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Abstract. As the major water resource in the southwestern
United States, the Colorado River is experiencing decreases
in naturalized streamflow and is predicted to face severe
challenges under future climate scenarios. To better quantify
these hydroclimatic changes, it is crucial that the scientific
community establishes a reasonably accurate understanding
of the spatial patterns associated with the basin hydrologic
response. In this study, we employed remotely sensed land
surface temperature (LST) and snow cover fraction (SCF)
data from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) to assess a regional hydrological model ap-
plied over the Colorado River Basin between 2003 and 2018.
Based on the comparison between simulated and observed
LST and SCF spatiotemporal patterns, a stepwise strategy
was implemented to enhance the model performance. Specif-
ically, we corrected the forcing temperature data, updated
the time-varying vegetation parameters, and upgraded the
snow-related process physics. Simulated nighttime LST er-
rors were mainly controlled by the forcing temperature,
while updated vegetation parameters reduced errors in day-
time LST. Snow-related changes produced a good spatial rep-
resentation of SCF that was consistent with MODIS but de-
graded the overall streamflow performance. This effort high-
lights the value of Earth observing satellites and provides a
roadmap for building confidence in the spatiotemporal simu-
lations from regional models for assessing the sensitivity of
the Colorado River to climate change.

1 Introduction

Physically based numerical models of the coupled water–
energy cycle have emerged as powerful tools to address
critical societal needs (Fatichi et al., 2016), including flood
forecasting (Maidment, 2017), irrigation operation (Gibson
et al., 2017), weather and climate prediction (Baker et al.,
2017; Senatore et al., 2015), and evaluations of water scarcity
(Zhou et al., 2016). Over the last 3 decades, several types of
hydrologic models have been developed with different lev-
els of conceptualization that often change with the domain
size due to computational constraints. One class of models,
denoted as regional or macroscale models, was originally de-
signed to serve as land surface scheme of atmospheric mod-
els and is routinely used to simulate hydrologic processes in
continental basins (> 105 km2) at spatial resolutions of 10 to
25 km (e.g., Lawrence et al., 2011; Liang et al., 1994; Niu
et al., 2011). These processes include infiltration, evapotran-
spiration, runoff production, and snow accumulation and ab-
lation that are typically simulated in a regular grid without
considering lateral transfers across cells (Clark et al., 2015).
In recent years, the National Water Model has combined a re-
gional hydrologic model applied at the unprecedented resolu-
tion of 1 km with routing schemes to generate operational hy-
drologic predictions over the continental United States (Lah-
mers et al., 2019, 2021).

In many cases, hydrologic models are applied under pre-
scribed meteorological forcings using an optimal set of pa-
rameters that are calibrated by minimizing differences be-
tween simulated streamflow and observations at one or more
locations (e.g., Gou et al., 2021; Li et al., 2019; Nijssen et
al., 1997; Xiao et al., 2018; Yun et al., 2020; Zhang et al.,
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2017). While widely used, this approach has two important
limitations. First, input and structural uncertainties are of-
ten not taken into account (Gupta and Govindaraju, 2019),
causing an inflation of parametric uncertainty that can exac-
erbate the problem of equifinality (Beven and Binley, 1992).
Second, this calibration method relies only on an aggregated
measure of the hydrologic response and does not consider the
model’s ability to capture the spatially variable internal pro-
cesses (Becker et al., 2019; Ajami et al., 2004). As a result of
these two limitations, this calibration approach could cause
the undesirable outcome that the model provides the right
answer for the wrong physical reasons (Rajib et al., 2018;
Tobin and Bennett, 2017), which can in turn induce wrong
conclusions when the model is applied under nonstationary
conditions due to changes in land cover and/or climate.

Satellite remote sensors provide spatially distributed esti-
mates of hydrologic states and fluxes, including soil mois-
ture (Entekhabi et al., 2010; Njoku et al., 2003; Kerr et al.,
2001), land surface temperature (LST; Shi and Bates, 2011;
Wan and Dozier, 1996), snow cover fraction (SCF, Painter et
al., 2009), evapotranspiration (Boschetti et al., 2019; Fisher
et al., 2020), and changes in water storage (Tapley et al.,
2004). These products can reduce parametric, structural, and
input uncertainties in hydrologic models by including ad-
ditional constraints in the calibration process (Wood et al.,
2011; Fatichi et al., 2016; Ko et al., 2019). Despite this poten-
tial, the use of remote sensing products to reduce hydrologic
simulation uncertainty has been explored in only a few stud-
ies. For instance, in studies by Corbari and Mancini (2014),
Crow et al. (2003), and Zink et al. (2018), satellite LST
was used with river discharge to calibrate model parame-
ters, and it was found that including LST in the process im-
proved the simulation of evapotranspiration as estimated by
eddy covariance towers or other satellite products. This out-
come was also found by Gutmann and Small (2010), who
applied a regional model at 14 flux towers and showed that
incorporating remotely sensed LST estimates in the calibra-
tion allowed the achievement of two-thirds of the improve-
ments gained by ingesting more accurate ground LST data.
In other efforts, satellite LST products have been used to
verify the performance of hydrologic models, as done by
Koch et al. (2016), with the North America Land Data As-
similation System (NLDAS), Xiang et al. (2014), with the
TIN-based Real-time Integrated Basin Simulator (tRIBS),
Xiang et al. (2017), with the Weather Research and Fore-
casting (WRF)-Hydro model, and Wang et al. (2021), with
the Variable Infiltration Capacity (VIC) model. Finally, a few
studies have enhanced streamflow simulations (Bennett et al.,
2019; Bergeron et al., 2014; Tekeli et al., 2005) by improv-
ing the timing of snowmelt using remotely sensed snow cover
fields.

The Colorado River basin (CRB) is a regional water-
shed where hydrologic simulations are needed to support
short- and long-term water management decisions. Its wa-
ter resources are used by almost 40 million people in seven

states of southwestern U.S. (Arizona, California, Colorado,
Nevada, New Mexico, Utah, and Wyoming) to irrigate ∼
22000 km2 of land and to generate over 4200 MW of hydro-
electric power (USBR, 2012). The mean annual discharge
of the CRB is 20.2 km3, with high interannual variability
resulting from large variations in climatic forcings (Chris-
tensen et al., 2004; Gautam and Mascaro, 2018). Until 2021,
the CRB was able to meet the demand of all users by stor-
ing runoff in a large system of dams, mainly operated by the
U.S. Bureau of Reclamation (USBR), and transporting water
through canals and aqueducts, including the Central Arizona
Project. However, declines in the mean flow observed over
the last 2 decades (Hoerling et al., 2019; Udall and Over-
peck, 2017), combined with increasing demands, led to the
first-ever declaration of water shortages in the CRB in Jan-
uary 2022. The water cuts affecting users in Arizona and
Nevada (CAP, 2021) are expected to become more severe in
the near future and impact the agricultural sector (Mitchell et
al., 2022; Norton et al., 2021).

In previous studies on the hydrologic responses of the
CRB using the VIC model, confidence in the model results
was built mainly through comparisons against estimates of
naturalized flow (e.g., Christensen et al., 2004; Vano et al.,
2012, 2014; Xiao et al., 2018). The CRB is characterized
by a marked difference between the colder and wetter Upper
Basin, where more than 90 % of streamflow is generated (Li
et al., 2017), and the warmer and drier Lower Basin, with re-
duced runoff production due to low precipitation, high evapo-
rative demand, and channel transmission losses (Rajagopalan
et al., 2009). As a result of this large contrast, limiting the
calibration of VIC to the use of naturalized flow in the Upper
Basin may lead to uncertainty in its ability to simulate the
spatiotemporal hydrologic response.

The objective of this study is to improve the physical re-
liability of VIC simulations in the CRB by incorporating
remotely sensed fields of LST and SCF obtained from the
Moderate Resolution Imaging Spectroradiometer (MODIS).
LST is an important variable that impacts the coupled water–
energy balance, while SCF provides information on snow
conditions which are crucial for quantifying runoff genera-
tion. We start from a parameterization of VIC that led to good
estimates of monthly discharge in the period 2003–2018. We
then apply a stepwise procedure to reduce uncertainties in
model forcings, parameters, and structure based on compar-
isons of simulated and remotely sensed LST and SCF fields.
While based on VIC, the methods proposed here can provide
guidance to refine the calibration and reduce uncertainties in
other physically based hydrologic models and to identify ar-
eas for structural improvement.
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Figure 1. (a) Digital elevation model of the CRB. (b) Channel network and eight subbasins analyzed in this study. The red circle marks
Imperial Dam. (c) Dominant vegetation type in each pixel indicated in the legend. (d) Time-averaged vegetation fraction, fv. (e) Total soil
depth. All maps are at 0.0625◦ (∼ 6 km) spatial resolution. Values of fv and soil depth are from the baseline simulation.

Table 1. Spatially averaged mean annual precipitation (P ), snow water equivalent (SWE), runoff (Q), and runoff ratio (Q/P ), along with
area, mean elevation, mean soil depth, and percentage of trees in the CRB and its subbasins.

CRB Green Upper San Glen Little Grand Lower Gila
Colorado Juan Canyon Colorado Canyon Colorado

P (mm yr−1) 350.9 405.5 539 348.8 267.4 293.5 294.6 209.7 357.9
SWE (mm) 17.6 58.8 48.6 13.7 5.5 0.9 1.7 0.1 0.4
Q (mm yr−1) 36.9 73.9 126.2 45.7 16.6 5.2 12.3 8.3 9.9
Q/P (%) 10.5 18.2 23.4 13.1 6.2 1.8 4.2 4 2.8
Area (103 km2) 629.5 105.9 62.5 59.2 55.9 68.5 80 42 155.6
Soil depth (m) 2.55 2.55 2.69 2.62 2.52 2.55 2.36 2.48 2.6
Elevation (m) 1729.1 2215.3 2542.3 2034.3 1823.8 1929.3 1503.1 708.8 1184.6
Percentage of trees (%) 25.2 27.8 62 24.9 15.4 23.8 20.9 2.9 20.6

2 Study area and datasets

2.1 Study basin

The CRB has a total area of approximately 630 000 km2, cov-
ering seven states in United States and a small portion of
Mexico. Here, we considered the drainage area above Im-
perial Dam, plus the Gila River (Fig. 1). The Colorado River
Compact of 1922 divides the CRB into the Upper and Lower
basins. As revealed by the land cover map shown in Fig. 1c,
most of the basin is covered by shrub or scrub ecosystems
(∼ 60 %), followed by various forest types (∼ 24 %). Ta-
ble 1 summarizes the mean hydroclimatic and land surface

features of the subbasins. The Upper Basin consists of the
Green, Upper Colorado, Glen Canyon, and San Juan River
subbasins. These higher-elevation subbasins (except Glen
Canyon) receive more snowfall than the rest of the CRB, re-
sulting in the presence of a significant snowpack (mean an-
nual snow water equivalent, or SWE, ranges from 13.7 to
58.8 mm) that eventually leads to the generation of ∼ 90 %
of the CRB runoff. While the Lower Basin receives about
60 % of the mean annual precipitation of the subbasins in the
Upper Basin per unit area, its runoff ratio (i.e., the fraction
of annual precipitation becoming runoff) is 3 times smaller
than that of the Upper Basin.
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2.2 Remote sensing and ground-based datasets

We integrated different remotely sensed and ground-based
data. Meteorological forcings were obtained from the grid-
ded (0.0625◦ or∼ 6 km) daily datasets of Livneh et al. (2013)
and Su et al. (2021) for precipitation, maximum tempera-
ture, minimum temperature, and wind speed. We also used
the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) 30-year normal (Di Luzio et al., 2008)
for temperature corrections. For assessing streamflow per-
formance, we used monthly naturalized flow records from
USBR at four interior locations of the Upper Basin. Note
that this is the largest available resolution for the recon-
structed naturalized flow, since the river is highly regu-
lated. To improve the simulation of spatial patterns, we
used two products from the Aqua MODIS sensor, i.e., daily
LST (MYD11A1) and monthly SCF (MYD10CM). The LST
product is available at 1 km resolution twice a day at about
13:00 LT (local time; daytime) and 01:00 LT (nighttime; Wan
et al., 2021). The percent of missing data, largely due to cloud
cover, varies from 42 % to 95 %, with larger values in the
winter season and July (Fig. S1 in the Supplement). Monthly
SCF is provided at 0.05◦ (∼ 5 km) resolution as the average
of SCF for days with a prescribed level of sky clearness (Hall
and Riggs, 2021). Both MODIS products were aggregated
to the 0.0625◦ scale used in the model. We also validated
simulated and remotely sensed LST using measurements at
14 eddy covariance towers (Baldocchi et al., 2001) selected
based on available data (> 300 d during 2003–2018). The
station locations are shown in Fig. S2, with 12 located in
the Lower Basin at elevations from 987 to 2618 m. Five sta-
tions were forested, and the remaining were covered by a
short canopy. We extracted records of observed longwave ra-
diation at the stations and used them to compute LST, fol-
lowing Wang et al. (2021). We also used the National Land
Cover Database (NLCD) Multi-Resolution Land Character-
istics (MRLC) rangeland and tree canopy cover products,
which contain canopy cover fraction at 30 m resolution for
forests and shrublands (Homer et al., 2020).

3 Methods

3.1 The variable infiltration capacity model

We used the VIC model version 5.0 (Hamman et al., 2018)
to simulate the hydrologic response of the CRB from 2003 to
2018 at an hourly time step and 0.0625◦ resolution. VIC is a
macroscale, physically based model that solves the water and
energy balance on a regular grid. Land surface heterogeneity
in each cell is modeled through land cover tiles, each with
a single vegetation class on top of a three-layer soil column.
The model requires meteorological forcings as inputs and re-
turns outputs over the grid. Fluxes and state variables simu-
lated at grid cells are calculated as the areal-weighted average

Figure 2. Schematic explaining how LST is computed in
VIC (LSTV) as compared to MODIS (LSTM) in a pixel covered
by short vegetation (tile A) and tall trees (tile B). fv is the vege-
tation fraction, Tair is the air temperature, Ts, Tf, and Tc are simu-
lated temperatures for the surface, canopy, and canopy air, LWd,v is
the downward longwave radiation from the canopy, and LWd is the
downward longwave radiation from the atmosphere. The subscripts
A and B refer to the variables in each tile.

of separate computations of the water and energy balances
for each land cover tile. Here, we adopted the VIC version
with the clumped vegetation scheme proposed by Bohn and
Vivoni (2016), where the vegetation fraction (fv) accounts
for spacing between plants in each tile. This modification
allows simulating the energy balance with a higher fidelity,
as shown by Bohn and Vivoni (2016), through the compari-
son with ground estimates of evapotranspiration in the south-
western U.S. and northwestern Mexico.

Since our adjustment strategy is based on the comparison
of simulated and remotely sensed LST and SCF, we describe
how these variables are simulated using the schematic in
Fig. 2. The governing equations are reported in Appendix A,
while the most influential parameters are in Table 2. In our
simulations, 16 vegetation classes are used, which include
four types of tall trees, namely deciduous forest, evergreen
forest, mixed forest, and woody wetlands. For other canopy

Hydrol. Earth Syst. Sci., 26, 5627–5646, 2022 https://doi.org/10.5194/hess-26-5627-2022



M. Xiao et al.: On the value of satellite remote sensing to reduce uncertainties in regional simulations 5631

Table 2. List of spatially variable forcings, vegetation and soil parameters, and state variables involved in the computation of the energy
balance (symbols defined in the main text and Appendix A). Forcings and state variables vary each hour. Parameters are either constant in
time or vary each month (denoted with an asterisk∗).

Energy Forcings Vegetation Soil State
balance parameters parameters variables
component

Rn Rs, RL α∗, f ∗v Ts

LH Rs, RL, Tair, LAI∗, rarc, rmin, D1 W , Gsm, Ts
vapor pressure, f ∗v
wind speed

SH Tair, wind speed z0, d0, f ∗v Ts

GH D1 Ts, T1

types (e.g., tile A in Fig. 2), the energy balance is solved
over a control volume that combines the fractions of vege-
tation (fv,A) and bare soil (1− fv,A) using a weighted aero-
dynamic resistance. A single surface temperature (Ts,A) is
computed and assumed to be uniform over the tile and equal
to the foliage temperature (Tf,A = Ts,A). For tall trees (e.g.,
tile B in Fig. 2), a vegetated overstory and an understory
without vegetation are introduced. If snow is absent, the
overstory foliage temperature is assumed equal to air tem-
perature (Tf,B = Tair), and a single Ts,B in the understory is
calculated with the scheme described above. When snow is
present, Ts,B is calculated by solving the energy balance in
the overstory, understory, and the atmosphere surrounding
the canopy. Since the satellite sensor observes the top of the
surface, the simulated LST by VIC (LSTV) that is compared
against MODIS (LSTM) is the weighted average of foliage
temperature in tiles with tall trees and the ground temper-
ature in other tiles. In the case of Fig. 2, this leads to the
following:

LSTV =
AA · Ts,A+AB

[
fv,B · Tf,B +

(
1− fv,B

)
· Ts,B

]
AA+AB

, (1)

whereAA andAB are the areas of tiles A and B, respectively.
To compute SCF in the grid cells, VIC allows the subdi-

vision of each tile into elevation bands to capture changes in
forcing temperature due to terrain heterogeneity. Elevation
bands are the same for all tiles in a grid cell and limited typi-
cally to three bands in total. Given the mean elevation of each
elevation band, the air temperature forcing is adjusted using
a lapse rate of −6.5 ◦C km−1 and is then used to solve the
energy balance within each tile. Depending on temperature
and precipitation, snow may be simulated within a tile, and
SWE is calculated. When SWE> 0, SCF is assumed to be
100 %, such that a tile within that elevation band is fully cov-
ered with snow; otherwise, SCF is 0, and the elevation band
within the tile is snow-free (i.e., a binary outcome). SCF in
the grid cell is the area-weighted average of the SCFs from
all tiles and elevation bands.

3.2 Baseline simulation

We created a first model parameterization, labeled as base-
line, based on applications by Xiao et al. (2018) and Bohn
and Vivoni (2019). Hourly gridded meteorological forcings
were generated from the daily grids of Livneh et al. (2013)
and Su et al. (2021), using MetSim (Bennett et al., 2020;
Bohn et al., 2013; Bohn and Vivoni, 2019). Model param-
eters were obtained from Livneh et al. (2015), with a few
updates as follows. Land surface parameters were based on
MODIS and NLCD products from Bohn and Vivoni (2019),
which include a land cover classification and climatological
monthly means of leaf area index (LAI), fv, and albedo. We
replaced the elevation data used in prior VIC studies with the
30 m United States Geological Survey (USGS) National Ele-
vation Dataset (USGS, 2017). The model was tested against
monthly naturalized streamflow records, by manually ad-
justing seven soil parameters that affect runoff production
and the parameters controlling the relation between snow
albedo with snow age. As shown in Fig. S3, under the base-
line simulation, VIC captured the monthly streamflow in key
subbasins of the Upper Basin, where most runoff is pro-
duced, and at the basin outlet well with a Nash–Sutcliffe ef-
ficiency (NSE)> 0.9.

3.3 Model improvements with remote sensing
products: overview of the stepwise calibration
strategy

The baseline simulation was aimed at reproducing the
streamflow response and did not consider the model’s abil-
ity to capture spatial patterns of hydrologic variables. We de-
signed a stepwise strategy aimed at reducing the three main
sources of uncertainty in the simulation of LST and SCF. A
schematic of the procedure is reported in Fig. 3; here, we
provide an overview of the steps and describe the details of
each step in the corresponding sections in Sect. 4. In the first
step (“Forcing-adj” or forcing adjustment), we targeted in-
put uncertainty and modified air temperature to reduce er-
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Figure 3. Flowchart of the stepwise calibration procedure.

rors in nighttime LST. In the second step (“Veg-adj” or veg-
etation adjustment), we focused on modifying spatially vari-
able vegetation parameters affecting daytime LST identified
among those reported in Table 2. The first two steps were
guided by metrics quantifying the agreement between sim-
ulated and remotely sensed LST, including the correlation
coefficient (CC), root mean squared error (RMSE), and bias
(mean LSTV–mean LSTM) between the (1) time series of
daily LSTV and LSTM at each grid cell and (2) daily spa-
tial maps. These metrics were obtained for both daytime and
nighttime through comparisons at the MODIS overpass time.
To further quantify the improvements in our calibration ap-
proach, for each step we computed the structural similarity
index measure (SSIM; Wang and Bovik, 2002) and the SPA-
tial EFficiency (SPAEF) metric (Koch et al., 2018) between
spatial maps of observed and simulated long-term climato-
logical mean LST; these two metrics were chosen since they
have been specifically designed to compare spatial patterns.

After improving LST, we reduced structural uncertainty
by modifying the computation of the snow energy balance
in a step labeled as “Snow-adj” (or snow adjustment). As
described above, when snow exists in tiles covered by tall
trees, the downward longwave radiation into the understory
(or ground) snowpack is assumed to originate from the over-
story (indicated as LWd,v in Fig. 2; tile B). For areas without
tall trees, the downward longwave radiation reaching the un-
derstory comes from the atmosphere (indicated as LWd). To
account for this in the clumped canopy scheme, we modi-
fied the downward longwave radiation as the weighted aver-
age of [fv ·LWd,v+ (1−fv) ·LWd]. In addition, we adjusted
the empirical relation controlling the change in albedo during
snowmelt to reduce the bias between VIC and MODIS SCF.
All modifications of the model parameters were performed
via manual tuning.

4 Results

4.1 Comparison of VIC and MODIS LST with ground
observations

First, we provide an overview of the comparison among the
time series of LST that were (1) observed at the 14 eddy
covariance stations, (2) simulated by VIC, and (3) retrieved

from MODIS at the co-located 6 km pixel. The error met-
rics for the 14 stations are summarized through box plots
in Fig. 4a–c, while the time series of LST at a represen-
tative site for daytime and nighttime are shown in Fig. 4d
and e. Station values and VIC simulations at the overpass
times were extracted for comparison with MODIS. Dates
with missing data in MODIS and station records were not
considered. We find MODIS LST to be very strongly corre-
lated with ground measurements (CC> 0.91) and character-
ized by RMSE from ∼ 1.5 to 5.3 ◦C. Bias is slightly positive
(negative) during the daytime (nighttime), with a median of
0.3 ◦C (−1.6 ◦C). The error metrics for VIC reveal that per-
formance degrades moderately with larger variability across
the stations, where CC ranges from 0.70 to 0.95, the me-
dian RMSE is 6.3 ◦C (5.8 ◦C) for daytime (nighttime), and
the median bias is 1.1 ◦C (−3.3 ◦C) for daytime (nighttime).
The error metrics against ground data provide a reference for
evaluating the model improvements, as discussed next.

4.2 Errors in the simulation of LST in the baseline
simulation and their controls

Figure 5 shows maps of CC, RMSE, and bias of the time se-
ries of LSTV and LSTM at each pixel for daytime and night-
time periods over the entire simulation from 2003 to 2018.
To help the interpretation, box plots of the metrics in the grid
cells within the CRB and three subbasins are presented in
Fig. 6. Results for other subbasins are reported in Figs. S4–
S6 and Table S1 in the Supplement.

Overall, CC is high (> 0.8) throughout the CRB, with val-
ues like those found against station data. CC is relatively
higher for daytime than nighttime. On the other hand, RMSE
maps show that simulated LST matches better with MODIS
during the nighttime, with values largely consistent with
those found for stations. For both times of the day, RMSE
is slightly larger in the Upper Basin. Results for RMSE sug-
gest that model performance for LST is relatively better at
nighttime without solar radiation forcing and tends to be bet-
ter in drier and hotter regions in the Lower Basin. Bias maps
reveal that simulations of LST during daytime (nighttime)
are warmer (cooler) than MODIS observations in most of the
CRB, with a median bias of 1.2 ◦C (−0.7 ◦C). These find-
ings are largely consistent across the subbasins and with the
station observations.
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Figure 4. (a–c) Box plots of CC, RMSE, and bias comparing VIC and MODIS LST to observations at 14 sites. Time series of daytime (d)
and nighttime LST (e) at one site (station ID “FuF”, whose location is shown in Fig. S2).

Figure 5. Spatial maps of (a, d) CC, (b, e) RMSE, and (c, f) bias between time series of LSTV and LSTM over 2003–2018 at each pixel.
The top (bottom) row presents daytime (nighttime) comparisons.
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Figure 6. Box plots of (a–d) CC, (e–h) RMSE, and (i–l) bias between time series of LSTV and LSTM in pixels of the entire CRB and of
three representative subbasins. Box plots show the median, with 50 % and 90 % confidence intervals. Different simulations are plotted in
different colors.

Spatial patterns of the metrics are complex, suggesting that
LST simulation errors are impacted by several model param-
eters and forcings. To gain insights into these controls, we
computed the correlation coefficient between the maps of er-
ror metrics between the time series and key parameters or
forcings involved in the energy balance. Model parameter
maps were created by calculating the area-weighted averages
within each grid cell. For monthly LAI, albedo, and fv, we
computed the annual mean map. For Tair, we calculated the
mean across the entire study period. Figure 7 summarizes the
results in each subbasin for RMSE and bias using heatmaps
(also see Fig. S7 for CC). For daytime LST, the key factors
change across the subbasins, while results are more spatially
uniform for nighttime LST. During daytime, we found that
the Green and Upper Colorado subbasins dominated by snow
and evergreen forests exhibit different controls compared to
the other subbasins. Here, RMSE is highly correlated to fv
and LAI, while bias is mainly controlled by Tair. In the other
subbasins, albedo and, to a lesser extent, Tair are the domi-
nant factors related to daytime RMSE. Different parameters
affect the patterns of bias, including albedo in all subbasins,
most vegetation parameters, root depth in the San Juan and
Little Colorado, and Tair in the Little Colorado. Consider-
ing nighttime LST, Tair and, to a lower degree, soil depth are
the main factors related to RMSE at all sites. Interestingly,

nearly all parameters and Tair are linked to nighttime bias.
This is explained by considering that Tair is correlated with
elevation, and elevation is correlated with all other parame-
ters (Fig. S8).

Figure 8 presents the intra-annual variability in the error
metrics between daily pairs of LSTV vs. LSTM fields, shown
as monthly averages. As found previously, CC is high for
both times of the day and relatively higher for daytime, while
RMSE is larger during the daytime. VIC simulations during
the daytime are positively biased throughout the year, while
bias changes sign for nighttime LST, being positive in winter
and negative from April to July. In addition, both the RMSE
and bias of daytime LST are higher from April to July. This
indicates that simulated daytime LST degrades when incom-
ing solar radiation is high, especially during snowmelt events
after peak SWE, typically around the end of March. To cor-
roborate this, we repeated the analyses in snow-dominated
grid cells (mean annual maximum SWE> 30 mm) and for all
other cells, finding higher daytime RMSE in April for snow-
dominated cells than other cells, indicating that the LST dur-
ing the ablation process is also more difficult to capture.
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Figure 7. Heatmaps showing the Pearson correlation coefficient between (1) the spatial map of Tair or key soil and vegetation parameters
involved in the energy balance and (2) the spatial map of the error metrics – (a, c) RMSE and (b, d) bias – between the time series of LSTM
and LSTV for the baseline simulation. The correlation coefficients are computed for each subbasin. Symbols are explained in Table 2. Top
(bottom) row is for daytime (nighttime) LST.

4.3 Stepwise reduction in uncertainty in the simulation
of LST and SCF

4.3.1 Forcing adjustment

We first focused on the improvement in simulated LST at
nighttime. Figure 7 indicates that Tair is a key input affecting
the energy balance at nighttime. Alder and Hostetler (2019)
compared two air temperature datasets, finding that Livneh
et al. (2013) products tend to be colder than PRISM in the
mountain areas of the CRB. Based on this, we adjusted the
daily minimum and maximum Tair in Livneh et al. (2013)
and Su et al. (2021) to match the climatological (1981–2010)
monthly means from PRISM. If T L

air,d,m is the maximum or
minimum daily Tair on day d and month m, then the bias-
corrected value, T L,BC

air,d,m, was obtained as follows:

T
L,BC

air,d,m = T
L

air,d,m−
(
T

P
air,m− T

L
air,m

)
, (2)

where T
P
air,m and T

L
air,m are the climatological monthly

means of maximum or minimum Tair from PRISM

and Livneh et al. (2013), respectively. Once we bias-
corrected Tair, we regenerated the hourly forcings using Met-
Sim. As shown in Fig. 9, the Forcing-adj simulations im-
proved bias, which was reduced in most subbasins. The
nighttime RMSE also slightly decreased throughout the
basin. These outcomes are reflected in the time series of
Fig. 8 that also show that improvements (lower RMSE and
bias) occur largely in the warm season. On the other hand, the
Forcing-adj simulations did not improve VIC performance
during the daytime, only yielding a slight increase in bias
(Figs. 6 and 8) that was fixed in the next steps.

4.3.2 Vegetation parameter adjustment

Figure 7 shows that both static and time-varying vegetation
parameters affect the error metrics of LST. In the Veg-adj
step, we modified a set of influential parameters by incor-
porating new datasets. We first replaced the climatological
mean monthly values of LAI, albedo, and fv with yearly
varying monthly estimates from MODIS. Second, we up-
dated fv using new products from MRLC. In the baseline
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Figure 8. Time series of multiyear monthly average CC, RMSE,
and bias between VIC and MODIS daily LST fields for the baseline
simulation and each adjustment step.

simulation, fv was derived from the normalized difference
vegetation index (NDVI) retrieved from MODIS (Bohn and
Vivoni, 2016, 2019). MRLC released 30 m grids of mean an-
nual fv for major vegetation types in the CRB that were used
to linearly rescale values of fv in the shrub and trees classes
to match the annual climatology of MRLC as follows:

f Resc
v,m = f

b
v,m
f

MRLC
v

f
b
v

, (3)

where f b
v,m is fv in month m used in the baseline simulation,

f Resc
v,m is the rescaled value, and f

MRLC
v and f

b
v are long-term

mean annual values of MRLC and the baseline parameters.
Figure 7 indicates that rmin, rarc, d0, and z0 affect errors

in the simulation of LST, especially in the Green and Upper
Colorado subbasins. Distributed estimates for these parame-
ters are not currently available. Thus, we adjusted their val-
ues to reduce the bias between daytime LSTV and LSTM,
guided by the process equations reported in Appendix A.
Reducing z0 and d0 leads to lower aerodynamic resistance
and higher sensible heat flux and, in turn, lower LSTV. In-
creases in rmin and rarc lead to lower values of latent heat
flux and higher LSTV. Adjusting z0 has a greater impact
than modifying the other parameters, such that the itera-
tively scaling of z0 in each pixel was performed at 25 %,
50 %, 150 %, or 250 %, depending on the daytime LST bias
(Fig. 10). Changes were limited within physically plausible
ranges. Next, we applied the same method to update d0, rmin,
and rarc, but variations for these three parameters were mini-
mal, as documented in Fig. S9.

The Veg-adj simulation did not lead to significant changes
in model performance at nighttime, confirming that the dom-
inating factor affecting nighttime LST was Tair. On the other
hand, improvements in the simulation of daytime LST were
remarkable. Figure 6 shows that both RMSE and bias were
reduced at all locations, both in terms of the median (∼
0.9 ◦C) and variability in each subbasin (lower width of the
confidence intervals), with values slightly higher than those
found between MODIS and station observations (Fig. 4).
These improvements were even more apparent in the maps of
Fig. 10, which also showed that the complex spatial patterns
of the errors in the baseline simulation have been replaced by
more uniform and smoother patterns. The Veg-adj simulation
also decreased large errors in the simulation of daytime LST
from April to July, with lower RMSE, higher CC, and bias
close to 0 ◦C throughout the year (Fig. 8).

4.3.3 Adjustment of snow dynamics

The Snow-adj step was aimed at improving the simulation of
SCF. We first modified the computation of longwave radia-
tion for tall trees, which improved the simulation of SCF dur-
ing the snow accumulation season. Next, a parameter of the
relation controlling the decay of snow albedo was modified
from 0.92 to 0.80, leading to an enhanced simulation of SCF
in the ablation season. Figure 11 presents bias maps between
simulated and observed mean monthly SCF and seasonal-
ity of SCF in snow-dominated cells for the baseline, Veg-
adj, and Snow-adj simulations. Time series of SCF in 2 pix-
els are also shown to visualize differences in regions with
positive and negative bias. In the baseline simulation, SCF
bias was positive, which occurs mainly during May through
October. Forcing corrections reduced SCF, as Tair was in-
creased in mountainous areas. Adjustments in the Snow-adj
step reduced bias in most locations during the accumula-
tion and ablation seasons. When averaged over time and in
the CRB, SCF bias was relatively small. When focusing on
single pixels, however, the bias magnitude was larger, with
differences in seasonality depending on location. For exam-
ple, bias reached +20 % (Fig. 11c) from April to Decem-
ber and −20 % (Fig. 11d) from November to March. As
expected, Snow-adj changes mainly impacted LST simula-
tions in mountains, while a marginal influence occurred in
the rest of the CRB. Overall, the daytime LST bias map im-
proved, while RMSE in mountain regions for both daytime
and nighttime remained similar. To complete the model per-
formance assessment, we reported, in Figs. S10 and S11, the
maps of simulated and observed long-term climatology of
monthly SCF in the snow season and LST, respectively, over
2003–2018. Error metrics between the maps are presented in
Table S2, which shows that the overall trend of the metrics
specifically designed to compare spatial patterns, SSIM and
SPAEF, are in line with the changes in RMSE and bias that
have been used in the rest of the paper.
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Figure 9. Spatial maps of the RMSE and bias between time series of nighttime LSTV and LSTM during 2003–2018 at each pixel for all
steps. Top (bottom) row presents results of RMSE (bias).

Figure 10. Same as Fig. 9 but for daytime LST.

4.4 Impacts on VIC streamflow performance and
water balance

As shown previously (Corbari and Mancini, 2014; Crow et
al., 2003), improving the simulation of hydrologic spatial

patterns could affect streamflow performance since structural
limitations and different degrees of conceptualization require
further tuning. We investigated this in Fig. 12, using time se-
ries of monthly runoff in the Green and San Juan subbasins
and the Upper Basin. Model performance is very good for
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Figure 11. (a) Spatial maps of bias between mean monthly SCF (VIC minus MODIS). Circles indicate the locations of two grid cells with
positive and negative bias. (b) Time series of multiyear mean monthly SCF (in %) for snow-dominated cells. RMSE and bias from monthly
SCF comparisons are reported. (c, d) Same as panel (b) but for sites with positive and negative bias, respectively.

Figure 12. Monthly time series of naturalized streamflow (NFL) and streamflow from baseline, Forcing-adj, Veg-adj, and Snow-adj simula-
tions at (a) Green, (b) Upper Colorado, (c) San Juan, and (d) Upper Basin for 2003–2013. NSE values are also reported.

baseline simulations, since its calibration was tailored to nat-
uralized streamflow records. Forcing and vegetation param-
eter adjustments slightly lowered performance (changes in
NSE≤ 0.05), whereas changes for the snow adjustment led
to streamflow overestimation in May in all subbasins, espe-
cially in the Green subbasin (NSE reduced to 0.57). Over-
all, simulated streamflow performance here is consistent with
Tang and Lettenmaier (2010), who found that incorporat-

ing MODIS snow cover degrades streamflow metrics. We at-
tribute this degradation in performance to a number of rea-
sons. First, remotely sensed spatiotemporal data of SCF have
limitations in its usefulness for tracking SWE, which is the
modeled state variable more directly impacting streamflow.
Second, VIC uses a binary scheme for depicting SCF in el-
evation bands within each time of each grid cell, limiting
its accuracy in representing topographic variations. To ad-
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Figure 13. (a) Climatological monthly mean of the water balance components for the baseline simulations in the Upper Basin. P is pre-
cipitation, ET is evapotranspiration and sublimation, RO is surface and underground runoff, and 1SM (1SWE) is the differences between
soil moisture (snow water equivalent) at the end and beginning of the month. (b–e) Difference between each variable for the Forcing-adj,
Veg-adj, and Snow-adj simulations and the baseline simulations.

dress these limitations, enhancements are needed in both the
1simulation of snow physics and remote sensing of the spa-
tial variation in snow depth or SWE at high spatiotemporal
resolutions.

In addition to streamflow, we explored the impacts of each
calibration step on the water balance. For this aim, we com-
puted the climatological monthly mean of the water balance
components for the Upper Basin, where most runoff is gener-
ated. Results are presented in Fig. 13, which shows fluxes (P ,
ET, and RO; see the Fig. 13a caption for their definition) and
changes in state variables (1SM and1SWE) for the baseline
simulations (Fig. 13a) and the difference between a given
variable simulated in each calibration step and the variable
from the baseline simulation (Fig. 13b–d). The Forcing-adj
and Veg-adj steps lead to small changes in ET and RO, with
a decrease in both fluxes in the summer months and an in-
crease in the other months. The modification of these fluxes
is due to a change in the storage components, with (1) lower
SWE (i.e., negative 1SWE) and higher SM from November
to February and (2) higher SWE and lower SM from March
to July. The Snow-adj step modifies the seasonality of SWE
compared to the baseline by increasing this storage compo-
nent in February and March and reducing it in April and May.
This, in turn, leads to an opposite behavior for SM, which is
ultimately translated into a positive (negative) change in RO
in May and June (July and August). In all cases, the changes
in runoff occurred in a similar way for both the surface and
underground components.

5 Summary and conclusions

In this study, we made improvement to a regional hydro-
logic model in the Colorado River basin using MODIS ob-
servations of land surface temperature and snow cover. Based
on the remotely sensed data, we corrected the meteorologi-
cal forcings, updated the vegetation parameters, and revised
snow-related processes to enhance the model performance.

The adjustments increased the consistency between VIC and
MODIS LST and SCF fields, thus enhancing credibility of
the spatial simulations. Our conclusions are summarized as
follows:

1. MODIS products provided spatiotemporal information
that can be used to identify uncertainties in a hydrologic
model calibrated with streamflow records at a few lo-
cations. Although baseline simulation performance for
LST was high (mostly CC> 0.8), spatial errors within
the CRB were non-negligible. The baseline simulation
had lower RMSE of LST for nighttime and cold sea-
son conditions. Baseline model discrepancies were pri-
marily associated with energy exchanges at land surface
during periods of higher solar radiation.

2. Simulated nighttime LST values were dominated by the
initial air temperature, such that improvements were ob-
tained from forcing corrections. This led to a reduction
in nighttime LST bias from −7 to 6 ◦C in the baseline
case to −5 to 5 ◦C in the Forcing-adj simulation. Veg-
etation adjustments led to large improvements in day-
time LST, with RMSE reductions from 7.5 to 2.5 ◦C,
but were less effective at night. In addition, the range of
daytime RMSE of LST was reduced from 4 to 10 ◦C in
the baseline case to 2.5 to 3.5 ◦C in the Veg-adj simula-
tion.

3. Updated snow physics reduced the negative bias in
SCF during the accumulation season. We further ad-
justed melting snow albedo to improve performance in
the ablation period. Unlike other modifications, runoff
was substantially impacted by the lower snow albedo.
Thus, the consistency between VIC and MODIS snow
cover did not ensure an improved streamflow simula-
tion, demonstrating the limitations of the regional ap-
plication in accurately capturing the variation in SWE
in mountainous areas. A possible solution to improve
the spatial credibility of the hydrologic model without
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degrading streamflow performance is by incorporating
satellite products and ground observations into a multi-
objective calibration.

Our work complements and expands efforts on validat-
ing physically based hydrologic simulations through remote
sensing products. The adjustment steps led to the improve-
ments in simulated LST that are in line with studies using
hydrologic models with various levels of sophistication. For
instance, simulations of Xiang et al. (2017) in a semiarid
basin in northern Mexico found LST RMSE of 4.3 ◦C for
the daytime and 1.9 ◦C during the nighttime compared to
MODIS. The hyperresolution (∼ 80 m) simulations of Ko et
al. (2019) in the same basin resulted in bias of −1.4 ◦C and
CC of 0.87, and the high-resolution simulations with VIC in
central Arizona by Wang et al. (2021) yielded LST biases be-
tween −1.5 and 3.6 ◦C. To our knowledge, this study is the
first to improve the simulated spatial patterns of hydrologic
variables in the CRB using remote sensing products. By in-
creasing the credibility of the spatial model outputs, this ef-
fort builds confidence in using regional hydrologic models
for water resources predictions and decision-making under
the ongoing megadrought in the Colorado River. Finally, we
identified several future research avenues to further improve
the fidelity of hydrologic models through the incorporation
of remote sensing products. First, once the key parameters
involved in the physical equations simulating a variable ob-
served by satellite sensors have been identified as done here,
a robust multiparameter sensitivity analysis could be con-
ducted to investigate possible interactions among the param-
eters; this effort will help further refine the calibration. Sec-
ond, automatic calibration strategies could be designed and
applied to simultaneously target the simulation of multiple
variables (here, LST and SCF).

Appendix A

We describe the solution of the energy balance in VIC,
which leads to the computation of ground surface tempera-
ture (Ts) and canopy foliage temperature (Tf) used to com-
pute the land surface temperature variable, LSTV, that is
compared against the MODIS estimate, LSTM. We empha-
size the main parameters and variables involved in the com-
putation of these state variables. More detailed descriptions
can be found in previous publications (Andreadis et al., 2009;
Bohn and Vivoni, 2016; Cherkauer et al., 2003; Cherkauer
and Lettenmaier, 1999; Liang and Lettenmaier, 1994). We
first illustrate the original algorithm introduced in the first
version of VIC (Liang and Lettenmaier, 1994), then the
snow overstory scheme introduced by Cherkauer and Letten-
maier (2003), and finally the clumped-canopy scheme imple-
mented by Bohn and Vivoni (2016).

A1 Original scheme from Liang and
Lettenmaier (1994)

In Liang and Lettenmaier (1994), the minimal unit of sim-
ulation is the tile with a homogeneous land cover, i.e., the
big-leaf approach. The energy balance equation for the tile
can be expressed as follows:

Rn = LH+SH+GH, (A1)

where Rn is net radiation, SH is sensible heat flux, LH is
latent heat flux, and GH is ground heat flux. The parameters
and variables involved in the computation of each term are
summarized in Table 2. Net radiation is determined by the
following:

Rn = (1−α) ·Rs+ ε ·
(
RL− σ · T

4
s

)
, (A2)

where RS and RL are downward shortwave and longwave
radiation, α is albedo, ε is surface emissivity (0.98 for water;
0.97 for other conditions), and σ is the Stefan–Boltzmann
constant.

The latent heat is computed as follows:

LH= ρw · λv · (Ec+Et+Eb) , (A3)

where ρw is the density of liquid water, λv is the latent heat of
vaporization, Ec is evaporation from wet canopy, Et is plant
transpiration, and Eb is evaporation from surface soil mois-
ture. For any given time, the maximum value of Ec, denoted
as Ec,max, is calculated as follows:

Ec,max =

(
W

Wmax

)2/3

·Ep ·

(
ra

ra+ rarc

)
, (A4)

where W is the amount of canopy interception at a given
time,Wmax is the maximum amount of water that the canopy
can intercept (computed as 0.2 ·LAI), rarc is the canopy ar-
chitectural resistance, ra is the aerodynamic resistance, and
Ep is the potential evaporation derived from the Penman–
Monteith equation with a canopy resistance set to zero. This
is calculated as follows:

Ep =
1Rn+ ρa · cp · δe ·

1
ra[

1+ γ ·
(

1+ rs
ra

)]
· λv

, (A5)

where1 is the slope of the saturation vapor pressure temper-
ature relationship, ρa is the air density, cp is the specific heat
of air, δe is the vapor pressure deficit, γ is the psychrometric
constant, and rs is the surface resistance. The aerodynamic
resistance is calculated as follows:

ra =
1

Cw+ u(z)
, (A6)

where u(z) is the wind speed at the measurement height z,
and Cw is the transfer coefficient for water. This is defined as
follows:
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Cw = 1.351 ·
k2[

ln
(
z
z0
−
d0
z0

)]2 ·F(Ri), (A7)

where k is the von Kármán constant, z0 is the roughness
length, d0 is the displacement height, and F(Ri) is a function
of the Richardson number, Ri, that accounts for atmospheric
stability. z0 and d0 have different values for each vegetation
type and for bare soil and snow. Ri is defined as follows:

Ri =
g · (Tair− Ts) · z(
Tair+Ts

2

)
· u(z)2

, (A8)

where g is the gravitational acceleration, and Tair is the
air temperature. When W ≥ Ec,max, Ec = Ec,max; otherwise,
Ec is a fraction of Ec,max determined as a function of precip-
itation and W .

The transpiration, Et, is calculated as follows:

Et =

[
1−

(
W

Wmax

) 2
3
]
·Ep ·

(
ra

ra+ rarc+ rc

)
, (A9)

where the canopy resistance, rc, is related to the minimal
stomatal resistance, rmin, via

rc = rmin ·
Gsm

LAI
. (A10)

Gsm is the soil moisture stress factor depending on root zone
water availability (depth dependent on vegetation type). Bare
soil evaporation, Eb, is equal to Ep when the shallowest soil
layer is saturated; otherwise, it is computed as follows:

Eb = Ep ·

 As∫
0

dA+

1∫
As

i0

im
[
1− (1−A)1/bi

]dA
 , (A11)

where As is the fraction of saturated soil. This is computed
as follows (Zhao et al., 1980):

As = 1−
(

1−
i0

im

)bi
, (A12)

where bi is the infiltration shape parameter, i0 is the cur-
rent infiltration capacity determined by water availability,
and im is the maximum infiltration capacity computed as the
product between maximum soil moisture (equal to soil depth
times porosity) and (1+ bi).

The sensible heat flux, SH, is given by the following:

SH=
ρa · c · (Ts− Tair)

ra
, (A13)

where ρa and c are the mass density and specific heat of air
at constant pressure, respectively.

The ground heat flux, GH, is calculated by the following:

GH=
κ

D1
(Ts− T1) , (A14)

where T1 is the soil temperature at depth D1 (0.1 m here),
and κ is the soil thermal conductivity.

The equations described above are used to estimate Ts
through an iterative procedure. Ts is initially set to Tair, lead-
ing to Ri = 0 and F(Ri)= 1; evapotranspiration is then es-
timated and the energy balance is solved to update Ts (Liang
and Lettenmaier, 1994). Iterative solutions for Ts are repeated
until the difference between initial and final values are within
a tolerance. This scheme is applied to the case of tile A in
Fig. 2 when fv,A = 1.

A2 Snow overstory scheme from Cherkauer et
al. (2003)

The energy balance in VIC was improved with the snow
overstory scheme of Cherkauer et al. (2003). Andreadis et
al. (2009) upgraded this scheme with fully balanced en-
ergy terms and the representation of snow interception. The
scheme assumes a vegetated overstory (with foliage temper-
ature Tf) and an understory without vegetation (with surface
temperature Ts), as in tile B in Fig. 2 with fv,B = 1. If snow
is not present, Tf is assumed equal to Tair, and Ts is calculated
with the scheme described above. When snow is present, the
energy balance is solved separately in control volumes (CVs)
of the overstory, understory, and the atmosphere surround-
ing the canopy (with temperature Tc), respectively. The algo-
rithm involves the following steps:

1. Tc is initially assigned equal to Tair. The snow on the
canopy is determined according to snowfall and max-
imum interception capacity, 5× 10−4

·Lr ·LAI, where
Lr is a step function of Tf from the last time step. If there
is no snow on the trees, then Tf = Tc = Tair. If there is
snow on the trees, and snow is melting, then Tf = 0 ◦C.
If the snow is not melting, then the energy balance of
the overstory CV with snow is solved for Tf, as follows:

R
snow-canopy
n +EA = SHsnow-canopy

+LHsnow-canopy, (A15)

where EA is energy advected by precipitation,
SHsnow-canopy is calculated as in Eq. (A13) but with Ts,
and Tair replaced by Tf and Tc. The net radiation for
snow on the canopy is as follows:

R
snow-canopy
n = (1−αsnow) ·Rs+ ε

·

(
RL+ σ · T

4
s − 2 · σ · T 4

f

)
, (A16)

with αsnow as the snow albedo. If Ts is not available, an
initial value of 0 ◦C is used in Eq. (A16). The latent heat
from snow sublimation is as follows:

LHsnow-canopy
=

0.622 · λs · ρa · δe

Pa · ra,snow
, (A17)
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where λs is the latent heat of sublimation, Pa is atmo-
spheric pressure, and ra,snow is the aerodynamic resis-
tance near the snow surface.

2. The energy balance is then applied to the understory CV.
Due to the presence of a tall tree, the shortwave radia-
tion reaching the ground surface is reduced (by 50 %)
due to the shading effect. The incoming longwave ra-
diation is computed only as a function of Tf, while the
contribution from the atmosphere is assumed negligible.
Ts is then calculated by solving the energy balance. In
this case, sensible heat is calculated using Eq. (A13) by
replacing Tair with Tc and computing the aerodynamic
resistance as follows:

ra,snow =
ln
(
z−ds
zs

)2

k2 · u(z)
, (A18)

where zs is snow surface roughness and ds is the snow
depth. If there is no liquid water in the ground snow-
pack, then the latent heat is calculated with Eq. (A17).
If there is liquid water, then Eq. (A17) is used with the
latent heat of vaporization, i.e., λs is replaced by λv.

3. Once Ts is derived, Tc is updated by solving the en-
ergy balance at the CV that includes the atmosphere sur-
rounding the canopy, as follows:

SHTair,Tc = SHTc,Ts +SHTc,Tf , (A19)

where SHTc,Ts is the sensible heat into snow calculated
in step 2, and SHTc,Tf is the SHsnow-canopy calculated in
step 1. Tc is compared with its estimate from the previ-
ous step (Tair in the first iteration). If the values are not
included within a tolerance, then steps 1–3 are repeated.

A3 Clumped-canopy scheme from Bohn and
Vivoni (2016)

The schemes described above are based on the big-leaf ap-
proach, where vegetation was assumed to cover the entire
surface of the tile. Bohn and Vivoni (2016) introduced the
clumped-canopy scheme to improve the simulation of bare
soil evaporation from inter-canopy spaces. This scheme re-
lies on the vegetation fraction (fv). The aerodynamic resis-
tance of each tile is updated to be the inverse of aerodynamic
conductance, 1/ga, with the following:

ga = (1− fv) · 1/ra,s+ fv · 1/ra,v, (A20)

where ra,s and ra,v are aerodynamic resistances for bare soil
and vegetated area, respectively, computed using Eq. (A6).
For the soil, a constant roughness height of 0.0001 m is used.

Because of the introduction of fv, we improved the snow
physics in the Snow-adj step. The version of VIC employed
in our baseline simulation assumed that longwave radiation
into the snowpack was received only from the canopy in

the tiles covered by trees, even for the unvegetated frac-
tion. In the clumped scheme, where a fraction (1− fv) is
unvegetated, this assumption is not reliable. Therefore, we
updated the computation of the longwave radiation as the
weighted average of the canopy longwave and longwave
from the atmosphere (LWd,v,B · (1− fv,B) was replaced by
LWd,B · (1− fv,B), as highlighted in Fig. 2b).

Code and data availability. MODIS prod-
ucts used in this study were retrieved from
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(Hall and Riggs, 2021), for SCF. Naturalized streamflow
data are provided by USBR (https://www.usbr.gov/lc/region/
g4000/NaturalFlow/documentation.html; US Bureau of
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