2 to contain at least five CR ETa estimates
within the boundaries. The water-balance ETa (ETwb) (i.e.,
ETwb ≈

∑
P −

∑
Q) of each basin was calculated for the

two periods of 1981–1997 and 1998–2014. The mean annual
ETwb for the former period was used for the regressions
with Eqs. (12) and (13), and the predicted ETa was evaluated
against the latter.

As a point-scale evaluation dataset, the annual flux ob-
servations were taken from the 15 eddy-covariance stations
(Table 1) included in the FLUXNET2015 archive (https://
fluxnet.org/; last access: 1 July 2021). We chose the flux tow-
ers with two or more annual means and adopted the energy-
balance-corrected latent heat flux observations with the qual-
ity measures “LE_F_MDSQC” higher than 0.70. Given the
fine resolution of the ERA5-Land forcing data, we believed
that the ETa estimates by CR could be directly compared
with the point-scale observations.

In addition, as a grid-scale evaluation reference, the SILO
P data at 0.01◦× 0.01◦ were collected from the Queens-
land government (https://www.longpaddock.qld.gov.au/silo/
gridded-data; last access: 1 June 2021) together with the
Global RUNoff (GRUN) ENSEMBLE (Ghiggi et al., 2021)
(https://doi.org/10.6084/m9.figshare.12794075; last access:
1 October 2021). The global Q data were produced at 0.5◦×
0.5◦ using a machine-learning algorithm trained by in situ
streamflow observations, and potential biases were reduced
by simulations with 21 sets of atmospheric forcing (Ghiggi
et al., 2021). The SILO P was used to calculate 8 at each
grid of the forcing data. After bilinearly unifying the reso-
lutions of SILO P and GRUN Q data, we also calculated
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Figure 1. Spatial distributions of (a) the reciprocals of aridity index and (b) the mean annual ETa for 1998–2014 predicted by the CR with
αe = 1.15. The red circles and the gray polygons are the locations of 15 flux towers and the boundaries of 71 CAMELS basins. The blue-
colored points in (a) indicate the wet cells with RH> 90 % and Tws > Ta+ 2 ◦C. CR ETa was calculated at the grid cells where the land
fraction was larger than 50 %.

Table 1. List of the chosen FLUXNET2015 sites.

Site ID Long. (◦ E) Lat. (◦ S) Data period Site ID Long. (◦ E) Lat. (◦ S) Data period

AU-ASM 133.25 22.28 2010–2014 AU-Rig 145.58 36.65 2011–2014
AU-Cpr 140.59 34.00 2010–2014 AU-Stp 133.35 17.15 2008–2014
AU-DaP 131.32 14.06 2007–2013 AU-TTE 133.64 22.29 2012-2014
AU-DaS 131.39 14.16 2008–2014 AU-Tum 148.15 35.66 2001–2014
AU-Dry 132.37 15.26 2008–2014 AU-Wac 145.19 37.43 2005–2008
AU-Emr 148.47 23.86 2011–2013 AU-Whr 145.03 36.67 2011–2014
AU-Gin 115.71 31.38 2011–2014 AU-Wom 144.09 37.42 2010-2014
AU-How 131.15 12.49 2001–2014

the mean annual ETwb for 1998–2014 at 0.5◦×0.5◦ over the
entire Australian continent.

Against the grid-scale ETwb estimates, performance of the
polynomial CR was also compared with three ETa prod-
ucts from a physical, a machine-learning, and a land surface
model. The physical model was the Global Land Evapora-
tion Amsterdam Model (GLEAM) v3.2 (Martens et al., 2017;
https://www.gleam.eu; last access: 3 June 2020) based on the
Priestley–Taylor equation constrained by microwave-derived
soil moisture, surface temperature, and vegetation optical
depth. The machine-learning ETa product was the FluxCom
(http://www.fluxcom.org/; last access: 18 March 2019) that
upscaled in situ observations at 224 eddy-covariance towers
using 11 algorithms (Jung et al., 2019). We used the version
forced by the CRUNCEPv8 that has the longest data length
from 1950 to 2016. The land surface model product was the
ERA5-Land monthly ETa (https://cds.climate.copernicus.eu;
last access: 7 July 2021) simulated by the advanced Hy-
drology Tiled ECMWF Scheme for Surface Exchanges over
Land (Balsamo et al., 2015). All the modeled ETa datasets

were bilinearly regridded to 0.5◦×0.5◦ for 1998–2014 to be
compared with the grid-scale ETwb data.

3 Results

3.1 Performance of the calibration-free CR in Australia

Figure 1a depicts the spatial distribution of the inverted
aridity index (8−1

= P/ETp) that can traditionally catego-
rize climate conditions. The mean ratios between SILO P

and ETp for 1998–2014 indicated that 83 % of the Aus-
tralian land surfaces were under arid (0.05<8−1 < 0.2) and
semi-arid climates (0.2<8−1 < 0.5). Semi-humid (0.5<
8−1 < 0.65) and humid climates (8−1 > 0.65) were only
found in the northern and southeastern coastal areas and the
southwestern edge where major cities and agricultural lands
have developed. Despite the high aridity, hyper-arid climates
(8−1 > 0.05) were not found in Australia.

We first examined the calibration-free approach by Szi-
lagyi et al. (2017) that only uses the meteorological forcing
inputs. The blue-colored points in Fig. 1a are the locations

https://doi.org/10.5194/hess-26-5955-2022 Hydrol. Earth Syst. Sci., 26, 5955–5969, 2022
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Figure 2. The 1 : 1 comparison between the CR ETa estimates with αe = 1.15 and (a) the annual FLUXNET2015 observations and (b) the
mean annual ETwb of the 71 CAMELS basins for 1998–2014.

Figure 3. Same as Fig. 2 except αe = 1.10.

with RH> 90 % and Tws>Ta+ 2 ◦C, at which the αe values
from Eq. (9) were within 1.15± 0.047 (mean± standard de-
viation). Though the two conditions were met in some moun-
tainous areas in the southeastern part, we excluded them be-
cause unexpectedly high αe values were obtained. The mean
αe = 1.15 fell within the theoretical limits and was equal to
the value used in the prior studies in China (Ma et al., 2019)
and the conterminous United States (Ma and Szilagyi, 2019).

Using the CR with αe = 1.15, we predicted ETa over
the entire Australian continent (Fig. 1b). The distribution of
the resulting mean ETa for 1998–2014 was coherent with
that of 8−1. The mean CR ETa ranged in 262± 85.3 and
547± 173 mm a−1 under arid and semi-arid climates, re-
spectively. On the other hand, CR ETa in semi-humid and
humid locations was much higher, at 886± 187 mm a−1

and 1010± 213 mm a−1, respectively. The calibration-free
CR predicted the continental mean ETa to be as high as
489 mm a−1 for 1981–2012, and it was about 11.3 % higher
than the estimate for the same period (439 mm a−1) by Zhang

et al. (2016). The mean fraction of ETa to P for 1998–2014
(97 %) was larger than the typical ETa value in Australia
(∼ 90 %; Glenn et al., 2011), implicating that the constant
αe = 1.15 seemed to make the CR overrate ETa.

The overestimation of the calibration-free CR was con-
firmed by the flux observations and the basin-scale ETwb
(Fig. 2). The percent bias (p-bias) of CR ETa to the point-
scale annual ETa was +10.4 %, while it became more than
doubled when compared to the basin-scale ETwb. Though
the Pearson correlation coefficients (Pearson r) were signifi-
cantly high between the CR ETa and the two evaluation refer-
ences, the low Nash–Sutcliffe efficiency (NSE) to ETwb im-
plies that the CR method could perform poorly in wet river
basins. The regression slopes in Fig. 2 also indicate that the
calibration-free CR tends to increasingly overestimate as cli-
mate becomes wetter. The root mean square error (RMSE) of
CR ETa to ETwb was higher than to the point observations.
Although it appeared to perform acceptably at the 15 flux
towers, the CR method produced considerable biases in the
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Figure 4. The scatter plots between the x estimated by CR with ETwb for 1981–1997 and the corresponding (a) 8, (b) ETp/Epmax, and
(c) n values and (d) the 1 : 1 plot between the x from CR and the x̃ predicted by Eq. (17). The red x symbols are the outliers excluded from
the regression analysis.

71 CAMELS basins. The performance measures were not as
excellent as the same CR method had shown in the United
States (Ma et al., 2021; Ma and Szilagyi, 2019; Kim et al.,
2019) and in China (Ma et al., 2019).

One may argue that the mean αe derived from fractional
wet areas is unlikely representative of the large Australian
continent, and this might introduce the biases to CR ETa
estimates. Hence, we re-simulated CR ETa with the esti-
mate by Ma et al. (2021) (αe = 1.10) from a global-scale
analysis. Figure 3a shows that the predicted ETa became
nearly unbiased at the 15 flux tower locations and seemingly
suggests that the decreased αe could become a solution to
improving the CR method. Nevertheless, the fixed αe still
made the CR overestimate ETa in the CAMELS basins under
(semi-)humid climates, albeit slightly ameliorated (Fig. 3b).

3.2 The empirical relationship between x̃ and climate
conditions

Figures 2 and 3 imply that the calibration-free CR with a
fixed αe was unlikely good at closing the local water balance
in (semi-)humid river basins. To resolve this problem with
the CR–Budyko framework, first we estimated the climato-

logical x and the parameter n of the CAMELS basins using
Eq. (11) with the mean annual ETwb, P , ETp, and Epmax for
1981–1997. Figure 4a–c illustrate the scatter plots between
the resultant x and corresponding 8, ETp/Epmax, and n val-
ues. Pearson r values between the x and the other three vari-
ables were −0.88, −0.59, and 0.44, respectively (significant
at the 1 % level), suggesting that the self-adjustment of ETp
is not only correlated with climate conditions, but with land
surface properties at least in part. By regressing between the
x values and the log-transformed 8, ETp/Epmax and n, we
obtained an empirical relationship that enables us to spatially
predict the mean annual ratio of ETw to ETp as

x̃ =0.949− 0.204ln(8)+ 0.231ln
(
ETp/Epmax

)
+0.0712ln(n) . (16)

The regression coefficients were all significant at the 1 %
level, and the coefficient of determination (R2)was 0.98. The
regression equation was further approximated by discarding
n from the explanatory variables:

x̃ = 1.023− 0.220ln(8)+ 0.210ln
(
ETp/Epmax

)
. (17)

The R2 value of Eq. (17) declined to 0.93. We found that
the simple regression between x and 8 further reduced R2
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Figure 5. Distributions of (a) the α̃e values from Eq. (17) and (b) the mean annual ETa for 1998–2014 by the CR method with the α̃e values.

to 0.90. While the heterogeneous land properties exert non-
negligible influences, the regression analyses indicate that
the climatic condition dominantly explains the spatial vari-
ation of the atmospheric self-adjustment.

Equation (17) performed excellently in reproducing the x
values from CR with 8 and ETp/Epmax (Fig. 4d). The NSE,
RMSE, Pearson r , and p-bias between the predicted x̃ and
the x from CR were 0.93, 0.03, 0.96, and 0.0 %, respectively.

3.3 Evaluation of the CR and the advanced models
against the grid ETwb

By multiplying x̃ by the mean annual ratio between ETp and
ETeq, we determined α̃e across the Australian land surfaces.
The resulting α̃e values ranged within 1.13± 0.114, and the
median value was almost equal to the global estimate (1.10)
by Ma et al. (2021). They were relatively high in the north-
western and the northern part while being below the mean in
the southern and the eastern parts (Fig. 5a). On 19 % of the
surfaces, α̃e values were unity, and thus they might become
below the theoretical limit unless bounded.

We again generated CR ETa using the spatially vary-
ing α̃e values (Fig. 5b). The mean CR ETa for 1998–2014
ranged in 249± 78.8 and 530± 172.0 mm a−1 under arid
and semi-arid climates, while it decreased to 805.2± 209
and 932± 239 mm a−1 in semi-humid and humid regions,
respectively. The flux observations were still acceptably re-
generated with the less biases than in the case of αe = 1.15
(Fig. 6a). The α̃e based on the Budyko framework signif-
icantly reduced the biases introduced by the constant αe
in (semi-)humid basins. Albeit some biases remained, the
water-balance ETwb for 1998–2014 in the CAMELS basins
were better reproduced by the spatially varying α̃e (Fig. 6b).

To confirm the improved performance of the combined
CR–Budyko method across Australia, we resampled the new
CR ETa estimates to 0.5◦× 0.5◦ and compared them with
the grid ETwb data. The ETa products by GLEAM, Flux-

Com, and ERA5-Land were evaluated with the grid evalu-
ation reference. As shown, the CR method with a constant
αe = 1.15 overrated the mean annual ETa along the eastern
and the northern coastlines (Fig. 7b), underperforming the
physical, the machine-learning, and the land surface models
(Figure 8a). Although the smaller αe = 1.10 made the CR
method perform better, its predictability was still poorer than
the three advanced models, and the residual variance was as
large as in the case of αe = 1.15 (Fig. 8b).

In contrast, when employing the α̃e conditioned by lo-
cal climate conditions, the same CR formulation could al-
leviate the overestimation along the coastlines (Fig. 7c).
The Budyko-function-based α̃e led the CR ETa estimates to
neatly agree with the grid ETwb, and the residual variance
was much smaller than in the case of αe = 1.10 (Fig. 8c). The
CR method with α̃e clearly outperformed the three advanced
models in reproducing the grid ETwb estimates (Fig. 8d–f).
Although the referenced grid ETwb has some error sources
associated with the upscaling of P and Q, our comparative
evaluation suggests that conditioning αe with local climate
conditions could substantially reduce the uncertainty of CR
ETa estimates in ungauged areas.

4 Discussion

4.1 Constraining the CR with the Budyko framework
for ungauged areas

The CR explains the dynamic equilibrium between the atmo-
spheric ETp and the underlying moisture conditions, while
the Budyko framework describes the steady-state water bal-
ance with climatic controls (i.e., P and ETw). The analytical
link between the CR and the Budyko equations, hence, im-
plies that the atmospheric self-adjustment needs to be condi-
tioned by the long-term climate conditions. Constraining the
Turc–Mezentsev equation by the polynomial CR, Kim and
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Figure 6. Same as Fig. 2 except that the α̃e values from Eq. (17) were used for CR ETa.

Chun (2021) found that Q changes would be more sensitive
to climatic changes than when they were not linked. In the
opposite direction, the CR can be constrained by the Budyko
equation to determine its essential parameter.

In Crago and Qualls (2018), the optimal αe for the lin-
ear CR of Crago et al. (2016) varied largely between 1.00
and 1.43. This point-scale experiment has already suggested
that a constant αe is unlikely suitable for definitive CRs to
predict ETa in Australia. The ratio between the aerodynamic
and the radiation components of ETw is evidently affected by
the heat entrainment from the top of the boundary layer (Bal-
docchi et al., 2016), the dissimilarity between heat and water
vapor sources (Assouline et al., 2016), the large-scale syn-
optic changes (Guo et al., 2015), and the horizontal advec-
tion of dry-air mass (Jury and Tanner, 1975). More recently,
Han et al. (2021) proved the nonlinear dependence of ETw
on ETeq, and Yang and Roderick (2019) showed αe changing
with Rn over ocean surfaces. Hence, the constant αe assump-
tion underpinning the calibration-free CR is counterintuitive
to the theoretical and empirical evidence. Although Ma et
al. (2021) found some global applicability of the calibration-
free CR, its performance remains unknown in most of the
Australian surfaces and in many ungauged basins over the
world.

Since ETa plays a pivotal role in the terrestrial water and
energy balances, the partitioning of Rn into the latent and the
sensible heat fluxes cannot be independent of the partition-
ing of P into ETa and Q. On a mean annual scale, P and
ETw are the major determinants of the P partitioning, and
thus the parameter αe might not be independent of P. Given
the large variability of P, assuming a fixed αe across a con-
tinental area may introduce considerable biases to CR ETa
estimates. Thus, discarding available P data may not be a
good choice when predicting ETa by the CR method in un-
gauged areas. It is noteworthy that 8 dominantly explained
the spatial variation of the mean annual x of the 71 CAMELS
basins, and the α̃e values conditioned by local climates were

of a large spatial variation. This suggests that the CR with
a constant αe may produce unreliable ETa estimates in un-
gauged locations.

Nonetheless, the low performance with a constant αe does
not indicate that the CR method underperforms the sophis-
ticated ETa models. The simple polynomial CR seemed to
outperform the advanced the advanced physical, machine-
learning, and land surface models, when its parameter was
conditioned by local climates. The proposed CR–Budyko
framework enabled us to regionalize the optimal αe for the
CR method from gauged basins to ungauged locations in an
empirical manner. It should be highlighted that the CR with
spatially varying α̃e produced much smaller residual variance
than the three advanced models.

4.2 Remaining issues and caveats

In seven Australian eddy-covariance flux towers, Crago et
al. (2022) found that the optimal αe for the polynomial CR
was 1.35 for predicting daily ETa in the dimensionless form
(i.e., y = ETa/ETp). However, it was increased to 1.42, 1.45,
1.47, and 1.50 to simulate the dimensional latent heat fluxes
at daily, weekly, monthly, and annual timescales, respec-
tively. This implies that the timescale would largely affect
the optimal αe for the definitive CRs. Though the stationary
Budyko equation can become a constraint at a mean-annual
scale, how to capture the scale dependence of αe is a remain-
ing question.

Further questions can arise as to how to quantify ETp and
Epmax. For example, the αe values from ETp with the Rome
wind function rely upon an unrealistic assumption that the
aerodynamic resistance on a vegetated surface is equivalent
to that of an open-water surface. It is still unknown if this
assumption is practically valid because the Penman equation
with the Rome wind function may result in unrealistically
high ETp, even on a large wet area (McMahon et al., 2013).
Given the importance of the aerodynamic resistance in mod-
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Figure 7. Distributions of (a) the mean annual water-balance ETwb for 1998–2014 and the predictions by (b) CR with αe = 1.15, (c) CR
with spatially varying α̃e, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land.

Figure 8. Scatter plots between the mean annual ETwb for 1998–2014 at 0.5◦× 0.5◦ and the predictions by (a) CR with αe = 1.15, (b) CR
with αe = 1.10, (c) CR with spatially varying α̃e, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land.
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ulating surface temperature (Chen et al., 2020), ignoring its
variability may become a significant error source for the CR
method at both annual and subannual timescales.

In addition, there are some caveats in our case study. We
employed the meteorological data different from those used
in Ma et al. (2021). The ERA5-Land dataset is a downscaled
version of the ERA5 data (Hersbach et al., 2020) by which
Ma et al. (2021) predicted ETa globally. Ma et al. (2021) in-
corporated remotely sensed albedo and emissivity together
with a correction factor when calculating Rn, whereas we
used the sum of the ERA5-Land latent and sensible heat
fluxes. Those input differences may lead to differences in CR
ETa estimates.

The gridded GRUN Q, too, has some uncertainty sources,
though it is the ensemble of many runoff simulations from 21
different atmospheric forcing inputs. In the machine-leaning
process by Ghiggi et al. (2021), some Q observations af-
fected by human activities (e.g., dam regulation and return
flows from groundwater abstraction) might not be excluded,
potentially disrupting the empirical relationship between at-
mospheric forcing and natural flows. In addition, the uncer-
tainty of SILO P might be non-negligible in areas with lim-
ited weather stations and in mountainous areas (Fu et al.,
2022). Though we reduced the potential biases of the grid-
ded P and Q datasets by temporal averaging, the grid-scale
ETwb estimates should be treated as plausible values rather
than exact observations.

5 Summary

Via a case study in Australia, we showed that the polynomial
CR by Szilagyi et al. (2017) is unlikely to perform well when
local climate conditions are neglected. The assumption of a
constant Priestley–Taylor coefficient cannot reflect the long-
term water balance; thereby, CR ETa estimates can be biased.
We resolved this problem by conditioning the CR with the
traditional Budyko equation, and it allowed for a reasonable
determination of the essential parameter in ungauged loca-
tions. The following conclusions are worth emphasizing:

1. The constant Priestley–Taylor coefficient transferred
from fractional wet locations could make the CR
method perform poorly in closing the local water bal-
ance. The unrealistic assumption could make the CR
method underperform the advanced physical, machine-
learning, and land surface models.

2. The Budyko framework can play a role in determining
the degree of ETp adjustment at the mean annual scale.
It allows for upscaling of the Priestley–Taylor coeffi-
cients from gauged to ungauged locations.

3. The Priestley–Taylor coefficients conditioned by local
climates made the CR better close the basin-scale water
balance. The spatially varying Priestley–Taylor coeffi-

cients seemed to make the CR method outperform the
advanced ETa models.
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