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Abstract. Subseasonal streamflow forecasts inform a multi-
tude of water management decisions, from early flood warn-
ing to reservoir operation. Seamless forecasts, i.e. forecasts
that are reliable and sharp over a range of lead times (1–
30 d) and aggregation timescales (e.g. daily to monthly) are
of clear practical interest. However, existing forecast prod-
ucts are often non-seamless, i.e. developed and applied for a
single timescale and lead time (e.g. 1 month ahead). If seam-
less forecasts are to be a viable replacement for existing non-
seamless forecasts, it is important that they offer (at least)
similar predictive performance at the timescale of the non-
seamless forecast.

This study compares forecasts from two probabilistic
streamflow post-processing (QPP) models, namely the re-
cently developed seamless daily Multi-Temporal Hydrolog-
ical Residual Error (MuTHRE) model and the more tradi-
tional (non-seamless) monthly QPP model used in the Aus-
tralian Bureau of Meteorology’s dynamic forecasting system.
Streamflow forecasts from both post-processing models are
generated for 11 Australian catchments, using the GR4J hy-
drological model and pre-processed rainfall forecasts from
the Australian Community Climate and Earth System Sim-
ulator – Seasonal (ACCESS-S) numerical weather predic-
tion model. Evaluating monthly forecasts with key perfor-
mance metrics (reliability, sharpness, bias, and continuous
ranked probability score skill score), we find that the seam-
less MuTHRE model achieves essentially the same perfor-
mance as the non-seamless monthly QPP model for the vast
majority of metrics and temporal stratifications (months and

years). As such, MuTHRE provides the capability of seam-
less daily streamflow forecasts with no loss of performance at
the monthly scale – the modeller can proverbially “have their
cake and eat it too”. This finding demonstrates that seam-
less forecasting technologies, such as the MuTHRE post-
processing model, are not only viable but also a preferred
choice for future research development and practical adop-
tion in streamflow forecasting.

1 Introduction

Subseasonal streamflow forecasts (with lead times up to 30 d)
can be used to inform a range of water management deci-
sions, from flood warning and reservoir flood management
at shorter lead times (e.g. up to a week) to river basin man-
agement at timescales up to a month. The uncertainty in these
forecasts is often represented using ensemble and probabilis-
tic methods. Probabilistic streamflow forecasts have tradi-
tionally been developed and applied at only a single lead time
and timescale (e.g. Gibbs et al., 2018; Mendoza et al., 2017;
Souza Filho and Lall, 2003; Pal et al., 2013; Hidalgo-Muñoz
et al., 2015). However, since different applications require
forecasts over a range of lead times and timescales, recent
research has focussed on producing “seamless” forecasts,
i.e. forecasts from a single product that are (statistically) re-
liable and sharp across multiple lead times and aggregation
timescales (McInerney et al., 2020). For seamless forecasts to
be a viable replacement for more traditional “non-seamless”
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forecasts (i.e. forecasts for a single lead time and timescale),
it is important to establish that the performance of seamless
forecasts is competitive with their non-seamless counterparts
at the native timescale of the latter.

Recent research by McInerney et al. (2020) has shown
that seamless subseasonal forecasting is achievable. McIner-
ney et al. (2020) developed the Multi-Temporal Hydrological
Residual Error (MuTHRE) model for post-processing daily
streamflow forecasts in order to improve reliability across a
range of timescales. Using a case study with 11 catchments
in the Murray–Darling basin, Australia, it was concluded that
subseasonal forecasts generated using the MuTHRE stream-
flow post-processing model are indeed seamless because
daily forecasts are consistently reliable (i) for lead times be-
tween 1 and 30 d and (ii) when aggregated to the monthly
scale.

Seamless subseasonal forecasts are reliable over a wide
range of aggregation timescales (e.g. daily to monthly) and
lead times (1–30 d). In contrast, non-seamless forecasts are
either (i) only available at a single timescale (e.g. a post-
processing model developed directly at the monthly scale
does not generate daily forecasts) or (ii) cannot be reliably
aggregated to longer timescales (e.g. from daily to monthly).
The practical benefits of seamless forecasts are as follows.

1. Seamless forecasts can be used to inform decisions at a
range of timescales. Forecast users can utilise seamless
subseasonal forecasts to inform a wide range of deci-
sions, including the following:

– flood warning, where short-term forecasts (up to
1 week) on individual days are of practical interest
(Cloke and Pappenberger, 2009),

– managing hydropower systems, which can utilise
forecasts of inflow between 7 and 15 d to increase
production in the electricity grid (Boucher and
Ramos, 2019),

– managing reservoirs for rural water supply, where
forecast volumes over long aggregation scales
(e.g. weeks/months), and at long lead times (up
to 1 month), are required due to long travel times
(Murray-Darling Basin Authority, 2019), and

– operating urban water supply systems, where
monthly forecasts are of value (Zhao and Zhao,
2014).

2. Seamless daily forecasts are easily integrated into river
system models used for real-time decision-making. Per-
haps the greatest potential for seamless forecasts is their
use as input into real-time decision-making tools used
by urban and rural water authorities. These tools include
river system models (e.g. eWater Source; Welsh et al.,
2013), which run natively at the daily scale and are used
to inform resource management decisions over larger
timescales. Non-seamless streamflow forecasts cannot

be used as input into these models because they do not
match the timescale of the river system model or are not
reliable when aggregated to longer timescales (e.g. from
daily to monthly).

3. Seamless forecasts simplify forecasting systems, as a
single seamless product can serve a range of fore-
cast requirements at different timescales. As forecasts
are often required at multiple timescales (e.g. daily to
monthly), non-seamless forecast strategies require de-
veloping models (e.g. hydrological, statistical, or post-
processing) for each timescale of interest (e.g. a daily
model and a monthly model). Seamless forecasts offer
practical benefits to forecast providers, such as the Aus-
tralian Bureau of Meteorology, as they reduce the need
to develop multiple non-seamless forecasts for differ-
ent applications. A seamless forecasting system offers
a single product that can serve a wide range of forecast
requirements.

These practical benefits of seamless forecasts provide a
clear motivation for their development and use. However,
for seamless forecasts to be a viable replacement for non-
seamless forecasts, it is important that they do not come
at the cost of a substantial loss of performance at the na-
tive timescale of the non-seamless forecast. For example,
if aggregated forecasts from a seamless daily model were
considerably worse than monthly forecasts from an exist-
ing non-seamless model, then users of the monthly fore-
casts would prefer to continue using forecasts from the non-
seamless model. In general, one might expect forecasts from
a non-seamless model, developed and calibrated at single
timescale, to provide superior performance compared to fore-
casts from a seamless model calibrated at shorter timescale
and then aggregated. While the non-seamless model has only
one job to do, which is to provide quality forecasts at a sin-
gle timescale, the seamless model is expected to produce
good performance over a range of lead times and aggrega-
tion timescales. Herein lies a major challenge of seamless
forecasting.

Our interest in comparing the performance of aggregated
seamless forecasts with non-seamless forecasts at their native
timescale has similarities to previous research in aggregat-
ing deterministic streamflow predictions. For example, Wang
et al. (2011) found that the Wapaba monthly rainfall–runoff
model produced similar/better performance than aggregated
predictions from the SIMHYD and AWBM daily rainfall–
runoff models, despite only using observed monthly forcing
data. Yang et al. (2016) compared daily and sub-daily ver-
sions of the SWAT model (with daily and sub-daily observed
rainfall inputs) and found large differences in the partition-
ing of baseflow and direct runoff. However, to the best of the
authors’ knowledge, no studies have compared aggregated
probabilistic forecasts from a seamless model against proba-
bilistic forecasts from a non-seamless model.
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The aim of this study is to establish whether aggregated
forecasts from a (probabilistic) seamless model achieve com-
parable performance to those from a non-seamless (proba-
bilistic) model at its native timescale. This aim is achieved
by comparing the monthly forecast performance of the seam-
less MuTHRE post-processing model (aggregated from daily
to monthly) against the non-seamless monthly streamflow
post-processing model used in the Australian Bureau of Me-
teorology’s dynamic forecasting system (Woldemeskel et al.,
2018).

The remainder of the paper is organised as follows. Sec-
tion 2 describes the forecasting methods, with a focus on
the streamflow post-processing models, Sect. 3 introduces
the case study methods, Sects. 4 and 5 present and discuss
case study results, and Sect. 6 provides concluding remarks.

2 Forecasting methods

The forecasting methods investigated in this study share
a similar general structure but differ in the streamflow
post-processing (QPP) model. To facilitate the presenta-
tion, this section is organised as follows. The general struc-
ture is outlined in Sect. 2.1. Common features of the post-
processing models are described in Sect. 2.2. Specific details
of the MuTHRE and monthly QPP models are described in
Sects. 2.3 and 2.4.

2.1 General structure

The forecasting methods in this study employ a determinis-
tic hydrological model forced with an ensemble of rainfall
forecasts and combined with a streamflow post-processing
model. This general structure is illustrated schematically in
Fig. 1 and detailed next.

The deterministic hydrological model, h(θh;xt ,st−1), has
a (single) set of parameters θh, inputs xt (including forecast
rainfall xfoc), and states st−1 at time t − 1. In general, any
rainfall–runoff model can be used for this purpose; in our
case study, we employ the rainfall–runoff model GR4J (Per-
rin et al., 2003; see Sect. 3.2).

The streamflow forecasts are obtained in two steps.
First, an ensemble of Nfoc rainfall forecasts {xfoc(f )

;f =

1, . . .,Nfoc} generated by a numerical weather prediction
model are propagated through the deterministic hydrological
model to generate a corresponding ensemble of raw stream-
flow forecasts, {qraw(f )

;f = 1, . . .,Nfoc}. Second, a proba-
bilistic streamflow post-processing model is applied to the
raw forecasts to generate the (post-processed) streamflow
forecasts {q(f );f = 1, . . .,Nfoc}.

The streamflow post-processing models are constructed
using the residual error modelling approach. They comprise
a deterministic component and a residual error model. The
residual error model employs a streamflow transformation to
represent the heteroscedasticity and skew of the errors, an au-

toregressive term to represent error persistence, and compo-
nents to capture other features of errors such as seasonality.

We consider two forecasting methods which differ in the
structure and details of the streamflow post-processing model
as follows, with a schematic representation of these models
shown in Fig. 2a:

– Seamless MuTHRE streamflow post-processing model
(McInerney et al., 2020). The residual error model is
formulated at the daily scale and is applied directly to
(daily) raw streamflow forecasts. Conceptually, the en-
semble of raw streamflow forecasts accounts for fore-
cast rainfall uncertainty and the residual error model ac-
counts for hydrological uncertainty.

– Non-seamless monthly streamflow post-processing
(QPP) model (Woldemeskel et al., 2018). The residual
error model is formulated at the monthly scale. It is
applied to raw streamflow forecasts aggregated to the
monthly scale and collapsed to their median value.
Conceptually, the residual error model accounts for
both hydrological and forecast rainfall uncertainty.

The post-processing models also differ in their parameter
estimation (calibration) procedure. Figure 2b shows that the
MuTHRE model is calibrated using observed daily rainfall
and observed daily streamflow, whereas the monthly QPP
model is calibrated to forecast daily rainfall and observed
monthly streamflow (see Sects. 2.3.4 and 2.4.4 for details).

Figure 2c illustrates the key operational distinction be-
tween the models. The MuTHRE model produces seamless
daily streamflow forecasts that can be used at a range of lead
times and aggregation periods (e.g. daily, weekly, fortnightly,
and monthly). In contrast, the monthly QPP model produces
only 1-month-ahead non-seamless monthly forecasts.

The next section presents common features of the post-
processing models before moving to specific model details.

2.2 Streamflow post-processing model

2.2.1 Deterministic component

The deterministic component qdet
t is obtained from the

raw streamflow forecasts (Fig. 2a). The deterministic com-
ponent used in the seamless MuTHRE and non-seamless
monthly streamflow post-processing approaches are detailed
in Sects. 2.3.2 and 2.4.2 respectively.

2.2.2 Residual error model

The residual error model describing the relationship between
the probabilistic streamflow estimate Qt and the determinis-
tic component qdet

t is formulated as additive in transformed
space, as follows:

z(Qt ;θz)= z
(
qdet
t ;θz

)
+ ηt , (1)

where ηt is a random residual error term.
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Figure 1. Illustration of general approach used to produce streamflow forecasts. Layers represent ensemble members.

Figure 2. Conceptual diagrams of the seamless MuTHRE model and the non-seamless monthly QPP model. Ensemble components are
indicated with multiple layers. Panel (a) shows the post-processing model structure, including the deterministic component and the residual
error model (REM). Panel (b) shows the calibration approach to estimate the parameters of the streamflow post-processing model. Panel (c)
illustrates the key distinction between the forecasting products generated by the models, where the MuTHRE model produces seamless daily
streamflow forecasts that can be used at a range of lead times and aggregation periods (e.g. daily, weekly, fortnightly, and monthly), whereas
the monthly QPP model produces only monthly forecasts.
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The transformation z, with parameters θz, is used to reduce
the heteroscedasticity and skewness in residuals. We choose
the Box–Cox transformation (e.g. Box and Cox, 1964),

z(q;λ,A)=

{
(q+A)λ−1

λ
if λ 6= 0

log(q +A) otherwise,
(2)

with parameters θz = {λ,A}. The power parameter λ is set
to 0.2 in both streamflow post-processing models (McIn-
erney et al., 2017). In the seamless MuTHRE model, the
offset parameter A is inferred as part of the hydrological
model calibration (McInerney et al., 2020), while in the non-
seamless monthly QPP model, it is set to 1 % of the mean
observed monthly streamflow, i.e. A= 0.01×mean(q̃mon)

(Woldemeskel et al., 2018).
The residual error term ηt is standardised and then mod-

elled as a first-order autoregressive (AR1) process, as fol-
lows:

νt =
ηt −µt

αt
(3)

νt = φηνt−1+ yt , (4)

where µt and αt are the (time-varying) mean and scaling fac-
tor of ηt , φη is the lag-1 autoregressive parameter, and yt is
the random component (referred to as the innovation) at time
t .

When generating forecasts, recent streamflow observa-
tions are used to update errors via the AR1 model and reduce
uncertainty in ηt for short lead times.

2.3 Seamless MuTHRE model

2.3.1 Model structure

The seamless MuTHRE post-processing model operates at
the daily timescale. Uncertainty due to forecast rainfall and
hydrological errors is represented using the ensemble dress-
ing approach (Pagano et al., 2013). The ensemble of daily
raw streamflow forecasts, qraw, obtained by propagating
an ensemble of rainfall forecasts through the hydrological
model h, accounts for forecast rainfall uncertainty. A ran-
domly generated replicate of the residual term, η, is then
added to each of the Nfoc raw streamflow forecast ensemble
members to account for hydrological uncertainty. This pro-
duces an ensemble of Nfoc post-processed streamflow fore-
casts (see the schematic in Fig. 2a). Note that this approach
to capturing forecast rainfall and hydrological uncertainty re-
quires the rainfall forecasts to be reliable in order to produce
reliable streamflow forecasts (Verkade et al., 2017).

2.3.2 Deterministic component

In the context of Eq. (1), the deterministic component in the
MuTHRE model at its daily time step t is as follows:

qdet
t = q

raw(f )
t = h

(
θh;x

(f )
t ,st−1

)
, (5)

i.e. the residual error model is applied directly to each en-
semble member of the raw forecasts (Fig. 2a).

2.3.3 Residual error model

The MuTHRE model assumes that the mean of the resid-
ual error – µt in Eq. (3) – varies in time due to season-
ality and dynamic biases (associated with hydrologic non-
stationarity), as follows:

µt = µ
(s)
d(t)+µ

(b)
t +µ

∗. (6)

The seasonality component µ(s)
d(t) describes the mean value

of µ on the day-of-the-year d(t), the dynamic bias term µ
(b)
t

describes the mean value of µ (after removing seasonality)
over the preceding Nb d (Nb = 30 is used), and µ∗ is a con-
stant to capture the remaining bias. Full details of these terms
are provided in McInerney et al. (2020).

The scaling factor – αt in Eq. (3) – is constant (set to 1 for
simplicity).

Innovations are modelled using a two-component mixed
Gaussian distribution as follows:

yt ∼Nmix
(
µ1,σ

2
1 ,µ2,σ

2
2 ,w1

)
, (7)

where µ1 and µ2 are the means of the two components,
which are set to zero, σ1 and σ2 are the standard deviations
of the components, and w1 is the weight of the first com-
ponent. Compared to a standard Gaussian distribution, the
mixed Gaussian distribution allows for fatter tails (i.e. excess
kurtosis) in the distribution of innovations, which has been
shown to improve reliability of daily forecasts at short lead
times (Li et al., 2016). Note that the mixed Gaussian distri-
bution does not offer benefits at longer lead times, nor when
aggregating forecasts to the monthly scale (McInerney et al.,
2020).

2.3.4 Calibration of residual error model

The parameters of the residual error model
{µ(s),µ(b),µ∗,φη,σ

2
1 ,σ

2
2 ,w1} are estimated from the

following daily scale data (see Fig. 2b):

1. daily hydrological model simulations qsim forced with
observed rainfall x̃

2. daily observed streamflow q̃.

Seasonality (µ(s)) and dynamic bias (µ(b)) terms are cal-
culated using moving averages, parameters µ∗ and φη are es-
timated as the sample mean and lag-1 auto-correlation of the
detrended residuals, while the mixed Gaussian parameters
{σ 2

1 ,σ
2
2 ,w1} are estimated using maximum likelihood. Full

details of the calibration procedure are provided in McIner-
ney et al. (2020).
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2.4 Non-seamless monthly QPP model

2.4.1 Model structure

The non-seamless monthly QPP model operates at the
monthly timescale. The raw forecasts are aggregated from
daily to monthly scale and collapsed to their median value
yielding qdet,mon, i.e. the uncertainty from the raw streamflow
ensemble is discarded. The combined forecast rainfall uncer-
tainty and hydrological uncertainty are represented through
the residual error term η. Monthly streamflow forecasts are
obtained from qdet,mon by addingNfoc replicates of η (see the
schematic in Fig. 2a).

2.4.2 Deterministic component

The deterministic component in the non-seamless model at
its monthly time step t is computed as follows:

q
raw,mon(f )
t = average

(
q

raw(f )
t∗ ; t∗ ∈ T (t)

)
(8)

qdet
t =median

(
q

raw,mon(f )
t ;f = 1, . . .,Nfoc

)
, (9)

where T (t) is averaging window (range of days) correspond-
ing to the monthly time step t .

2.4.3 Residual error model

The residual error model is applied at the monthly scale af-
ter collapsing the ensemble of raw forecasts to a single time
series.

The monthly residual error model captures seasonality in
residuals by varying the mean µt and scaling factor αt in
Eq. (3) by month. Innovations are assumed to be independent
and identically distributed Gaussian, as follows:

yt ∼N
(
0,σ 2

y

)
, (10)

where σy is the standard deviation of the innovations.

2.4.4 Calibration of residual error model

The parameters of the monthly residual error model
{φη,σ

2
y , {µm,αm;m= 1, . . .,12}} are estimated from the fol-

lowing monthly scale data (see Fig. 2b):

1. monthly deterministic forecasts qdet,mon obtained using
forecast rainfall (as described in Sect. 2.4.2)

2. monthly observed streamflow q̃mon.

All parameters are calibrated using the method of mo-
ments. Full details are provided in Woldemeskel et al. (2018).

3 Case study

3.1 Catchments and data

The case study uses a set of 11 catchments from the Murray–
Darling basin in Australia, including four catchments on the

Upper Murray River (New South Wales and Victoria) and
seven catchments on the Goulburn River (Victoria). These
catchments have winter-dominated rainfall which leads to
higher streamflow between June and October (see Fig. 3) and
have less than 5 % of days with no flow. Catchment prop-
erties are summarised in Table 1. This same set of catch-
ments was used to extensively evaluate the MuTHRE model
in McInerney et al. (2020).

Time series of daily observed streamflow over a 22-year
period between 1991 and 2012 are obtained from the Hy-
drologic Reference Stations (HRS) dataset (http://www.bom.
gov.au/water/hrs, last access: 8 November 2022). Observed
rainfall and potential evapotranspiration (PET) data over
the same period are obtained from the Australia Bureau of
Meteorology’s climate data service (http://www.bom.gov.au/
climate, last access: 8 November 2022), with a climatologi-
cal average used for PET (McInerney et al., 2021a).

Rainfall forecasts are provided by the Australian Com-
munity Climate and Earth System Simulator – Seasonal
(ACCESS-S; Hudson et al., 2017). The ACCESS-S rainfall
forecasts are pre-processed using the method of Schepen et
al. (2018) in order to reduce biases and improve the reliability
in comparison to observed rainfall. An ensemble of 100 pre-
processed rainfall forecasts that begin on the first day of each
month and extend out to a maximum lead time of 1 month
are used.

3.2 Hydrological model

The conceptual rainfall–runoff model GR4J (Perrin et al.,
2003) is used as the deterministic hydrological model h for
simulating daily streamflow from rainfall and PET inputs
(see Sect. 2.1). GR4J has been widely used and evaluated
over diverse catchment climatologies and physical character-
istics (Perrin et al., 2003; Hunter et al., 2021). GR4J repre-
sents the processes of interception, infiltration, and percola-
tion and has four calibration parameters, where x1 is the ca-
pacity of the production store (mm), x2 is the water exchange
coefficient (mm), x3 is the capacity of the routing store (mm),
and x4 is the time parameter of the unit hydrograph (d).

3.3 Calibration/evaluation procedure

Calibration of model parameters and evaluation of forecasts
is performed using a leave-1-year-out cross validation pro-
cedure (McInerney et al., 2020). For each calendar year j ,
hydrological and residual error model parameters are cali-
brated using observed streamflow data from the entire evalu-
ation period, except for year j and the subsequent years j+1
to j + 4 (which are excluded to reduce the influence of sys-
tem memory on model evaluation, as described in Pokhrel et
al., 2013). Hydrological model parameters are estimated us-
ing likelihood maximisation based on the BC0.2 error model
(McInerney et al., 2020), implemented using a quasi-Newton
optimisation algorithm run with 100 independent multistarts

Hydrol. Earth Syst. Sci., 26, 5669–5683, 2022 https://doi.org/10.5194/hess-26-5669-2022
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Figure 3. Location of the 11 case study catchments (a) and mean observed streamflow for each month (b) and each year (c). Box plots in
panels (b) and (c) show distributions of mean observed streamflow over the 11 catchments.

Table 1. Properties of the 11 case study catchments.

Catchment Site ID Area Mean rainfall Mean runoff Runoff Zero flow Aridity
(km2) (mmyr−1) (mmyr−1) ratio d (%) index

Murray River at Biggara 401012 1257 1117 370 0.33 0 0.99
Jingellic Creek at Jingellic 401013 390 876 112 0.13 1.1 0.68
Cudgewa Creek at Berringama 401208 351 1127 209 0.19 0 0.90
Gibbo River at Gibbo Park 401217 390 1138 273 0.24 0 1.01
Acheron River at Taggerty 405209 629 1234 443 0.36 0 1.2
Delatite River at Tonga Bridge 405214 368 959 248 0.26 0 0.85
Goulburn River at Dohertys 405219 700 1156 424 0.37 0 1.0
Hughes Creek at Tarcombe Rd 405228 475 760 116 0.15 1.3 0.65
King Parrot Creek at Flowerdale 405231A 181 999 187 0.19 0 0.95
Seven Creeks River D/S Polly McQuinns Weir 405234 148 852 226 0.27 0 0.71
Seven Creeks River at Kialla West 405269 1513 655 93 0.14 3.0 0.53

(Kavetski and Clark, 2010). Methods for estimating resid-
ual error model parameters are described in Sects. 2.3.4 and
2.4.4.

Note that, in this work, we do not consider parametric
uncertainty (in the hydrological and residual error models),
which is expected to be a (relatively) minor contributor to to-
tal forecast uncertainty, given the long data period used in the
estimation; this simplification is common in contemporary
forecasting implementations (e.g. Engeland and Steinsland,
2014; Verkade et al., 2017).

For each year j , calibrated hydrological and error models
are used to generate an ensemble of 100 streamflow fore-
casts. Daily forecasts from the MuTHRE model begin on the
first day of each month and extend out to a maximum lead
time of 1 month (which is the same as the rainfall forecasts).

This calibration/forecasting process is repeated for all
22 years, resulting in 22 sets of 1-year forecasts, which are
subsequently merged into a single 22-year forecast to facili-
tate evaluation against streamflow observations.

3.4 Forecast evaluation

3.4.1 Performance metrics

Streamflow forecasts are evaluated using numerical metrics
for the following attributes:

– Reliability refers to the degree of statistical consistency
between the forecast distribution and the observed data.
It is evaluated using the reliability metric of Evin et al.
(2014). Lower metric values are better, with 0 represent-
ing perfect reliability and 1 representing the worst reli-
ability.

– Sharpness refers to the spread of the forecast distri-
bution, with sharper forecasts being those with lower
spread. We use the sharpness metric of McInerney et al.
(2020), which is based on the ratio of the average 90 %
interquantile range (IQR) of the forecasts and a climato-
logical distribution (described below). Lower values are

https://doi.org/10.5194/hess-26-5669-2022 Hydrol. Earth Syst. Sci., 26, 5669–5683, 2022
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better, with 0 representing a deterministic forecast (with
no spread) and 1 representing the same sharpness as cli-
matology. In contrast to the other attributes considered
here, sharpness is a property of the forecast only and
does not depend on the observed data.

– Volumetric bias refers to the long-term water balance
error. It is quantified using the metric of McInerney et al.
(2017) as the relative absolute difference between total
observed streamflow and the total forecast streamflow
(averaged over the forecast ensemble). Lower values are
better, with 0 representing unbiased forecasts.

– Combined performance is quantified using the continu-
ous ranked probability score (CRPS). The CRPS is de-
fined as the sum of squared differences between forecast
cumulative distribution function (CDF) and the empiri-
cal CDF of the observation. Note that the CRPS can be
decomposed into terms representing individual perfor-
mance aspects, namely reliability, and uncertainty/res-
olution (related to sharpness; Hersbach, 2000). We ex-
press this metric as a skill score (CRPSS) relative to the
climatological distribution. Higher CRPSS values are
better, with a value of 1 representing a perfectly accu-
rate deterministic forecast and 0 representing the same
skill as the climatological distribution.

The climatological distribution represents the distribution of
daily streamflow for a given time of the year based solely on
previously observed streamflow at that time of the year. It is
constructed using a 29 d moving window approach, which is
described in detail in McInerney et al. (2020).

3.4.2 Aggregation and stratification

The study focuses on the performance of the streamflow
post-processing models at the monthly scale. The monthly
MuTHRE forecasts are obtained by aggregating daily fore-
casts to the monthly scale. The monthly QPP model gener-
ates monthly forecasts directly.

Overall evaluation of monthly forecasts is performed using
data from the entire evaluation period, i.e. all months and
years, with more detailed stratified performance evaluation
performed for individual months and years.

We also demonstrate the ability of the MuTHRE model to
produce seamless forecasts, which are reliable over a range
of lead times and aggregation scales. This is achieved by
evaluating both (i) daily forecasts stratified by lead times
from 1 to 28 d and (ii) cumulative flow forecasts for peri-
ods of 1–28 d. The forecast is considered to be seamless if
reliability metrics are similar across all lead times and ag-
gregation scales. The evaluation of cumulative flow forecasts
expands on the analysis of McInerney et al. (2020), who eval-
uated only daily and monthly forecasts, and provides and im-
portant demonstration of seamless forecasting over the entire
range of timescales from 1 to 28 d. We note that cumulative
flow forecasts over 1 month correspond to monthly forecasts.

3.4.3 Evaluation of practical significance of differences
between streamflow post-processing models

Forecast performance of the two streamflow post-processing
models is compared across multiple catchments using prac-
tical significance tests, as described next. For each combina-
tion of performance metric (e.g. reliability) and stratification
(e.g. month), a statistical test is used to determine whether
differences in metric values over the range of catchments ex-
ceed a predefined margin representing practical significance
(relevance).

The statistical tests are performed using the paired
Wilcoxon signed rank test (Bauer, 1972), with controls ap-
plied to reduce the false discovery rate to 5 %, corresponding
to a confidence level of 95 % (Wilks, 2006; Benjamini and
Hochberg, 1995). The practical significance margin is taken
as 20 % of the median metric value for the non-seamless
monthly QPP model (following McInerney et al., 2020).

4 Results

4.1 Demonstration of seamless forecasting capabilities
of the MuTHRE model

4.1.1 Daily forecasts

Figure 4 illustrates the streamflow forecast time series in the
Biggara catchment (catchment ID 401012; see Fig. 3). Daily
forecasts from the seamless MuTHRE model for a represen-
tative time period beginning on 1 May 2002 are shown in
Fig. 4a. The observed daily streamflow lies within the 90 %
probability limits of the MuTHRE forecasts for each lead
time. As expected, the probability limits are tight for short
lead times (when forecast rainfall uncertainty and hydrolog-
ical uncertainty are small) and widen for longer lead times.

Figure 5 (left column) shows the performance of daily
forecasts from the MuTHRE model for lead times of 1 to
28 d, evaluated over all case study catchments. The key find-
ing from this analysis is that reliability is relatively constant
over all lead times, with median metric values lying in the
tight range of 0.04–0.06 (Fig. 5a). We also note that fore-
casts are sharper and have better CRPSS at short lead times
and that bias is relatively constant.

4.1.2 Cumulative flow forecasts

Figure 4b shows cumulative flow forecasts out to 28 d in the
Biggara catchment for the representative time period. The cu-
mulative flows based on observed streamflow lie well within
the 90 % probability limits of the MuTHRE forecasts for all
lead times.

Figure 5 (right column) shows the performance of cumu-
lative flow forecasts from the MuTHRE model for lead times
of 1 to 28 d over all catchments. Again, we see that relia-
bility is relatively constant over all lead times, with median
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Figure 4. Time series of daily and cumulative probabilistic forecasts from the seamless MuTHRE model for the Murray River at Biggara
(401012; see Fig. 3) for May 2002. The non-seamless monthly QPP model does not have the capability to produce these forecasts.

Figure 5. Performance of MuTHRE forecasts in terms of daily streamflow (a, c, e, g) and cumulative flow (b, d, f, h). Metrics are shown for
reliability (a, b), sharpness (c, d), volumetric bias (e, f), and CRPSS (g, h). The bars indicate the full range of metric values across the 11
case study catchments, and the line indicates the median metric values. Note the inverted y axis, for CRPSS, for visual consistency with the
other metrics.

metric values between 0.04 and 0.06 (Fig. 5b). We also note
that sharpness, volumetric bias, and CRPSS metrics are typ-
ically better for cumulative forecasts than for daily forecasts
(compare the left and right columns in Fig. 5).

In summary, the forecasts from the MuTHRE model are
seamless because they are reliable over (a) the range of lead
times and (b) multiple aggregation scales, from the shortest
scale of 1 d to the longest scale of 1 month, and everything
in between. This result confirms and extends previous find-
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ings in McInerney et al. (2020), who focused on daily and
monthly scales only. In contrast to the seamless MuTHRE
model, the non-seamless monthly QPP model does not have
the capability to produce forecasts of daily streamflow and
cumulative flows for time periods below 1 month.

4.2 Comparison of monthly forecasts

Figure 6 compares monthly forecasts from the seamless
MuTHRE model and non-seamless monthly QPP model for
the Biggara catchment. While there are some minor dif-
ferences between the two forecasts (e.g. the monthly QPP
model produces larger spread than the MuTHRE model dur-
ing 2010), the two forecasts are clearly very similar.

Figure 7 compares monthly forecasts from the MuTHRE
and monthly QPP models in terms of overall performance
(left column) and when stratified by month (middle column)
and year (right column). The key findings are as follows.

Reliability. Figure 7a shows similar overall reliability of
monthly forecasts from the MuTHRE and monthly QPP
models. While the median metric value of 0.06 for the
MuTHRE model is worse than the median value of 0.04 for
the monthly QPP model, these differences are not practically
significant (based on the test described in Sect. 3.4.3). Fig-
ure 7b shows that, when performance is stratified by month,
the two models have similar reliability (i.e. not practically
significant) for all 12 months. When stratified by year, the
MuTHRE model achieves similar reliability to the monthly
QPP model for 20 out of the 22 years, while the monthly
QPP model achieves practically significant improvements in
2 of the 22 years (Fig. 7c).

Sharpness. Figure 7d shows that the overall sharpness of
monthly forecasts from the MuTHRE model is slightly better
than the monthly QPP model (median metric values of 0.44
compared with 0.49), although differences are not practically
significant. Figure 7e shows that, when sharpness is stratified
by month, the MuTHRE model provides practically signifi-
cant improvement in September and similar performance in
the other 11 months. Figure 7f shows that the sharpness strat-
ified by year is similar for both models for all years.

Volumetric bias. Figure 7g shows that the overall volumet-
ric bias from both models is similar (median of 0.01). Fig-
ure 7h shows that, when stratified by month, the MuTHRE
model produces practically significant improvements in De-
cember and similar performance in the remaining 11 months.
Figure 7i shows that, when stratified by year, the MuTHRE
model produces practically significant improvements in
1 year (2005), and the monthly QPP model provides prac-
tically significant improvements in 3 years, with similar per-
formance in the remaining 18 years.

CRPSS. In terms of overall CRPSS, Fig. 7j shows that
the MuTHRE model (median metric value of 0.45) provides
slight improvement over the monthly QPP model (median
metric value of 0.42), although these differences are not prac-
tically significant. Figure 7k shows that, when stratified by

month, the MuTHRE model provides similar performance in
all 12 months. Figure 7i shows that, when performance is
stratified by year, the MuTHRE model provides practically
significant improvements in CRPSS in 2 out of 22 years, with
a similar performance in the remaining 20 years.

In summary, aggregated forecasts from the seamless
MuTHRE model offer similar (not practically significant)
and, in some cases, superior performance to forecasts from
the non-seamless monthly QPP model, for the vast majority
of performance metrics and stratifications considered in this
study.

5 Discussion

5.1 Interpretation of key findings

The empirical results show that the seamless MuTHRE
model achieves essentially the same performance as the non-
seamless monthly QPP model at the monthly timescale and
even provides improvement in some aspects. At first glance,
this outcome may seem surprising for the following reasons:

– The seamless MuTHRE model is required to produce
reliable forecasts over a range of lead times and ag-
gregations scales, whereas the non-seamless monthly
QPP model is only required to produce reliable monthly
streamflow forecasts.

– The seamless MuTHRE model is calibrated at the daily
scale, using only observed daily streamflow during cal-
ibration, while the non-seamless monthly QPP model is
calibrated to match the observed monthly streamflow.

– The seamless MuTHRE model does not see the forecast
rainfall during calibration, whereas the non-seamless
monthly QPP model does.

The subsections below describe how the seamless
MuTHRE model is able to achieve comparable/better per-
formance than the non-seamless monthly QPP model despite
these apparent challenges.

5.1.1 Timescale of forecasting/calibration

The seamless MuTHRE model produces daily forecasts that
can be aggregated from timescales of 1 d to 1 month, whereas
the non-seamless monthly QPP model produces forecasts
only at the monthly scale. One might expect the enhanced
capability obtained from the seamless MuTHRE model to
come at some cost in performance at the monthly scale. En-
couragingly, this is not the case.

The ability to reliably aggregate daily forecasts to the
monthly scale demonstrates that the seamless MuTHRE
model is adequately capturing temporal persistence in daily
forecasts. The MuTHRE model represents temporal persis-
tence in hydrological errors using the daily Eq. (1) model
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Figure 6. Time series of monthly probabilistic forecasts for Murray River at Biggara (401012; see Fig. 3), for the seamless MuTHRE model
and non-seamless monthly QPP model. Results are shown between the years 2000 and 2011.

and the (30 d) dynamic bias component. This is important
because neglecting temporal persistence in hydrological er-
rors can result in an underestimation of hydrological uncer-
tainty for aggregated predictions/forecasts (Evin et al., 2014).
The reliability of aggregated forecasts also suggests that the
(pre-processed) rainfall forecasts are capturing the day-to-
day temporal persistence of the observed rainfall required to
produce reliable monthly rainfall forecasts (see Sect. 5.1.2).

The seamless MuTHRE model is not calibrated to op-
timise performance at the monthly scale, as it uses only
observed daily streamflow during calibration. On the other
hand, the non-seamless monthly QPP model is calibrated to
match the observed monthly streamflow, which could lead to
improved performance at the monthly scale compared to the
seamless MuTHRE model. As such, the comparable perfor-
mance of the MuTHRE model at the monthly scale is partic-
ularly encouraging given that monthly data are not used in its
calibration.

5.1.2 Use of observed vs. forecast rainfall used in
calibration

Both approaches use the same deterministic hydrological
model calibrated using observed rainfall and streamflow
data. However, due to structural differences in their repre-
sentation of residual errors, the seamless MuTHRE and non-
seamless monthly QPP models differ in the approach used
to calibrate the residual error model parameters. The resid-
ual error model in the non-seamless monthly QPP model
represents combined rainfall and hydrological uncertainty.
It uses forecast rainfall during calibration and can (in the-
ory) correct for biases and under-/overdispersion in rainfall
forecasts. In contrast, the seamless MuTHRE model repre-
sents only hydrological uncertainty and is calibrated using
observed rainfall. Uncertainty due to forecast rainfall is rep-
resented by propagating rainfall forecasts through the hydro-
logical model. Since the MuTHRE model does not correct for
forecast rainfall errors, this approach requires rainfall fore-
casts to be reliable in order to produce reliable streamflow
forecasts (Verkade et al., 2017).

In this study we have used rainfall forecasts from the
ACCESS-S numerical weather prediction model (Hudson et
al., 2017), which were pre-processed at the catchment scale
with the aim of reducing biases and over-/underdispersion at
the daily scale and capturing the temporal persistence in rain-
fall (Schepen et al., 2018). As a result, these pre-processed
rainfall forecasts are reliable and sharp at both the daily and
monthly scale and do not have a detrimental impact on the
performance of the seamless MuTHRE model.

Since the seamless MuTHRE model uses only observed
rainfall in calibration, it does not require recalibration if an
improved rainfall forecast product becomes available, which
is a useful advantage in operational settings. In contrast, the
monthly QPP model is calibrated using forecast rainfall and
must be recalibrated whenever a new rainfall forecast is to
be used. Note that this is a benefit of the ensemble dress-
ing approach used in the MuTHRE model, rather than of the
forecasts being seamless.

5.1.3 Use of daily vs. monthly streamflow observations
to update forecasts

The MuTHRE and monthly QPP models differ in their use
of recently observed streamflow data. The MuTHRE model
uses daily streamflow observations to update both (i) the dy-
namic bias component of the error model, to account for
monthly errors, and (ii) the daily AR1 model to account for
recent daily errors and improve sharpness of forecasts for
short lead times. In contrast, the monthly model only uses
monthly aggregated streamflow observations to update the
monthly AR1 model. The ability to utilise the most recent
time series of daily streamflow observations provides the
MuTHRE model with a potential advantage over the monthly
QPP model (which see only monthly totals) and may be an-
other reason why the MuTHRE model performs so well com-
pared with the monthly QPP model.
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Figure 7. Overall performance (all months and years; a, d, g, j), performance stratified by month (b, e, h, k), and performance stratified by
year (c, f, i, l) of monthly forecasts from the seamless MuTHRE and non-seamless monthly QPP models. Results are shown for reliability (a–
c), sharpness (d–f), volumetric bias (g–i), and CRPSS (j–l). Box plots in the left column (a, d, g, j) show the distribution of metric values over
the 11 catchments. In the other columns (b, c, e, f, h, i, k, l), vertical bars indicate the full range of metric values across the catchments, the
line indicates the median metric values, and circles/squares indicate that the MuTHRE model performs practically significantly better/worse
than the monthly QPP model.

5.2 Summary of practical benefits of seamless
MuTHRE forecasts

The key practical benefits that the seamless MuTHRE model
provide over the non-seamless monthly QPP model are sum-
marised below:

1. Seamless forecasts can be used to inform decisions at a
range of timescales.

2. Seamless daily forecasts are easily integrated into river
system models used for real-time decision-making.

3. The forecasting system is simplified as a single seamless
product can serve a range of forecast requirements at
different timescales.

4. Improvements in rainfall forecasting are easily inte-
grated into the forecasting system (as described in
Sect. 5.1.2).
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The competitive performance of the seamless MuTHRE
model, even at the native scale of the non-seamless monthly
QPP forecasts, is clearly encouraging – it indicates that seam-
less forecasts do not require a compromise between capabil-
ity (range of available forecast timescales) and performance.
Proverbially speaking, a user of seamless forecasts can “have
their cake and eat it too”. This finding provides further mo-
tivation to adopt seamless forecasts in research and practical
work.

5.3 Future work

Future work is recommended on the following aspects:

– Further testing and development of the MuTHRE model
on a wide range of catchments. The monthly QPP model
has been comprehensively evaluated on 300 catchments
around Australia (Woldemeskel et al., 2018), whereas
the MuTHRE model has currently been evaluated on
11 catchments in the Murray–Darling basin. Evalua-
tion of the MuTHRE model over a wide range of hy-
droclimatic conditions is required to ensure the find-
ings of this study are robust. Potential enhancements of
the MuTHRE model, including specialised treatment of
zero flows in ephemeral catchments (McInerney et al.,
2019; Wang et al., 2020), may be required to ensure the
MuTHRE model remains competitive with the monthly
QPP model over a wider range of flow regimes.

– Deeper understanding of the reasons for the MuTHRE
model matching the monthly QPP model at the monthly
scale. For example, systematic testing of different com-
binations of MuTHRE and monthly QPP model compo-
nents could help diagnose the specific reasons why the
MuTHRE model performs so well.

– Evaluation of how the quality of rainfall forecasts im-
pacts on the performance of the seamless MuTHRE
model. This includes impacts on its ability to match/im-
prove on the performance of the non-seamless monthly
QPP model at the monthly scale.

6 Conclusions

Subseasonal streamflow forecasts at timescales ranging from
daily to monthly are of major interest in water management.
This study compares two streamflow post-processing (QPP)
models, namely the seamless daily Multi-Temporal Hydro-
logical Residual Error (MuTHRE) model and the more tra-
ditional non-seamless monthly QPP model used in the Aus-
tralian Bureau of Meteorology’s dynamic forecasting system.
The MuTHRE model is designed at the daily scale and can
be aggregated up to the monthly scale, whereas the monthly
QPP model is designed directly at the monthly scale and does
not produce forecasts at the daily scale. A case study with 11
catchments in southeastern Australia, the GR4J conceptual

rainfall–runoff model, and pre-processed ACCESS-S rainfall
forecasts are reported.

The key finding is that the seamless MuTHRE model
achieves essentially the same monthly scale performance
as the non-seamless monthly QPP model for the major-
ity of metrics (reliability, sharpness, bias, and CRPSS) and
stratifications (monthly and yearly). Remarkably, the seam-
less post-processing model achieves high-quality forecasts
(based on the metrics considered in this study) at its native
daily scale and matches the performance of the non-seamless
monthly model at the monthly scale, despite not being cali-
brated at that timescale.

Seamless subseasonal forecasts, which are reliable over
a wide range of lead times (1–30 d) and timescales (daily–
monthly), offer numerous practical benefits over non-
seamless forecasts. For users, seamless subseasonal forecasts
can inform a wide range of management decisions, from
flood warning to water supply operation, while for service
providers, seamless forecasts will reduce the number of fore-
cast products that require development and operation. As
such it represents a single modelling tool with great versa-
tility. The encouraging results from this study help motivate
broader adoption of seamless forecasts, as they offer addi-
tional capability without a loss in performance.
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