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Abstract. The mixed finite element (MFE) method is well
adapted for the simulation of fluid flow in heterogeneous
porous media. However, when employed for the transport
equation, it can generate solutions with strong unphysical
oscillations because of the hyperbolic nature of advection.
In this work, a robust upwind MFE scheme is proposed to
avoid such unphysical oscillations. The new scheme is a
combination of the upwind edge/face centered finite volume
method with the hybrid formulation of the MFE method.
The scheme ensures continuity of both advective and disper-
sive fluxes between adjacent elements and allows to main-
tain the time derivative continuous, which permits employ-
ment of high-order time integration methods via the method
of lines (MOL).

Numerical simulations are performed in both saturated and
unsaturated porous media to investigate the robustness of
the new upwind MFE scheme. Results show that, contrarily
to the standard scheme, the upwind MFE method generates
stable solutions without under and overshoots. The simula-
tion of contaminant transport into a variably saturated porous
medium highlights the robustness of the proposed upwind
scheme when combined with the MOL for solving nonlinear
problems.

1 Introduction

The mixed finite element (MFE) method (Raviart and
Thomas, 1977; Brezzi et al., 1985; Chavent and Jaffré, 1986;
Brezzi and Fortin, 1991; Younes et al., 2010) is known to
be a robust numerical scheme for solving elliptic diffusion
problems such as the fluid flow in heterogeneous porous me-
dia. The method combines advantages of the finite volumes,
by ensuring local mass conservation and continuity of fluxes
between adjacent cells, and advantages of finite elements by
easily handling heterogeneous domains with discontinuous
parameter distributions and unstructured meshes. As a con-
sequence, the MFE method has been largely used for flow
in porous media (see, for instance, the review of Younes et
al. (2010) and references therein). The hybridization tech-
nique has been largely used with the MFE method to im-
prove its efficiency (Chavent and Roberts, 1991; Traverso et
al., 2013). This technique allows to reduce the total number
of unknowns and produces a final system with a symmetric
positive definite matrix. The unknowns with the hybrid MFE
method are the Lagrange multipliers which correspond to the
traces of the scalar variable at edges/faces (Chavent and Jaf-
fré, 1986).

When applied to transient diffusion equations with small
time steps, the hybrid MFE method can produce solutions
with small unphysical over- and undershoots (Hoteit et al.,
2002a, b; Mazzia, 2008). A lumped formulation of the hybrid
MFE method was developed by Younes et al. (2006) to im-
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prove its monotonicity and reduce nonphysical oscillations.
The lumped formulation ensures that the maximum principle
is respected for parabolic diffusion equations on acute tri-
angulations (Younes et al., 2006). For more general 2D and
3D element shapes, the lumping procedure allows to signifi-
cantly improve the monotonous character of the hybrid MFE
solution (Younes et al., 2006; Koohbor et al., 2020). As an
illustration, the lumped formulation was shown to be more
efficient and more robust than the standard hybrid formu-
lation for the simulation of the challenging nonlinear prob-
lem of water infiltration into an initially dry soil (Belfort et
al., 2009). The lumped formulation has recently been used
for flow discretization in the case of density-driven flow in
saturated–unsaturated porous media (Younes et al., 2022a).

However, the MFE method remains little used for the dis-
cretization of the full transport equation. When employed to
the advection–dispersion equation, the MFE method can gen-
erate solutions with strong numerical instabilities in the case
of advection-dominated transport because of the hyperbolic
nature of the advection operator. To avoid these instabilities,
one of the most popular and easiest ways is to use an up-
wind scheme. Indeed, although upwind schemes introduce
some numerical diffusion leading to an artificial smearing
of the numerical solution, they avoid unphysical oscillations
and remain useful, especially for large domains and regional
field simulations. In the literature, some upwind mixed fi-
nite element schemes have been employed to improve the ro-
bustness of the MFE method for advection-dominated prob-
lems (Dawson, 1998; Dawson and Aizinger, 1999; Radu et
al., 2011; Vohralík, 2007; Brunner et al., 2014).

The main idea of an upwind scheme for an element E is
to calculate the mass flux exchanged with its adjacent ele-
mentE′ using the concentration fromE in the case of an out-
flow and the concentration from E′ in the case of an inflow.
However, this idea cannot be applied as such with the hybrid
MFE method since the hybridization procedure requires to
express the flux at the element interface as only a function of
variables at the elementE (and notE′). To overcome this dif-
ficulty, Radu et al. (2011) and Brunner et al. (2014) proposed
an upwind MFE method where, in the case of an inflow, the
concentration at the adjacent element E′ is replaced by an
approximation using the concentration at E and the trace of
concentration at the interface ∂EE′ by assuming that the edge
concentration is the mean of the concentrations in E and E′.
However, this assumption cannot be verified for a general
configuration. Furthermore, with such an assumption, each
of the advective and dispersive fluxes is discontinuous at the
element interfaces, and continuity is only fulfilled for the to-
tal flux.

In this work, a new upwind MFE method is proposed for
solving the full transport equation without requiring any ap-
proximation of the upwind concentration. The new scheme
is a combination of the upwind edge/face centered finite vol-
ume (FV) scheme with the lumped formulation of the MFE
method. It guarantees continuity of both advective and dis-

persive fluxes at element interfaces. Further, the new upwind
MFE scheme maintains the time derivative continuous, and
thus allows to employ high-order time integration methods
via the method of lines (MOL), which was shown to be very
efficient for solving nonlinear problems (see, for instance,
Fahs et al., 2009 and Younes et al., 2009).

This article is structured as follows. In Sect. 2, we recall
the hybrid MFE method for the discretization of the trans-
port equation. In Sect. 3, we introduce the new upwind MFE
method based on the combination of the upwind edge/face
FV scheme with the lumped formulation of the MFE method.
In Sect. 4, numerical experiments are performed for transport
in saturated and unsaturated porous media to investigate the
robustness of the new developed upwind MFE scheme. Some
conclusions are given in the last section of the article.

2 The hybrid MFE method for the
advection–dispersion equation

The mass conservation of the contaminant in variably satu-
rated porous media is

∂(θC)

∂t
+∇ · (q̃a+ q̃d)= 0, (1)

where C is the normalized concentration [–], θ is water con-
tent [L3 L−3], t is time [T], q̃a = qC is the advective flux with
q the Darcy velocity [L T−1], and q̃d the dispersive flux given
by

q̃d =−D∇C, (2)

with D, the dispersion tensor, expressed by

D =DmI + (αL−αT)q⊗ q/|q| +αT|q|I, (3)

in which αL and αT are the longitudinal and transverse dis-
persivities [L], Dm is the pore water diffusion coefficient
[L2 T−1], and I is the unit tensor.

The water content θ and the Darcy velocity q are linked
by the fluid mass conservation equation in variably saturated
porous media:

∂θ

∂t
+∇ · q = 0. (4)

Substituting Eq. (4) into Eq. (1) yields the following
advection–dispersion equation:

θ
∂C

∂t
+∇ · (q̃a+ q̃d)−C∇ · q = 0. (5)

In this work, we consider that the velocity q is obtained by
solving Richards’ equation using the hybrid MFE method.
For a two-dimensional domain with a triangular mesh, q is
approximated inside each triangle E using the lowest-order
Raviart–Thomas (RT0) vectorial basis functions wEj :

q =

3∑
j=1

QE
j w

E
j , (6)
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Figure 1. Vectorial basis functions for the MFE method.

where QE
j is the water flux across the edge Ej of E (see

Fig. 1) and wEj =
1

2|E|

(
x− xEj
y− yEj

)
is the typical RT0 basis

functions (Younes et al., 1999) with
(
xEj ,y

E
j

)
the coordi-

nates of the node j opposite to the edge Ej of E, and |E| the
area of E.

To apply the hybrid MFE method to the transport Eq. (5),
we approximate the dispersive flux q̃d with RT0 vectorial ba-
sis functions as

q̃d =

3∑
j=1

Q̃
d,E
j wEj , (7)

where Q̃
d,E
j =

∫
Ej

q̃d · η
E
j is the dispersive flux across the

edge Ej of the element E and ηEj is the outward unit nor-
mal vector to the edge Ej .

The variational formulation of Eq. (2) using the test func-
tion wEi yields∫
E

D−1q̃dw
E
i =

∫
E

C∇ ·wEi −
∑
j

∫
Ej

CwEi · η
E
j . (8)

Substituting Eq. (7) into Eq. (8) and using properties of the
basis functions wEj give

∑
j

Q̃
d,E
j

∫
E

(
D−1
E wEj

)
·wEi =

1
|E|

∫
E

C−
1
|Ei |

∫
Ei

C

= CE −TCEi , (9)

in which DE is the local dispersion tensor at the element E,
CE is the mean concentration at E, and TCEi is the edge
(trace) concentration (Lagrange multiplier) at the edge Ei .

Denoting the local matrix B̃Ei,j =
∫
E

(
D−1
E wEj

)
·wEi , the in-

version of the system of Eq. (9) gives the expression for the
dispersive flux Q̃d,E

i :

Q̃
d,E
i =

∑
j

B̃E,−1
i,j

(
CE −TCEj

)
. (10)

Besides, the integration of the mass conservation Eq. (6) over
the element E writes∫
E

θ
∂C

∂t
+

∫
E

∇ · q̃a+

∫
E

∇ · q̃d−

∫
E

C∇ · q = 0, (11)

which becomes, using Green’s formula,

θE |E|
∂CE

∂t
+

∑
i

∫
Ei

Cq · ηEi +
∑
i

∫
Ei

q̃d · η
E
i

−

∫
E

C∇ · q = 0, (12)

where θE is the water content of the element E.
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Substituting Eq. (2) into Eq. (12) yields

θE |E|
∂CE

∂t
+

∑
i

(
Q̃

a,E
i + Q̃

d,E
i

)
︸ ︷︷ ︸

Q̃
t,E
i

−CE
∑
i

QE
i = 0, (13)

in which Q̃t,E
i = Q̃

a,E
i + Q̃

d,E
i is the total flux at the edge Ei

with Q̃a,E
i the advective flux given by Q̃a,E

i =Q
E
i TCEi and

Q̃
d,E
i the dispersive flux given by Eq. (10).
The hybridization of the MFE method is performed in the

following two steps.
The flux Eq. (10) is substituted into the mass conservation

Eq. (13), which is then discretized in time using the first-
order implicit Euler scheme,

θE
|E|

1t

(
Cn+1
E −CnE

)
+

∑
i

QE
i TCE,n+1

i −Cn+1
E

∑
i

QE
i

+ α̃ECn+1
E −

∑
i

α̃Ei TCE,n+1
i = 0, (14)

in which α̃Ei =
∑
j

B̃
E,−1
i,j and α̃E =

∑
i

α̃Ei .

Hence, the mean concentration at the new time level Cn+1
E

can be expressed as a function of TCE,n+1
i , the concentration

at the edges of E, as follows:

Cn+1
E =

1
βE

∑
i

(
α̃Ei −Q

E
i

)
TCE,n+1

i +
λE

βE
CnE, (15)

in which λE = θE
|E|
1t

and βE =
(
λE + α̃

E
−
∑
i

QE
i

)
.

The mean concentration given by Eq. (15) is then substi-
tuted into the flux Eq. (10), which allows expressing the dis-
persive flux Q̃d,E,n+1

i (the subscript n+ 1 will be omitted
to alleviate the notations) as only a function of the traces of
concentration at edges TCE,n+1

i :

Q̃
d,E
i =

∑
j

(
α̃Ei

βE

(
α̃Ej −Q

E
j

)
− B̃

E,−1
i,j

)
TCE,n+1

j

+
λE

βE
α̃Ei C

n
E . (16)

The system to be solved is obtained by imposing the conti-
nuity of the total flux

(
Q̃

t,E
i + Q̃

t,E′
i = 0

)
as well as the con-

tinuity of the trace of concentration
(

TCE,n+1
i = TCE

′,n+1
i

)
at the edge i between the two elements E and E′ (Fig. 2).

Note that the advective flux Q̃a,E
i is continuous between E

and E′ because of the continuity of the water flux and the
continuity of the trace of concentration at the interface. Thus,
for the continuity of the total flux

(
Q̃

t,E
i + Q̃

t,E′
i = 0

)
, it is

required that the dispersive flux is continuous:

Q̃
t,E
i + Q̃

t,E′

i =

(
QE
i +Q

E′

i

)
TCE,n+1

i + Q̃
d,E
i

+ Q̃
d,E′
i = Q̃

d,E
i + Q̃

d,E′
i = 0. (17)

Using Eq. (16), we obtain

∑
j

(
B̃
E,−1
i,j −

α̃Ei

βE

(
α̃Ej −Q

E
j

))
TCE,n+1

j

+

∑
j

(
B̃
E′,−1
i,j −

α̃E
′

i

βE′

(
α̃E
′

j −Q
E′

j

))

TCE
′,n+1

j =
λE

βE
α̃Ei C

n
E +

λE′

βE′
α̃E
′

i C
n
E′ . (18)

The continuity Eq. (18) is written for all mesh edges, and the
resulting equations form the final system to be solved for the
traces of concentration at edges TCE,n+1

i as unknowns.
Note that the hybrid MFE Eq. (18), obtained by approxi-

mating the dispersive flux with RT0 basis functions, is equiv-
alent to the new MFE method proposed in Radu et al. (2011).

3 The upwind and lumped MFE approaches

In this section, we recall the main principles of two existing
approaches, developed to improve the stability of the MFE
solution of the transport equation. The first approach is the
upwind hybrid MFE scheme of Radu et al. (2011), developed
for advection dominated transport. The second approach is
the lumped hybrid MFE method of Younes et al. (2006), de-
veloped for dispersive transport.

3.1 The upwind hybrid MFE of Radu et al. (2011)

In the case of advection-dominated transport, solving the hy-
brid MFE Eq. (18) can yield solutions with strong instabil-
ities. A common way to avoid such instabilities is to use
an upwind scheme for the advective flux. Thus, for an el-
ement E, the advective flux Q̃a,E

i =Q
E
i TCEi at the edge i

(common with the element E′) has to be calculated using
either the concentration from E (if QE

i > 0) or the concen-
tration from E′ (if QE

i < 0). Radu et al. (2011) suggested
replacing the advective flux Q̃a,E

i =Q
E
i TCEi at the interface

by

Q̃
a,E
i =

{
QE
i C

E if QE
i > 0

QE
i C

E′ if QE
i < 0

(19)

The advective term is now calculated using the upwind mean
concentration, which can be that of the element E or of its
adjacent element E′.

The advective flux of Eq. (19) is rewritten in the following
condensed form:

Q̃
a,E
i =Q

E
i

(
τEi C

E
+

(
1− τEi

)
CE

′
)
, (20)

with τEi = 1 for an outflow
(
QE
i > 0

)
and τEi = 0 for an in-

flow
(
QE
i < 0

)
.

However, this expression is incompatible with the hy-
bridization procedure. Indeed, if we replace, in the Eq. (14),
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Figure 2. Continuity of concentration and total flux between adjacent elements with the hybrid MFE method.

the advective term QE
i TCEi by Eq. (20), the latter will con-

tain bothCE andCE
′

. Thus, the first step of the hybridization
procedure cannot allow expressing Cn+1

E as only a function
of TCE,n+1

i as in the Eq. (15).
To avoid this difficulty, Radu et al. (2011) suggested re-

placing CE
′

by the following expression:

CE
′

' 2TCEi −C
E . (21)

This approximation is based on the assumption that TCEi '(
CE +CE

′
)/

2 .

Plugging Eq. (21) into Eq. (20), the advective flux Q̃a,E
i

depends only on the variables of the element E (mean con-
centration CE and edge concentration TCEi ):

Q̃
a,E
i =Q

E
i

(
τEi C

E
−

(
1− τEi

)
CE + 2

(
1− τEi

)
TCEi

)
. (22)

Equation (22) can then be used to replace the advective term
QE
i TCE,n+1

i in Eq. (14), and thus the hybridization proce-
dure allows to express Cn+1

E as a function of TCE,n+1
i as

in the Eq. (15). Then, the expression of Cn+1
E is substi-

tuted into the dispersive flux Eq. (10), and the final sys-
tem is obtained by prescribing continuity of the total flux(
Q̃

t,E
i + Q̃

t,E′
i = 0

)
at the interface between E and E′. This

scheme was shown to be more efficient (by using a sparser
system matrix with fewer unknowns) than the non-hybrid up-
wind mixed method of Dawson (1998). The two methods
yielded optimal first-order convergence in time and space
(Brunner et al., 2014).

The assumption given by Eq. (21) can be a rough approx-
imation, especially in the case of a heterogeneous domain
where dispersion can vary with several orders of magnitudes
from element to element. For such a situation, the edge con-
centration can be significantly different from the average of
the mean concentrations of adjacent elements. Furthermore,
the advective flux is not uniquely defined at the interface and

can be different for the two adjacent elements E and E′. For
instance, in the case ofQE

i =Q> 0, the advective flux leav-
ing the element E is Q̃a,E

i =QC
E , whereas the flux entering

the element E′ is Q̃a,E′
i =Q

(
2TCEi −C

E′
)

which could be

different as TCEi is not necessarily the mean of CE and CE
′

.
In this situation, because of the discontinuity of the advective
flux, the dispersive flux will not be continuous at the interface
since the continuity is prescribed only for the total flux.

3.2 The lumped hybrid MFE scheme for dispersion
transport

In this section, we recall the main principles of the lumped
hybrid MFE method of Younes et al. (2006), developed to
improve the stability of the MFE solution in the case of dis-
persive transport.

Considering only dispersion, Eq. (5) simplifies to

θ
∂C

∂t
+∇ · q̃d = 0. (23)

As detailed above, the hybrid MFE method for Eq. (23) is
based on two stages:

Stage 1. Discretization of the transient mass conservation
equation over the element E: the integration of the mass con-
servation Eq. (23) over the element E gives (see Eq. 13) the
following:

θE |E|
∂CE

∂t
+

∑
i

Q̃
d,E
i = 0. (24)

Stage 2. Imposing the continuity of the flux across the edge i
sharing the two elements E and E′:

Q̃
d,E
i + Q̃

d,E′
i = 0. (25)

Note that the continuity Eq. (25) can be interpreted as a
steady-state mass conservation equation at the edge level.

https://doi.org/10.5194/hess-26-5227-2022 Hydrol. Earth Syst. Sci., 26, 5227–5239, 2022
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Hence, the hybrid MFE discretization uses the transient mass
conservation equation at the element level, given by Eq. (24),
and the steady-state mass conservation at the edge level,
given by Eq. (25). With the lumped hybrid MFE method
of Younes et al. (2006), the transient term is taken into ac-
count at the edge level. Hence, the lumped formulation uses a
steady-state mass conservation equation at the element level
and a transient mass conservation equation at the edge level.
The two stages of the lumped hybrid MFE are as follows:

Stage 1. Discretization of the steady-state mass conserva-
tion equation over E: the steady-state transport over the ele-
ment E writes∑
i

Q̃
d,E
i
= 0, (26)

where Q̃
d,E
i

is the steady-state dispersive flux across the
edge Ei .

Therefore, the mean concentration of Eq. (15) becomes

CE =
∑
i

α̃Ei

α̃E
TCEi , (27)

and using Eq. (16), the steady-state dispersive flux writes

Q̃
d,E
i
=

∑
j

(
α̃Ei α̃

E
j

α̃E
− B̃

E,−1
i,j

)
TCEj . (28)

Stage 2. Discretization of the transient mass conservation
equation over the lumping region Ri : the edge centered fi-
nite volume discretization of the transient transport Eq. (23)
over the lumping region Ri (hatched area in Fig. 3), associ-
ated with the edge i, writes∫
Ri

θ
∂C

∂t
+

∫
Ri

∇ · q̃d = 0, (29)

where the lumping regions Ri is formed by the two simplex
regions SEi and SE

′

i , for an inner edge i sharing the two el-
ements E and E′, and by the sole simplex region SEi for a
boundary edge. The simplex region SEi is defined by joining
the center of E with the nodes j and k forming the edge i.

Associating the edge concentration TCEi to Ri (see Fig. 3
for notations), Eq. 29) gives{
|E|

3
θE
∂TCEi
∂t
+ Q̃

d,E
ij
+ Q̃

d,E
ik

}
+
′
= 0, (30)

in which Q̃
d,E
ij

and TCEij are respectively the dispersive flux

and the concentration at the interior interface (ij)E between
the simplex regions SEi and SEj . The shortcut { }′ designates
the same contribution as { }, but of the adjacent elementE′, in

the case of Eq. (30), it corresponds to |E
′
|

3 θE′
∂TCEi
∂t
+Q̃

d,E′

ij
+

Q̃
d,E′

ik
.

Besides, applying the steady-state dispersive transport
Eq. (26) on the simplex region SEi yields

Q̃
d,E
ij
+ Q̃

d,E
ik
+ Q̃

d,E
i
= 0. (31)

Finally, substituting Eqs. (28 ) and (31) into the transport
Eq. (30) gives the final system to solve with the lumped hy-
brid MFE scheme:{
|E|

3
θE
∂TCEi
∂t
+

∑
j

(
B̃
E,−1
i,j −

α̃Ei α̃
E
j

α̃E

)
TCEj

}
+
′
= 0.. (32)

Note that the lumped hybrid formulation Eq. (32) and the
standard hybrid formulation (Eqs. 24 and 25) are exactly the
same in the case of steady-state diffusion transport.

In the lumped formulation Eq. (32), the term of mass (with
time derivative) has a contribution only on the diagonal term
of the final system matrix. This improves the monotonous
character of the solution (see Younes et al., 2006). For in-
stance, in the case of an acute triangulation, the maximum
principle is respected by the lumped formulation Eq. (32)
whatever the heterogeneity of the porous medium (Younes
et al., 2006).

Contrarily to the standard hybrid MFE scheme, where
the discretization of the temporal derivative performed in
Eq. (14) was necessary to obtain the final system given by
Eq. (18), the lumped scheme given by Eq. (32) keeps the
time derivative continuous which allows the use of efficient
high-order temporal discretization methods via the MOL.

In the case of 2D triangular elements, the lumped formula-
tion Eq. (32) is algebraically equivalent to the nonconform-
ing Crouzeix–Raviart (Crouzeix and Raviart, 1973) finite el-
ement method (see Younes et al., 2008). The nonconforming
Crouzeix–Raviart method uses the chapeau functions as ba-
sis functions to approximate the concentration, like the stan-
dard finite element method, but seed nodes are the midpoints
of the edges.

4 The new upwind hybrid MFE scheme for
advection–dispersion transport

To avoid the rough approximation (Eq. 21), we develop here-
after a new upwind MFE scheme where the advection term
is calculated using upwind edge concentration instead of up-
wind mean concentration of the element E. The idea of the
scheme is to extend the lumped hybrid MFE procedure to
transport by both advection and dispersion and to use an up-
wind edge centered FV scheme to avoid unphysical oscilla-
tions caused by the hyperbolic nature of advection.

The integration of the whole mass conservation Eq. (5)
over the lumping region Ri writes∫
Ri

θ
∂C

∂t
+

∫
Ri

∇ · (qC)+

∫
Ri

∇ · q̃d−

∫
Ri

C∇ · q = 0. (33)
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Figure 3. The lumping region Ri associated with the edge i, sharing the elements E and E′, and formed by the two simplex regions SE
i

and SE
′

i
.

Using notations of Fig. 3, we obtain{
|E|

3
θE
∂TCEi
∂t
+QE

ijTCEij +Q
E
ikTCEik + Q̃

d,E
ij
+ Q̃

d,E
ik

−TCEi
(
QE
ij +Q

E
ik

)}
+{ }

′
= 0, (34)

in which QE
ij is the water flux at the interior interface (ij)E ,

evaluated using the RT0 approximation of the velocity given
by Eq. (6), which yields

QE
ij =

1
3

(
QE
j −Q

E
i

)
. (35)

Using Eqs. (28) and (31) and denoting λE = θE
|E|
3 , Eq. (34)

becomes{
λE
∂TCEi
∂t
+

∑
j

(
B̃
E,−1
i,j −

α̃Ei α̃
E
j

α̃E

)
TCEj +Q

E
ijTCEij

+QE
ikTCEik −

(
QE
ij +Q

E
ik

)
TCEi

}
+{ }

′
= 0. (36)

The interior concentration TCEij at the interface between the
simplex regions SEi and SEj is calculated using an upwind
scheme (see Fig. 3) defined by

TCEij = τ
E
ij TCEi +

(
1− τEij

)
TCEj , (37)

with τEij = 1 if
(
QE
ij ≥ 0

)
, else τEij = 0.

Thus, the final system to solve becomes{
λE
∂TCEi
∂t
+

∑
j

(
B̃
E,−1
i,j −

α̃Ei α̃
E
j

α̃E

)
TCEj

+QE
ij

(
1− τEij

)(
TCEj −TCEi

)
+QE

ik

(
1− τEik

)(
TCEk −TCEi

)}
+{ }

′
= 0. (38)
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Figure 4. Description of the problem of the contamination of a 2D saturated porous medium.

In the case of a first-order Euler implicit time discretiza-
tion, Eq. (37) becomes

∑
j

(
B̃
E,−1
i,j −

α̃Ei α̃
E
j

α̃E

)
TCE,n+1

j + λETCE,n+1
i

+QE
ij

(
1− τEij

)(
TCE,n+1

j −TCE,n+1
i

)
+QE

ik

(
1− τEik

)(
TCE,n+1

k −TCE,n+1
i

)
− λETCE,ni


+{ }

′
= 0, (39)

where λE = θE
|E|
31t .

It is easy to see that, due to upwinding, the system ma-
trix corresponding to Eq. (28) is always an M-matrix (a non-
singular matrix with mii > 0, mij ≤ 0) in the case of trans-
port by advection. The M-matrix property insures the stabil-
ity of the scheme since it guaranties the respect of the discrete
maximum principle i.e., local maxima or minima will not ap-
pear in the C solution in a domain without local sources or
sinks.

Further, Eq. (37) expresses the total exchange between E
and E′ and therefore reflects the continuity of the total
advection–dispersion flux between them. Both advective and
dispersive fluxes are continuous between the adjacent ele-
ments E and E′. The advective flux, calculated using the up-
wind edge concentration, is uniquely defined at the interface
of the lumping region and is therefore continuous. As a con-
sequence, the dispersive flux is also continuous between E
and E′ since the total flux is continuous at the interface be-
tween them.

5 Numerical experiments

In this section, a first test case dealing with transport in sat-
urated porous media is simulated with the standard hybrid
MFE and the new upwind MFE schemes. The results are
compared against an analytical solution in order to validate
the new developed scheme and to show its robustness for
solving advection-dominated transport problems compared
to the standard one. The second test case deals with transport
in the unsaturated zone and aims to investigate the robustness

of the new scheme when combined with the MOL for solving
highly nonlinear problems.

5.1 Transport in saturated porous media: comparison
against a 2D analytical solution

The hybrid and upwind MFE formulations are compared
against the analytical solution developed by Leij and
Dane (1990) for a simplified 2D transport problem (Fig. 4).
The test case has been employed by Putti et al. (1990) and
Siegel et al. (1997) for the verification of transport codes. It
deals with the contamination from the left boundary of a 2D
rectangular domain of dimension (0, 100)× (0, 40).

The boundary conditions for the transport are of Dirichlet
type at the inflow (left vertical boundary), with

C =

 0 for x = 0 and 0≤ y < 12
1 for x = 0 and 12≤ y ≤ 28
0 for x = 0 and 28< y ≤ 40

. (40)

A zero diffusive flux is imposed at the right vertical outflow
boundary. The top and bottom are impermeable boundaries.
A uniform horizontal flow occurs from left to right with a
constant flux qx = 0.5 m d−1 prescribed at the left vertical
boundary and a fixed head H = 100 m at the right verti-
cal boundary. The longitudinal and transverse dispersivities
are αL = 0.2 m and αT = 0.05 m, respectively. The domain is
discretized with a fine unstructured triangular mesh formed
by 33 216 elements, and the simulation is performed for a
final simulation time T = 30 d using the Euler implicit time
discretization with a fixed time step of 0.1 d. The linear sys-
tems are solved in each time step with a direct solver us-
ing an unsymmetric-pattern multi-frontal method and a direct
sparse LU factorization (UMFPACK).

The analytical solution of this test case for an infinite do-
main is given by Leij and Dane (1990),

Canaly(x,y, t)=
x

(16παL)
1/2

T∫
0

τ−3/2
{

erf
[
y− 12

(4αTτ)
1/2

]

+erf
[

28− y

(4αTτ)
1/2

]}
exp

[
−
(x− τ)2

4αLτ

]
dτ, (41)
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Figure 5. Concentration distribution with the hybrid MFE and the
upwind MFE methods for the 2D saturated transport problem (only
the region x ≤ 70 m is depicted).

with erf(x)= 2
√
π

x∫
0

exp
(
−τ 2)dτ .

The final distributions of the concentration with both
hybrid MFE and upwind MFE schemes are depicted in
Fig. 5. Although we have used an unstructured mesh, the
two schemes yield almost symmetrical results. The hybrid
MFE scheme (Fig. 5a) yields a solution with unphysical os-
cillations. Indeed, around 1.2 % of the contaminated region
(i.e., the region with |C| ≥ 10−5) exhibits unphysical oscilla-
tions with 0.4 % of the contaminated region with C ≤−10−3

and 0.8 % of the contaminated region with C ≥ 1.001. These
unphysical oscillations, although they seem moderate, can be
dramatic, for instance, when dealing with reactive transport
where some reactions occur only if the concentration exceeds
a certain threshold. The solution obtained with the new up-
wind formulation (Fig. 5b) is monotone (all concentrations
are between 0 and 1) which is in agreement with the physics.
However, these results come at the expense of some numeri-
cal diffusion added to the solution. To appreciate the quality
of both solutions and validate the upwind MFE method, we
compare the concentration profile of the two methods to the
analytical solution of Leij and Dane (1990) for a horizontal
section located at y = 20 m and a vertical section located at
x = 20 m.

The results of Fig. 6 show that the solution of both hybrid
MFE and upwind MFE methods are in very good agreement
with the analytical solution, which validates the new upwind
MFE numerical model. Note, however, that a small numer-

Figure 6. Concentration profiles at y = 20 m (a) and x = 20 m (b)
with the analytical, hybrid MFE, and upwind MFE solutions.

ical diffusion is observed with the upwind MFE solution,
which is especially visible in Fig. 6b. Indeed, for the sim-
ulated problem, the transverse dispersivity is much smaller
than the longitudinal one, and, as a consequence, the concen-
tration front is sharper in the vertical section than in the hor-
izontal one. This explains why the numerical diffusion gen-
erated by the upwind MFE method is more pronounced in
Fig. 6b than in Fig. 6a.

The test problem is then simulated using different mesh re-
finements to investigate the order of convergence of the new
method. We start with a uniform mesh formed by 1000 tri-
angles and a time step 1t = 0.1 s. In each level of refine-
ment, each triangle is subdivided into four similar triangles,
by joining the three mid-edges and the time step1t is halved.
The following error is computed (Brunner et al., 2014):

Er=
{∥∥∥Canalyt

(
tN
)
−C

(
tN
)∥∥∥2

0

+1t

N∑
n=1

∥∥∥q̃ tanalyt
(
tn
)
− q̃ t

(
tn
)∥∥∥2

0

}1/2

, (42)
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Table 1. Numerical results for the new upwind hybrid MFE method.

Ref. # Error Reduction CPU
level unknowns Er time (s)

1 1535 2.55 4.9
2 6070 1.296 1.97 38.6
3 24 140 0.655 1.98 272
4 96 280 0.329 1.99 2068
5 384 560 0.165 2.00 16 567

where q̃ t = q̃a+ q̃d is the total advection–dispersion flux and
N the total number of time steps.

The runs are performed on a single computer with an In-
tel Xeon E-2246G processor and 32 GB memory. The results
of the computations, summarized in Table 1, clearly show
optimal first-order convergence in space and time for the de-
veloped upwind hybrid MFE method.

5.2 Transport in a variably-saturated porous medium

In this test case, the developed upwind MFE method is
combined with the MOL for solving contaminant trans-
port in a variably-saturated porous medium. The advection–
dispersion equation is transformed to an ordinary differential
equation (ODE) using the new upwind MFE formulation for
the spatial discretization, whereas the time derivative is main-
tained continuously. Therefore, high-order time integration
methods included in efficient ODE solvers can be employed.
With these solvers, both the time step size and the order of
the time integration can vary during the simulation to deliver
accurate results in an acceptable computational time.

To investigate the robustness and efficiency of the combi-
nation of the developed upwind MFE method with the MOL,
we simulate in this section the problem of contaminant infil-
tration into a variably-saturated porous medium.

The domain (Fig. 7) is a rectangular box of 3 m× 2 m,
filled with sand, with an initial water table at 0.65 m and
hydrostatic pressure distribution. An infiltration of a tracer
contaminant is applied over the left-most 0.1 m of the sur-
face with a constant flux of 10−6 m s−1. The right vertical
side has a fixed head H = 0.65 m below the water table and
an impermeable boundary above it. The left vertical side and
the upper (except the infiltration zone) and bottom bound-
aries are impermeable boundaries.

In this problem, the flow and transport are coupled by the
velocity, which is obtained by solving the following pressure-
head form of the nonlinear Richards’ equation:(
c(h)+ SS

θ

θS

)
∂H

∂t
+∇ · q = 0 (43)

q =−krK∇H, (44)

with SS the specific mass storativity related to head
changes [L−1], H = h+ y the equivalent head [L], h= P

ρg

Figure 7. Description of the problem of contaminant infiltration
into a 2D variably-saturated porous medium.

the pressure head, P the pressure [Pa], ρ the fluid den-
sity [M L−3], g the gravity acceleration [L T−2], y the up-
ward vertical coordinate [L], c(h) the specific moisture ca-
pacity [L−1], θS the saturated water content [L3 L−3], q the
Darcy velocity [L T−1], K = ρg

µ
k the hydraulic conductiv-

ity [L T−1], k the permeability [L2], µ the fluid dynamic vis-
cosity [M L−1 T−1], and kr the relative conductivity [–].

We use the standard van Genuchten (1980) model for the
relationship between water content and pressure head,

Se =
θ(h)− θr

θs− θr
=


1

(1+|αh|n)m h < 0
1 h≥ 0
,

(45)

where α [L−1] and n [–] are the van Genuchten parameters,
m= 1− 1/n, Se [–] is the effective saturation, and θr [–] is
the residual water content. The conductivity–saturation rela-
tionship is derived from the Mualem (1976) model,

kr = S
1/2
e

[
1−

(
1− S1/m

e

)m]2
. (46)

The material properties of the test problem are given in Ta-
ble 2.

The simulation is performed for 80 h using a triangular
mesh formed by 4273 triangular elements. Two test cases
are investigated. In the first test case, the longitudinal and
transverse dispersivities are αL = 0.03 m and αT = 0.003 m,
respectively. The second test case is less diffusive with αL =

0.01 m and αT = 0.001 m.
The coupled nonlinear flow–transport system is solved us-

ing the MOL, which allows the use of efficient high-order
time integration methods, for both the hybrid MFE and the
upwind MFE schemes. To this aim, a hybrid MFE formu-
lation with continuous time derivative was developed by
extending the lumping procedure, developed in Younes et
al. (2006) for the flow equation, to the advection–dispersion
transport Eq. (5).
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Table 2. Parameters for the problem of infiltration into a
2D variably-saturated porous medium.

Parameters

θr 0.01
θs 0.3
α (cm−1) 0.033
n 4.1
K (cm s−1) 10−2

Ss (cm−1) 10−10

Dm (m2 s−1) 10−9

ρ (kg m−3) 1000
µ (kg m−1 s−1) 0.001

Figure 8. Concentration distribution, with the hybrid MFE (a) and
the upwind MFE (b) schemes for the transport problem with high
dispersion in a variably-saturated porous medium.

The time integration is performed with the DASPK
time solver which uses an efficient automatic time-stepping
scheme based on the fixed leading coefficient backward dif-
ference formulas (FLCBDF). The linear systems arising at
each time step are solved with the preconditioned Krylov it-
erative method. The nonlinear problem is linearized using the
Newton method with a numerical approximation of the Jaco-
bian matrix.

The results of the hybrid MFE and the upwind MFE meth-
ods are depicted in Fig. 8 for the first test case involv-

Figure 9. Concentration distribution with the hybrid MFE (a) and
upwind MFE (b) methods for the transport problem with low dis-
persion in variably-saturated porous medium.

ing high dispersion. Good agreement can be observed be-
tween the results of the hybrid MFE (Fig. 8a) and upwind
MFE (Fig. 8b) schemes when combined with the MOL. In
these figures, the contaminant progresses essentially verti-
cally through the unsaturated zone of the soil. When the sat-
urated zone is reached, the contaminant progresses horizon-
tally and remains close to the water table. Note that the re-
sults of both schemes are stable and free from unphysical
oscillations (Fig. 8a and b).

For the second test case with lower dispersion (αL =

0.01 m, αT = 0.001 m), the hybrid MFE method yields un-
stable results containing unphysical oscillations (red color in
Fig. 9a). These oscillations hamper the convergence of the
numerical model, and severe convergence issues can be en-
countered if we further decrease the dispersivity values. The
results of the upwind MFE scheme are monotone and do not
contain any unphysical oscillation (Fig. 9b). These results
point out the robustness of the new upwind MFE method
for transport in saturated and unsaturated porous media. The
developed transport scheme has recently been successfully
combined with the MFE method for fluid flow to simulate
nonlinear flow and transport in unsaturated fractured porous
media using the 1D–2D discrete fracture matrix (DFM) ap-
proach (Younes et al., 2022b).
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6 Conclusion

MFE is a robust numerical method well adapted for diffu-
sion problems on heterogeneous domains and unstructured
meshes. When applied to transport equations, the MFE solu-
tion can exhibit strong unphysical oscillations due to the hy-
perbolic nature of advection. Upwind schemes can be used to
avoid such oscillations, although they introduce some numer-
ical diffusion. In this work, we developed an upwind scheme
that does not require any approximation for the upwind con-
centration. The method can be seen as a combination of an
upwind edge/face centered FV method with the lumped for-
mulation of the hybrid MFE method. It ensures continuity
of both advective and dispersive fluxes between adjacent ele-
ments and allows to maintain the time derivative continuous,
which facilitates employment of high-order time integration
methods via the method of lines (MOL) for nonlinear prob-
lems.

Numerical simulations for the transport in a saturated
porous medium show that the standard hybrid MFE method
can generate unphysical oscillations due to the hyperbolic
nature of advection. These unphysical oscillations are com-
pletely avoided with the new upwind MFE scheme. The sim-
ulation of the problem of contaminant transport in a variably-
saturated porous medium shows that only the upwind MFE
scheme provides a stable solution. The results point out the
robustness of the developed upwind MFE scheme when com-
bined with the MOL for solving nonlinear transport prob-
lems.
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