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Abstract. The Kling–Gupta efficiency (KGE) is a widely
used performance measure because of its advantages in
orthogonally considering bias, correlation and variability.
However, in most Markov chain Monte Carlo (MCMC) al-
gorithms, error-based formal likelihood functions are com-
monly applied. Due to its statistically informal characteris-
tics, using the original KGE in MCMC methods leads to
problems in posterior density ratios due to negative KGE
values and high proposal acceptance rates resulting in less
identifiable parameters. In this study we propose adapt-
ing the original KGE using a gamma distribution to solve
these problems and to apply KGE as an informal likelihood
function in the DiffeRential Evolution Adaptive Metropolis
DREAM(ZS), which is an advanced MCMC algorithm. We
compare our results with the formal likelihood function to
show whether our approach is robust and plausible to ex-
plore posterior distributions of model parameters and to re-
produce the system behaviors. For that we use three case
studies that contain different uncertainties and different types
of observational data. Our results show that model parame-
ters cannot be identified and the uncertainty of discharge sim-
ulations is large when directly using the original KGE. The
adapted KGE finds similar posterior distributions of model
parameters derived from the formal likelihood function. Even
though the acceptance rate of the adapted KGE is lower than
the formal likelihood function for some systems, the conver-
gence rate (efficiency) is similar between the formal and the
adapted KGE approaches for the calibration of real hydro-
logical systems showing generally acceptable performances.
We also show that both the adapted KGE and the formal
likelihood function provide low performances for low flows,

while the adapted KGE has a balanced performance for both
low and high flows. Furthermore, the adapted KGE shows a
generally better performance for calibrations of solute con-
centrations. Thus, our study provides a feasible way to use
KGE as an informal likelihood in the MCMC algorithm and
provides possibilities to combine multiple data for better and
more realistic model calibrations.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques are ex-
tremely useful in uncertainty assessments and parameter esti-
mations of hydrological models (Smith and Marshall, 2008).
Among those MCMC methods, Vrugt et al. (2008, 2009)
developed a DiffeRential Evolution Adaptive Metropo-
lis (DREAM) algorithm, which has found numerous appli-
cations in various fields (Vrugt, 2016). It is an adaptation
of the SCEM-UA algorithm (Vrugt et al., 2003a) that can
efficiently estimate the posterior probability distribution of
model parameters in the presence of high-dimensional and
complex response surfaces with multiple local optima.

The formal likelihood function, e.g., mean square er-
ror (MSE) or root mean square error (RMSE), obtained
from first-order statistical principles based on error series de-
rived from simulations and observations, is commonly used
in the DREAM algorithm. The formal likelihood function
strongly relies on error assumptions, which can highly influ-
ence the shape of parameter posterior distributions (Beven et
al., 2008). The informal likelihood functions, such as Nash-
Sutcliffe efficiency (NSE) and the alternative Kling–Gupta
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efficiency (KGE) are often used in hydrological studies to in-
dicate the general performance of model simulations (Gupta
et al., 2009). These metrics represent an important measure
of model performance, so-called goodness of fit (Pool et al.,
2018). These likelihood functions are not directly derived
from stochastic error series, but can be easily used to com-
bine different types of data.

There are studies that discussed how to adjust the calcula-
tion of NSE in order to overcome the problems using NSE in
MCMC methods. For example, McMillan and Clark (2009)
introduced a constant K into the adapted NSE calculation.
By adjusting this constant, they can mimic the weight such
that small improvements in NSE can also be distinctly iden-
tified leading to the chain evolution. They even found that
the informal likelihoods can provide a more complete explo-
ration of the behavioral regions of the response space and
hence more accurate estimation of total uncertainty (McMil-
lan and Clark, 2009). Freer et al. (1996) introduced a pa-
rameter as an exponent symbolled with N . They argued that
higher N values have the effect of accentuating the weight
given to the better simulations.

However, how to properly use KGE in the MCMC meth-
ods has not been studied. Directly using KGE in MCMC
methods, e.g., the DREAM algorithm, may raise difficulties
such as incorrect posterior ratios due to negative KGE val-
ues, and nonlinearity between model performance and KGE
values. These difficulties essentially affect chain evolutions
such as the acceptance rate, indicating how easy a proposal
is accepted, and the convergence rate, denoting how fast
a chain converges to a stationary distribution. As a conse-
quence, considering the computational cost with a limited
number of realizations in practice, the informal character of
KGE and its use in MCMC methods influences the explo-
ration of posterior parameter distribution and model uncer-
tainty, such as the density of identifiable parameters. Stud-
ies showed that using informal likelihood functions in gener-
alized likelihood uncertainty estimations (GLUE) may lead
to unsatisfactory posterior distributions of model parameters
(Mantovan and Todini, 2006; Stedinger et al., 2008). Using
NSE as the likelihood function, the number of measurements
cannot be considered. Therefore, with increasing numbers
of measurements the information added to the performance
measure is little, thus preventing the improvement of chain
evolution (Mantovan and Todini, 2006). Therefore, to fea-
sibly use KGE in MCMC methods requires solving prob-
lems in drawing better proposals to avoid a very flat poste-
rior distribution, to account for the influence of observational
size (the amount of information included in calibration) on
parameter estimations and to achieve reasonable acceptance
and convergence rates.

In this study we propose adapting the gamma distribution
and KGE to find a feasible solution for properly using KGE
as an informal likelihood function in DREAM(ZS). We test
the robustness of this approach with three case studies repre-
senting known and unknown systems with varying numbers

of observations and also different types of data using two
hydrological models (a lumped and a semi-distributed). The
aim of our study is to attempt to form the probability calcu-
lation based on KGE in a pseudo formal way. The deriva-
tion of probability based on KGE in a statistically sound
manner is beyond the scope of this study and will need fu-
ture work. We compare the performance between the origi-
nal KGE, GLUE (generalized likelihood uncertainty estima-
tion), the formal likelihood function, the log-transformation
and the adapted KGE. We aim to show whether the adapted
KGE is robust and plausible to explore posterior distribu-
tions of model parameters and to reproduce the hydrological
behaviors. Thus, we will compare performance (1) regard-
ing acceptance, convergence, and uncertainty between the
adapted KGE, the original KGE, a formal likelihood func-
tion and a log-transformation, (2) regarding discharge simu-
lations in terms of general performance, variability, bias and
correlation for total, low and high flows and (3) model perfor-
mance combining discharge and solutes. These comparisons
allow us to provide recommendations for more reliable ap-
plications of KGE in MCMC methods in different research
areas.

2 Material and methods

2.1 Kling–Gupta efficiency

Kling–Gupta efficiency (KGE) takes account of variabil-
ity (α), non-scaled bias (β) and correlation (r) by computing
the Euclidian distance (ED) of the three components from the
ideal point, which avoids the underestimation of variability
and enables the comparison of the bias term between catch-
ments (Gupta et al., 2009).

KGE= 1−ED , (1)

ED=
√
(r − 1)2+ (α− 1)2+ (β − 1)2 , (2)

with α = σs
σo

and β = µs
µo

, where (µs, σs) and (µo, σo) are
the mean and standard deviation of simulations and observa-
tions, respectively. KGE ranges from −∞ to 1 with the opti-
mal value at unity. A value larger than −0.41 indicates that a
model improves on using the mean (Knoben et al., 2019).

2.2 Adapting KGE in DREAM(ZS)

2.2.1 Basics of DREAM(ZS)

DREAM(ZS) is one type of DREAM algorithm, which uses
sampling from an archive of past states to generate candi-
date points in each individual chain. It automatically tunes
the scale and orientation of the proposal distribution towards
the target distribution and maintains a detailed balance and
ergodicity (Vrugt et al., 2008, 2009). We take DREAM(ZS)
as an example and investigate the appropriate way to use
KGE within DREAM(ZS). As our goal is to adapt KGE as
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an informal likelihood function, we focus on the Metropolis
probability, pacc(X

i
→Xip), which calculates the probability

to accept a proposal.

pacc

(
Xi→Xip

)
=min

[
1,p

(
Xip

)
/p
(
Xi
)]
, (3)

where p(Xip) and p(Xi) denote the probability density of the
proposal and the present location of the ith chain, respec-
tively. If pacc(X

i
→Xip) is larger than a random value drawn

from the uniform distribution U (0, 1), the proposal will be
accepted, otherwise the chain remains in the present location.
After chain evolutions, the Gelman-Rubin R̂j convergence
diagnostic is computed for each parameter j = {1, . . . , d}. If
R̂j ≤ 1.2, the convergence can be declared.

R̂j =

√
N + 1
N
·
σ̂

2(j)
+

Wj

−
T − 2
N · T

, (4)

where N and T signify the number of chains and the num-
ber of samples in each chain, respectively, Wj is the within-
chain variance, and σ̂ 2(j)

+ is an estimate of the variance of the
j th parameter of the target distribution.

We choose the easily applied formal likelihood function
(lik= 11 in Table B1, Vrugt, 2016) to calculate the log-
likelihood (LogL), which assumes the error residuals to be
normally distributed. It is described as

LogL=−
n

2
log

{
n∑
t=1

et (X)
2

}
, (5)

where et (X) denotes the t th error residuals and n is the total
number of observations.

2.2.2 Deriving pseudo probability density based on
KGE

Based on abovementioned basics of DREAM(ZS), using
KGE as a likelihood function becomes the question of ob-
taining the proper calculation of pseudo probability density
p(Xip). From the straightforward and easily applied way, one
would directly use KGE as p(Xip) by setting the negative
KGE values to zero. However, it results in two problems
(Fig. 1):

– Problem 1: the probability density p(Xip) needs to be
positive in order to get a positive ratio p(Xip)/p(X

i)

to determine the right orientation to accept a proposal.
However, KGE ranges from −∞ to 1. Setting negative
KGE values to zero can work, but then we lose the ori-
entation of proposals with negative KGE values. Thus,
it reduces the efficiency of chain evolution.

– Problem 2: the model performance does not linearly
increase with the linear increase of KGE. Therefore,

directly using positive KGE as the pseudo probabil-
ity density p(Xip) will lead to a high possibility to ac-
cept poor proposals. For instance, the probability is
0.75 (0.6/0.8) to accept a proposal with KGE= 0.6 un-
der the present sample with KGE= 0.8. However, the
performance of a simulation with KGE= 0.8 is much
better compared to that with KGE= 0.6.

We propose solving these two problems by adapting the
gamma distribution and KGE to derive a proper probabil-
ity density (Fig. 1). The gamma distribution has two param-
eters, the shape parameter (k) and the scale parameter (θ ),
and is evaluated for variables with positive values. When
the shape parameter k = 1, the probability distribution is
one-sided with non-linear decreasing probability for increas-
ing variable values. Therefore, we can use 1−KGE (ranges
from 0 to∞) as the variable for gamma distribution and get
higher probabilities for larger KGE values. When choosing
the scale parameter θ = 0.5, the increasing rate of proba-
bility becomes faster when KGE> 0.5 and especially when
KGE> 0.7 the probability increases much faster. This helps
chain evolution to find proposals which lead to high model
performance. The non-linear increase of probability with in-
creasing KGE is shown as the red line in the top right box
of Fig. 1. The log-likelihood is used in DREAM(ZS), thus we
derive the pseudo log-likelihood (LogL) using gamma dis-
tribution and KGE. To include the influence of observation
size on the parameter estimations, analogous to the formal
likelihood function, we take account of the number of obser-
vations (the term n/2 in the formal log-likelihood) in deriv-
ing the pseudo log-likelihood. Finally, we have the pseudo
log-likelihood using KGE and gamma distribution as

LogL=
n

2
log(f (1−KGE|X;k,θ)) ,

with k = 1 and θ = 0.5 , (6)

where, f ( ) is the γ probability density function, k and θ are
the shape and scale parameters, respectively, n is the number
of observations and X represents the parameter vector of the
calibrated model. The purpose of this approach is to provide
a feasible way to incorporate KGE as the informal likelihood
function for MCMC methods, in our case DREAM(ZS). An-
other goal is to achieve similar performance as when using
the formal likelihood function such as RMSE so that we can
compare the model simulations and predictions between for-
mal and informal (our approach, KGE) likelihood functions.

2.3 Case studies

To test the robustness of our new approach, we define three
case studies: (1) true and pseudo-analytical posterior distri-
butions of model parameters are known by a virtual exper-
iment, and uncertainties in model structures and input data
are absent, (2) calibrations and evaluations with a long ob-
servation time series using a rainfall-runoff model, which al-
lows comparing the performance between three approaches
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Figure 1. Concept of adapting KGE in DREAM(ZS). It shows the problems of using the original KGE as the likelihood function in
DREAM(ZS) and how to adapt gamma distribution and KGE to get a proper informal likelihood.

by varying the amount of data in calibration. The parame-
terization of the system is unknown and there are uncertain-
ties in model structure, input data and observations and (3) a
model calibration combining hydrodynamics and simple so-
lute transport for a more complex karst system with a large
subsurface heterogeneity and processes for fast recharge and
groundwater discharge from conduit networks. The observa-
tion period is short and uncertainties exist in model structure,
input and observation data, and model parameter estimations.

2.3.1 Case study 1: virtual experiment

We generate a virtual experiment using a rainfall-runoff
model (the HBV model). We obtain the forcing data, daily
mean temperature and daily precipitation (2001–2008), from
the German site in Liu et al. (2021). The HBV model repre-
sents typical catchment rainfall-runoff processes considering
one soil water storage and two groundwater storages (Lind-
ström et al., 1997). In this virtual experiment, we use the
model version without snow processes, which contains nine
parameters. As our goal is not the model itself but the cal-
ibration of model parameters, we only provide descriptions
of model parameters (Table 1). For the model structure and
equations, refer to Liu et al. (2021).

As the analytical posterior distributions of model parame-
ters of a hydrological model are hardly achievable, we use
the following procedure to generate the pseudo-analytical
posterior distribution. Firstly, we set the catchment area of
100 km2 and run the model with “true” parameters for 2004–
2008 to obtain the simulated discharge. Secondly, assuming
a normal distribution for error residuals (a common assump-
tion for hydrological modeling), we generate random val-
ues from a normal distribution (mean= 0, standard devia-
tion= 5 % of the mean simulated discharge) and add these
random values as measurement errors to the simulated dis-
charge to form the observations. Finally, due to no uncer-

tainty in input data and model structure, using this setting for
measurement errors we can use the formal likelihood func-
tion (Eq. 5) to derive the pseudo-analytical posterior distri-
bution of model parameters. We performed a local parameter
sensitivity analysis before model calibrations to find insensi-
tive parameters (K0, UZL and MAXBAS in Table 1, chang-
ing these parameters only affects model performance KGE
by 0.001). Therefore, we fixed the three parameters in cali-
bration, resulting in six parameters to be calibrated.

2.3.2 Case study 2: long observations for
rainfall-runoff modeling

In order to test the capability of our approach for a real sys-
tem with uncertainties in forcing, observations, model struc-
ture and model parameters, we select a catchment from the
CAMELS-US dataset (Newman et al., 2014, 2015) and sim-
ulate the rainfall-runoff processes with the HBV model as
case study 1. We also compare the performance of our trans-
formed KGE with the GLUE method. We have the follow-
ing criteria to select this catchment: (1) catchment area is
between 100 and 500 km2 to avoid the influence of channel
routing, (2) the snow fraction is zero to avoid the snow pro-
cesses to reduce the HBV model parameters and the number
of parameters remains nine (Table 1) and (3) the carbonate
rock fraction is zero as we will test a karst catchment as a sep-
arate case study. We then choose the first catchment (smallest
number in catchment ID) that fulfills our criteria, the catch-
ment 02246000 (gauging station at North Fork Black Creek
near Middleburg, FL, USA), shown in Fig. 2. It has a catch-
ment area of 451 km2 with the mean annual precipitation of
1352 mm. The main land cover is savanna, accounting for
77 % of the total area. Details of the catchment properties
can be found in CAMELS-US dataset (Newman et al., 2014,
2015).
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Table 1. Names, description, ranges and virtual true values of the HBV model parameters for the virtual experiment.

Parameter Description Unit Parameter ranges True

Lower Upper value

BETA Shape coefficient of recharge function [–] 1 6 4.5

FC Maximum water storage in the unsaturated zone store [mm] 50 700 600

K0 Additional recession coefficient of upper groundwater store [d−1
] 0.05 0.99 0.5

K1 Recession coefficient of upper groundwater store [d−1
] 0.01 0.8 0.25

K2 Recession coefficient of lower groundwater store [d−1
] 0.001 0.15 0.07

LP Soil moisture value above which actual evaporation reaches [–] 0.3 1 0.55
potential evaporation

PERC Maximum percolation to lower zone [mm d−1
] 0 6 3

UZL Threshold parameter for extra outflow from upper zone [mm] 0 100 60

MAXBAS Length of equilateral triangular weighting function [d] 1 3 2

Note: K0, UZL and MAXBAS are insensitive parameters in this case study and thus are fixed to the true values.

Figure 2. Study area of the catchment with the gauging station at
North Fork Black Creek near Middleburg, FL, USA for the case
study 2.

2.3.3 Case study 3: short observations for a
heterogeneous karst system

In order to test the capability of our new approach for a
complex system, we set case study 3 in a karst system that
has conduit systems resulting in fast recharge and discharge.
It has uncertainties from the forcing data, the model struc-
ture and observation errors. Daily discharge time series and
weekly solute (Cl−, NO−3 and SO2−

4 ) concentrations of the
hydrological years 1 October 2006–30 September 2009 are
combined for model calibrations. The study site (Fig. 3) is

located in southern Spain with a recharge area of 13.85 km2

(the study site in Hartmann et al., 2014). In this case, we use
the same model, the VarKarst model with the solute trans-
port routine, for spring discharge and solute simulations as it
was successfully applied to this site before (Hartmann et al.,
2014). The VarKarst model is a semi-distributed hydrological
model, which considers subsurface heterogeneity, soil and
epikarst storage dynamics and groundwater hydrodynamics.
It uses a mixing routine to simply reproduce the solute trans-
port. These processes are represented by 10 parameters (Ta-
ble 2). Details of the VarKarst model processes and assump-
tions can be found in Hartmann et al. (2014). Discussion of
the transport processes is beyond the scope of this study, we
therefore choose the same processes as published in Hart-
mann et al. (2014). Our study then focuses on comparing the
performance of different calibration approaches.

2.3.4 Calibration and evaluation

For calibration of the three case studies, we have used
the GLUE approach and DREAM(ZS) with different like-
lihood functions: (1) using the original KGE as the likeli-
hood function (“KGEori” thereafter), here negative KGE is
set to zero to avoid negative posterior density ratios, (2) us-
ing the traditional formal likelihood assuming error is nor-
mally distributed (“formal” thereafter), (3) using the log-
transformation (“formallog” thereafter), which is suggested
as being good for low flows (McInerney et al., 2017) and
(4) using our new approach adapting gamma distribution
and KGE to derive the pseudo log-likelihood (“KGEgamma”
thereafter). We use three parallel Markov chains (default set-
ting in DREAM(ZS)), and set 20 000 realizations for case
studies 1 and 2, but 30 000 realizations for case study 3 (due
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Figure 3. Study area of the Rosario Spring for case study 3. This map is an updated version of the map in Hartmann et al. (2014).

Table 2. Names, descriptions and ranges of the VarKarst model parameters.

Parameter Description Unit Parameter ranges

Lower Upper

Vmean,S Mean soil storage capacity [mm] 0 500
Vmean,E Mean epikarst storage capacity [mm] 0 500
aSE Soil/epikarst depth variability constant [–] 0.1 2
Kmean,E Epikarst mean storage coefficient [d] 1 50
afsep Recharge separation variability constant [–] 0.1 2
KC Conduit storage coefficient [d] 1 20
aGW Groundwater variability constant [–] 0.1 2
aGeo Equilibrium concentration variability constant [–] 0 2
log10 GeoCl Equilibrium concentration of Cl in matrix [log10 (mg L−1)] 0 5
log10 GeoSO4 Equilibrium concentration of SO4 in matrix [log10 (mg L−1)] 0 5

to more processes and parameters). The last 25 % of the re-
alizations are used to approximate the posterior distributions
and the corresponding parameter sets are used for the dis-
charge simulations in the evaluation period. They are also
used to derive the parameter uncertainty and the total sim-
ulation uncertainty (parameter uncertainty + randomly sam-
pled error from a normal distribution with mean= 0 and stan-
dard deviation=RMSE of the simulation with the maximum
a posteriori parameter) in DREAM(ZS).

For case study 1, following a standard calibration proce-
dure we use 2001–2003 as the warm-up period and 2004–
2008 as the calibration period. The posterior distribution of
model parameters derived from DREAM(ZS) using the for-
mal likelihood function is deemed as the pseudo-analytical
posterior distribution. By comparing to it, we can investigate

whether calibrations using KGEori and KGEgamma can ex-
plore the right posterior distribution and true model parame-
ters.

For case study 2, the true model parameters are unknown.
We use 25 hydrological years (1 October 1980–30 Septem-
ber 2005) to perform the calibration and evaluation. We
choose the Daymet forcing data to drive our hydrological
model as these meteorological data have potential evapo-
transpiration (PET) estimates and were used to calculate the
catchment climatic properties (Addor et al., 2017). We use
the first 5 years as the warm-up period, then the following
10 years for calibration and the last 10 years for evaluation.
We test the performance of 4 approaches (GLUE, formal,
formallog and KGEgamma) using 1, 3, 5, 8 and 10 years of
observations for calibrations to check the capability of the
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Figure 4. Posterior distributions of sensitive model parameters for the virtual experiment. The red cross symbol denotes the true model
parameter value. KGEori indicates using the original KGE (set negative KGE to zero) as the likelihood function, while KGEgamma represents
our new approach using gamma distribution and KGE to derive the probability density, and the case formal, pseudo-analytical means pseudo-
analytical posterior distribution derived from the formal likelihood function. Note that the density of using KGEori is very low and close to
the x axis.

4 approaches for calibration of a real system with varying
amounts of available observations. For the GLUE method,
we use the Nash-Schetcliff efficiency (NSE) as the objective
function. We set 20 000 realizations and choose the top 25 %
in performance (kept the same as DREAM(ZS)) as the behav-
ioral parameter sets to explore the posterior distribution.

For case study 3, the true model parameters are unknown
too. We calibrate the hydrodynamics and solute transport si-
multaneously. For calibrations using the formal likelihood
function, we normalize each observation variable by its mean
to exclude the influence of units and magnitudes of dis-
charge and solute concentrations. We compare the perfor-
mance of three approaches: (i) we use the formal likelihood
function and use the normalized daily discharge and normal-
ized weekly concentrations of three solutes as the combined
observations (“formalnorm” thereafter). Here we do not con-
sider the difference in the total number of observations be-
tween discharge and three solutes (the total number of dis-
charge observations is 10 times the number of each solute),
(ii) we also use the formal likelihood function but we repli-
cate each normalized solute observations 10 times to have the
same weight for discharge and each solute (“formalnorm,w”).
Issues regarding different weights for discharge and solutes
and different ways to obtain weights are out of the scope of
our study and (iii) we use the KGEgamma approach. Firstly,
we calculate KGE for discharge and each solute using their
observations and simulations (a total of four KGE values
for discharge, Cl−, NO−3 and SO2−

4 ). Then we calculate the
mean of the four KGE values (equal weight for the four
variables, same as ii) and use it in the KGEgamma approach.
We use 3 hydrological years (1 October 2003–30 Septem-

ber 2006) for warm-up of the simulations and the 3 follow-
ing hydrological years (1 October 2006–30 September 2009)
for calibration. This is the same as the calibration setting in
Hartmann et al. (2014) considering the short observations of
each solute.

The model performance for calibration and evaluation is
examined using KGE and its three components representing
variability (α), bias (β) and correlation (r). The calculations
of KGE, α, β and r refer to Eqs. (1) and (2). We evaluate the
model performance using the four metrics for total flow, low
flow (smaller than the 10th percentile of observed discharge)
and high flow (larger than the 90th percentile of observed
discharge) and also for three solutes.

3 Results

3.1 Case study 1: posterior parameter exploration

When using the original KGE (set negative KGE values
to zero) as the likelihood function, the posterior parameter
range is only slightly reduced for all sensitive parameters
compared to the prior uniform distribution. In addition, the
density around the true values of model parameters is still
very flat, indicating that true model parameters are barely
identified (Fig. 4). When applying the adapted KGE (adapt-
ing the gamma distribution and KGE to derive probability
density), the posterior parameter range is much more reduced
and the reduced range is more or less centered at the true val-
ues as shown in Fig. 4. Compared to the pseudo-analytical
posterior distributions of all model parameters derived from
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Figure 5. Acceptance rate (a), convergence rate shown with R̂-statistic (b), and uncertainty of discharge simulations (total uncertainty) for the
virtual experiment (c). KGEori indicates using the original KGE as the likelihood function, while KGEgamma represents our new approach
using gamma distribution and KGE to derive the probability density, and the case formal means using the traditional formal likelihood
function. Note the uncertainty bounds for formal and KGEgamma are too small to be visually seen.

the formal likelihood function using the special virtual set-
ting, the adapted KGE approach (KGEgamma) shows similar
magnitude and shape regarding the posterior distributions. It
suggests that our adapted KGE approach performs similarly
to using the traditional formal likelihood function and can
explore the right parameter posterior distributions.

As expected, using the original KGE we have a very
high acceptance rate (ca. 60 %–80 %, Fig. 5a), leading to
a very fast convergence (Fig. 5b). This results in a large
uncertainty bound in the discharge simulations (Fig. 5c),
and the uncertainty of peak discharges is particularly large.
With the adapted KGE, we see that the acceptance rate be-
comes smaller and the convergence gets slower. This can
be explained by introducing the nonlinearity of the adapted
KGE: probability densities for large and small KGE values
are more distinct compared to the original KGE. Figure 5a
also shows that the acceptance rate of our approach is 5 %–
10 %, which is lower than ca. 20 % of the formal likelihood
function. Similarly, the convergence rate of our approach is
slower than the formal likelihood function (Fig. 5b). This
suggests that using the formal likelihood function has a
higher efficiency than the approach adapting KGE for cali-
brations of a system that only contains little uncertainty (only
small observation errors in our case). However, when more
uncertainties appear, e.g., uncertainties in forcing data and
model structures, the convergence rates (efficiency) become

similar between the adapted KGE and the formal likelihood
function (refer to the following subsections, Fig. 6b). Com-
pared to the width of the discharge uncertainty bound using
the original KGE (Fig. 5c), calibration using the formal like-
lihood function and the adapted KGE both reduce the aver-
age width of total discharge uncertainty bound by ca 85 %.
As this virtual experiment does not assume uncertainty in the
input data and the model structure, the adapted KGE shows
a similar performance in the uncertainty estimation to using
the formal likelihood function and both can closely repro-
duce observations.

3.2 Case study 2: model parameter calibrations with
long observations

For calibrating a real system (with uncertainties in forcing,
observations, and model structure and parameters), the ac-
ceptance rate of the adapted KGE is lower than that of the
formal likelihood function, but higher than that of the log-
transformation (Fig. 6a) for calibrations using both short and
long observations. The convergence rate is almost identi-
cal between the formal likelihood function and the adapted
KGE (higher than the log-transformation, Fig. 6b). This in-
dicates that our approach has a same efficiency as the for-
mal likelihood function and a higher efficiency than the log-
transformation for calibrations of a system with more uncer-
tainties. With more observations in calibrations, the uniden-
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Figure 6. Acceptance rate (a), convergence rate shown with R̂-statistic (b), and posterior distributions of selected parameters for calibrations
with 1-year (c–f) and 10-year (g–j) observations, respectively. KGEgamma represents our new approach using gamma distribution and KGE
to derive the probability density, the case formal means using the traditional formal likelihood function, and formallog means using the log
transformation. The subscripts 1 yr and 10 yr denote calibrations with 1-year and 10-year observations, respectively. The four parameters
(nine parameters in total) are selected to represent different cases from unidentified (less observations for calibrations) to identified (more
observations for calibrations) parameters and show how the identified parameters change when using different amounts of observations for
calibrations.

tified parameters K0 and UZL (Fig. 6c and d) using the
adapted KGE and the formal likelihood function become
identified (Fig. 6g and h). The identified parameter values
for K0 (Fig. 6g) show a similar distribution that is differ-
ent from the log-transformation, while the identified param-
eter values for UZL (Fig. 6h) differ between the three ap-
proaches. The identified parameter K1 with 1-year obser-
vations in calibration (Fig. 6e) shows a similar distribution
to using 10-year observations (Fig. 6i) between the adapted
KGE and the formal likelihood function, which is different
from the log-transformation. The density is higher at the peak
when using more observations (Fig. 6i). For the identified
parameter MAXBAS between the three approaches is simi-
lar when using 1-year observations for calibration (Fig. 6f),
but it changes after adding more observations into calibration
(Fig. 6g), where the adapted KGE approach shows a similar
distribution as the log-transformation. This suggests that us-
ing different likelihood functions may lead to different iden-
tified model parameters for a system with various uncertain-
ties due to parameter interactions. More information may be
needed to confine the model parameters.

In this section, we focus on analyzing the performance
in the evaluation period to show the prediction ability of
the four approaches. Generally, the uncertainty of the model
performance (represented by the interquartile of KGE, α, β
and r) of the GLUE approach is much larger than the other
three approaches (Fig. 7) regardless of total flow, low flow or
high flow. With the increasing amount of observations added
to calibrations, the performance of GLUE does not change
significantly for all four metrics and for all flow conditions,
while using the adapted KGE or the formal likelihood func-
tion we can see an increasing trend of the model perfor-
mance. The log-transformation only has an improved perfor-
mance regarding low flow with increasing observation data.
In the following, we focus on comparing the performance be-
tween the adapted KGE, the formal likelihood function and
the log-transformation. The log-transformation has a better
performance for low flow as expected, but a lower perfor-
mance for high flow. The formal likelihood function without
transformation has a better performance for high flow but
a lower performance for low flow. The adapted KGE com-
bines these advantages, leading to a good and balanced per-
formance for low and high flows. For the total flow, the gen-
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Figure 7. General performance (KGE), variability (α), non-scaled bias (β) and correlation (r) for total flow, low flow (smaller than 10th per-
centile of observed discharge) and high flow (larger than 90th percentile of observed discharge) during the evaluation period using the GLUE
approach (GLUE), the formal likelihood function (formal), the log-transformation (formallog) and our approach using KGE and gamma dis-
tribution to derive probability density (KGEgamma) with varying amounts of observations (1-year to 10-year) in calibration, for instance,
calibration with 1-year observations is shown as Cal= 1 yr. The boxplot shows the performance of the last 25 % of all simulations (top
25 % in performance for GLUE), which is used to approximate the “true” system behavior in DREAM(ZS). The performance is only shown
for the evaluation period to avoid too much information in the boxplot and to represent the prediction ability of different approaches. The
performance of the calibration period is provided in Fig. S1 in the Supplement. The optimal value for KGE, α, β and r is 1, and the closer to
1 the better the performance.

eral performance KGE of our approach is higher than us-
ing the other two formal likelihood functions. The three ap-
proaches perform similarly for the variability (α) for calibra-
tions with 3–5 years of data, while the adapted KGE tends to
overestimate and the other two formal likelihood functions
underestimate variability when more data are added to cali-
brations. The adapted KGE has a smaller overestimation of
bias (β) than the formal likelihood functions. They have sim-
ilar performance in terms of the correlation (r) for the total
flow. For the low flow, the performances (all metrics) of all
three approaches are poor. The adapted KGE and the log-
transformation have a similar general performance in KGE,
which is better than the formal likelihood function without
log-transformation. The adapted KGE has a lower overesti-
mation of variability and a better simulation of bias, while the
two formal likelihood functions have a better performance in
correlation. For the high flow, the adapted KGE and the for-
mal likelihood function perform similarly in terms of KGE,
bias (β) and correlation (r), which are both better than the
log-transformation but the adapted KGE has a better repre-

sentation of variability (α) than the two formal likelihood
functions.

3.3 Case study 3: model parameter calibrations for a
heterogeneous karst system

For calibration combining discharge and solute concentra-
tions at this heterogeneous karst system with short observa-
tion records, the adapted KGE is superior than the formal
likelihood function regardless of the weight given to dis-
charge and solutes (Fig. 8). For the general performance mea-
sured by KGE, the adapted KGE approach performs best, fol-
lowed by the formal likelihood function with same weights in
discharge and each solute, and then the calibration with dif-
ferent weights (the number of discharge data is 10 times for
each solute). The performance regarding discharge is similar
between the three approaches (the mean KGE is around 0.9)
with a slightly higher performance for the adapted KGE ap-
proach. However, the adapted KGE approach improves the
mean performance regarding Cl−, NO−3 and SO2−

4 by 7 %,
10 % and 44 %, respectively, compared to the formal likeli-
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Figure 8. General performance (KGE), variability (α), non-scaled bias (β) and correlation (r) for discharge and solutes (Cl−, NO−3 and

SO2−
4 ) for a heterogeneous karst system using the formal likelihood function with normalized observations (formalnorm), the formal like-

lihood function with equal weights of normalized discharge and each solute (formalnorm,w) and our approach using KGE and gamma dis-
tribution to derive probability density (KGEgamma). The boxplot shows the performance of the last 25 % of all simulations, which is used
to approximate the “true” system behavior in DREAM(ZS). The optimal value for KGE, α, β and r is 1, and the closer to 1 the better the
performance.

hood function using discharge and solutes. The adapted KGE
approach has a very good representation of variability (α)
compared to the other two approaches, especially for dis-
charge, Cl− and SO2−

4 where the variability metric α is cen-
tered around 1. The performance in terms of bias (β) is in the
range of 0.9 and 1.1 for all 3 approaches. The correlations
of simulated and observed discharges are all larger than 0.9
for the three approaches but the adapted KGE and the for-
mal likelihood function using the same weight in discharge
and solutes have a higher performance (improvement is up
to 17 %) regarding correlation for the three solutes compared
with the formal likelihood function using different amounts
of observation data.

As the formal likelihood function with the same weight
for discharge and solutes (formalnorm,w) has a better per-
formance than the formal likelihood function with differ-
ent amounts of observation data for discharge and solutes
(formalnorm), we only show the comparison regarding the
total uncertainty between formalnorm,w and KGEgamma in
Fig. 9. The two approaches have a similar uncertainty es-
timate (both total uncertainty in Fig. 9 and parameter un-
certainty in Fig. S2) for discharge and NO−3 . However, the
formalnorm,w approach has a large underestimation for Cl−

and SO2−
4 compared to the adapted KGE approach even

though the uncertainty width is similar. From Fig. 9, we can
see that the adapted KGE approach can cover most very high
and very low concentration values in the total uncertainty
band. For the parameter uncertainty (Fig. S2), the adapted
KGE approach performs better for Cl− and SO2−

4 as well.
This indicates that the adapted KGE approach can better rep-
resent the uncertainty when using multiple types of data for
calibration such as discharge and three solutes in this case
study.

4 Discussion

Using the original KGE as the likelihood function, model pa-
rameters are not easily identifiable, which results in a very
large uncertainty in the simulation. This is because directly
using the original KGE as the likelihood estimate assumes a
linear increase of probability density with the linear increase
of KGE. It leads to the identification of parameter propos-
als with good KGE performance to be more difficult and in-
efficient. The difference between large and small KGE val-
ues is not distinctly large enough that the probability to ac-
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Figure 9. Total uncertainty for discharge and solutes (Cl−, NO−3 and SO2−
4 ) for a heterogeneous karst system using the formal likelihood

function with equal weights of normalized discharge and each solute (formalnorm,w) and our approach using KGE and gamma distribution to
derive probability density (KGEgamma). The total uncertainty is estimated based on the last 25 % of all simulations. The parameter uncertainty
is shown in Fig. S2.

cept poor proposals is high. This is why we find a very large
acceptance rate and a very fast convergence rate. Mantovan
and Todini (2006) and Stedinger et al. (2008) also mentioned
that using the informal likelihood function, such as Nash-
Sutcliffe efficiency (NSE), in the generalized likelihood un-
certainty estimation (GLUE) as objectives cannot find proper
posterior distributions of model parameters. Therefore, di-
rectly using the original KGE should be avoided and some
adaptations to solve the incapability of exploring the poste-
rior distributions such as our approach are needed in MCMC
methods.

The adapted KGE can make a good estimate of the pseudo-
analytical posterior distributions of model parameters de-
rived from the formal likelihood function in case study 1.
This suggests that it is capable of exploring the parameter
posterior distributions. The adapted KGE has a lower ac-
ceptance rate and convergence rate compared to the formal
likelihood function for the virtual experiment (case study 1).
The possible reason is that one KGE value can cover multi-
ple error combinations with the same RMSE around the true
optimum, which makes the RMSE slightly more efficient at
drawing proposals for parameters very close to the true op-
timum (known parameters in case study 1) for a system that
only contains little uncertainty. However, calibrations of real
systems usually contain more uncertainties e.g., uncertainties
in forcing (including the spatial averaging), observation data
(measurement errors), and uncertainty in model structures.

The adapted KGE has a similar convergence rate (efficiency)
as the formal likelihood for the real-world calibrations (case
study 2). In particular, the acceptance rate of the adapted
KGE is around 20 % for a system where we have good input
and observations (case study 2). This is similar to the formal
likelihood function and is also close to the theoretically op-
timal acceptance rate (0.234) in Metropolis algorithms with
random walk (Yang et al., 2020).

The uncertainty bound of discharge simulations in case
study 1 is almost identical between the adapted KGE and the
formal likelihood function. This indicates that our approach
can behave similarly concerning discharge uncertainty esti-
mation as the formal likelihood function. For the calibration
to the real system, the adapted KGE even has a higher general
performance in terms of the mean KGE of the evaluation for
the total, low and high flows than the formal likelihood func-
tion and the log-transformation. McMillan and Clark (2009)
had a similar finding that using another informal likelihood
function, NSE, in MCMC methods outperforms the formal
likelihood for calibrations with high variability and multiple
optima. The formal likelihood functions go along with the
strong assumption that errors are distributed normally (Vrugt
et al., 2008, 2009), the informal likelihood function KGE
takes into account more variability without strict assump-
tions on error sources (Gupta et al., 2009). The adapted KGE
performs similar to the formal likelihood function regarding
the correlation between simulations and observations shown
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in case study 2. However, they all have lower performance
for the low flow simulations compared to the total and high
flow simulations. While the log-transformation works well
for low flow (case study 2), the adapted KGE has a good and
balanced performance for both high and low flows. It also
shows a lower overestimation of bias in low flows shown as
the metric β in case study 2. Jeannin et al. (2021) found that
using formal likelihood functions such as RMSE as objec-
tives has a large bias in base flow simulations. For RMSE as
the objective, each individual error has the same weight. To
have a high overall performance, the optimization tends to
firstly fit the high flows as its error is relatively larger and the
contribution to RMSE is thus larger. The log-transformation
can improve the calibration for low values but is not good
for high values. The adapted KGE and the formal likelihood
function both have a better representation of variability (α)
with more observations included in calibrations. This makes
sense because when more data are involved in calibration
more information on variability will be captured in calibra-
tions.

While our approach has a similar performance as the for-
mal likelihood function for discharge simulations, we find
similar posterior distributions for certain parameters but also
inconsistent posterior distributions for some parameters be-
tween the formal and informal approaches. This is because
some model processes interplay with other processes such
that there is compensation of one parameter for another,
i.e., parameter interactions. Adding additional information,
e.g., solutes in case study 3, can help to further constrain
model parameters (Hartmann et al., 2017) and represents the
complexity of real hydrological systems. Our study shows
that the adapted KGE approach is superior for simultane-
ously calibrating model parameters with different types of
data than the formal likelihood function. This can improve
the model calibration using the traditional separate steps
such as firstly calibrating discharge and then solute processes
in Liu et al. (2020). Many studies have shown that multi-
objective calibrations allow important characteristics of a
system to be adequately and properly estimated (Vrugt et al.,
2003b; Yapo et al., 1998). Using KGE can provide a feasible
way to combine various types of observations as a measure of
multi-objective performance and avoid issues regarding data
units, scales and frequency.

Even though our approach adapts the gamma distribution
to compute the probability density for KGE, the way we for-
mulate the likelihood function based on KGE is still infor-
mal. It means the derivation of the likelihood is not from a
strict theoretical probability framework, which is a limita-
tion of our approach. Nevertheless, our approach provides a
feasible and pragmatic way and a close solution to the formal
likelihood function to avoid the pitfalls of directly using the
original KGE in MCMC methods. Future work is needed to
find a solution to link probability density and KGE in order to
incorporate KGE in a statistical manner as much as possible.

5 Conclusions

Our study demonstrates that using the original KGE in
DREAM(ZS) results in a very high acceptance rate and a large
uncertainty bound of discharge simulations. This is due to the
confusing evolution orientation for negative KGE values and
the nonlinear performance of KGE. To solve these two prob-
lems, we propose adapting KGE with the gamma distribu-
tion to formulate the pseudo log-likelihood function to avoid
negative posterior density ratios and to include a proper non-
linearity of performance. With three case studies we demon-
strate that the adapted KGE performs as well as the formal
likelihood function for the exploration of the posterior distri-
butions of model parameters. Through the calibrations vary-
ing the amount of observations included in the calibration,
we show that the adapted KGE is robust and has a good and
balanced performance for both low and high flows compared
to the formal likelihood function and the log-transformation.
Our approach even has a higher general performance, the
mean KGE of the evaluation, and a smaller bias overestima-
tion of low flows than the formal likelihood function. Our
study shows that the adapted KGE approach outperforms the
formal likelihood function for calibrations using discharge
and solutes. The limitation of our approach is the lack of
theoretical probability derivation. Besides that formal limi-
tation, our approach keeps the advantages of KGE, e.g., con-
sideration of variability and possibilities to combine multiple
types of data, and performs like a pseudo formal likelihood.
Thus, it provides a feasible way to use KGE as an informal
likelihood function in MCMC methods.

Code and data availability. All data used in this study have been
published in Liu et al. (2021) and Hartmann, et al. (2014) and the
dataset is publicly available described by Newman et al. (2015) and
Addor et al. (2017) and can be accessed via Newman et al. (2014)
(https://doi.org/10.5065/D6MW2F4D). The Matlab code for using
our approach to calculate the likelihood is provided in the Supple-
ment.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-5341-2022-supplement.

Author contributions. YL conceptualized the study, developed
and applied the adapted KGE approach, and visualized the re-
sults. YL and JFO wrote the paper, and analyzed the results.
MM and AH provided supervision and advice throughout devel-
oping the adapted KGE approach and supported the development
of this manuscript. All authors contributed to the revision of the
manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/hess-26-5341-2022 Hydrol. Earth Syst. Sci., 26, 5341–5355, 2022

https://doi.org/10.5065/D6MW2F4D
https://doi.org/10.5194/hess-26-5341-2022-supplement


5354 Y. Liu et al.: Pitfalls and a feasible solution for using KGE as an informal likelihood function

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Jasper A. Vrugt for his constructive
comments and suggestions. We thank the editor, Jiangjiang Zhang
and another anonymous reviewer for their valuable comments
during the peer-review phase. Yan Liu and Andreas Hartmann
were supported by the Emmy-Noether-Programme of the Ger-
man Research Foundation (DFG, grant number: HA 8113/1-1,
project “Global Assessment of Water Stress in Karst Regions in a
Changing World”). Jaime Fernández-Ortega and Matías Mudarra
were supported by the European Project “Karst Aquifer Resources
availability and quality in the Mediterranean Area (KARMA)”
PRIMA, ANR-18-PRIM-0005 (PCI2019-103675), and by the
project PID2019-111759RB-I00 funded by the Spanish Research
Agency. Additionally, it is a contribution to the Research Group
RNM-308 of Junta de Andalucía. Jaime Fernández-Ortega was also
supported by the Erasmus+ Programme of the European Commis-
sion.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (grant no. HA 8113/1-1), the
Agencia Estatal de Investigación (grant no. PID2019-111759RB-
I00), the Horizon 2020 ((4PRIMA) grant no. 724060).

This open-access publication was funded
by the University of Freiburg.

Review statement. This paper was edited by Lelys Bravo de Guenni
and reviewed by Jiangjiang Zhang and one anonymous referee.

References

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Beven, K. J., Smith, P. J., and Freer, J. E.: So just why would
a modeller choose to be incoherent?, J. Hydrol., 354, 15–32,
https://doi.org/10.1016/j.jhydrol.2008.02.007, 2008.

Freer, J., Beven, K., and Ambroise, B.: Bayesian Estimation of Un-
certainty in Runoff Prediction and the Value of Data: An Applica-
tion of the GLUE Approach, Water Resour. Res., 32, 2161–2173,
https://doi.org/10.1029/95WR03723, 1996.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hartmann, A., Mudarra, M., Andreo, B., Marín, A., Wagener,
T., and Lange, J.: Modeling spatiotemporal impacts of hy-
droclimatic extremes on groundwater recharge at a Mediter-
ranean karst aquifer, Water Resour. Res., 50, 6507–6521,
https://doi.org/10.1002/2014WR015685, 2014.

Hartmann, A., Antonio Barberá, J., and Andreo, B.: On the
value of water quality data and informative flow states in
karst modelling, Hydrol. Earth Syst. Sci., 21, 5971–5985,
https://doi.org/10.5194/hess-21-5971-2017, 2017.

Jeannin, P.-Y., Artigue, G., Butscher, C., Chang, Y., Charlier, J.-
B., Duran, L., Gill, L., Hartmann, A., Johannet, A., Jourde, H.,
Kavousi, A., Liesch, T., Liu, Y., Lüthi, M., Malard, A., Mazz-
illi, N., Pardo-Igúzquiza, E., Thiéry, D., Reimann, T., Schuler,
P., Wöhling, T., and Wunsch, A.: Karst modelling challenge 1:
Results of hydrological modelling, J. Hydrol., 600, 126508,
https://doi.org/10.1016/j.jhydrol.2021.126508, 2021.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: In-
herent benchmark or not? Comparing Nash–Sutcliffe and Kling–
Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331,
https://doi.org/10.5194/hess-23-4323-2019, 2019.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed
HBV-96 hydrological model, J. Hydrol., 201, 272–288,
https://doi.org/10.1016/S0022-1694(97)00041-3, 1997.

Liu, Y., Zarfl, C., Basu, N. B., and Cirpka, O. A.: Modeling the
Fate of Pharmaceuticals in a Fourth-Order River Under Com-
peting Assumptions of Transient Storage, Water Resour. Res.,
56, e2019WR026100, https://doi.org/10.1029/2019WR026100,
2020.

Liu, Y., Wagener, T., and Hartmann, A.: Assessing Streamflow Sen-
sitivity to Precipitation Variability in Karst-Influenced Catch-
ments With Unclosed Water Balances, Water Resour. Res.,
57, e2020WR028598, https://doi.org/10.1029/2020WR028598,
2021.

Mantovan, P. and Todini, E.: Hydrological forecasting uncertainty
assessment: Incoherence of the GLUE methodology, J. Hydrol.,
330, 368–381, https://doi.org/10.1016/j.jhydrol.2006.04.046,
2006.

McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kucz-
era, G.: Improving probabilistic prediction of daily streamflow
by identifying Pareto optimal approaches for modeling het-
eroscedastic residual errors, Water Resour. Res., 53, 2199–2239,
https://doi.org/10.1002/2016WR019168, 2017.

McMillan, H. and Clark, M.: Rainfall-runoff model calibration
using informal likelihood measures within a Markov chain
Monte Carlo sampling scheme, Water Resour. Res., 45, 1–12,
https://doi.org/10.1029/2008WR007288, 2009.

Newman, A., Sampson, K., Clark, M. P., Bock, A., Viger, R. J., and
Blodgett, D.: A large-sample watershed-scale hydrometeorolog-
ical dataset for the contiguous USA, UCAR/NCAR [data set],
https://doi.org/10.5065/D6MW2F4D, 2014.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L.
E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold,
J. R., Hopson, T., and Duan, Q.: Development of a large-
sample watershed-scale hydrometeorological data set for the
contiguous USA: Data set characteristics and assessment of
regional variability in hydrologic model performance, Hydrol.
Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-
209-2015, 2015.

Pool, S., Vis, M., and Seibert, J.: Evaluating model perfor-
mance: towards a non-parametric variant of the Kling–
Gupta efficiency, Hydrolog. Sci. J., 63, 1941–1953,
https://doi.org/10.1080/02626667.2018.1552002, 2018.

Hydrol. Earth Syst. Sci., 26, 5341–5355, 2022 https://doi.org/10.5194/hess-26-5341-2022

https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.1016/j.jhydrol.2008.02.007
https://doi.org/10.1029/95WR03723
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1002/2014WR015685
https://doi.org/10.5194/hess-21-5971-2017
https://doi.org/10.1016/j.jhydrol.2021.126508
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.1029/2019WR026100
https://doi.org/10.1029/2020WR028598
https://doi.org/10.1016/j.jhydrol.2006.04.046
https://doi.org/10.1002/2016WR019168
https://doi.org/10.1029/2008WR007288
https://doi.org/10.5065/D6MW2F4D
https://doi.org/10.5194/hess-19-209-2015
https://doi.org/10.5194/hess-19-209-2015
https://doi.org/10.1080/02626667.2018.1552002


Y. Liu et al.: Pitfalls and a feasible solution for using KGE as an informal likelihood function 5355

Smith, T. J. and Marshall, L. A.: Bayesian methods in hydro-
logic modeling: A study of recent advancements in Markov
chain Monte Carlo techniques, Water Resour. Res., 44, 1–9,
https://doi.org/10.1029/2007wr006705, 2008.

Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder,
R.: Appraisal of the generalized likelihood uncertainty es-
timation (GLUE) method, Water Resour. Res., 44, 1–17,
https://doi.org/10.1029/2008wr006822, 2008.

Vrugt, J. A.: Markov chain Monte Carlo simulation using
the DREAM software package: Theory, concepts, and MAT-
LAB implementation, Environ. Model. Softw., 75, 273–316,
https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian,
S.: A Shuffled Complex Evolution Metropolis algorithm
for optimization and uncertainty assessment of hydro-
logic model parameters, Water Resour. Res., 39, 1201,
https://doi.org/10.1029/2002WR001642, 2003a.

Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and
Sorooshian, S.: Effective and efficient algorithm for multiobjec-
tive optimization of hydrologic models, Water Resour. Res., 39,
1–19, https://doi.org/10.1029/2002WR001746, 2003b.

Vrugt, J. A., Ter Braak, C. J. F., Clark, M. P., Hyman, J. M.,
and Robinson, B. A.: Treatment of input uncertainty in hy-
drologic modeling: Doing hydrology backward with Markov
chain Monte Carlo simulation, Water Resour. Res., 44, W00B09,
https://doi.org/10.1029/2007WR006720, 2008.

Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hy-
man, J. M., and Higdon, D.: Accelerating Markov chain Monte
Carlo simulation by differential evolution with self-adaptive ran-
domized subspace sampling, Int. J. Nonlin. Sci. Numer. Simul.,
10, 273–290, 2009.

Yang, J., Roberts, G. O., and Rosenthal, J. S.: Optimal scal-
ing of random-walk metropolis algorithms on general tar-
get distributions, Stoch. Process. Appl., 130, 6094–6132,
https://doi.org/10.1016/j.spa.2020.05.004, 2020.

Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective
global optimization for hydrologic models, J. Hydrol., 204, 83–
97, https://doi.org/10.1016/S0022-1694(97)00107-8, 1998.

https://doi.org/10.5194/hess-26-5341-2022 Hydrol. Earth Syst. Sci., 26, 5341–5355, 2022

https://doi.org/10.1029/2007wr006705
https://doi.org/10.1029/2008wr006822
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.1029/2002WR001642
https://doi.org/10.1029/2002WR001746
https://doi.org/10.1029/2007WR006720
https://doi.org/10.1016/j.spa.2020.05.004
https://doi.org/10.1016/S0022-1694(97)00107-8

	Abstract
	Introduction
	Material and methods
	Kling–Gupta efficiency
	Adapting KGE in DREAM(ZS)
	Basics of DREAM(ZS)
	Deriving pseudo probability density based on KGE

	Case studies
	Case study 1: virtual experiment
	Case study 2: long observations for rainfall-runoff modeling
	Case study 3: short observations for a heterogeneous karst system
	Calibration and evaluation


	Results
	Case study 1: posterior parameter exploration
	Case study 2: model parameter calibrations with long observations
	Case study 3: model parameter calibrations for a heterogeneous karst system

	Discussion
	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

