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Abstract. Electromagnetic induction (EMI) is used widely
for hydrological and other environmental studies. The ap-
parent electrical conductivity (ECa), which can be mapped
efficiently with EMI, correlates with a variety of important
soil attributes. EMI instruments exist with several configura-
tions of coil spacing, orientation, and height. There are gen-
eral, rule-of-thumb guides to choose an optimal instrument
configuration for a specific survey. The goal of this study
was to provide a robust and efficient way to design this opti-
mization task. In this investigation, we used machine learn-
ing (ML) as an efficient tool for interpolating among the re-
sults of many forward model runs. Specifically, we gener-
ated an ensemble of 100 000 EMI forward models represent-
ing the responses of many EMI configurations to a range of
three-layer subsurface models. We split the results into train-
ing and testing subsets and trained a decision tree (DT) with
gradient boosting (GB) to predict the subsurface properties
(layer thicknesses and EC values). We further examined the
value of prior knowledge that could limit the ranges of some
of the soil model parameters. We made use of the intrinsic
feature importance measures of machine learning algorithms
to identify optimal EMI designs for specific subsurface pa-
rameters. The optimal designs identified using this approach
agreed with those that are generally recognized as optimal
by informed experts for standard survey goals, giving con-
fidence in the ML-based approach. The approach also of-
fered insight that would be difficult, if not impossible, to offer
based on rule-of-thumb optimization. We contend that such
ML-informed design approaches could be applied broadly to
other survey design challenges.

1 Introduction

Water movement through the vadose zone is often controlled
by the near-surface layering of soil. In the simplest sense,
this is often represented as a small number of horizontal lay-
ers, such as is often related to soil formation processes lead-
ing to distinct soil layers. The hydrogeologic structure places
critical controls on processes ranging from infiltration to per-
colation to root water uptake to recharge, thereby playing a
critical role in most hydrologic systems (Winter et al., 1998;
Nimmo, 2009). The need to describe this shallow hydrogeo-
logic structure has been a major driver in the development
and adoption of hydrogeophysical methods (Binley et al.,
2015).

Electromagnetic induction (EMI) is a noncontact method
to measure the apparent electrical conductivity (ECa) of the
shallow subsurface. The ECa is an integration of the elec-
trical conductivity of all layers in the subsurface. EMI works
when a transmitter coil produces an electromagnetic field that
induces secondary currents in the subsurface soils. The com-
bined current is measured with a receiver coil (Nabighian and
Macnae, 1991). The strength of the measured field is used to
estimate the ECa within the sample volume of the measure-
ment (Doolittle and Brevik, 2014). EMI instruments differ
in the orientations of their coils: some use transmitter and
receiver coils that have their long axis horizontal with re-
spect to the ground surface (HCP), others orient both coils
vertically (VCP), and some use one horizontal and one ver-
tical coil in a perpendicular arrangement (PRP). In addition,
instruments differ in the separation of the coils, with larger
separations used to measure to greater depth. Finally, an op-
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erator can choose different instrument heights above ground,
which also impact the spatial sensitivity of the measurement
in the subsurface. We refer to the collective choices of coil
orientation, separation, and height above ground as the in-
strument configuration.

For several decades, EMI instruments have been used to
gather measurements of ECa of the soil. The ECa of soil is
positively correlated with salinity, water content, and clay
content (Doolittle and Brevik, 2014). As a result, ECa is a
meaningful (but complex) aggregate measure of soil proper-
ties (Palacky, 2011). Because the EMI method is noncontact,
it is reasonably fast and inexpensive compared with direct
soil sampling, resulting in a frequent use in agriculture (Mc-
Cutcheon et al., 2006; Daccache et al., 2015; Adhikari and
Hartemink, 2017), soil mapping (James et al., 2003; Cockx
et al., 2009; Heil and Schmidhalter, 2012; Reyes et al., 2018),
and archeological investigations (Saey et al., 2013, 2015; De
Smedt et al., 2014; Christiansen et al., 2016). In addition to
the challenges introduced by ECa being sensitive to multiple
soil properties, quantitative interpretation of EMI measure-
ments is complicated by the complex averaging of the local
soil EC within the instrument’s sample volume. (Note that we
use the term EC to refer to the actual bulk electrical conduc-
tivity of a soil, which may vary within the measurement vol-
ume of the instrument, and we use ECa to refer to the average
EC that is measured from EMI instrument responses.) More
challenging still, the spatial sensitivity (or spatial weighting)
of the EC depends on the instrument configuration (McNeill,
1980). Finally, in some cases, the spatial sensitivity may have
a higher dependency on the absolute value and spatial distri-
bution of the EC (Callegary et al., 2012).

In this investigation, we avoid the common assumption
that the spatial sensitivity only depends on the instrument
configuration, but we consider a complete forward model
of EMI response. The spatial averaging of EMI is not an
issue if the medium is electrically homogeneous. However,
most soils have some structure – at a minimum, agricultural
soils display horizontal layering with a distinct uppermost
layer (the Ap horizon). Therefore, the optimal design of an
EMI configuration should select the orientation, separation,
and height of the coils to locate the instrument sensitivity
in the subsurface to best determine the subsurface proper-
ties. The depth of investigation (DOI) of EMI instruments is,
both in the scientific literature (Saey et al., 2009a, b, 2012;
De Smedt et al., 2014; Doolittle and Brevik, 2014; Adam-
chuk et al., 2015) and by the manufacturers (Dualem Inc.,
Canada), often estimated to be at the depth that has 70 %
of the cumulative response. There is a relationship between
the depth sensitivity of the instrument response and the coil
spacing and position. Therefore, in practice, the 70 % cu-
mulative response rule is frequently converted to a rule of
thumb that states that larger coil spacings and HCP should
be used for deeper investigations, whereas short spacing and
VCP or PRP should be used for shallow investigation (Ac-
worth, 1999; Beamish, 2011; Cockx et al., 2009; Heil and

Schmidhalter, 2015, 2019). While this rule of thumb is not
wrong, the terms shallow and deep are subjective and will
have different meaning depending on whether it is a hydro-
geologist, archeologist, agronomist, or a geophysicist who
applies the terms. It also fails to make any distinction be-
tween using the VCP or PRP coil orientation. These basic
guides become more difficult if the objective is to determine
subsurface properties in a nonhomogeneous medium, even a
simple layered case. For these conditions, the advice is to use
multiple coils with some combination of orientation, separa-
tion, and height. Nevertheless, little specific guidance is of-
fered. Furthermore, the rule of thumb offers no way to con-
sider the possible impact of prior knowledge (e.g., bounds on
the expected depth of the topmost layer) in the survey design.
Commercially available EMI instruments for relatively shal-
low applications offer a wide range of designs based on dif-
ferences in the three instrument characteristics. This makes it
difficult to make an informed choice regarding the preferred
instrument and configuration.

Aside from the generally applied rule of thumb and sensi-
tivity analysis there are several published efforts to optimize
the design of geophysical surveys (e.g., Furman et al., 2007;
Khodja et al., 2010; Song et al., 2016). These methods seek
to estimate the reduction in prediction uncertainty based on
changes in experiment design through inverse modeling. Ap-
plying these design optimization approaches to EMI would
require that the responses of many configurations be com-
puted for multiple soil models. Each survey design includes
multiple measurements at each location, each with a differ-
ent configuration, that jointly provide the most useful infor-
mation for inferring specific, user-identified subsurface prop-
erties; that is, a user is faced with the question of which
combination of configurations is optimal given their mea-
surement priorities and, ideally, incorporating any applicable
constraints that they may have regarding the subsurface con-
ditions. Any method that requires formal inversion of each
proposed combination of configurations is computationally
expensive.

Machine learning (ML) describes a wide range of regres-
sion algorithms used for pattern recognition. ML has grown
in popularity and is now used regularly within and beyond
science. The simplest ML tools are based on decision trees
(DT), which are supervised ML techniques that perform clas-
sification or regression based on observations. DTs are com-
putationally inexpensive, but they can have limited predic-
tive skill (Hastie et al., 2001). To improve their performance,
DTs are often augmented by ensemble learning methods such
as bagging (Breiman, 1996) and boosting (Friedman, 2001).
The ML approach is different from traditional inverse mod-
eling because ML is trained to balance generalization with
goodness of fit. A sensitivity or inverse model approach
would have to be repeated multiple times for each subset
to estimate the value of every instrument configuration. The
feature importance of tree-based ML gives a data value anal-
ysis at each step of the ML training procedure without extra
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effort. This makes the ML approach very efficient for calcu-
lating the information content of instrument configurations
for an ensemble of soils compared with the inverse analysis
of the data value.

One of the challenges of both scientific and environmen-
tal investigations is to determine the optimal data to acquire;
these data are often used to either provide structural informa-
tion or constrain model parameterization. Measurement op-
timization is an attempt to balance data quality and the work
expended in the field and laboratory. The ultimate goal is to
develop an efficient and robust approach to measurement op-
timization, with the hope that a similar approach could be
extended into other measurement network design problems.
The specific objective of this investigation was to present the
approach in combination with a simple geophysical model to
select sets of EMI configurations that are optimal given the
specific survey goals and any independent knowledge of the
subsurface electrical properties.

2 Theory

Depth sensitivity of EMI instruments

If the subsurface is electrically homogeneous within the sam-
ple volume of the instrument, the EMI instrument response
(ECa) can be related directly to the EC of the subsurface. In
almost all subsurface media, the EC varies with depth due to
soil layering. For these conditions, multiple measurements,
made using different coil spacing and separations, can be in-
terpreted simultaneously to infer the EC profile. This requires
a model of the depth sensitivity of the EMI measurement.

We apply the Maxwell-based full solutions (Eqs. 1, 2, and
3) from Wait (1982) to calculate the relationship Q between
the secondary field (Hs) and the primary field (Hp). The so-
lution works for a one-dimensional subsurface, and it is valid
for low frequencies because it assumes that the electromag-
netic fields spread due to conduction currents:

QVCP = Im
(
HS

HP

)
VCP
= Im

−s2
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0

R0J1 (sλ)λdλ

 , (1)

QHCP = Im
(
HS

HP

)
HCP
= Im

−s3
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0

R0J0 (sλ)λ
2dλ

 , (2)

QPRP = Im
(
HS

HP

)
PRP
= Im

−s3

∞∫
0

R0J1 (sλ)λ
2dλ

 , (3)

where Im means that only the imaginary component is con-
sidered; R0 is an interlayer reflection factor; J0 and J1 are
Bessel functions of the zeroth and first orders, respectively;
and λ is the radial wave number. The integrals of Eqs. (1), (2),
and (3) represent Hankel transforms, and these are calculated
with linear filtering (Anderson, 1979; Guptasarma and Singh,

1997) in the EMagPy software (McLachlan et al., 2020). The
low induction number (LIN) approximation proposed by Mc-
Neil (1980) assumes that depth of investigation does not de-
pend on the EC of the subsurface. Therefore, a method simi-
lar to that of von Hebel et al. (2019) is used through EMagPy
(McLachlan et al., 2020) to estimate ECa fromQ. The ECa is
estimated by minimizing the differences between a predicted
or measured Qpred and a Q value calculated for an equal ho-
mogenous half-space, Qhomo. The minimized difference ap-
proach is valid for a broader range of ECa compared with
the LIN approximation (von Hebel et al., 2019; McLachlan
et al., 2020). We refer to von Hebel et al. (2019) for a more
detailed description of this method.

Many efforts have been made to create geophysical mod-
eling tools (Monteiro Santos, 2004; Auken et al., 2015; Saey
et al., 2016). However, EMagPy (McLachlan et al., 2020) of-
fers the user the opportunity to use several models and makes
them readily available to a wide audience, as it is an open-
source software. This study uses a complete forward model
when estimating ECa, but there is no hindrance to use a sim-
pler geophysical model or a model describing a different pro-
cess.

3 Materials and methods

In this study, we describe a specific EMI instrument configu-
ration based on the three coil orientations, horizontal (HCP),
vertical (VCP), and perpendicular (PRP); coil separation (in
m); and instrument height (in m). For example, a configura-
tion that uses coils that are horizontal to the surface with a
separation of 1 m and an instrument height of 0.3 m would
be named: “HCP_1.0_0.3”. The EC of any layer is an ac-
tual electrical property of that specific medium, and it is re-
ferred to as “EC” followed by the layer name. For example,
the EC of the A layer is referred to as “ECA”. Likewise, the
thickness of any layer is denoted by “Thick” followed by the
layer name; thus, the thickness of the A layer is denoted as
“ThickA”. All symbols and abbreviations can be found in
Appendix A.

3.1 Generating the model ensemble

We consider a three-layer soil profile, which is common for
agricultural soils with distinctly developed A, B, and C lay-
ers characterizing changes in the physical, chemical, and bi-
ological characteristics with depth (Fig. 1). Electrical prop-
erties are assumed to be constant horizontally within the
sample volume of the instrument. The subsurface properties
(three EC values and two thicknesses) were varied indepen-
dently (Table 1), forming a large set of subsurface conditions.
The ECa was then calculated for many EMI instrument con-
figurations through EMagPy (McLachlan et al., 2020) ver-
sion 1.1.0. EMagPy deployed theQ response functions from
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Figure 1. Three-layered soil (A, B, and C layer) with variable elec-
trical conductivities (EC). A schematic of an EMI instrument situ-
ated on the surface is also shown. The HCP and VCP have the re-
ceiver coil in the same horizontal plane as the transmitter coil. The
PRP has the receiver coil in the plane perpendicular to the transmit-
ter coil.

Eqs. (1)–(3) (Wait, 1982) in combination with the minimiz-
ing differences approach to estimate ECa.

Each of the five soil parameters had 10 possible values,
which created 100 000 different EC soil profiles. The ranges
of EC used in the forward model were chosen to represent
a wide spectrum of soil types and water contents. This is
to capture different scenarios of EMI use (e.g., a survey of
a large heterogenous area). The lowest EC represents a dry
sandy soil, and the highest EC represent an agricultural soil
with a combination of high clay or water content (Triantafilis
and Lesch, 2005; Robinson et al., 2008; Harvey and Mor-
gan, 2009). The ranges of soil layer thicknesses span from
0.05 to 2.0 m. The full ranges of the subsurface properties
are supposed to cover the range of multiple field sites; there-
fore, we consider a wide range of geology and variation in
EC (Palacky, 2011). Each of the three coil orientations was
modeled for three different coil separations and three differ-
ent instrument heights, and the 27 instrument configurations
cover both the more typical configurations for field applica-
tions of EMI and some more uncommon configurations. In
total, the EMagPy code was run 2.7 million times to form
the ensemble of results covering the soil and instrument con-
figurations.

3.2 Analyzing the EMI model results and feature
importance with a gradient-boosted decision tree

3.2.1 Decision tree models

Decision tree is a machine learning method that performs
regression or classification practicing on subset of the full

Table 1. Adjustable parameters used in the forward model to gener-
ate the ensemble and values used for each of the combinations that
constitute the soil profiles.

Subsurface parameters

ECA ThickA ECB ThickB ECC
[mSm−1] [m] [mSm−1] [m] [mSm−1]

1 0.05 1 0.1 1
12 0.21 12 0.3 12
23 0.37 23 0.5 23
34 0.53 34 0.7 34
45 0.69 45 0.9 45
56 0.86 56 1.1 56
67 1.02 67 1.4 67
78 1.18 78 1.6 78
89 1.34 89 1.8 89
100 1.5 100 2.0 100

Instrument parameters

Height Coil spacing Coil orientation
[m] [m]

0.1 1.0 Vertical
0.3 2.5 Horizontal
0.5 4.0 Perpendicular

dataset called training data. A training dataset consists of n
samples (x1,y1), (x2,y2), . . ., (xn,yn), where x1−n are the in-
puts (features), and y1−n are the corresponding outputs (tar-
gets). The aim is to estimate a function F(x) that connects
the features with the targets in a way that minimizes the loss
function (Friedman, 2001):

L(y,F (x))=

n∑
i=1

1
2
[yi −F(xi)]

2. (4)

The features in our dataset consist of values of modeled
ECa from various instrument configurations, and the targets
are the five adjustable subsurface parameters. The tree is built
by splitting the values of the features in the training data into
two groups. The optimal split minimizes the sum of squared
residuals between the value of the targets and the average
value of all targets within each group. The two new groups
are split into two additional groups each (Hastie et al., 2001).
This process continues, creating a structure like an upside-
down real-world tree with a root node at the top, from which
nonterminal nodes (branches) will occur at every split, and
terminal nodes (leaves) at every end point. To avoid overfit-
ting, the growth of the tree is limited by introducing a maxi-
mum depth of the tree and a minimum number of data sam-
ples required to create a leaf by splitting a nonterminal node.
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3.2.2 Gradient boosting algorithm

The gradient boosting (GB) algorithm (Friedman et al., 2001;
Mason et al., 1999) takes the training dataset and the chosen
loss function to make an initial estimate F0(x) as a start-
ing point. When the loss function is defined by Eq. (4),
the initial estimate F0(x) becomes the average of the inputs
x1,x2, . . .,xn. The residual rim terms between the initial esti-
mate calculated by F0(x) and the true value of the targets are
calculated for i = 1,2, . . .,n as follows:

rim−

[
∂L(yi,F (xi))

∂F (xi)

]
F(x)=Fm−1(x)

. (5)

The right-hand side of the minus sign in Eq. (5) shows the
gradient from which the algorithm is named, and the residual
rim terms are named pseudo-residuals. A decision tree model
is then made from the features to predict the pseudo-residuals
from Eq. (5). The decision tree model output is scaled by
a learning rate ν to reduce the variance of the prediction.
The scaled output is added to F0(x) to create a new function
Fm(x) for decision tree m for i = 1,2, . . .,n:

Fm(x)= Fm−1(x)+ ν

Jm∑
j=1

γjmI (x ∈ Rjm), (6)

where Jm is the total number of leaves in the terminal region
Rjm in decision tree model m. The new function Fm(x) is
used to calculate a new set of pseudo-residuals. The process
of making a new decision tree model Fm(x) and adding the
scaled output to the existing function Fm−1(x) is repeated
until the reduction in pseudo-residuals with each added tree
becomes insignificant or a specified number of trees M has
been created.

Feature importance is an indicator of how valuable each
of the included features is in the context of the final deci-
sion with GB. The relative importance Î 2

j of any feature is
proportional to the number of times it is used to make splits
weighted by the square of its improvement to the goodness
of fit for the model at each split (Friedman and Meulman,
2003):

Î 2
j (T )=

J−1∑
t=1

î2t 1(vt = j), (7)

which sums over the nonterminal nodes J − 1 in the tree T
and the squared residual î2t attributed to the split of each node
t with vt as the target variable being split at each node (Fried-
man, 2001). As boosting generates multiple trees, the relative
importance is averaged over all trees. The importance is nor-
malized over all features so that the sum of the feature impor-
tance values equals 1, and a higher value indicates a greater
effect on the targets.

We found that gradient boosting (Elith et al., 2008; Fried-
man, 2001) offered improved performance without adding

unreasonable additional computational effort, and it was used
for all analyses. For our application, each modeled ECa value
in the ensemble of the different EMI configurations repre-
sents a feature in ML parlance. We then tested the ability
of DT with GB to infer the correct value of each subsurface
property given the ECa that would be measured with all of
the EMI configurations. A separate boosted tree was trained
to predict each of the five subsurface parameters. The EMI
model ensemble was split into training and testing sets using
the random sample function in Python: 70 % was used for
training, and the remaining 30 % was used for testing. Train-
ing and testing were repeated five times with different train-
ing and testing splits. Differences among the repeats were
small, so all results were combined for analyses. The learn-
ing rate, maximum tree depth, and minimum samples per leaf
were tuned by manual trial and error, and the optimal values
for these parameters were found to be 0.1, 10, and 2, respec-
tively. However, the performance of the DT with GB did not
vary significantly with the hyperparameter values. All other
hyperparameters used the default values in the scikit-learn
toolbox (Pedregosa et al., 2011).

We used the feature importance capabilities of DT with
GB to identify which observed ECa values were most infor-
mative for the inference, and we eliminated all insensitive
configurations. This allowed us to find the optimal instru-
ment configurations for each subsurface parameter without
having to do inverse modeling. To examine the impact of in-
dependent knowledge of any of the subsurface properties, we
then repeated this analysis for a subset of the soil models that
met a given restriction, such as only those that had a thin up-
per layer or a high-EC middle layer.

3.3 Assessing the value of additional information

For our initial analyses, we considered the full range of all of
the subsurface electrical properties. However, in many cases,
prior information is available to define one or more of these
soil EC parameters or, at least, to reduce the range of plau-
sible values for at least one of them. This prior knowledge
could be in form of hard data or soft expert knowledge for a
survey area. This study uses layer EC and thickness as prior
knowledge, but any information can be considered to con-
strain the range of cases. Here, we examine how reducing
the uncertainty of one soil EC parameter improves the EMI-
based inference of other parameter values and whether this
additional information changes the composition of the opti-
mal EMI configurations to include in a survey. In addition
to the sensitivity of the configurations, this analysis provides
the parameter values that result in significantly lowered iden-
tifiability of any one of the five subsurface parameters.

To examine the value of additional a priori parameter in-
formation, we perform three restriction analyses. In each
case, we sequentially limit the range of one of the five sub-
surface EC parameters and determine the impact on the ac-
curacy of inference of the other parameters. Recognizing that
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some parameters, especially EC values, can have a different
impact on EMI spatial sensitivity if they are too high or low,
we consider four patterns of restriction:

– centered – the four minimum and four maximum values
defining the parameter ranges are eliminated;

– skewed low – the eight highest values are eliminated
from the parameter range;

– skewed high – the eight lowest values are eliminated
from the parameter range;

– full range – all 10 possible values of the five parameters
are used in the analysis.

For each restriction analysis, we present the impact of the
restriction compared with the case with no independent in-
formation, and we describe any changes in the composition
of the optimal EMI configuration set for each target subsur-
face parameter.

4 Results and discussion

In this section, we present the outcome from the forward
modeling with the full solutions for VCP (Eq. 1), HCP
(Eq. 2), and PRP (Eq. 3) as well as the summation from
Eq. (4) (Sect. 4.1). We also assess the results from apply-
ing a DT with GB to output of the forward modeling. First,
we look at parameter identifiability and examine the cases
that lead to inaccurate predictions (Sect. 4.2); we then ex-
amine the feature importance output (Sect. 4.3). We show
the impact of restricting the range of ThickA on inferring
ECA (Sect. 4.4.1). Analysis described in Sects. 4.1 to 4.4.1
focuses on the full range of parameters and ECA, the EC of
the A layer (the shallowest layer). Finally, we present the im-
pact of the piecewise application of all restriction patterns to
all five subsurface parameters on the value of independent
information (Sect. 4.4.2) and the feature importance of EMI
configurations (Sect. 4.5). The results will be influenced by
the choice of forward model, but the ML approach to design
optimization is not model dependent and a change in forward
model is a trivial extension.

4.1 Modeled ECa ensemble

The five soil parameters with 10 different values provide us
with an ensemble of 100 000 soil profiles. The three coil ori-
entations, three coil spacings, and three instrument heights
sum to 27 instrument designs that are applied to each pro-
file. Frequency distributions of the modeled ECa for each of
the 27 instrument designs in all of the profiles are shown in
Fig. 2. The distributions are quite similar, but they do differ
in detail. The distributions of modeled ECa values depend
strongly on the height or coil orientation for designs with a
1 m coil separation (left column, Fig. 2). The variations are

less pronounced for larger coil separations. There are also
differences in the smoothness of the distributions: the PRP
(bottom row, Fig. 2) has more distinct peaks for small sep-
arations, whereas the HCP (top row, Fig. 2) has more peaks
for larger separations.

4.2 Predicting parameter values with a trained DT
with GB using all observations

The first step in our analysis was to examine the ability of
the trained DT with GB to predict each parameter value; that
is, we used 70 000 EC profile realizations for training the DT
with GB. We then provided the 27 observations for each of
the remaining 30 000 EC profile realizations to the trained
DT with GB and predicted ECA (the EC of the shallow-
est layer). To account for the brittle nature of DT methods,
this procedure was repeated five times with different train-
ing and testing splits. The results of the repeated analysis
were not significantly different, so they were pooled, provid-
ing 150 000 predictions upon which the goodness of fit was
determined.

The root-mean-squared error (RMSE) between the pre-
dicted and true values of the EC of the A layer (ECA) is
shown in Fig. 3. The true values are the known ECA values
used in the forward models. The results, shown as a cross-
plot of points, are somewhat misleading because it is diffi-
cult to see that many points are overlapping close to the 1 : 1
line. Therefore, shaded areas are included to show ±1 and 2
standard deviations about the mean predicted ECA for each
true ECA value. There are clear outliers – cases for which
the trained DT with GB did not give an accurate estimate
of ECA even considering all 27 EMI observations. However,
the overall RMSE was 7.34 mSm−1 over the entire set of
150 000 test cases. The residuals shown in Fig. 3 are not
evenly distributed at the low and high values because of the
lower and upper boundaries of the input values.

The process shown in Fig. 3 was repeated for each of the
five EC profile parameters. The RMSE for each parameter
is reported in Table 2, and Table B1 shows how Gaussian
noise affects the RMSE. Because the range of values of the
parameters differs, the normalized root-mean-square error
(NRMSE) is calculated by dividing the RMSE by the full
range of the true values of the parameter. The NRMSE of the
parameter is a measure of how well the ML can infer the in-
dividual parameters and, thus, how estimable the parameters
are. As the ML is trained on EMI output, the NRMSE also
suggests how well the EMI instrument can detect the soil
properties. The results show that EMI is least able to infer
the layer thicknesses, with a slightly better ability to infer the
thickness of the A layer compared with the B layer. Further-
more, EMI produces better estimates of the shallow and deep
EC values compared with the EC of the B layer. These results
fit with expectations, given that EMI designs with very short
coil separations might be sensitive to only ECA, and those
with very large separations might be mostly sensitive to the
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Figure 2. Frequency distributions of the responses from the cumulative sensitivity model for the three coil orientations: horizontal (HCP),
vertical (VCP), and perpendicular (PRP). Each panel shows the modeled ECa output from one coil orientation and coil separation for three
different heights. The coil orientation and coil separation change are shown using the respective rows and columns of the nine panels.

Figure 3. The result of running the DT with GB on the entire
100 000 soil types and all 27 instrument configurations five times.
The EC of the A layer (ECA) is the parameter that is being pre-
dicted. The x axis is the true value of the ECA, and the y axis is the
predicted value of the ECA.

EC of the deepest layer (ECC) (Callegary et al., 2012; Heil
and Schmidhalter, 2015). In contrast, the layer thicknesses,
ThickA and ThickB, and the EC of the middle layer (ECB)
must always be inferred based on multiple measurements.

4.2.1 Examining the conditions that led to poor
estimations of ECA

From the 150 000 test cases displayed in Fig. 3, 8816 cases
are more than 1 standard deviation away from the true
value when predicting ECA. These cases are displayed us-

Table 2. The root-mean-square error (RMSE) between the predic-
tion from the gradient-boosted (GB) model and the testing data.
The machine learning procedure was repeated with each of the five
subsurface parameters as targets, thereby creating five models. The
RMSE is normalized by the mean value of the target to get the nor-
malized root-mean-square error (NRMSE).

Target ECA ThickA ECB ThickB ECC
unit [mSm−1] [m] [mSm−1] [m] [mSm−1]

RMSE 7.09 0.29 18.8 0.51 2.98
NRMSE 0.07 0.20 0.19 0.27 0.03

ing the blue markers that are located outside the shaded ar-
eas (Fig. 3). The compositions of these 8894 cases are pre-
sented as frequency distributions of their parameter values in
Fig. 4. The values for ECB, ECC, and ThickB are uniformly
distributed, which indicates that no specific values of ECB,
ECC, or ThickB lead to poor inference of ECA. In contrast,
94 % of the problematic conditions have a thickness of the
A layer (ThickA) among the three lowest values. This, again,
agrees with expectations that the EC of a thin layer would be
more difficult to infer accurately than that of a thicker layer
using an EMI instrument. The opposite is found for ECA;
while not as pronounced, the results indicate that the poorly
inferred cases tended to have higher ECA values, with 54 %
of the conditions having the three highest ECA values. This
suggests that identifying the layer with an EMI instrument
would be more likely to be successful if the range of ThickA
did not include the lowest values examined here; that is, we
would expect improved inference of ECA for restrictions of
ThickA that are centered or skewed high. A more success-
ful survey, based on the ability to infer ECA, would occur if
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Figure 4. The ECA was inferred for 150 000 test cases. In 8816 of
the 150 000 cases, the inference was more than 1 standard deviation
away from the true value. The figure shows the distribution of five
subsurface parameter values within the 8894 conditions. The top
x axis is the layer thickness, the bottom x axis is the layer EC, and
the y axis is the frequency.

the ECA values tend to be lower; that is, a restriction that is
centered or skewed low should show better performance.

4.3 Feature importance when predicting parameter
values with a trained DT with GB

The preceding analysis used measurements from all 27 in-
strument configurations for each EC profile parameter esti-
mation. The major focus of this investigation was to use ML
tools to identify the optimal set of observations to collect,
which balances performance with reduced field effort. To
illustrate how the built-in feature importance of tree-based
methods can be used to achieve this, consider the results
shown in Fig. 5. The feature importance is shown for each
of the 27 configurations; because they sum to 1, it is con-
venient to represent this as a pie chart. The colors and pat-
terns that comprise the circles identify the eight most im-
portant EMI configurations for each combination of the pa-
rameters. The fraction of the circle covered by each color
and pattern shows the relative importance of that observa-
tion. The colors indicate the coil orientation, while the shade
and pattern indicate the coil distance and instrument height.
The 19 least important EMI configurations are combined in
“others” (white slices). From these results, it is apparent that
approximately 90 % of the information used to predict ECC
(rightmost circle) is provided by configuration HCP_4.0_0.1.
The optimal orientation and large coil separation could have
been predicted from McNeil’s classic work (McNeill, 1980).
However, the aforementioned study did not consider the PRP
orientations. The reason for the preference for a small instru-
ment height is apparent: it may simply be due to further pen-
etration of the signal to greater depth. To our knowledge, no

other method, short of exhaustive comparisons of many syn-
thetic inverse analyses, would have been able to show that
a single configuration, among the full suite of instruments,
was so clearly dominant for inferring ECC. Similarly, almost
60 % of the information used to infer ECA (leftmost circle)
was provided by the PRP_1.0_0.1 configuration. The small
coil separation and low instrument height fit with general ex-
pectations, and the highly sensitive PRP orientation fits with
the findings of Tabbagh (1986).

Taken together, the results suggest that each of the EC pro-
file parameters relies on a relatively small number of obser-
vations. To illustrate this, 90 % of the importance, including
only the most important observations, is provided by 4, 9, 13,
17, and 3 observations for ECA, ThickA, ECB, ThickB, and
ECC, respectively (Fig. 5). Of these highly important obser-
vations, 53 % had the instrument placed at the lowest instru-
ment height considered. The VCP is the most widely used
coil orientation in agriculture (Heil and Schmidhalter, 2017),
but it is only 17 % of the most informative configurations use
the VCP orientation (Fig. 5). This may be explained by the
spatial sensitivity of the orientations (Callegary et al., 2007;
Christiansen et al., 2016) which indicates that the HCP and
PRP pairing is more complementary relative to the HCP and
VCP pairing. The influence of simulated noise on the results
in Fig. 5 is shown in Appendix B.

4.4 Parameter restriction analyses

4.4.1 Applying a restriction to the thickness of layer A
that is skewed low

One piece of information that may be available (e.g., from di-
rect field examination) is the expected thickness of the shal-
low topsoil layer (ThickA). Therefore, we begin our restric-
tion analyses by examining the effect of improved knowledge
of ThickA on the inference of the ECA parameter. Specifi-
cally, we repeated the analysis only including models with
the two middle values of ThickA (0.69 and 0.86 m). This re-
duces the ThickA parameter range to 11 % of its full range
and, therefore, removes the cases that contain low values for
ThickA. The results (Fig. 6) show stark improvement in the
ability of the DT with GB to infer ECA. A similar analysis
could be repeated for any restricted range of values for any
parameter or for multiple parameters. This could be done for
practical reasons – to design a site-specific survey – or for
scientific reasons – to explore which conditions are identi-
fiable with EMI and to understand these parameter interac-
tions.

The analysis leading to Fig. 6 is one example of the ability
of the DT with GB method to consider the benefits of inde-
pendent soil property information. In this section, we expand
the investigation to include all of the soil electrical parame-
ters and three different restriction patterns.
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Figure 5. Feature importance for inferring each of the five parameters from a decision tree analysis of the full parameter range. The feature
importance of all 27 configurations sums to 1. The eight most important configurations for inferring each of the five parameters are shown
using a unique color and pattern combination. The remaining 19 configurations are aggregated into the “others” category and displayed in
white.

Figure 6. The result of running the machine learning algorithm on a
subset of the ensemble where the thickness of the A layer has been
restricted. Only 20 000 soil types and all 27 instrument configura-
tions remain in this restricted subset. The EC of the A layer (ECA)
is the parameter that is being predicted.

4.4.2 Changes in the parameter inference of restricted
subsets

Figure 7 summarizes the impacts of providing the maximum
amount of additional information (considering only 2 of the
10 possible values of one parameter) on the inference of all
other parameters. The y axis of Fig. 7 is the RMSE (such
as that reported in Fig. 6 for inferring ECA with ThickA re-
stricted) normalized by the full range (maximum–minimum)
of the inferred parameter. With reference to Fig. 6, this would
be reported as the RMSE divided by the range of ECA, giv-
ing a unitless value of 0.028. Each inferred parameter is as-
sociated with a short horizontal line, which indicates the nor-
malized RMSE without restriction of any other parameter’s
range. Each symbol in Fig. 7 represents the results of an anal-
ysis like that shown in Fig. 6. There are three symbols (tri-

angle, dot, and square) associated with each target and re-
stricted parameter pair for each of the three restriction pat-
terns. Consider, for example, inferring ECA. The set of three
blue symbols represents the impact of restricting the range
of ECA itself: the leftmost triangle represents a restriction
that is skewed low (retaining the two lowest ECA values),
the middle dot is a centered restriction (ECA values 45 and
56 mSm−1), and the right square represents a restriction that
is skewed high (retaining the two highest ECA values). As
expected, restricting the range of ECA, regardless of the re-
striction pattern, leads to a similar reduction in the normal-
ized RMSE of ECA. Every pair of restricted and inferred pa-
rameters is represented using three symbols with the same
left-nudged triangle, center dot, and right-nudged square for
restrictions that are skewed low, restrictions that are centered,
and restrictions that are skewed high, respectively.

Consider another example to illustrate how Fig. 7 can be
interpreted and related to Fig. 6. The three symbols’ dots
above ECA represent the impact of restricting ThickA. The
center dot corresponds exactly to Fig. 6, the centered restric-
tion of ThickA. The left green triangle shows that there is an
increase in the NRMSE for the restriction that is skewed left
compared with the unrestricted case (horizontal line above
ECA), which shows that restricting the thickness of layer A
to the lowest range of values leads to lower-quality inference
of ECA. In other words, the shallowest layer may be too thin
to be detected properly because the instrument response is
an integration over a large depth compared with the now rel-
atively thin layer thickness. This fits with previous findings
(Fig. 4), which revealed that a thin ThickA makes it difficult
to infer ECA. Furthermore, it agrees with our expectations
that if the uppermost layer is sufficiently thick, we can choose
a coil separation and orientation that is almost exclusively
sensitive to the uppermost layer, essentially allowing direct
measurement of ECA. Consistent with this explanation, the
right green square above ECA has the lowest NRMSE. In
this case, this confirms the expectation that it is easier to infer
ECA accurately if the shallowest soil layer is relatively thick.
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Figure 7. The changes in the inference of the five subsurface param-
eters (x axis) are based on a comparison between the RMSE from
the restricted case divided by the range of the parameter (y axis).
The lines show how well the parameters are predicted when all pa-
rameters are full range. The color shows the parameter that is being
represented, and the location and symbol represent the three restric-
tion patterns: skewed low (left-nudged triangle), centered (centered
dot), and skewed high (right-nudged square).

Similar interpretations about the value of restricting one pa-
rameter on the ability to infer other parameters accurately can
be drawn for each pair of restricted and inferred parameters,
allowing researchers to gain valuable insight into the interac-
tion of measurements and other independent information. In
all cases, there is a reduction in the NRMSE of the inferred
parameter when the parameter itself is restricted. For these
cases, there are no significant differences among the three
restriction patterns. In most cases, restricting the range of the
inferred parameter itself showed a greater improvement than
restricting any other parameter. The only clear exception was
inferring ECA, which showed a greater improvement by re-
stricting ThickA with a central or right skew.

Consider the inferred parameter ThickB in Fig. 7. The
three green symbols represent the cases where ThickA is
restricted. The left triangle is the restriction that is skewed
low and results in a reduced NRMSE compared with the full
parameter range (black line). The middle dot, which is the
centered restriction, shows the same NRMSE as the full pa-
rameter range. The right square, which is the restriction that
is skewed high, has a higher NRMSE than the full parameter
range. The changes in NRMSE between the three restrictions
of ThickA show that knowledge of the ThickA confers little
advantage to estimating ThickB unless it can be shown that
the shallowest layer is very thin.

More generally, there are relatively few cases where the
restriction of one parameter significantly improves the in-
ference of another parameter. Beneficial restrictions include
restricting ECA and ECB to infer ThickA and restricting
ThickA and ECA to infer ECB. To a lesser degree, restrict-

ing any other parameter when inferring ThickB offers a slight
advantage. The value of ECC is already well constrained for
the full parameter range, as shown by the line, and there is lit-
tle advantage to restricting another parameter to infer ECC.
In 37 % of cases, restricting the range of one parameter led
to worse inference of another. These cases display the field
conditions that lead to more challenging use of EMI, such as
a very thin middle layer making it very difficult to infer ECB.
An experienced EMI user would be able to reach these con-
clusions, which helps us to confirm that the ML approach is
robust and reaches reasonable results. The value of this type
of analysis with a geophysical EMI model is to provide guid-
ance for site-specific conditions, but the analysis can also be
executed with more complete geophysical models or differ-
ent model types. Furthermore, this guidance is quantifiable
rather than based on intuition derived from the rule of thumb.

4.5 Feature importance in restricted subsets

The composition of the optimal EMI measurement config-
uration is different depending on the soil layer thicknesses
and conductivities. Figure 8 summarizes the feature impor-
tance for the cases presented in Fig. 7, for which only 2 out
of 10 values remain for the restricted parameter. The color
and symbol patterns are the same as those used for Fig. 5.
The columns in Fig. 8 represent the five inferred parame-
ters, and the rows represent the restricted parameter. Conse-
quently, each circle is a pairing between one restricted and
one inferred parameter. The circles are subdivided into four
rings that represent the different restriction patterns. From in-
side out, the rings represent the full parameter range (no pa-
rameter restriction), a centered restriction, a restriction that is
skewed low, and a restriction that is skewed high. The feature
importance of the full parameter range (centermost ring) is
the same in every row for each inferred parameter. For refer-
ence, the center ring results are identical to those presented in
Fig. 5. All 75 combinations of the five inferred and restricted
parameters and the unrestricted case are shown for the three
restriction patterns in Fig. 8, allowing a user to draw gen-
eral insights into the value of different configurations under
a wide range of conditions. Figure 8 is designed to showcase
all of the different combinations’ restrictions made to the en-
semble in this study; however, for pure practical application,
not all combinations would need to be displayed.

Figure 8 is somewhat information dense, so it may be use-
ful to discuss a few cases in more detail. One of the simplest
subplots to understand is the inference of ECC when restrict-
ing ECA (top right circle). The results show clearly that there
is no meaningful change in the composition of the optimal
set of configurations due to adding additional ECA informa-
tion, regardless of the range of ECC values considered: all
four concentric rings look nearly identical. Furthermore, all
four rings indicate that a single configuration, HCP_4_0.1,
provides the vast majority of the information needed to char-
acterize ECC. Again, this is in general agreement with the
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Figure 8. Feature importance for the eight most important EMI configurations for every combination of the five inferred and restricted
parameters and the three patterns. Each circle is subdivided into four rings that show, from inside out, the feature importance for the full
range, a centered restriction, a restriction that is skewed low, and a restriction that is skewed high. Each column (row) represents each of
the five inferred (restricted) parameters. The coil orientations are colored so that horizontal (HCP) is blue, vertical (VCP) is green, and
perpendicular (PRP) is red. Dark and light hues represent a short and long coil distance, respectively.

rules of thumb derived from the 70 % rule, but it confirms
these findings for all values of EC and thickness of the other
layers, and it extends the findings to consider the PRP con-
figuration. Moving down the ECC column, note the differ-
ence when ThickB is restricted. If ThickB is skewed high
(ThickB ranges between 1.8 and 2.0 m), there is some advan-
tage to adding the PRP_4_0.1 configuration. Our approach
does not explain this choice. We suggest that it is informative
to collect this additional observation to constrain the values
of ECB and ThickB if the middle layer is relatively thick and
that the identified configuration has a usefully different sen-
sitivity distribution than the large HCP array placed close to
the ground surface. This result could not be anticipated based
on the rule of thumb. Furthermore, the resulting optimal con-
figuration is almost identical if either ThickA or ThickB is
restricted, when inferring ECC. Moving to the bottom of
that column, the analyses show that if the value of ECC it-
self is limited, the composition of the optimal set changes
significantly. Interestingly, regardless of the pattern of re-
striction (the results are almost the same for the outer three
rings), the optimal set now includes four configurations with

approximately equal importance: HCP_4_0.1, HCP_4_0.5,
HCP_2.5_0.1, and PRP_4_0.1. It is further confirmation of
the validity of the approach that no VCP arrays were chosen,
as would be expected based on McNeil (1980). Similarly, as
expected, the larger array separations are preferred. It is sur-
prising, however, that one of the four observations place the
instrument higher above ground. This is a result of the spatial
sensitivity and an example of a conclusion that is very dif-
ficult to reach through intuition and the rule of thumb. This
could point researchers to ask follow-on questions about why
a specific configuration or observation type are identified as
optimal.

The results for inferring ECA (leftmost column) are simi-
lar but show interesting differences. The optimal set for ECA
is relatively insensitive to the pattern of restriction of ECA;
however, more than one observation is required for all cases.
While the optimal cases were similar for restricting ThickA
and ThickB for inferring ECC, this similarity holds for re-
stricting ECB and ThickB when inferring ECA. The pattern
of restriction of ThickA has dramatic impacts on the opti-
mal set of configurations for inferring ECA. Inferring the
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three other parameters (ThickA, ThickB, and ECB) shows
significant changes in the optimal configuration set depend-
ing upon the pattern of restriction (ring to ring) and upon the
independent information provided (row to row). There is no
case for which a single configuration dominates the impor-
tance in all rows. In fact, there are many cases that would
recommend more than nine configurations. For example, this
likely indicates that ThickB is unlikely to be well resolved
by a practical field survey. Further considerations of infer-
ring ThickB give interesting general insights compared with
rule-of-thumb suggestions. Namely, very few VCP configu-
rations are selected. If PRP arrays are to be used, profiling
should be achieved using multiple coil separation pairs with
the coil placed close to the ground. For HCP configurations,
profiling should be achieved by increasing the coil separa-
tion.

To summarize, taken together, Figs. 7 and 8 provide guid-
ance to an EMI user when designing a survey with a specific
target. Figure 7 indicates whether that target can be character-
ized reliably given the full range of configurations considered
and which additional information will improve the character-
ization. A low NRMSE will suggest a more reliable charac-
terization of the subsurface property by the instrument and
vice versa. Figure 8 identifies the optimal set (and number) of
arrays needed for optimal characterization. Some of the con-
clusions would be expected based on the simplified descrip-
tions from the classic work of McNeil (1980) and would be
anticipated by an experienced EMI user. Other results would
be difficult, if not impossible, to predict without a “value of
data” analysis like that shown here. These results, in partic-
ular, could point the way to further scientific investigations
to better understand the complementary information content
of multiple EMI configurations. The restriction analyses of-
fer insight into the mutual identifiability of soil EC. Given
the availability and flexibility of EMagPy (McLachlan et al.,
2020) and the efficiency of the DT with GB algorithm, the
analyses performed here could be extended to include the
identification of optimal configuration sets for multiple tar-
gets (e.g., thickness and EC of the B layer). For example,
placing equal weight on all five targets, an optimal without
restriction of any of their values suggests the use of one HCP
array (HCP_4.0_0.1) and four PRP arrays (PRP_1.0_0.1,
PRP_4.0_0.1, PRP_1.0_0.3, and PRP_2.5_0.1). If this spe-
cific set of configurations was deemed impractical, a user
could limit the available configurations for consideration,
find the optimal survey, and compare the projected RMSE
to that estimated for the overall optimal set. This information
could guide a user on whether it is worthwhile changing their
instruments (or designs) or whether gathering additional in-
formation about the range of plausible parameter values is
likely to be more important for their survey goals.

In this study, 27 instrument configurations in combina-
tion with 100 000 subsurface models are considered the full
ensemble. Using the presented ML approach to assess the
data value for our full ensemble is more efficient than an

inverse (Furman et al., 2007; Khodja et al., 2010; Song et
al., 2016) or sensitivity (Hanssens et al., 2019) approach. In
some cases, evaluating all instrument configurations will not
be necessary, which means that the inverse or sensitivity ap-
proaches become more efficient. The ML approach requires
a certain size of model ensemble to yield stable results; there-
fore, the model run time will reduce efficiency. However, this
affects the inverse analysis more because it generally requires
more model runs. Ultimately the efficiency of the ML, in-
verse, and sensitivity approaches depends, in the EMI case,
on the model run time, the number of layers, the parameter
boundaries, and the number of considered configuration, and
the combination of these in the applied case will determine
which method is more efficient. Designing a combination of
optimal configurations based on a conceptual understanding
of the spatial sensitivities (rule of thumb) is not a reason-
able task. Furthermore, measurement optimization requires
a quantitative measure of the information content. The ML
approach provides a quantitative measure of the shared in-
formation among model parameters (Table 2 and Fig. 7) to
compare the likely success of each configuration.

Finally, the general approach shown here could be ex-
tended easily to consider multiple measurement types (e.g.,
combining EMI with other geophysical methods) and even
the dynamic optimization of measurement networks for mon-
itoring applications.

5 Conclusions

Most environmental and agricultural field investigations are
conducted on relatively limited budgets. As a result, there
is usually some advantage to optimizing data collection to
achieve the best results with the limited time and money
available. These restrictions are one of the main reasons that
electromagnetic induction (EMI) has become a popular tool
for these studies. While it is often the case that the measure-
ments are more ambiguous than direct measurements of soil
properties, the noncontact nature of the instruments allows
for much greater spatial coverage. The recent availability of
EMagPy (McLachlan et al., 2020) allowed us to perform the
large number of EMI forward models necessary to support
a machine learning (ML) examination of EMI surveys, lead-
ing to a simple but comprehensive investigation of param-
eter identifiability and optimal EMI configurations. The re-
sult is an approach that can allow an EMI user with lim-
ited expertise to choose a better set of instrument configu-
rations given their main survey goal and knowledge of the
site conditions. The same tool can point more advanced users
to areas of investigation that may improve our understand-
ing of the prior knowledge content of different EMI config-
urations. The decision tree with gradient method based on a
large ensemble of instrument response forward models (pro-
posed here) makes novel use of the efficiency and built-in
feature importance capabilities. However, the analyses are
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not restricted to this relatively simple ML algorithm. More
advanced ML tools could be combined with independent fea-
ture importance analyses, if required, for specific monitor-
ing applications. Similarly, while EMI forward modeling is
relatively simple and fast, given that it is based on analyti-
cal models, with sufficient computational resources any mea-
surement method and underlying physical process could be
examined in the same way. As just one illustrative example,
an optimal combination of EMI, electrical resistivity, gravity,
and monitoring well observations could be proposed to con-
strain the interpretation of a pumping test performed in an un-
confined, anisotropic medium by conducting forward models
of many configurations (survey locations and times, electri-
cal resistivity tomography array types, and screen depths) for
a large ensemble of plausible aquifer conditions and allow-
ing an ML algorithm to consider all of the data and identify
the most informative observations. This opens the possibil-
ities for exploring truly novel combinations of multimodal
observations.

Appendix A: Symbols and abbreviations

CS Cumulative sensitivity
DT Decision trees
EC Electrical conductivity
ECa Apparent electrical conductivity
ECA, B, and C Electrical conductivity of layers A, B,

and C, respectively
EMI Electromagnetic induction method
GB Gradient boosting
HCP Horizontal coplanar
LIN Low induction number
ML Machine learning
NRMSE Normalized root-mean-square error
PRP Perpendicular planar
RMSE Root-mean-square error
ThickA and B Thickness of layers A and B, respectively
VCP Vertical coplanar

Appendix B: The effect of noise on inferring subsurface
parameters and feature importance

To assess the impact of noise, 100 realizations of het-
eroscedastic Gaussian noise with a standard deviation of 0.05
were carried out. The ensemble from the full solution was
multiplied by the random noise prior to ML application to
the full ensemble (no restrictions). This was repeated for each
realization of noise, and the average fit and their standard de-
viation are shown in Table B1.

The average feature importance over the 100 realizations
(Fig. B1) affects ThickA, ECB, and ThickB the most. Here,
the feature importance is distributed more evenly among the
configurations compared with without noise.
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Table B1. The root-mean-square error (RMSE) between the prediction from the gradient-boosted (GB) model and the testing data. The
machine learning procedure was repeated with each of the five subsurface parameters as targets, creating five models.

Target ECA ThickA ECB ThickB ECC
unit [mSm−1] [m] [mSm−1] [m] [mSm−1]

RMSE 7.09 0.29 18.8 0.51 2.98
RMSE (noise) 12.4 0.41 23.3 0.58 8.00
SD (noise) 0.05 0.0008 0.05 0.0008 0.02

Figure B1. Feature importance for inferring each of the five parameters from a decision tree analysis of the full parameter range. The feature
importance of all 27 configurations sums to 1. The eight most important configurations for inferring each of the five parameters are shown
using a unique color and pattern combination. The remaining 19 configurations are aggregated into the “others” category and displayed in
white.
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