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Abstract. Climate change may significantly increase flood
risk globally, but there are large uncertainties in both fu-
ture climatic changes and how these propagate into chang-
ing river flows. Here, the impact of climate change on the
magnitude and frequency of high flows is analysed for Great
Britain (GB) to provide the first spatially consistent GB pro-
jections to include both climate ensembles and hydrologi-
cal model parameter uncertainties. We use the latest high-
resolution (12 km) regional climate model ensemble from
the UK Climate Projections (UKCP18). These projections
are based on a perturbed-physics ensemble of 12 regional
climate model simulations and allow exploration of climate
model uncertainty beyond the variability caused by the use
of different models. We model 346 larger (>144 km2) catch-
ments across GB using the DECIPHeR hydrological mod-
elling framework. Generally, results indicated an increase in
the magnitude and frequency of high flows (Q10, Q1, and
annual maximum) along the western coast of GB in the fu-
ture (2050–2075), with increases in annual maximum flows
of up to 65 % for western Scotland. In contrast, median flows
(Q50) were projected to decrease across GB. Even when us-
ing an ensemble based on a single regional climate model
(RCM) structure, all flow projections contained large uncer-
tainties. While the RCM parameters were the largest source
of uncertainty overall, hydrological modelling uncertainties
were considerable in eastern and south-eastern England. Re-
gional variations in flow projections were found to relate to

(i) differences in climatic change and (ii) catchment condi-
tions during the baseline period as characterised by the runoff
coefficient (mean discharge divided by mean precipitation).
Importantly, increased heavy-precipitation events (defined
by an increase in 99th percentile precipitation) did not al-
ways result in increased flood flows for catchments with low
runoff coefficients, highlighting the varying factors leading
to changes in high flows. These results provide a national
overview of climate change impacts on high flows across
GB, which will inform climate change adaptation, and high-
light the impact of hydrological model parameter uncertain-
ties when modelling climate change impact on high flows.

1 Introduction

Climate change will likely significantly alter hydrological
regimes in many parts of the world, with vast implications
for water resource planning and policy (Brown et al., 2015;
IPCC, 2014; Wagener et al., 2010). Projections indicate an
intensification of the hydrological cycle, with a warmer cli-
mate leading to more rain falling in high-intensity events
(Eicker et al., 2016; Huntington, 2006; IPCC, 2014; Tren-
berth, 2011). This increase in the frequency and severity
of extreme rainfall events is likely to increase flood risk in
many regions. However, the conversion of rainfall to runoff
is not straightforward, as changes in river flows result from
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complex and non-linear interactions between changing pre-
cipitation and evapotranspiration and the influence of basin
properties (Arnell, 2011; Laizé and Hannah, 2010; Sawicz
et al., 2014). There are also many uncertainties surround-
ing future climate projections. While climate models show
general agreement on rising temperatures and increasing ex-
treme precipitation throughout the 21st century, they differ in
the magnitude and spatial patterns of change (Fowler and Ek-
ström, 2009; Met Office, 2019; Nikulin et al., 2011). To guide
water-related policy and decision making and to ensure ade-
quate adaptation to future changes in flooding, we therefore
need hydrological modelling studies to help understand and
quantify climate change impacts on the hydrological regime
and the uncertainties surrounding these projections (Reynard
et al., 2017).

Hydrological climate change impact studies often use in-
formation from global climate models or regional climate
models (e.g. rainfall and temperature projections) to drive hy-
drological models. Throughout this modelling chain there are
many uncertainties, which cascade from one step through to
another. These include uncertainties in global climate model
(GCM) structure and sub-grid parameterisations, uncertain-
ties in regional climate model (RCM) structure and parame-
terisations, uncertainties in the chosen downscaling and bias-
correction techniques, and uncertainties in the selection of
hydrological model structures and their parameters (Clark et
al., 2016; Kundzewicz et al., 2018). Many studies have at-
tempted to quantify the impact of these uncertainties by us-
ing multiple GCMs/RCMs, bias-correction techniques, hy-
drological model structures, and/or hydrological model pa-
rameter sets and propagating these uncertainties through the
modelling chain. However, these studies are often focused on
small catchment samples as the large numbers of simulations
needed are computationally demanding (e.g. Bosshard et al.,
2013; De Niel et al., 2019; Kay et al., 2009; Smith et al.,
2014; Wilby and Harris, 2006). Studies generally agree that
modelling of the future climate presents the largest source of
uncertainty (Engin et al., 2017; Kay et al., 2009; Meresa and
Romanowicz, 2017; De Niel et al., 2019). However, hydro-
logical modelling uncertainties are not negligible. The rel-
ative contribution of hydrological modelling uncertainties to
total uncertainty has been shown to vary depending on catch-
ment characteristics (Addor et al., 2014) and for different as-
pects of the flow regime (Meresa and Romanowicz, 2017).
Understanding and communicating modelling uncertainties
has been widely recognised as important for informing robust
decision making (Clark et al., 2016; Reynard et al., 2017).

Many water-related policy decisions are made at the re-
gional to national scales. For example, England has a national
flood and coastal erosion risk management strategy (Environ-
ment Agency, 2020b). To inform these regional to national
policy decisions, hydrological modelling studies which apply
a consistent methodology across a large domain/large sam-
ple of catchments are most valuable, as they (i) provide a
broad overview of future changes, (ii) provide locally rele-

vant information, in contrast to global impact studies, and
(iii) enable direct comparison between catchments to iden-
tify regions that will experience the most significant climate
change impacts (Watts et al., 2015). Using a large sample of
catchments also ensures a more robust evaluation of the re-
lationship between climate change impacts and hydrological
response.

Over the last decade, large-scale studies evaluating cli-
mate change impacts on hydrology have emerged, facili-
tated by the increased availability of data and computational
resources. For example, Köplin et al. (2014) evaluated the
changing seasonality and magnitude of floods for 189 catch-
ments covering Switzerland, Thober et al. (2018) modelled
changing river floods across Europe, Wang et al. (2012) eval-
uated changing water resources using the distributed VIC
model across China, and a national grid-based model has
been applied to explore climate change impact on floods
and droughts across Great Britain (Bell et al., 2007, 2016;
Kay and Crooks, 2014; Lane and Kay, 2021; Rudd et al.,
2019). While the use of a GCM/RCM ensemble to evalu-
ate climate uncertainties has become increasingly common
(e.g. Bell et al., 2016; Lane and Kay, 2021; Prudhomme
et al., 2012; Rudd et al., 2019), the inclusion of hydrolog-
ical model parameter uncertainties at the national scale is
still rare. A notable exception is Christierson et al. (2012),
who modelled the impact of changing climate for 70 catch-
ments across the UK using two different hydrological model
structures and ensembles of model parameters. However, this
study was based on probabilistic climate projections which
were not spatially coherent (i.e. projected variables were not
consistent over space, and rainfall and precipitation products
were not produced from the same simulation) and therefore
did not present possible GB-wide changes but rather individ-
ual scenarios for each catchment. Incorporating hydrological
model parameter uncertainties is important, as it has been
shown that very different projections for future catchment
behaviour can be provided by parameter sets with similar
performance over a baseline period (Mendoza et al., 2015;
Singh et al., 2014). However, there is still a lack of studies
providing spatially coherent projections of future changes in
flooding across national domains while including both RCM
and hydrological parameter uncertainties, and no studies for
Great Britain.

An updated set of national climate projections has re-
cently been released for the UK, UKCP18 (Lowe et al., 2019;
Murphy et al., 2018). These have advanced upon previously
available national projections (UKCP09) through (1) in-
creased resolution of the global climate model from ∼ 300
to∼ 60 km, providing better representation of synoptic-scale
weather systems, mountains, and coastlines, (2) increased
resolution of the regional climate model from 25 to 12 km,
which may improve the representation of extreme precipita-
tion, (3) updated atmosphere model and improved parameter-
isations of many sub-grid-scale processes, and (4) improved
representation of dynamical influences on regional climate
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variability such as improvements in predictions of the win-
ter North Atlantic Oscillation (NAO) (Murphy et al., 2018).
Preliminary analysis has shown that probabilistic projections
produced as part of UKCP18 result in greater uncertainty
ranges than the comparable UKCP09 projections (Kay et al.,
2020). The UKCP18 projections include a perturbed physics
ensemble of RCM projections at 12 km resolution, providing
12 possible climate futures varying due to RCM parameter
uncertainties. The implications of these new climate simu-
lations for river flows are of great interest, as the improved
simulation of precipitation may improve projections of fu-
ture flooding.

This paper aims to explore the impacts of climate change
and hydrological model uncertainties on high flows using
the new UKCP18 climate projections across GB. A climate–
hydrological model cascade was employed, with output from
a perturbed-physics ensemble of 12 regional climate model
simulations. These ensemble members were used to drive a
nationally applied hydrological model with 30 distributed pa-
rameter fields. The resulting 360 future flow scenarios were
analysed to answer the following research questions:

1. What is the range in potential changes to median
and higher flows (including median flows (Q50), high
flow quantiles (Q10 and Q1), annual maximum flows
(AMAX) and the number of peaks) across GB when in-
cluding parameter uncertainties in climate and hydro-
logical modelling?

2. How will changes in the magnitude and frequency of
high flows vary spatially and by region?

3. How large is the hydrological variability resulting from
different realisations of the same climate model struc-
ture?

4. What is the relationship between changing climate (pre-
cipitation and potential evapotranspiration) and high
flow response, and how does this vary by region?

Our study presents the first consistent climate change pro-
jections for high flows across GB (i.e. using spatially co-
herent climate projections and spatially consistent hydrolog-
ical model parameter fields) to include both climate model
and hydrological model parameter uncertainties. The incor-
poration of a large sample of catchments also enabled ro-
bust and generalisable analysis of the relationship between
climate forcing, catchment characteristics and hydrological
response, which will be highly relevant to future studies in
GB and elsewhere.

2 Methods and data

2.1 Overview

This paper uses a climate–hydrological modelling chain to
assess the implications of the UKCP18 climate projections

for river high flows across 346 catchments covering GB (see
Sect. 2.2 for catchment selection). An ensemble of 12 spa-
tially coherent RCM projections is first bias-corrected (see
Sect. 2.3) and then used directly as inputs to the DECIPHeR
hydrological modelling framework to produce flow projec-
tions (see Sect. 2.4). For each RCM ensemble member, DE-
CIPHeR simulations are carried out using 30 nationally con-
sistent hydrological model parameter fields (see Sect. 2.4).
The use of 12 RCMs and 30 hydrological model parameter
sets results in 360 national simulations, representing uncer-
tainty due to RCM and hydrological model parameterisation.

To explore climate change impacts on high flows, flow
metrics were selected to assess median flows (Q50), high
flow quantiles (Q10 and Q1), the magnitude of peak flows
(AMAX), and the frequency of peak flows (see Sect. 2.5).
The skill of the climate–hydrological modelling chain was
first evaluated relative to observed flow metrics, and then
changes in flow metrics between the baseline (1985–2010)
and future (2050–2075) periods were evaluated.

2.2 Catchment selection

A large sample of 346 catchments covering GB was selected
for this study. This sample provides a dense coverage across
GB, with catchments in all river basin districts, as shown
in Fig. 1. Gauging stations were selected from the UK Na-
tional River Flow Archive (NRFA) Service Level Agreement
(SLA) Network (Centre for Ecology and Hydrology, 2016;
Dixon et al., 2013). This network of 715 gauges forms a
subset of strategically valuable NRFA catchments, where ad-
ditional validation and quality testing procedures have been
carried out (Dixon et al., 2013). As hydrometeorological data
were available on 12 km grids at daily resolution, we chose to
exclude catchments that were smaller than 144 km2 (i.e. one
RCM grid), because for these small catchments local varia-
tion in precipitation could be problematic for the RCM en-
semble scale, and for small flashy catchments sub-daily data
would be required to capture high flow and peak responses
effectively.

2.3 Climate model data

Climate scenarios representing changes in precipitation and
potential evapotranspiration (PET) were derived from the
UKCP18 regional climate projections (Murphy et al., 2018).
These comprised a perturbed-physics ensemble of 12 re-
gional climate model simulations, run at 12 km resolution
with daily output from 1981 to 2080 (Met Office Hadley
Centre, 2019). These projections were chosen because they
have many advantages over other available products for UK
impact assessments, including that (1) they were the highest-
resolution (12 km) RCM climate model outputs available for
a continuous run period over GB, (2) they were specifically
developed for the UK and form the basis of UK climate pol-
icy (Murphy et al., 2018), (3) they included a measure of
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Figure 1. Locations of the catchments used in this study, grouped
according to the so-called “river basin districts”.

climate uncertainty through the use of an RCM ensemble,
(4) they are UK-specific climate projection tools designed
to help decision makers assess their risk exposure to climate
and thus will for the first time inform important discussions
on the uncertainty within climate impacts across GB, and (5)
they were the newest national climate projections for GB,
including the latest developments in climate modelling ca-
pability and scientific understanding, and therefore have not
yet been comprehensively analysed in other impact studies.
A key advantage of the RCM data over other UKCP18 prod-
ucts is that they have full spatial and temporal coherence and
therefore allow for the assessment of interactions between
changes in precipitation and PET and provide a nationally
consistent picture of future changes (Met Office, 2020).

The 12 RCM projections were all driven by the same GCM
(GC3.05), and only the RCP8.5 emissions scenario was pro-
vided. We considered this to be the most important emis-
sions scenario to look at for two reasons: (1) it shows the
“worst case” and so will most likely show the largest ex-
pected changes, and (2) the emissions in RCP8.5 are in close
agreement with historical total cumulative CO2 emissions
and are therefore increasingly looking like a plausible future
up to 2100 (Schwalm et al., 2020). The GC3.05 GCM has
been shown to sample the warmer range of global outcomes
(Lowe et al., 2019), and so, combined with a single emis-
sions scenario, it is important to note that we only sample the
warmer range of possible climate outcomes.

While precipitation data were available as an RCM output
variable, PET time series needed to be derived from other rel-
evant UKCP18 model outputs. There are many possible ap-

proaches to calculating PET from climate model data, with
the choice of PET equation shown to impact the subsequent
changes in PET over time (Kay and Davies, 2008; Prud-
homme and Williamson, 2013). Here, PET was calculated
to be consistent with the CHESS-PE dataset used for hydro-
logical model parameterisation (Robinson et al., 2020). The
CHESS-PE dataset uses the Penman–Monteith equation, cal-
culating PET as a function of air temperature, specific humid-
ity, wind speed, shortwave radiation, longwave radiation, and
air pressure. These variables were all available as UKCP18
output, apart from air pressure, which was calculated using
the integral of the hypsometric equation with modelled tem-
perature as an input (Shuttleworth, 2012).

Bias correction of climate model output data is often re-
quired for hydrological impact studies due to the occurrence
of considerable biases in hydrologically relevant variables
(Addor and Seibert, 2014; Cloke et al., 2013; Ning et al.,
2012; Teutschbein and Seibert, 2012). An analysis of biases
in the UKCP18 regional projections identified systematic bi-
ases in the model output precipitation and model-derived
PET data (see Sect. S1 in the Supplement for more infor-
mation). For precipitation, RCM biases included overpredic-
tions of mean annual precipitation across GB by up to 50 %,
underpredictions of rainfall in wetter areas along the west-
ern coast, and an increased number of wet days (an average
of around 15 % more rainy days per year than observations).
RCMs tend to overpredict the variance in PET, resulting in
overestimations of PET in the south-east, where observed
PET is high, and underestimations in Scotland as well as an
incorrect seasonal variation with overestimations in summer
(up to around + 40 %) and underestimations in winter (up to
−100 %). A bias-correction method was required to reduce
these biases in RCM precipitation and PET, so that they were
suitable for hydrological modelling.

The choice of bias correction has been shown to impact
the magnitude and spread of projected changes in flood-
producing flows (Cloke et al., 2013; Smith et al., 2014) and
should, therefore, be carefully considered. Techniques to di-
rectly adjust RCM simulations range from relatively simple
linear scaling to more complex approaches such as quantile
mapping (Teutschbein and Seibert, 2012). As well as correct-
ing for the distribution of simulated precipitation, correcting
for persistence attributes has been shown to be useful when
considering the security of water resource systems (Johnson
and Sharma, 2012). The delta change method, which modi-
fies historical time series based on RCM-simulated changes,
is commonly applied (e.g. Veijalainen et al., 2010). How-
ever, this method cannot change the temporal sequencing
of events, so it cannot evaluate changes in flood timing.
The quantile mapping bias-correction approach was selected
here for both precipitation and PET (this method has also
been referred to as distribution mapping, probability map-
ping, model output statistics, or histogram equalisation). The
quantile mapping approach accounts for errors in the vari-
ability of PET and ensures that heavy precipitation events
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important for high flows were appropriately corrected as well
as mean precipitation. It also corrected for biases in the num-
ber of wet days in the RCM data.

Observed precipitation and PET data used for bias correc-
tion came from the CEH-GEAR (Keller et al., 2015; Tanguy
et al., 2014) and CHESS-PE (Robinson et al., 2020) datasets
respectively. For each grid cell and month for precipitation,
the following steps were performed.

1. Empirical cumulative distribution functions (CDFs)
were calculated for the observed precipitation and
RCM-simulated precipitation for the control/baseline
period (all dates where observed and simulated precipi-
tation was available).

2. The fractional difference between observed and simu-
lated precipitation was calculated for each cumulative
probability.

3. The whole simulated precipitation series was then bias-
corrected. The cumulative probability of each precipita-
tion value was calculated, and the value was modified
by the fractional change for that cumulative probability.

The same method was carried out for PET, with a mi-
nor modification. It was found that, for some Scottish catch-
ments, fractional changes could become very large when
PET values were low (<0.1 mm d−1) as a result of dividing
by values close to 0. To prevent unrealistic spikes in future
PET at low cumulative probabilities, a check was added to
ensure that PET values at a low cumulative probability were
always smaller than values at a higher cumulative probability.
This bias-correction methodology successfully reduced bi-
ases in RCM data over the observational period (see Sect. S1
in the Supplement for more information). However, it is im-
portant to note that bias correction assumes that (i) despite
biases in hydrometeorological variables, the RCM output is
still meaningful and changes in hydrometeorological vari-
ables are well simulated, (ii) biases in RCM output are sta-
tionary and so methods of bias-correcting baseline data also
hold into the future, and (iii) the observed data used in bias
correction are not erroneous. The quantile mapping bias-
correction approach is also limited because there will be few
observations to constrain the CDF at the extreme high end of
observations (e.g. exceptionally heavy rainfall events), and
therefore bias correction is likely to be less robust for the
rarest events. Whilst potentially another interesting avenue
of research in bias correction, namely wet/dry persistence
bias, we decided not to pursue this analysis. Because we feel
the matter is complex and requires a more dedicated paper
on these issues and potential impacts, for example, Moon et
al. (2019) showed more wet/dry persistence biases between
observed gridded rainfall products than between those and
climate model outputs.

The bias-corrected RCM data were used directly as hydro-
logical model input, with no further downscaling. This was

possible due to the size of the catchments we have chosen
to analyse coupled with the high resolution (12 km) of the
RCM data, which is a key advantage of the UKCP18 climate
product over previous climate projections.

2.4 Hydrological modelling

The DECIPHeR hydrological modelling framework was se-
lected to transform precipitation and PET into river flows
(Coxon et al., 2019; Lane et al., 2021). DECIPHeR is a semi-
distributed hydrological modelling framework which discre-
tises the modelling domain into hydrological response units
(HRUs). Here, the model was configured to be consistent
with the 12 km UKCP18 data, with HRUs defined by split-
ting the landscape into 12 km input grids which were further
sub-divided by three accumulated area classes, three slope
classes and sub-catchment boundaries. This HRU definition
aimed to capture topographic and catchment attribute con-
trols in hydrological processes. The HRU-based approach
enabled representation of the spatial variation of input time
series while being computationally efficient to facilitate the
use of multiple hydrological and RCM parameter sets across
the large sample of catchments. In contrast to a gridded ap-
proach, it meant that the model runs at much higher res-
olution for critical areas (where there are large variations
in slope/accumulated area or at sub-catchment boundaries).
Here, we have selected the default model structure, which is
based on the widely used TOPMODEL and has previously
been shown to perform well across GB and selected catch-
ments (Coxon et al., 2019; Lane et al., 2021). This model
structure does not include a snow module, as snow processes
were assumed not to substantially impact many GB catch-
ments (95 % of the catchments included in this study have
less than 6 % of precipitation falling as snow).

National fields of model parameters have been gener-
ated using the multi-scale parameter regionalisation tech-
nique (Samaniego et al., 2010), as described in Lane et
al. (2021). This method relates model parameters to spa-
tial catchment attribute data (including soil texture, land use,
and hydrogeology) via transfer functions. The coefficients
of the transfer functions were then constrained simultane-
ously on a large sample of 437 British catchments instead
of directly constraining model parameters. Model parame-
ters were calibrated over the period January 1991 to Decem-
ber 2000 and then evaluated over the period January 2001 to
December 2010. Over 3500 possible parameter fields were
produced, and of these, the top 30 parameter fields were se-
lected for this study to explore the uncertainty due to model
parameter selection. These parameter fields were selected as
they produced non-parametric KGE scores (Pool et al., 2018)
above 0.8 when taking the average value across the large
sample of catchments in GB (Lane et al., 2021). Using catch-
ment attribute data to define the spatial distribution of model
parameters means that parameter fields are spatially coher-
ent with no artificial discontinuities (Mizukami et al., 2017;
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Samaniego et al., 2017). This is advantageous when mod-
elling climate impacts for larger regions or entire countries,
as it has been shown that artificial discontinuities in param-
eter fields can lead to discontinuities in modelled variables
(Mizukami et al., 2017).

The DECIPHeR framework requires inputs of precipita-
tion and PET as well as spatial catchment attribute data
for parameterisation. The model was driven continuously
with climate data over the period 1 January 1981 to 30 De-
cember 2075, with 1 September 1985 to 30 August 2010
extracted as the baseline period and 1 September 2050 to
30 August 2075 being used as the future period in all further
analysis. These 25-year baseline and future periods were se-
lected to allow the maximum distance between the baseline
and future. The choice to start the baseline period in 1985
was due to the need for a long hydrological model spin-
up period (1981–1985), which is required for some catch-
ments in the south-east of England. Hydrological simula-
tions were also carried out using observed data over the pe-
riod 1 January 1981 to 30 August 2010 to provide a bench-
mark of model performance which the RCM-driven simu-
lations could be compared against over the baseline. For
these simulations, potential evapotranspiration data from the
CHESS-PE dataset (Robinson et al., 2020) and precipitation
data from CEH-GEAR (Keller et al., 2015) were re-gridded
to match the UKCP18 12 km data. All observed river flow
data were from the UK National River Flow Archive (NRFA)
(Centre for Ecology and Hydrology, 2016).

2.5 Hydrological indicators

To explore changes in the magnitude of high flows, we cal-
culated the percentage changes in four different flow metrics
between the baseline (1985–2010) and future (2050–2075)
periods. Flow metrics calculated were (1) the AMAX flow,
(2) Q1, the flow value exceeded 1 % of the time, (3) Q10,
the flow value exceeded 10 % of the time, and (4) Q50, the
median flow or flow value exceeded 50 % of the time. These
were selected to give a broad overview of future higher flow
changes, ranging from flood flows (AMAX and Q1) to me-
dian flows (Q50).

To analyse changes in the frequency of high flows,
a peaks-over-threshold (POT) analysis was carried out.
Thresholds were defined for each catchment to extract an av-
erage of three peaks per year over the baseline period. To
ensure flood events were independent, no peak was selected
within 7 d of a larger peak. This selection was consistent
with previous studies: for example, Svensson et al. (2005)
used a 5 d window for catchments smaller than 45 000 km2

(the largest catchments in the UK are ∼ 10000 km2), while
Petrow and Merz (2009) used 10 d for catchments across
Germany. Having found a POT threshold for each catchment
over the baseline that resulted in an average of three peaks
per year, the number of peaks exceeding this threshold in the
future period was counted. The percentage change between

the count of 75 peaks in total gained in the baseline and peaks
gained in the future was then calculated as an indication of
changes in the frequency of flood events.

3 Results

3.1 Meteorological changes

Median precipitation is projected to decrease almost every-
where. GB-average median precipitation is projected to de-
crease by 31 %–61 % between the different RCMs, with the
only exception being in western Scotland (Fig. 2a). This de-
creasing median precipitation contrasts with very high pre-
cipitation (99th percentile), which is expected to increase
across most of GB, by an average of 5 %–20 %. The 90th per-
centile precipitation shows a more mixed picture, with GB-
average changes of−9 % to+6 %. Generally, increases were
simulated for areas along the western coast and in western
Scotland, while decreases can be seen across southern Eng-
land and Wales.

All RCMs indicate increasing PET over the modelled pe-
riod (Fig. 2b, c). These broadly align with observed PET
across GB between 1980 and 2010, although it is difficult
to distinguish an upward trend in the observed PET data over
such a short period. GB-average PET values show increases
of 23 %–38 % between the baseline and future period, with
the largest PET increases (33 %–50 %) seen in the south and
the smallest PET increases (11 %–19 %) simulated for north-
western Scotland. Note that these increases in PET are likely
linked to the fact that the UKCP18 projections sample the
warmer range of possible climate outcomes (Lowe et al.,
2019).

3.2 Evaluation of the climate–hydrological modelling
chain

Overall, the simulations of the climate–hydrological mod-
elling chain across GB bounded the observations (Fig. 3).
Our evaluation focused on the performance for hydrologi-
cal indicators relevant for higher flows, namely flow quan-
tiles Q50, Q10, and Q1 and AMAX flows. Catchments
where storage reservoirs and regulated flow regimes im-
pacted runoff were removed for the model performance eval-
uation, as these processes are not included in the model,
meaning any errors in these catchments would not be due
to the driving data. However, the presence of reservoirs was
not found to lead to a reduction in model performance (see
Sect. S2 in the Supplement). The maps in Fig. 3a show bi-
ases in the highest (i.e. wettest) and lowest (i.e. driest) sim-
ulations for each individual catchment from the ensemble of
12 RCMs and 30 hydrological model parameter sets com-
pared to observed flows. For catchments which are well rep-
resented by the modelling chain, we would expect simulated
flows to bound the observations. Therefore the highest simu-
lation would show a small positive bias, and the lowest sim-
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Figure 2. Precipitation (a) and PET (b, c) change. GB maps are presented for each ensemble member in order. Top row: RCM01, RCM04,
RCM05, RCM06, RCM07, RCM08; bottom row: RCM09, RCM10, RCM11, RCM12, RCM13, RCM15.

ulation would show a small negative bias. For the majority of
catchments (75 % for Q50, 64 % for Q10 and 65 % for Q1)
the model simulations bound observed discharge. The model
tends to underestimate AMAX flows in north-western Eng-
land and Wales and overestimate them in the south-east, with
only 47 % of simulations bounding the observed AMAX.
For at least 70 % of catchments, median biases are less than
30 % for Q50, Q10 and Q1 and less than 36 % for AMAX
flows. However, the modelling chain overestimated flows in
the south-east across all high flow metrics. The difficulties
in modelling catchments in south-eastern England have been
documented in previous studies (Coxon et al., 2019; Lane
et al., 2019; Seibert et al., 2018) and are likely due to com-
plex aquifer systems facilitating inter-catchment groundwa-
ter flow. These catchments should, therefore, be treated with
caution when interpreting the results.

Model performances are shown in more detail for a selec-
tion of catchments covering a variety of error characteristics

(Fig. 3b). Here, error (i.e. bias) in modelled flow driven by
RCM output (green) is compared to modelled flows driven by
observations (yellow) using the same 30 hydrological model
parameter sets. For most gauges, simulated flows bound the
observations, even when driven by the RCM meteorologi-
cal data. This result was expected as the RCM data have
been bias-corrected against observations, and therefore the
RCM data will be similar to observations in magnitude, al-
beit with different sequencing of events. There is no consis-
tent relationship between model biases and flow percentiles,
with gauge 9002 showing an increased tendency to overes-
timate higher flows, while gauge 83013 showed a decreased
tendency to overestimate higher flows.

3.3 Spatial changes in high flows across GB

Maps showing the spatial pattern of changes in high flow
magnitude and frequency are presented for three example
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Figure 3. Evaluation of model performance, showing how well the modelled flow statistics from the climate–hydrological cascade bound
the observed flow statistics over the baseline period. The maps (a) show errors in RCM-driven simulations compared to the observed ones.
The top row shows the highest positive error from the 360 simulations, while the bottom row shows the lowest negative error, calculated
separately for each catchment. When considered together, these show how well the RCM-driven simulations bound the observed flows.
Four gauges are shown in more detail (b), giving error across median and higher flow percentiles compared to observations, showing both
simulations driven by observations and simulations driven by RCM data.

simulations in Fig. 4. As the spatial pattern was similar be-
tween the ensemble members, we have focused on RCMs 13,
8, and 4, which represent low, average, and high GB-average
projections respectively (calculated based on GB-average
Q10 changes). These projections were selected to indicate
the range in flow changes across GB, but plots for a larger

number of scenarios, and showing absolute changes as well
as percentage changes, are given in Sect. S3 in the Supple-
ment. It is important to note that the maps in Fig. 4 are spa-
tially coherent futures from single RCM ensemble projec-
tions and a single hydrological model parameter set. There-
fore, they do not reflect the full range of flow changes for
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each individual catchment that would be obtained by eval-
uating the entire RCM ensemble driven by all hydrological
model parameter sets. Plots showing the ensemble range for
each catchment are therefore also given in Sect. S3 in the
Supplement.

Despite differences between the example projections,
there is a clear east–west divide for high flow magnitude
metrics (AMAX, Q1, and Q10) with increased flows for
catchments in the west and decreasing flows in the east. The
largest percentage decreases in high flows are in eastern Eng-
land, particularly in the Anglian river basin district, while
the largest increases in flow are along the western coast. It is
important to note that the large percentage changes in flows
for the south-east could be due to the low baseline flow val-
ues, so small absolute changes will result in larger percentage
changes (see Sect. S3 in the Supplement for presentation of
absolute and percentage change maps). Median flow (Q50)
projections indicate reductions in flow almost everywhere,
but these reductions are generally lower for catchments in
western Scotland. The frequency of high flow events, rep-
resented by changes to the number of peaks over threshold
events, also shows general increases in the west and reduc-
tions in the south-east. The spatial pattern is very similar to
the changes to high flow magnitude, indicating that western
catchments could experience larger annual maximum floods
combined with more frequent high flow events.

3.4 Regional changes and uncertainties

Changes in the hydrological indices for the different RCMs
and across regions were visualised by heat maps to enable
easy comparison (Figs. 5 and 6). Heat maps in Fig. 5 present
the median flow values from the sample of hydrological
model parameters for each flow statistic, with the full range
of regional projections presented in Table 1. They highlight
similarities between RCM members: most RCM ensembles
result in increasing AMAX flows in Scotland, northern Eng-
land, and western Wales and decreasing AMAX flows in the
Anglian river basin district. Most RCM ensembles also re-
sult in decreasing Q50 flows everywhere except for the Ar-
gyll and West Highland districts in western Scotland. How-
ever, there are also important differences between the dif-
ferent RCM projections, including (i) differences in the spa-
tial variation of changes across GB, for example RCM 15
showing relatively little variation between regions (range of
28 % between AMAX projections) and RCM 11 showing a
large variation (range of 104 %), (ii) differences in the magni-
tude of projected changes for each region, for example north-
western England projections for Q10 ranging from −16 %
to +20 % between RCMs, and (iii) the tendency for some
RCMs to simulate increases in flow (e.g. RCM 04) and others
to tend towards decreases (e.g. RCM 13), which relates to the
relative change in 99th percentile precipitation (see Fig. 2).
These differences demonstrate the importance of considering

multiple RCM parameterisations to show a more complete
picture of potential future changes.

Heat maps in Fig. 6 present regional changes to Q10 (see
Sect. S4 in the Supplement for other metrics), evaluated us-
ing (1) the median flow values from the sample of hydro-
logical model parameters for each RCM ensemble member
and (2) the median flow values from the RCM ensemble for
each hydrological model parameter set. This highlights sim-
ilarities and differences between hydrological model param-
eter sets compared to RCM ensemble members. There are
some hydrological model parameter sets that tend towards
increases in Q10 (e.g. hydrological models (HMs) 5 or 12),
while others tend towards decreases (e.g. HMs 1 or 9) across
the regions. Hydrological model parameter sets also result in
considerable differences in projections for some regions; for
example, the change in Q10 flow magnitude for the Anglian
river basin varies from −36 % to −14 % for the hydrologi-
cal model parameters, compared to −44 % to −11 % for the
RCM parameters. Figure 7 summarises these ranges across
all regions and metrics.

Overall, RCM parameters were a larger source of uncer-
tainty in median and high flow changes than hydrological
model parameters (see Figs. 6 and 7). This finding agrees
with previous studies that have investigated high flows,
which generally find climate models to be the largest source
of uncertainty in hydrological climate impact assessments
(Addor et al., 2014; Bosshard et al., 2013; Kay et al., 2009).
However, hydrological model parameter selection is a large
source of uncertainty in the south-east, especially in the An-
glian river basin region. This region receives relatively little
precipitation compared to the rest of GB. Previous studies
have shown that drier catchments are more sensitive to pa-
rameter selection, with fewer good parameter sets for drier
than for wet catchments (Lane et al., 2019). It is however
possible that high percentage differences in the south-east are
due to the lower river flow values magnifying the percentage
value of any changes.

3.5 Relationship between climate changes, flow
changes, and catchment characteristics

The relationship between precipitation change (95th precip-
itation percentile) and change in flood flows (Q1) across all
catchments and RCMs is presented in Fig. 8. Additional plots
showing this relationship for other precipitation change met-
rics, flow change metrics and hydrological model parame-
ter selections are given in Sect. S5 in the Supplement. This
shows that there is a strong positive correlation between pre-
cipitation change and flood response, albeit with a large vari-
ation between catchments. The non-linearity between chang-
ing precipitation and changing Q1 flows can be seen, with
a 25 % increase in precipitation leading to a 20 %–50 % in-
crease in Q1. Surprisingly, for some catchments, heavy pre-
cipitation increases, yet there is a reduction in Q1 flows (i.e.
catchments in the bottom right quadrant of Fig. 8). This flow
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Figure 4. Maps showing changes in the magnitude and frequency of peak flows between the baseline and future periods for example
simulations. Each row shows a nationally coherent projection, with plots of changes in five flow metrics (AMAX, Q1, Q10, Q50 and the
number of peak flows above a threshold). This combination of RCMs and hydrological parameter sets was selected from the ensemble of
360 simulations to give an indication of the ensemble spread, as they provided the highest, median, and lowest GB-average change in Q10,
but they do not show the full range of possible changes for individual catchments or all flow metrics.

reduction could be due to the contrasting effect of increas-
ing PET, resulting in generally drier antecedent conditions
for catchments and thus reduced flows due to the increases in
soil moisture storage deficits.

The relationship between change in 95th percentile precip-
itation, total PET, and Q1 is given in Fig. 9; other variations
of precipitation, PET, and flow changes produced similar re-
sults (but are not shown). There is a clear relationship be-
tween climate forcing and hydrological response. Increased
heavy precipitation tends to lead to increased Q1, while de-
creased or unchanged heavy precipitation, combined with
increasing PET, leads to reduced Q1 flows. The range in
climatic changes is different for each region (see Fig. 9b),
which is a key reason for the regional differences in Q1
changes. However, the hydrological response differed be-
tween regions for the same climate forcing. For example,
a 6 % decrease in 95th percentile precipitation and an over
45 % increase in total PET lead to an average 53 % reduction

in Q1 in the Anglian river basin district but only an average
15 % decrease in Q1 in the Thames region in the south-east.
These results highlight the importance of how multiple cli-
matic factors impact regional flow responses differently due
to the non-linearity within the hydrological processes.

The observed runoff coefficient (runoff divided by pre-
cipitation) helped to explain these regional differences in
catchment flow response to climatic change inputs. Figure 10
shows the relationship between 95th percentile precipitation,
PET, and Q1 changes, with catchments grouped by runoff
coefficient classes. Catchments with relatively low runoff co-
efficients tend to show a higher sensitivity to the increas-
ing PET. They are therefore more likely to see decreasing
Q1 flows even with small (<5 %) increases in heavy pre-
cipitation. These catchments are often drier catchments, and
so heavy precipitation events may fill storage deficits rather
than result in increased river flow. Other catchment proper-
ties, such as deep soils or permeable geology, may also con-
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Table 1. Ensemble range in projected changes for each flow metric. All changes are given as percentage differences between the baseline
and future periods. “Low”, “Med”, and “High” refer to the lowest, median, and highest region-average changes from the ensemble of RCM
and hydrological model parameters.

Region AMAX change Q1 change Q10 change Q50 change N. peaks change
(%) (%) (%) (%) (%)

Low, Med, High Low, Med, High Low, Med, High Low, Med, High Low, Med, High

Solway 7 18 49 1 13 37 − 4 4 24 − 49 − 26 − 4 4 24 79
Clyde − 10 15 29 − 9 11 27 − 8 5 28 − 42 − 20 5 − 28 23 77
W Highland 3 18 65 − 7 14 46 − 4 9 31 − 17 1 19 − 16 35 113
N Highland − 15 4 39 − 17 − 1 33 − 27 − 6 18 − 41 − 20 0 − 41 − 5 68
NE Scotland − 7 8 45 − 15 0 19 − 27 − 13 9 − 56 − 33 − 12 − 41 − 12 33
Tay 1 13 36 − 3 11 36 − 9 2 25 − 43 − 26 − 3 − 7 17 75
Forth 6 17 40 1 11 37 − 5 3 22 − 49 − 23 − 3 − 5 23 73
Tweed − 14 6 59 − 14 1 19 − 20 − 5 14 − 69 − 41 − 19 − 37 − 3 52
Northumbria − 11 3 38 − 20 2 17 − 32 − 16 8 − 69 − 44 − 24 − 39 − 16 26
Humber − 21 4 27 − 18 0 17 − 33 − 11 9 − 71 − 42 − 23 − 53 − 12 31
Anglian − 74 − 21 19 − 68 − 22 8 − 80 − 41 3 − 85 − 50 − 9 − 99 − 55 13
Thames − 50 − 10 15 − 44 − 10 18 − 59 − 24 4 − 72 − 41 − 11 − 78 − 34 16
SE England − 30 − 3 37 − 26 − 2 32 − 38 − 15 13 − 64 − 40 − 7 − 64 − 20 32
SW England − 18 5 29 − 18 1 20 − 32 − 10 5 − 70 − 47 − 22 − 49 − 10 21
Severn − 25 0 26 − 20 0 16 − 39 − 11 6 − 68 − 43 − 21 − 55 − 13 19
W Wales 3 21 42 3 12 36 − 14 4 15 − 67 − 35 − 12 − 9 25 59
Dee − 6 13 26 − 7 8 25 − 21 − 4 10 − 62 − 38 − 21 − 25 6 39
NW England − 1 18 57 − 4 13 48 − 18 2 29 − 71 − 33 − 15 − 21 24 76

Figure 5. Heat maps showing region-average changes in flow magnitude between the baseline and future periods, for all 12 RCMs. Regions
have been ordered by location, with the relative position within GB given on the left. To focus on differences between RCMs, the median
flow value from the hydrological model parameter sets is presented.
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Figure 6. Heat map showing region-average changes in Q10 flow magnitude between the baseline and future periods. The 12 columns on the
left focus on the difference between RCM parameterisations, using the median flow value from all hydrological model parameter sets. The
30 columns on the right focus on the difference between hydrological model parameterisations, using the median flow value from all RCMs.
Regions have been ordered by location, with the relative position within GB given on the left.

Figure 7. Relative uncertainties from inclusion of different RCM and hydrological model (HM) parameter sets. The RCM range was calcu-
lated as the full range in regional-average changes between the RCMs, using the median of all HM parameter sets. Similarly, the HM range
was calculated using the median output of all RCMs.

tribute to water being retained in the catchment. By contrast,
catchments with high runoff coefficients show more sensitiv-
ity to changes in heavy precipitation, and very small (5 %)
increases in precipitation can lead to increases in Q1 of up
to 25 %. These are often wetter catchments, or catchments
with other properties such as steep slopes or impermeable
soils, where increases in heavy rainfall will directly result in
increases in flood flows.

4 Discussion

4.1 Future changes to high flows across GB

Despite large uncertainties, some clear patterns of climate
change impact on flooding across GB emerged. Projections
indicated decreasing median flows (Q50) across all regions
except for the Clyde and West Highland river basin regions
where Q50 changes ranged between −42 % and +19 %. The
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Figure 8. Relationship between precipitation change and Q1 change
across all catchments. Results are presented for all RCMs using the
median of all hydrological parameter sets.

overall decrease in Q50 was likely due to reduced average
precipitation and nationwide increases in PET projected by
all the RCMs.

Increased flood flow magnitudes (AMAX) and frequency
were projected for all RCMs along the western coast and
across most of Scotland, while decreasing flood flows were
projected for the Anglian river basin region in eastern Eng-
land using the median of all hydrological model parameter
sets. These results are consistent with previous studies on
the hydrological impacts of climate change for GB, which
broadly find increasing flood flows for Wales, northern Eng-
land, and Scotland (Chan et al., 2022). For example, Collet
et al. (2018) found that hydro-hazard hotspots were likely to
develop along the western coast and north-eastern Scotland.
Kay et al. (2014b) also modelled large increases in flood
peaks in north-western Scotland. However, our results con-
trast with Bell et al. (2016) and Kay et al. (2014a), which
both found relatively large increases in flood flows in the
south-east and Anglian in particular. This contrast could be
due to the different metric studied (Bell et al., 2016, and Kay
et al., 2014, both showed percentage changes in 20-year re-
turn period floods, while we show changes in AMAX floods)
or other methodological differences such as hydrological
model or climate projections. Chan et al. (2022) summarise
the results from 122 publications on the hydrological impacts
of climate change for GB, concluding that changes in flood-
ing over south-eastern England were uncertain. This is con-
sistent with our finding that hydrological modelling uncer-
tainties were particularly large for the Anglian region. There-
fore increases or decreases in AMAX flows were within the
total uncertainty range of a −74 % to +19 % change.

Our modelled changes in AMAX and high flow magni-
tudes (Table 1) will be useful for informing climate change
adaptation, for example in ensuring correct allowances are
made for changing fluvial flood risk in new developments.
To account for the potential impact of changing flood risk,
the national planning policy for England requires that de-

Figure 9. Relationship between changing climate and changing
high flows (Q1), shown for all catchments nationally (a) and by re-
gion (b). Plots show climatic changes from all RCMs, coloured by
the median change in Q1 flows from the ensemble of hydrological
model parameter sets. Regions which are shown together exhibited
similar patterns.

velopments are safe from flood risk throughout their life-
time by applying an allowance for the potential impact of
climate change (Reynard et al., 2017). These have evolved
from a simple 20 % allowance applied nationally to a range
of allowances for each river basin district that represent the
central (50th percentile), higher central (70th percentile), up-
per end (90th percentile), and H++ (highest) projections of
changes to peak river flows (Environment Agency, 2020a).
Our highest regional projections are within the H++ gov-
ernment allowances for southern and central England, but our
highest projections exceed the government H++ peak flow
allowances for northern England (Solway, Tweed, Northum-
bria, and North-west England river basin districts). In partic-
ular, the H++ allowance for peak flow changes in the Tweed
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Figure 10. Runoff coefficient (runoff divided by precipitation) vs. flow sensitivity to climatic changes.

River basin is 35 % for the 2050s (Environment Agency,
2020a), but our projections include peak flow changes of
up to 59 %. Therefore, our projections indicate that current
guidance could be underestimating the potential risks from
climate change for northern England. However, the use of
different time periods (we modelled changes by 2050–2075,
whereas the government allowances cover the period 2040–
2069) restricts the comparability of these results.

4.2 Relationship between climate changes and
hydrological response

It is often assumed that increases in extreme precipitation
will lead to increases in flood flows (Sharma et al., 2018).
However, while there is observational evidence of increasing
precipitation extremes, there is no compelling evidence for
any systematic increases in flooding which can be attributed
to climate change (Hannaford, 2015; Watts et al., 2015).
Understanding the link between changing precipitation and
changing floods has, therefore, been highlighted as an im-
portant challenge for the hydrologic community (Sharma et
al., 2018). Here we found that while there was a strong pos-
itive relationship between changes in heavy precipitation (as
characterised by changes in the 95th percentile precipitation)
and changes in high flows (Q1), there were catchments where
precipitation was increasing yet modelled flood flows were
decreasing. These catchments tend to be located in the south-
east of England, where we have drier conditions and large
increases in PET – and therefore the impact of drier soils and
increased storage deficits could have moderated the impact
of increased heavy precipitation on river flows.

We found that the relationship between changes in heavy
precipitation, total PET, and changes to flood flows varied
between river basin regions. The catchment runoff coeffi-
cient (average river flow divided by average precipitation)
helped to explain this variation; for catchments with high
runoff coefficients, precipitation increases most directly re-
lated to increased flood flows, while catchments with low
runoff coefficients showed a greater response to increasing
PET. This in part relates to previous studies finding that there

is a more direct link between heavy rainfall and high flows in
wetter catchments (Charlton and Arnell, 2014; Ivancic and
Shaw, 2015), as there is a general relationship between the
runoff coefficient and catchment wetness. It is important to
realise that the interplay between general runoff coefficients
of different catchment typologies and the amount they are
impacted by changes in both evaporation and precipitation
to Q1 high flow sensitivity is not consistent, as shown in
Fig. 10. Therefore we recognise that impacts to high flows
are multifaceted, and the uniqueness of catchment character-
istics and climatological differences needs to be taken into
account when quantifying climate change impacts. This re-
sult highlights that it is important to recognise the complex-
ities of flow change resulting from multiple climatic drivers
and non-linear hydrological processes.

4.3 Uncertainties in climate impacts on high flows

Our results highlight the importance of considering uncer-
tainty in projections of climate change on flood flows. The
selection of RCM parameters impacted not only the range of
future changes for each region (often disagreeing on the di-
rection of change), but also variation in changes between re-
gions and to some extent the spatial pattern of changes across
GB. This, combined with hydrological modelling uncertain-
ties, resulted in the large ranges in future changes given in
Table 1. The overall picture of climate change impact on
flows differed between the four selected metrics, showing the
importance of metric selection and consideration of multiple
metrics in model evaluation and impact studies. The incorpo-
ration of multiple uncertainty sources, therefore, prevents an
overconfident portrayal of climate change impacts on high
flows, which could be misleading if used to inform future
planning or policy decisions (Buurman and Babovic, 2016;
Kundzewicz et al., 2018).

Previous studies found hydrological modelling uncertain-
ties to be small relative to climate modelling uncertainties,
especially when considering high flows (Chegwidden et al.,
2019; Chen et al., 2011; Velázquez et al., 2013). For example,
Chegwidden et al. (2019) used an ensemble of two RCPs,
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10 GCMs, two downscaling methods, and four hydrologi-
cal model structures in their analysis of climate change im-
pacts on annual streamflow across the Pacific Northwest of
North America, finding that GCMs were overall the domi-
nant contributor to the variance in projected changes. Simi-
larly, Thober et al. (2018) used an ensemble of three RCPs,
five GCMs, and three hydrological model structures in an
analysis of climate change impact on European floods, find-
ing that the GCM contribution to total uncertainty was gener-
ally higher than the hydrological model contribution. Our re-
sults generally support these previous findings, showing that
the variation in future changes between RCMs is much larger
than the variation between behavioural hydrological model
parameter sets. However, we observed substantial hydrolog-
ical modelling uncertainties for catchments in England, par-
ticularly for the Anglian river basin and drier catchments in
the south-east.

Many studies have explored the impact of climate model
structural uncertainty when evaluating climate impact on
flows by using different GCMs/RCMs (Kay et al., 2009;
Meresa and Romanowicz, 2017; De Niel et al., 2019). When
comparing uncertainty sources, GCM structures are com-
monly found to be one of the largest sources of uncertainty
for peak flows (Kay et al., 2009; De Niel et al., 2019). How-
ever, the impact of climate model parameter uncertainties has
hardly been studied so far. Here, we had the unique opportu-
nity to use simulations from a perturbed-physics ensemble
of 12 regional climate model simulations; i.e. the situations
were all based on the same GCM/RCM structure. We demon-
strate that even when using a single GCM/RCM structure,
there are considerable differences in the magnitude of pro-
jected changes as well as the spatial pattern. This implies
that using single realisations of different GCMs/RCMs likely
does not represent the full variability of the climate model
simulations.

It is likely that interactions between the RCMs and hy-
drological model parameters also contribute to the total un-
certainty where behaviour is not linear. For example, the
AMAX variation between different hydrological model pa-
rameter sets may depend on the winter rainfall projection
from the driving RCM, where certain RCM projections may
lie on a threshold which produces a large difference in hy-
drological response between models. It has previously been
shown that interactions between uncertainty sources can ac-
count for 5 %–40 % of the total uncertainty in hydrological
climate change impact studies (Bosshard et al., 2013). This
emphasised that, while uncertainties in future climate may
dominate, uncertainties due to hydrological model parame-
ters are not negligible.

4.4 Limitations and future work

This study focused on the uncertainties in flow projections
due to RCM and hydrological model parameter uncertainties.
Additional sources of uncertainty in hydrological climate

impact studies include the future emissions scenario, GCM
structure, bias-correction methods, PE estimation equation,
and hydrological model structure (Bosshard et al., 2013; Kay
et al., 2009; Prudhomme and Davies, 2009; Wilby and Har-
ris, 2006). Therefore, while our results provide a useful in-
dication of the range in future changes to high flow metrics
across GB, the true uncertainty ranges are likely to be much
larger.

The RCM ensemble projections applied here were all
driven by the same GCM and emissions scenario and so do
not sample the full range of climate uncertainty. Other GCMs
may have resulted in different precipitation trends and levels
of warming into the future and would therefore have resulted
in different flow changes. For example, Kay et al. (2021)
evaluated climate change impacts on flood indicators us-
ing the UKCP18 regional projections applied here alongside
lower-resolution projections from a range of GCMs, finding
a clear distinction in results driven by different climate mod-
els. However, the UKCP18 projections used here were the
only high-resolution, spatially consistent projections avail-
able covering GB for a continuous time period up to 2080.
There is therefore a need to develop more spatially consis-
tent climate projections at high resolution from a range of
GCMs/RCMs to assess the impacts of climate model uncer-
tainty on river flows. This is particularly important for flood
flows, where high-resolution outputs are critical for captur-
ing rainfall extremes.

This study focused on changes between a baseline and
mid- to far-future scenario. However, it is important to recog-
nise that the relative importance of different uncertainty
sources could change depending on the time horizon con-
sidered (Chan et al., 2022). For example, climate uncertainty
in the near term (2020s) is dominated by natural variabil-
ity, but the impact of the emissions scenario and GCM con-
figuration becomes more important in the mid to long term
(2050s onwards) (Hawkins and Sutton, 2009). Furthermore,
a study comparing uncertainty sources for flow projections in
the Mekong basin found that the Soil and Water Assessment
Tool (SWAT) parameters were the major source of uncer-
tainty in the short term (2030s) but that GCMs were the ma-
jor source of uncertainty in the long term (2060s) (Shrestha
et al., 2016). The relative contribution of hydrological mod-
elling and RCM parameter uncertainties over time is there-
fore an interesting avenue for future research.

A further limitation of this study is that the hydrological
modelling framework used a single model structure, which
did not include snow accumulation and melt processes. How-
ever, snow fractions are generally very low across GB, with
a median snow fraction of 0.01, except for catchments in
north-eastern Scotland, where it reaches a maximum of 0.17
(Coxon et al., 2020). Bell et al. (2016) investigated the im-
pact of including a snow module on climate change projec-
tions for peak flows. They found that across most of GB the
inclusion of a snowmelt regime led to small percentage dif-
ferences in peak flow changes of less than 6 %. However,
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snowmelt processes were shown to be important for upland
parts of GB, mainly in eastern Scotland, where the reduced
presence of snow in the future could have a large impact on
river flows. Therefore, the results of our study need to be in-
terpreted with caution in these upland catchments.

5 Conclusions

This study considers both RCM and hydrological model pa-
rameter uncertainties for the first time at the national scale
through modelling climate change impact on the magnitude
and frequency of high flows across 346 catchments in GB.
The latest UK Climate Projections (UKCP18) were used to
generate 12 spatially coherent and equally plausible time se-
ries of precipitation and PET. These were then used to drive
the DECIPHeR hydrological modelling framework using 30
nationally consistent parameter fields. The resultant 360 fu-
ture flow projections were used to investigate the range of
changes in high flow magnitude and frequency between base-
line (1985–2010) and future (2050–2075) scenarios as well
as the relationship between climatic change and hydrological
response.

This paper provides a national overview of projected fu-
ture changes in median and higher flows across GB, with the
full ensemble range in projected changes given for each re-
gion. Generally, results indicated increasing magnitude and
frequency of flood flows for catchments along the western
coast of GB and across most of Scotland. For western Scot-
land, region-average increases in annual maximum flows of
up to 65 % were projected. The Anglian and Thames river
basins in eastern England generally showed decreasing flood
magnitude and frequency. However, hydrological modelling
uncertainty was high for these areas, and therefore increases
in flood magnitude were also within the ensemble range. This
information will be useful for decision makers who have a
role in managing or planning water in GB, for example in
water companies, regulators, and government.

More broadly, we have shown that regional differences in
high flow changes were related to (i) differences in climatic
change signals and (ii) differences in catchment conditions
during the baseline period as characterised by the runoff co-
efficient (total discharge/precipitation). A strong relationship
was found between increasing heavy precipitation and in-
creasing flood flows, alongside the moderating impact of in-
creased PET. This relationship differed between catchments:
catchments with high runoff coefficients were found to have
a more direct response of flood flows to precipitation change,
while catchments with low runoff coefficients were more re-
sponsive to increased PET, often resulting in very large re-
ductions in Q1 flows (−50 %) in areas with small (−5 %)
reductions in 95th percentile precipitation. Furthermore, our
results highlight the importance of considering uncertainties
in climate impact studies. The variation in results within a
single RCM was a large source of uncertainty, with differ-

ences in both the magnitude of projected changes for indi-
vidual regions and the variability between regions. While hy-
drological modelling uncertainties were smaller, they were
still considerable for catchments in eastern and south-eastern
England. This demonstrates the importance of incorporating
hydrological model uncertainties into future climate change
impact studies.

Code availability. The DECIPHeR model code is open-source
and freely available under the terms of the GNU General Pub-
lic License version 3.0. The model code is written in Fortran
and is provided through a Github repository (https://github.com/
uob-hydrology/DECIPHeR, last access: 3 November 2022) or
https://doi.org/10.5281/zenodo.2604120 (Coxon and Dunne, 2019).
Code for the model parameterisation is available to view at
https://doi.org/10.5281/zenodo.4646179 (Lane, 2021b).

Data availability. All precipitation, PET, and discharge datasets
used in this study are freely available. The CEH-GEAR and
CHESS-PE datasets are freely available from CEH’s Environ-
mental Information Data Centre and can be accessed through
https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e
(Tanguy et al., 2014) and https://doi.org/10.5285/8baf805d-39ce-
4dac-b224-c926ada353b7 (Robinson et al., 2020) respectively.
Observed discharge data from the NRFA are available from the
NRFA website. The UK Climate Projections data are available for
download from the CEDA archive (http://catalogue.ceda.ac.uk/
uuid/b4d24b3df3754b9d9028447eb3cd89c6, Met Office Hadley
Centre, 2018). Model outputs presented in this paper can be made
available on request from the main author but unfortunately cannot
be made open-access due to license restrictions on the datasets used
to parameterise the model.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-5535-2022-supplement.
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