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Abstract. Rivers and river habitats around the world are un-
der sustained pressure from human activities and the chang-
ing global environment. Our ability to quantify and manage
the river states in a timely manner is critical for protecting the
public safety and natural resources. In recent years, vector-
based river network models have enabled modeling of large
river basins at increasingly fine resolutions, but are com-
putationally demanding. This work presents a multistage,
physics-guided, graph neural network (GNN) approach for
basin-scale river network learning and streamflow forecast-
ing. During training, we train a GNN model to approxi-
mate outputs of a high-resolution vector-based river network
model; we then fine-tune the pretrained GNN model with
streamflow observations. We further apply a graph-based,
data-fusion step to correct prediction biases. The GNN-based
framework is first demonstrated over a snow-dominated wa-
tershed in the western United States. A series of experiments
are performed to test different training and imputation strate-
gies. Results show that the trained GNN model can effec-
tively serve as a surrogate of the process-based model with
high accuracy, with median Kling–Gupta efficiency (KGE)
greater than 0.97. Application of the graph-based data fu-
sion further reduces mismatch between the GNN model and
observations, with as much as 50 % KGE improvement over
some cross-validation gages. To improve scalability, a graph-
coarsening procedure is introduced and is demonstrated over
a much larger basin. Results show that graph coarsening
achieves comparable prediction skills at only a fraction of

training cost, thus providing important insights into the de-
gree of physical realism needed for developing large-scale
GNN-based river network models.

1 Introduction

Rivers play a critical role in the hydrosphere, enabling
and regulating hydrological, geomorphic and ecological
processes along and adjacent to the riverine environment
(De Groot et al., 2002; Dai and Trenberth, 2002). Rivers
around the world are also under sustained pressure from
human activities, losing free-flowing connectivity over time
due to the construction of dams, levees and other hydro-
infrastructures for providing societal goods and services
(e.g., hydropower generation) (Best, 2019). About half of the
global river reaches now show signs of diminished connec-
tivity (Grill et al., 2019). The changing climate and popu-
lation growth further exacerbate the existing stress on river
systems by modulating the spatial and temporal patterns of
floods and droughts, including their frequency, magnitude
and timing (Winsemius et al., 2016; Blöschl et al., 2017; Dot-
tori et al., 2018), and by reducing the rivers’ natural ability to
absorb disturbances and buffer the ecosystem (Palmer et al.,
2008). Thus, our ability to quantify and manage the river
states and fluxes in a timely manner has become more impor-
tant than ever for protecting the public safety and adapting to
the changing environment. Stream gauges can provide direct

Published by Copernicus Publications on behalf of the European Geosciences Union.



5164 A. Y. Sun et al.: Basin-scale river network learning using GNN

measures of river discharges, but the utility of which is hin-
dered by the poor coverage of gauge networks in many parts
of the world. Instead, hydrological models are broadly used
to predict river discharges at ungauged locations (Hrachowitz
et al., 2013; Beck et al., 2015).

The fidelity of a hydrological model hinges on a number
of factors, including the accuracy of forcing data, soundness
of process parameterization, and the realism of river network
geometry used in the model (Bierkens et al., 2015). In many
distributed and semi-distributed models, river networks are
delineated on the same grid as the underlying hydrological
models or land surface models (Döll et al., 2003; Van Beek
et al., 2011; Pokhrel et al., 2012; Alfieri et al., 2013). Pre-
scribing river networks over coarse resolution grids may in-
troduce misrepresentation in river-routing models, leading to
inaccurate river discharge estimates and misalignment with
local application needs (Zhao et al., 2017; Mizukami et al.,
2021). While representation of river networks can always
be improved by refining the grid resolution, in reality, such
effort is often constrained by computational resources, es-
pecially for large-scale simulations (Yamazaki et al., 2013;
Bierkens et al., 2015).

In the past decade, vector hydrography has (re)emerged
as an alternative to the conventional grid-based approaches
for large river basin simulations (David et al., 2011; Lehner
and Grill, 2013; Yamazaki et al., 2013; Lin et al., 2018). In
a vector network representation, the land surface of a river
basin is discretized into unit catchments (polygons) and the
river reaches connecting them by using a high-resolution dig-
ital elevation model (Saunders, 2000). Unlike the grid-based
representation, in a vector-based river model, the unit catch-
ments serve as calculation units, and the time evolution of
state variables is solved by calculating the flux exchange be-
tween each unit catchment and the next downstream unit
catchment along a prescribed river network (Yamazaki et al.,
2013). Direct benefits of such a discretization scheme in-
clude the following: (a) river geometries are realistically rep-
resented; (b) river reach distances are relatively evenly dis-
tributed, allowing the use of greater time steps and thus gain-
ing more computational efficiency; (c) the unit catchment
resolution can easily be improved by applying more detailed
polygon outlines; and (d) hydrologic features such as lakes
and irrigation lines can be modeled as additional vector fea-
tures attached to the catchments and river reaches (Mizukami
et al., 2021).

The vector-based river representation is behind the Na-
tional Water Model (NWM), which operationally generates
short- and long-range river discharge forecasts for more than
2.7 million reaches in the United States (Lin et al., 2018;
Salas et al., 2018). Vector-based river network simulations
were also used to create validation datasets for the upcom-
ing Surface Water and Ocean Topography (SWOT) satellite
mission, designed to provide global observations of chang-
ing water levels in large rivers, lakes and floodplains (Bian-
camaria et al., 2016; Lin et al., 2019). Despite their improved

efficiency, vector-based river-routing models are still compu-
tationally demanding, requiring special domain decomposi-
tion techniques for parallel computation (David et al., 2011;
Mizukami et al., 2021).

The renewed interests in vector hydrography have been
driven by an increased demand for hyperresolution terrestrial
hydrology models on the one hand (Bierkens et al., 2015),
and the deluge of high-resolution Earth observation data on
the other (Sun and Scanlon, 2019; Reichstein et al., 2019).
Ultimately, the Earth science community envisions the devel-
opment of Earth system digital twins, aiming to provide digi-
tal replica of the real world through high-fidelity simulations
and observations (Bauer et al., 2021). Toward that vision, two
active veins of research are currently underway. One is con-
tinuously improving the physical realism of process repre-
sentation within the current Earth system models at all scales
and across all subsystem interfaces, which is a daunting task
even with today’s extreme-scale, high-performance comput-
ing power (Schulthess et al., 2018). The other is augment-
ing process-based models with artificial intelligence/machine
learning (AI/ML) techniques, which has attracted signifi-
cant attention in the past several years (Shen, 2018; Sun and
Scanlon, 2019; Reichstein et al., 2019; Camps-Valls et al.,
2021; Kashinath et al., 2021; Pathak et al., 2022). Existing
AI/ML works related to hydroclimate modeling may be clas-
sified as (a) data-driven techniques (Kratzert et al., 2019b;
Le et al., 2021; Sun et al., 2014, 2021; Feng et al., 2021);
(b) hybrid process-based/ML models (Rasp et al., 2018; Yu-
val and O’Gorman, 2020; Nonnenmacher and Greenberg,
2021); and (c) physics-guided, post-processing (PGPP) tech-
niques (Ham et al., 2019; Sun et al., 2019; Yang et al.,
2019; Feng et al., 2020; Willard et al., 2020; Lu et al., 2021;
Kashinath et al., 2021; Pathak et al., 2022). Although the
latter two categories are sometimes combined in the litera-
ture, in the context of this discussion, the former category
is seen as providing ML-based parameterization schemes
(e.g., subgrid processes) within a process-based model (Rasp
et al., 2018; Reichstein et al., 2019), while the latter category
mainly leverages outputs of process-based models and first-
order physics principles in an ad hoc manner. The ML-based
PGPP methods can provide added values to existing pro-
cess models, such as improved predictability, reduced bias,
and/or computational efficiency, without requiring signifi-
cant modifications to the existing scientific computing work-
flows and codes. This largely explains the popularity of the
PGPP paradigm in the Earth science community.

So far, only a few studies have exploited the use of ML
in vector hydrography. This is partly because many of the
deep-learning techniques that are in use today originated
from the computer vision and natural language processing
literature, dealing mostly with gridded or sequence data.
On the other hand, many types of data in natural and so-
cial sciences, such as weather stations, river networks, and
social networks, are characterized by graph-like data struc-
tures (i.e., nodes and node links) that do not conform to the
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Euclidean geometry. Various graph neural network (GNN)
models have been developed (Bruna et al., 2013; Kipf and
Welling, 2016; Bronstein et al., 2017; Zhou et al., 2018) to
learn the graph-structured data. Like their counterpart for
learning image-like data (e.g., convolutional neural networks
or CNNs), GNNs are designed to extract high-level features
from input data through the so-called neural message pass-
ing and aggregation process, consisting of a series of al-
gebraic operations to progressively encode the features of
nodes and their local structures (e.g., the number of neigh-
bors) as latent representations (i.e., low-dimensional embed-
dings) (Kipf and Welling, 2016; Hamilton et al., 2017). Pa-
rameters of the embeddings are then learned from the train-
ing data through back propagation. The GNNs, when com-
bined with temporal learning algorithms (e.g., recurrent neu-
ral networks or RNNs), comprise powerful tools for disen-
tangling highly complex, spatial and temporal relationships.
We point out that the graph theory, which is at the founda-
tion of GNNs, has been widely applied in geosciences to
model geological processes, e.g., formation of river deltas
(Phillips et al., 2015; Tejedor et al., 2018). However, GNNs
focus more on learning the latent-space representations for
downstream tasks (e.g., classification and regression) than
abstracting graph-level statistics, as commonly done under
most graph theoretic studies (Hamilton et al., 2017).

Jia et al. (2021) used a physics-guided, recurrent graph
convolution network (GCN) model to predict streamflow and
water temperature in a catchment of the Delaware River basin
in the United States. In their work, physics constraints are
imposed in multiple ways: the actual river reach lengths and
upstream/downstream connections are used to construct a
weighted adjacency matrix; a process-based streamflow and
water temperature model is used to generate synthetic train-
ing samples for ungauged reaches; and finally, data collected
from gauged locations are used in an extra loss term to en-
force physical consistency with observations. The authors
reported that their recurrent GCN model generally gives
better performance than a baseline RNN model, but may
yield large errors at unobserved river reaches and reaches
with extremely low flows. Sun et al. (2021) adapted and
compared the performance of several recurrent GNN archi-
tectures for predicting streamflows of basins in the Catch-
ment Attributes and Meteorology for Large-Sample Studies
(CAMELS) dataset, which includes meteorological forcing,
basin static attributes, and observed streamflow time series
for 671 basins in the conterminous United States (Newman
et al., 2015). The GNN algorithms that they investigated
include several basic GNNs, such as the GCN (Kipf and
Welling, 2016) and ChebNet (Defferrard et al., 2016), as well
as a more complex GNN model, the GraphWavenet (GWN
for short) (Wu et al., 2019). They used hydro-similarity as
a distance measure to connect the spatially scattered basins,
treating each basin and its static attributes as node and node
features. Their results show the GWN gives the best over-
all performance, while models constructed using basic GNN

layers perform worse than a baseline model trained using the
long short-term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997). Chen et al. (2021) adopted a heteroge-
neous recurrent graph model to predict stream temperatures,
in which river reaches and dams are represented as separate
graphs. For each river reach, the authors used gating vari-
ables to control the information flow from upstream river
reaches and reservoirs, in addition to the antecedent states of
the river reach itself. Similar to (Jia et al., 2021), observations
are incorporated directly in an extra loss term during train-
ing. These recent studies have demonstrated the potential of
GNNs for vector-based river modeling. Specifically, GNNs
may allow fine-grained control of information exchanges at
the node and edge levels for incorporating the physical real-
ism, an aspect that is missing in many other ML algorithms
commonly used to model spatiotemporal datasets (e.g., ran-
dom forests and RNNs). In the remainder of this discussion,
we shall use node and reach interchangeably when stream-
flow in the reach is implied.

Despite their potential promise, remaining questions per-
taining to GNN applications in the vector hydrography are
(a) the degree of physical realism that is needed for a GNN
model to learn river network representations, (b) the gener-
alization and scalability of GNN models and (c) data fusion.
To understand these research needs, we highlight the main
differences between river networks and many other types
of networks. River networks are hierarchical, with down-
stream discharges reflecting the integrated hydrologic con-
tributions from all upstream reaches and catchments (Weiler
et al., 2003). Reaches adjacent to each other tend to share
similar runoff generation processes because of similarities
in catchment physiographic properties and meteorological
forcing. These unique aspects of river networks imply that
information passing in a river network should be multi-
directional, rather than strictly following the network topog-
raphy as prescribed through the physics-based connectivity.
Identifying and modeling the multi-directional and hetero-
geneous information-transfer mechanisms using GNNs is an
active research topic (Zhou et al., 2018). Perhaps a more
practical question is related to graph generalization and scal-
ability. The river networks considered in Jia et al. (2021)
and Chen et al. (2021) include 42 and 56 river reaches, re-
spectively, which are relatively small. In comparison, a typi-
cal basin at the US Geological Survey’s (USGS) 8-digit hy-
drological unit code (HUC-8) level contains O(102

− 103)

river reaches, and at the largest HUC-2 regional basin level,
the river network may include O(104

−105) reaches (Simley
and Carswell Jr., 2009). State-of-the-art GNN models have
demonstrated capabilities to handle large-scale graphs con-
taining O(108) nodes on classification problems (Hu et al.,
2020; Wang et al., 2021). Learning large-scale, vector river
networks, however, is still a challenging topic because of the
dynamic nature of the problem and computing memory re-
quirements. A fruitful research direction may be exploring
the graph sparsification or coarsening in a way that preserves
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the spatiotemporal structure of the river system. Finally, data
fusion on graph-based, river network models has not been
systematically studied, but represents an important class of
post-processing techniques for watershed modeling. In gen-
eral, post-processing techniques, as their names suggest, at-
tempt to refine model outputs using new observations ob-
tained after model simulations. In streamflow forecasting,
post-processors have been used to correct biases and dis-
persion errors in raw forecasts, downscale forecasts to the
scale of applications, and generate forecast ensembles that
preserve the spatiotemporal structure of river discharges (To-
dini, 2008; Weerts et al., 2011; Li et al., 2017). Unlike data
assimilation, data fusion as defined and used in the context
of this work is generally decoupled from the original model.

In light of the aforementioned challenges, this study
was conducted with the following two objectives in mind,
namely, (a) to evaluate the role of physics-based connectiv-
ity in the GNN river network surrogate modeling, and (b)
to adapt and investigate the efficacy of a graph-based data-
fusion technique. Main contributions of this work are that
we have developed a methodology consisting of pretraining,
fine-tuning and data-fusion steps to significantly improve the
performance of GNN models; we show that the degree of
realism required for a GNN surrogate model to catch spa-
tiotemporal basin flow dynamics largely depends on the pa-
rameter structure of the underlying physics-based model. The
remainder of this work is organized as follows. In Sect. 2,
we describe data and data-processing techniques used in this
study. Section 3 focuses on the theoretical background of
GNN and data-fusion algorithms. Section 4 describes the
demonstration study area and experimental design, which are
followed by results and scaling up analysis in Sects. 5 and 6,
and conclusions in the last section.

2 Data and data processing

2.1 National water model (NWM)

The NWM is a continental-scale, distributed, hydrological
modeling framework implemented and operated by the US
National Weather Service for providing short-range (18 h),
medium-range (10 d) and long-range (30 d) streamflow fore-
casts in the United States (Cosgrove et al., 2016). It is based
on the WRF-Hydro community model, which is both a stan-
dalone model and a coupling architecture to facilitate the
exchange between the Weather Research and Forecasting
(WRF) atmospheric model and components of a land sur-
face model (e.g., surface runoff, channel flow, lake/reser-
voir flow, subsurface flow, and land–atmosphere exchanges)
(Gochis et al., 2018). The WRF-Hydro model supports sur-
face runoff routing over vector-based river networks. The
network topology used in the NWM is derived from the US
National Hydrography Dataset Plus (NHDPlus), a georef-
erenced, hydrologic dataset incorporating a national stream

network with a scale of 1 : 100 000 and a 30 m national dig-
ital elevation dataset, in addition to a large number of river
and catchment attributes for enhancing network analyses
(McKay et al., 2012; Moore and Dewald, 2016). We primar-
ily used NWM v2.0 retrospective simulation data that were
available when this study was initiated. The NWM v2.0 con-
tains NWM retrospective simulation outputs in hourly time
steps at 2 729 076 NHDPlus reaches for the period 1 Jan-
uary 1993–31 December 2018. As part of the sensitivity anal-
ysis, we also tested our approaches on NWM v2.1 retro-
spective data, which cover a longer 42-year period (1 Febru-
ary 1979–31 December 2020). A subset of NWM parameters
are calibrated by model developers using historical stream-
flow data at limited basins, but no nudging is applied on the
retrospective runs (Cosgrove et al., 2016). The NWM v2.0
streamflow data are downloaded from a data server hosted by
Hydroshare (Johnson and Blodgett, 2020), while NWM 2.1
streamflow data are downloaded from the National Oceanic
and Atmospheric Administration’s (NOAA) Amazon Web
Services data repository (NOAA, 2022). Python scripts are
used to automate the remote subsetting and downloading of
all NWM streamflow data for any US basin of interest. All
data are aggregated into daily steps.

2.2 Meteorological forcing and streamflow

The NWM v2.0 is driven by forcing data resampled from
the North American Land Data Assimilation System (NL-
DAS), which is originally available on a 1/8◦ grid (∼ 14 km
at the Equator) (Xia et al., 2012), while NWM v2.1 is driven
by the 1 km Analysis of Record for Calibration (AORC)
dataset that was not publicly available at the time of this
writing (Kitzmiller et al., 2018). In this study, we used
Daymet, which provides gauge-based, gridded estimates of
daily weather and climatology variables over the continen-
tal North America, including daily minimum and maximum
temperature, precipitation, vapor pressure, shortwave radi-
ation, snow water equivalent (Thornton et al., 2012). The
spatial resolution of Daymet is 1 km× 1 km and the tempo-
ral coverage is from 1950 through the end of the most re-
cent full calendar year. Although built upon similar gauge
data, Daymet data are likely different from the meteorolog-
ical forcing data used in the NWM because of the different
interpolation and extrapolation schemes used to create them.
Combining Daymet with antecedent NWM outputs as pre-
dictors may thus indirectly achieve the effect of using mul-
tiple forcing data, which have been shown to improve the
generalization skill of Earth science ML models (Sun et al.,
2019; Kratzert et al., 2021). The Daymet data are down-
loaded by programmatically calling the Daymet web ser-
vices (ORNL, 2022) and getting data closest to the centroid
of each reach in a river network. Streamflow gage data are
downloaded from USGS’ National Water Information Sys-
tem by using the USGS Python package for water data re-
trieval (USGS, 2022a).
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2.3 River network construction

River network for a basin under study may be extracted from
the NHDPlus database by performing the following steps.
First, the NHDPlus v2.1 geodatabase covering the basin is
downloaded from the US Environmental Protection Agency
(EPA) data server (EPA, 2022). The basin mask is used to
crop the NHDFlow shape layer included in the NHDPlus
geodatabase, which is then joined with the PlusFlow table,
also from NHDPlus. After this step, we have all reach at-
tributes, including the identification number of each river
reach (referred to as COMID in NHDPlus), the upstream/-
downstream reaches of each reach, the reach type (e.g.,
stream or artificial path) and reach length, that are neces-
sary for building a river network and populating the node
features. We used a Python script to recursively traverse all
river reaches to gather reach attributes and build the net-
work (i.e., in terms of graph adjacency matrix). The reach
COMIDs corresponding to USGS gauge locations are also
obtained for mapping purposes. All watershed boundaries
used in this study are extracted from the Watershed Bound-
ary Dataset, which includes basin boundaries at various HUC
levels (USGS, 2022b). For the graph-coarsening demonstra-
tion, we used the pour points corresponding to the HUC-12
basins (Price, 2022).

3 Methodology

We start by introducing some notations. A graph is repre-
sented by G(V,E), where V = {vi}Ni=1 is a set of N nodes
and E = {eij } is a set of edges connecting node pairs (vi,vj )
for vi ∈ V and vj ∈ V . The neighborhood of a node is a
subset of nodes connected to it, N (v)= {u ∈ V | (u,v) ∈ E}.
Node connections are specified by the adjacency matrix A ∈
RN×N , of which an element aij is equal to 1 if nodes vi and
vj are connected and 0 otherwise. A graph can be either undi-
rected (edge is bidirectional) or directed (edge direction mat-
ters). The adjacency matrix may also be weighted, in which
case elements of A would be decimal numbers describing the
affinity or similarity between two nodes. The graph feature
matrix is denoted as X ∈ RN×D , with its rows representing
node feature vectors xi ∈ RD, i = 1, . . .,N . In the dynamic
setting considered in this work, the node features vary with
time and the graph feature matrix is denoted by Xt .

To develop a GNN-based, end-to-end framework for
vector-based river network modeling, we propose a three-
stage workflow as shown in Fig. 1. In Stage I, a GNN-based
model is trained through supervised learning by using the
meteorological forcing data and NWM outputs. This pre-
training step is essentially a surrogate modeling process that
learns the spatiotemporal rainfall–runoff patterns governed
by the NWM and meteorological forcing. The predictors in-
clude the six meteorological forcing variables from Daymet
and the NWM-simulated streamflow for a look-back period

of TB, as well as the adjacency matrix A describing the river
network connectivity. A neural network is trained to approx-
imate the mapping F(X t ,yt ), where X t is a collection of
predictors {Xi}t−TB

i=t−1, yt ∈ RN is the NWM outputs for the
entire river network, and the forecast can be done for TF steps
in the future. In Stage II, a fine-tuning step is used to correct
the pretrained GNN model by utilizing historical streamflow
data available in the training period. The trained model can
then be deployed for online prediction in Stage III, which
uses data fusion to further correct GNN predictions based on
residuals between predictions and observations. We describe
these steps in detail below.

3.1 Graph-based surrogate modeling for river
networks

The GNN surrogate modeling framework used in this work
is adapted from GraphWaveNet (GWN) (Wu et al., 2019),
which consists of two types of interleaved layers, namely,
GNN layers for spatial learning and temporal convolution
network (TCN) layers for temporal learning. A schematic
plot of the adapted GWN design is provided in Fig. 2.

In general, the graph-based learning seeks to learn a low-
dimensional representation of input data through recurrent
information aggregation and propagation steps. At the node
level, a basic GNN layer may be written as (Bronstein et al.,
2021)

h(k)v = f
(

h(k−1)
v , ⊕

u∈Nv

(ψ(hu,hv))
)
, (1)

where h(k)v ∈ RDk denotes the embedding or hidden state of
node v at the kth layer,Dk is the output dimension of the kth
hidden layer and h(0)v = xv; ⊕ is an aggregation operator; ψ
is a learnable function parameterizing the messaging pass-
ing between node v and its neighbors u ∈Nv; and f (·) is an
activation function (e.g., the rectified linear unit function or
ReLU). Most GNNs differ by how ⊕ and ψ are chosen. For
example, in the GCN layer that is used within GWN, the fol-
lowing aggregation scheme is used: (Kipf and Welling, 2016)

h(k)v = f

(
W(k)

1 h(k−1)
v +W(k)

2

∑
u∈Nv

h(k−1)
u +b(k)

)
, (2)

where the weighted sum of the hidden states of neighboring
nodes (2nd term in parentheses) is added to the node’s em-
bedding from the previous layer (first term in parentheses).
Here W(k)

1 and W(k)
2 , both ∈ RDk×Dk−1 , are learnable weight

matrices that determine the influences of node features and
node neighbors, respectively; and b is a learnable bias term
added to improve training. At the graph level, the graph con-
volution operation in Eq. (2) may be written in a simplified
matrix form as (Kipf and Welling, 2016)

H(k)
= f

(
ÃH(k−1)W(k)

)
, (3)
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Figure 1. An ML-based workflow for basin-scale streamflow forecasting. The workflow consists of three stages: pretraining, fine-tuning and
data fusion. During pretraining, an ML model is trained to learn the input–output mapping as governed by the physics-based NWM. Inputs
include river network attributes and connectivity, meteorological forcing, and antecedent simulated streamflow. The predictand is simulated
streamflow, where TB and TF denote the lengths of look-back and forecast periods, respectively. In the fine-tuning step, the ML model is
trained to minimize mismatch with historical streamflow observations. During data fusion, ML streamflow predictions are adjusted through
graph-based residual propagation. Both pretraining and fine-tuning are performed offline, but data fusion can be done in real time.

where Ã= A+ I is the adjacency matrix with self-loop (i.e.,
self-pointing links are added), I is the identity matrix, H(k)

∈

RN×Dk includes all hidden-state node vectors in the kth
layer, and W(k)

∈ RDk−1×Dk is a learnable weight matrix. In
practice, a normalized form of adjacency matrix is often used
in lieu of Eq. (3) to improve numerical stability (Kipf and
Welling, 2016),

Â= D̃(−1/2)ÃD̃(−1/2), (4)

where D̃ is a diagonal matrix containing the node degrees of
Ã.

For temporal learning, GWN adopts TCN, which uses a
dilation factor to exponentially increase the receptive field
of a CNN filter, thus allowing the capture of long-range de-
pendencies using CNN (Wu et al., 2019; Zhang et al., 2020).
Two TCNs (TCN-a and TCN-b in Fig. 2) are used in parallel
to form a gated TCN block, as proposed by Dauphin et al.
(2017):

X (k)
= g(2

(k−1)
1 X (k−1)

+b(k−1)
1 )� σ(2

(k−1)
2 X (k−1)

+b(k−1)
2 ), (5)

where the g(·) function updates the hidden state using out-
puts from the previous layer X (k−1)

∈ RN×Dk−1×TB , σ(·) is a
gate function that regulates information flow from one layer
to the next, 2i and bi are learnable weight matrices and bias
terms, respectively, and� is the element-wise multiplication
operator. In GWN, tanh is used for g(·) and sigmoid
is chosen for σ(·). Multiple TCN–GCN modules are then
stacked to learn spatial and temporal embeddings progres-
sively. To improve ML training, the input and output of each
TCN–GCN module are connected for residual learning, and
the outputs of all TCN–GCN modules are skip-connected to

the final output layer (see Fig. 2). Finally, 1× 1 kernel CNN
layers are used to condense the tensor dimensions and gener-
ate the desired outputs.

A well-known issue with the standard GNNs is over-
smoothing, which happens when node-specific information
is smoothed out after several rounds of message passing (Li
et al., 2018). This can be especially problematic when fea-
tures from a node’s neighboring nodes become dominant,
overshadowing the features of the node itself (Hamilton,
2020). Oversmoothing is the main reason behind the shallow
design of many GNNs. In the literature, two heuristic strate-
gies have been proposed to mitigate oversmoothing, namely,
node dropping and edge dropping. The former strategy ran-
domly masks out a number of nodes in the adjacency ma-
trix during each iteration of training, while the latter strat-
egy randomly drops a fraction of node edges. The DropEdge
scheme, originally proposed by Rong et al. (2019), produces
varying perturbations of the graph connections, and thus can
be seen as a data-augmentation technique for training GNNs.
In contrast, DropNode may be seen as both a training tech-
nique and a data-imputation strategy – a GNN trained only
on a subset of nodes can be used to predict nodes not seen
during training. Previously, node masking was used for solv-
ing the Prediction at Ungauged Basins (PUB) problem (Sun
et al., 2021). In this work, we further demonstrated its use for
solving the Prediction at Unmodeled Nodes (PUN) problem
at the basin scale. We implemented both of these features as
options within the GWN (see Fig. 2).

As mentioned before, the GWN model is first trained using
NWM outputs (pretraining) and then the network weights are
fine-tuned using observation data falling in the training pe-
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Figure 2. (a) GraphWavenet used in this work consists of a number of temporal convolution network and graph convolution network (TCN–
GCN) modules for progressively encoding input data xt ; the outputs of each TCN–GCN are skip-connected to improve learning; 1×1 kernel
convolutional neural network (CNN) layers are used as linear transformation layers; optionally, nodes and edges in the adjacency matrix
A are randomly masked for improving training and for graph coarsening (i.e., DropNode and DropEdge); (b) the internal design of each
TCN–GCN module, which consists of interleaved TCN and GCN layers to process information from one hidden layer to the next. The layer
input and output are connected via residual connections to improve training.

riod. The fine-tuning step is often adopted in physics-guided
ML studies to reduce biases of process-based models (Ham
et al., 2019; Andersson et al., 2021).

3.2 Data fusion

After fine-tuning, the surrogate model may still be subject
to errors resulting from ML approximations and from the
process-based NWM. New observation data, when available,
can be used to further reduce the surrogate model prediction
error through a post-processing step. Our goal is closely re-
lated to that of the hydrologic post-processing, which seeks
to establish a statistical relationship between model outputs
and observations (Li et al., 2017). In computer science, such
post-processing is also related to label propagation, referring
to assigning class labels to unclassified data using known
data labels (Zhu and Ghahramani, 2002).

Let y and ŷ denote the true and predicted values. In reality,
y can only be accessed at a limited number of observation
nodes. Thus, y is partitioned into two parts corresponding
to observed (L) and unobserved (U ) values, y .

= [yTL,y
T
U ]
T .

Further, assume y is multi-Gaussian, y∼N (µ,6), with
mean µ and covariance matrix 6. Streamflow values, which
typically follow non-Gaussian distributions, can be projected
into the normal space via a normal transform technique (Li

et al., 2017). As a matter of fact, this normal transform gen-
erally improves ML training, and should thus be done as part
of the data preprocessing before ML training starts.

The joint distribution of y in terms of its subsets yL and
yU may be written as follows (Bishop, 2006):

p(yL,yU )=N
( (

µL
µU

)
,

(
6LL 6LU
6UL, 6UU

) )
. (6)

It can be shown that the conditional probability distribution
of yU given yL, namely, p(yU | yL), is also multi-Gaussian,
for which the conditional mean µU |L and covariance 6U |L
are (Bishop, 2006):

µU |L = µU +6UL6
−1
LL (yL−µL)= µU

−0−1
UU0UL (yL−µL) ,

6U |L =6UU −6UL6
−1
LL6LU = 0

−1
UU , (7)

where 0, known as the precision matrix, is the inverse of
the covariance matrix. In the regression problem considered
here, µU may represent the ML estimates at unobserved lo-
cations, ŷU , and yL may represent gage observations, then
Eq. (7) forms the basis of updating the ML predictions ŷU
through observations yL. To adapt the residual propagation
for GNNs, Jia and Benson (2020) proposed the following pa-
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rameterization of the precision matrix:

0 = β(I−αS), (8)

where S= D−1/2AD1/2 is similar to the normalized adja-
cency matrix defined in Eq. (4), but with self-loops removed;
β and α are learnable shape parameters. The former controls
the residual magnitude and the latter reflects the correlation
structure. Later, the same authors proposed a residual prop-
agation form involving a single hyperparameter ω (Jia and
Benson, 2021):

ŷU |L = ŷU − (I+ωN)−1
UU (I+ωN)ULr,

r
.
=
(
yL− ŷL

)
and N .

= I−S, (9)

where the labeled and unlabeled parts of I+ωN are extracted
by using mask matrices, r is defined as the residual vector
between observations and ML predictions. Equation (9) is
the form of data fusion used in this study, which is model
agnostic. The hyperparameter ω may be obtained by cross
validation. The only time-varying part in Eq. (9) is r , and
other matrix terms can be calculated offline; thus the update
can be applied efficiently in real time.

We remark that the conditional mean and covariance
shown in Eq. (7) are generally related to the Gaussian pro-
cess regression (Rasmussen and Williams, 2006) and has
been used in the hydrologic post-processing literature, e.g., in
the General Linear Model Post-Processor in Ye et al. (2014).
However, the main difference is that the data fusion is ex-
tended to operate on graphs via Eq. (9). An advantage of
the residual propagation approach taken here is that it allows
consideration of spatial correlation among node prediction
errors while respecting the graph topology. Intuitively, we ex-
pect that unobserved nodes adjacent to a gauged node should
share similar spatial and temporal patterns. The data-fusion
approach adopted here is different from the data-assimilation
method in Jia et al. (2021), in which a prediction is made
by using the features of a node and its neighboring nodes
without directly considering predictions of the neighboring
nodes, thus limiting the use of spatial information (Jia and
Benson, 2020).

4 Study area and experimental design

4.1 Description of the study area

The algorithms and workflow described in Sect. 3 are gen-
eral. For demonstration purposes, we first consider the East–
Taylor watershed (ETW), a HUC-8 watershed (drainage area
1984.7 km2) that lies within the HUC-4 Gunnison River
basin (GRB) in the southern Rocky Mountains of Colorado,
United States (Fig. 3). Later in Sect. 6, we apply the frame-
work to the entire GRB. The ETW is representative of the
high-altitude river basins in the upper Colorado River basin.
Elevation of the watershed ranges approximately from 2440

to 4335 m (McKay et al., 2012). Climate of the watershed is
defined as continental and subarctic with long, cold winters
and short, cool summers (Hubbard et al., 2018). Annual pre-
cipitation ranges from 1350 mm yr−1 in the high-elevation
headwater region of the East River to about 400 mm yr−1

near the basin’s outlet, and the majority of precipitation falls
as snow (see Fig. S1a in the Supplement); the annual tem-
perature is in the range of −3 to 1 ◦C in the area (Fig. S1b)
(PRISM Climate Group, 2022).

The ETW encompasses two alpine rivers, the East River in
the west and the Taylor River in the east, both flowing into the
Gunnison River in the south which, in turn, serves as a main
tributary of the Colorado River, contributing about 40 % of its
streamflow (Battaglin et al., 2011). The East River watershed
is mostly undeveloped, other than the city of Crested Butte
(population 1339) and the ski-resort area that are located near
the middle course of the river (Bryant et al., 2020). The Tay-
lor River is dammed by the Taylor Park Dam (storage capac-
ity about 0.13 km3) in the middle (Bureau of Reclamation,
2022).

Snowmelt provides the main source of runoff in the wa-
tershed, with peak discharge occurring between May and
July; baseflow conditions prevail from August until the win-
ter freeze (Bryant et al., 2020). Like many other snow-
dominated systems in the western United States, the stream-
flow pattern in the ETW is influenced by frequent droughts
and heat waves in recent years (Winnick et al., 2017), and
is likely to undergo further changes with the projected lower
snowfall and earlier snowmelt under future climate condi-
tions (Davenport et al., 2020). Globally, tremendous inter-
ests exist in the hydroclimate modeling community to un-
derstand and predict streamflows in snow-dominated regions
under global environment change (Barnett et al., 2005; Qin
et al., 2020).

Five USGS gages in the watershed are identified to have
continuous records (open circles in Fig. 3) and are used as
the source for fine-tuning and data fusion in this work. No-
tably, Gage 09107000 and Gage 09109000 are located im-
mediately upstream and downstream of the Taylor Park Dam.
The mean annual flow at the outlet of the East River (Gage
09112500) is 9.3 m3 s−1, and at the outlet of the Taylor River
(Gage 09110000) it is 9.2 m3 s−1, both are estimated based
on 110 years of data from 1911 to 2021 (USGS, 2022a). An
extra USGS gage (red circle) with an incomplete record is
also identified for validation purposes.

The ETW contains 23 subbasins (dark lines in Fig. 3) at
the HUC-12 level and a total of 552 NHDPlus flowlines
or reaches (dark blue polylines in Fig. 3). The NHDPlus
reach lengths range from 0.047 to 11.48 km, the stream or-
der ranges from 1 (the headwater tributaries) to 5 (Taylor
River downstream of the reservoir), and the drainage area
of reaches ranges from 0.027–24.99 km2. Thus, the ETW
represents an interesting study area from the perspective of
river network modeling: it encompasses two contrasting flow
regimes, the East River that is under natural flow conditions
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and the Taylor River that is subject to human intervention.
It also includes a meaningful degree of spatial heterogene-
ity that is representative of a snow-dominated, mountainous
watershed.

4.2 Experimental design and model training

We performed a series of ML experiments to address the
two objectives of this study, namely, evaluating the role of
physical realism in river network representation and the ef-
ficacy of graph-based data fusion. The study period is set to
January 1993–December 2018, the same as the retrospective
simulation period of NWM v2.0. All scripts are written in
Python and, in particular, PyTorch (Paszke et al., 2019) is
used to develop all GNN and data-fusion codes. The open-
source GWN code (Wu et al., 2019) and GNN data-fusion
code (Jia and Benson, 2020) are adapted for the problem at
hand. The training/validation/testing split used is 0.7, 0.15,
0.15, respectively. Streamflow data are projected to normal
space by using a power transformer scaler proposed in Yeo
and Johnson (2000) and available from scikit−learn
Python library (Pedregosa et al., 2011).

The node-based ETW river network is constructed based
on the NHDPlus flowlines and associated reach IDs
(COMIDs) by following the procedures described under
Sect. 2.3. A cutoff threshold is applied to extract a subset
of river reaches. Thresholding is a common practice in cli-
mate networks to help reveal dominant spatiotemporal struc-
tures (Donges et al., 2009a, b; Malik et al., 2012). Here, all
reaches with a medium flow value less than 0.01 m3 s−1 (ap-
proximately at the 30th percentile of median flow distribution
of all nodes) are trimmed from the network, keeping 295 out
of a total of 552 nodes. In the resulting adjacency matrix,
two nodes are connected if an NHDPlus flowline of “stream-
river” type exists between them. Reaches falling on the wa-
ter bodies (light blue polygons in Fig. 3) are not included in
the river network. We used undirected and unweighted ad-
jacency matrices. As an ablation study, we also considered
NWM v2.1 data, which resulted in a 348-node network after
trimming. The different numbers of node probably reflect dif-
ferences in model parameterization and forcing data between
the two NWM versions (see Sect. 2). The HUC-12 subbasin-
based ETW river network is constructed by using the infor-
mation in the NHDPlus pour-point layer (Price, 2022) for
connecting each subbasin to its neighbors.

Unless otherwise noted, we train the model with a look-
back period of 30 d, which is sufficient for the current case
when simulated antecedent flows are also used as predictors
to drive streamflow predictions. The forecast horizon is 1 d
ahead. The number of TCN–GCN blocks used is 7, the ker-
nel dimensions used in TCN layers are 1× 4, the number of
filters used in dilation and residual blocks are both 32. We
use AdamW, a modified version of the Adam gradient-based
optimizer, for training the network (Loshchilov and Hutter,
2018). The mini-batch size is 30.

When using the DropEdge option, we randomly enable
80 % of the edges in the adjacency matrix at the beginning
of each epoch. This is done by flattening the adjacency ma-
trix into a vector, performing random permutation, and tak-
ing the first 80 % of connection. When the DropNode option
is on, we use a mask matrix to mask the indices of nodes
to be dropped. The training parameter selection is largely
based on our previous experience (Sun et al., 2021). For each
GWN configuration, 10 different models are trained by ini-
tializing with different random seeds. For pretraining, the
loss function used is the mean absolute error (MAE) or L1
norm between ML predictions and NWM outputs, while for
fine-tuning, the loss function is the L1 norm between ML
predictions and observed streamflow at the five gage loca-
tions. Pretraining is done for 60 epochs with a learning rate
of 5×10−4. Starting with the weights of a pretrained model,
fine-tuning is done for another 15 epochs but with a smaller
learning rate of 1× 10−5. Training time is around 1.3 min
wall-clock time per epoch for the 295-node models, and 14 s
per epoch for the 23-node models, on the same Nvidia V100
GPU.

We quantify the performance of trained models on test data
using three metrics, namely, normalized root mean square er-
ror (NRMSE), Kling–Gupta efficiency (KGE) (Gupta et al.,
2009), and the Pearson correlation (R). Definitions of the
metrics and L1 norm are given in the Appendix. The total
running time is 5.4 s wall-clock time on the test data. The hy-
perparameter ω in Eq. (9) is selected through leave-one-out
cross validation (LOOCV). Specifically, the ω value is varied
in the range (50, 5000) with a step size of 50. For each ω, we
perform LOOCV by using four of the five gages for residual
propagation, and calculating the MAE on the holdout gage.
The ω that gives the minimum mean MAE across all gages
is selected for data fusion.

5 Results

5.1 Pretraining

We first demonstrate the efficacy of GWN and its variants for
approximating the NWM (i.e., the pretraining stage). Three
sets of GWN models are trained. The first set uses the orig-
inal GWN configuration with the self-loop adjacency ma-
trix Ã (defined in Eq. 3) corresponding to the actual ETW
network (GWN-O). The second set uses the same Ã as in-
put but is trained by activating the DropEdge feature to ran-
domly remove node links (GWN-DropEdge). The third set
is trained using only a subset of nodes in Ã (GWN-Impute).
Thus, physical realism is gradually reduced across the three
sets of experiments. The Ã used in the first two sets corre-
sponds to the trimmed ETW network containing 295 nodes,
while the third set uses the HUC-12 pour-point set as nodes
(see Fig. 3).

https://doi.org/10.5194/hess-26-5163-2022 Hydrol. Earth Syst. Sci., 26, 5163–5184, 2022



5172 A. Y. Sun et al.: Basin-scale river network learning using GNN

Figure 3. Shaded relief map of the East–Taylor watershed (HUC-8 code 14020001), overlaid by the NHDPlus flowline (solid blue lines),
five USGS gage locations (open circles) used for fine-tuning and data fusion, the HUC-12 subbasin boundaries (solid dark lines) and pour
points (triangles), and the surface waterbody (light blue) layer. An extra gage (red circle) is held for additional validation.

Table 1 summarizes the performance metrics of all three
models in KGE, NRMSE and R. Results suggest that the
GWN-O achieves high scores under all 3 metrics. The GWN-
DropEdge gives almost the same performance and the GWN-
Impute, which is trained using less than one-tenth of the
nodes used in the other two models, also achieves a rea-
sonable performance. Figure 4 shows the empirical cumu-
lative distribution function (ECDF) and node-level maps of
KGE and NRMSE that are obtained by the GWN-O surro-
gate model. The KGE is close to 1.0 (NRMSE close to 0.0)
on the mainstems of the East and Taylor rivers, but drops
(increases) slightly in several tributaries of the Taylor River
in the middle and southeastern part of the watershed. Per-
formance at subbasins disconnected by the Taylor Park Dam
does not appear to be strongly affected. All reaches adjacent
to the reservoir show high KGEs. This is interesting, sug-
gesting that the antecedent NWM outputs provide sufficient
node-level information for the GNN to learn.

As an ablation study, we trained a GWN-O model using
only Daymet forcing data while keeping all other configura-
tions unchanged. Results, shown in Fig. S2, suggest that the
performance of the data-driven surrogate model has deteri-
orated, especially in the mid-range of both rivers. One pos-
sible explanation is that without using the antecedent NWM
outputs as predictors, the data-driven models may either re-
quire a much longer look-back period to achieve meaning-
ful results (Kratzert et al., 2019a), or simply cannot explain
all variations in the NWM outputs. The latter reason points
to the inherent difficulty in learning the data-driven, input–
output mapping in this snow-dominated watershed. Previ-
ously, Ma et al. (2017) evaluated the performance of NOAH-
MP, which is the land model in WRF-Hydro, in modeling the

snow cover function (SCF). By definition, SCF is the fraction
of a grid cell covered by snow, and provides an indirect mea-
sure of snow mass and snow depth. They found that the mod-
eled SCF agrees well with the gridded SCF product derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), with relative biases varying from 4 % in the snow-
accumulation phase to 14 % in the melting phase. The au-
thors attributed the good performance to the SCF scheme,
the use of a vegetation canopy snow interception module,
and the multilayer snowpack representation implemented in
NOAH-MP (Ma et al., 2017). Thus, these sophisticated pa-
rameter schemes in the NWM may not be explained by using
Daymet forcing alone.

We compare the KGE between GWN-O and the other two
models in Fig. 5. The performances of GWN-O and GWN-
DropEdge are similar. Only slight KGE differences are noted
in the headwater tributaries of the Taylor River, indicating
that the GWN models are relatively robust to perturbations
induced through dropping edges. Again, this is because the
same NWM data are behind GWN-O and GWN-DropEdge
and strong auto-correlation exists at the node level. Between
GWN-O and GWN-Impute, GWN-O outperforms in the
headwater subbasins. Nevertheless, the accuracy of GWN-
Impute is high on the mainstems.

To elucidate why GWN-Impute gives a good performance
on the ETW, we plot the node correlation heatmap in Fig. 6.
Subbasins 1–13 are on the Taylor River side, while subbasins
14–23 are on the East River side of the ETW (Fig. 6a).
An immediate observation is the block structure along the
diagonal of the heatmap in Fig. 6b, suggesting that strong
cross-node correlations exist inside each subbasin. Specifi-
cally, subbasin 13, the most downstream basin on the Taylor
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Figure 4. Test performance metrics obtained using the pretrained 295-node GraphWaveNet (GWN-O) model. Panels (a, b) represent the
empirical cumulative distribution function (ECDF) and node map of KGE; (c, d) show the ECDF and node map of NRMSE. Results are
obtained based on the ensemble mean of a 10-member ensemble. Gage locations are shown as open circles on the node maps. .

River side, exhibits the highest inner-basin correlation, while
the upstream headwater basins (subbasins 1 and 2) show
more inner-basin variations. Subbasin 13 also shows rela-
tively strong cross-basin correlations with other subbasins on
both the East River and Taylor River sides. This is because
subbasin 13 is at the confluence of the two rivers, thus re-
flecting information passed from the upstream of both rivers.
Similarly, the downstream basins on the East River side,
namely, subbasins 22 and 23, also show relatively strong
inter-basin correlations with other basins on the East River
side. In contrast, isolated remote subbasins (e.g., subbasin 14
on the East River side, and subbasins 1 and 11 on the Tay-
lor River side as labeled below Fig. 6b do not exhibit strong
inter-basin correlations. These observations are further cor-
roborated using the graph betweenness centrality, defined as
the number of the shortest paths that pass through a node.
Thus, nodes with a high betweenness centrality tend to have
more influence on information propagation in the network
(Donges et al., 2009b). Figure 6c shows that reaches in the
downstream nodes of the East and Taylor rivers have higher

betweenness centrality values than the upstream nodes. The
heatmap analysis reveals the model parameter structure and
the degree of freedom of the underlying the NWM which,
in turn, determine how well the graph-coarsening process
may work. Essentially, in this case, the ML imputation based
on pour points is a physics-informed interpolation process.
We expect that the information content is richest at the pour
point of each subbasin, thus a surrogate model trained us-
ing only pour-point information may sufficiently capture the
dominant flow dynamics in the watershed and satisfactorily
interpolate to all unmodeled points.

We conducted an ablation study using the 348-node net-
work corresponding to NWM v2.1 (see also Sect. 4.2). Re-
sults are shown in Fig. S3. The newly added nodes are low-
flow nodes appearing at the headwaters and small tributaries
in subbasins. In this case, the median of the KGE is 0.974
and the mean is 0.937. Compared to the model trained using
NWM v2.0, the performance in subbasins 8, 10 and 11 are
significantly improved, however, the performance in head-
water subbasins 1 and 2 on the Taylor River side also show

https://doi.org/10.5194/hess-26-5163-2022 Hydrol. Earth Syst. Sci., 26, 5163–5184, 2022



5174 A. Y. Sun et al.: Basin-scale river network learning using GNN

Figure 5. Node-level KGE comparison between the pretrained GWN-O and that of (a) GWN-DropEdge and (b) GWN-Impute.

Table 1. Performance metrics of pretrained GraphWaveNet (GWN)
surrogate models. GWN-O is the original model of Wu et al. (2019),
GWN-DropEdge implements random edge sampling, GWN-Impute
is trained on a subset of 23 nodes corresponding to the HUC-12 pour
points. All results reported are based on ensemble averages from 10
models trained with different random seeds.

Model Median Mean Max Min

KGE, range (−∞,1]

GWN-O 0.978 0.947 0.998 0.574
GWN-DropEdge 0.978 0.947 0.998 0.584
GWN-Impute 0.975 0.915 0.997 0.445

NRMSE, range [0,∞]

GWN-O 0.188 0.256 1.126 0.021
GWN-DropEdge 0.186 0.262 1.132 0.023
GWN-Impute 0.214 0.300 1.455 0.039

R, range [−1,1]

GWN-O 0.991 0.985 1.000 0.877
GWN-DropEdge 0.990 0.984 1.000 0.912
GWN-Impute 0.990 0.982 0.999 0.906

some deterioration. This suggests that the effect of model cal-
ibration between NWM versions may not be uniform across
the model domain.

Experiments presented thus far provide useful insights into
how much physical realism is needed when implementing
GNNs for the purpose of river network surrogate modeling.
It depends on the watershed hydroclimatic and physiographic
attributes, the parameter structure of the underlying process-
based model, and the objective of the study. In the current
case, we show that GWN models built on a coarsened graph
give comparable performances to those built on more fine-

grained representations of the river network, requiring only
a fraction of training time. If the main objective of surro-
gate modeling is to capture the simulated streamflow patterns
in the mainstem of a river (e.g., for estimating flood peaks),
then all variants of the GWN models presented here should
suffice. On the other hand, if the main objective is to simu-
late snowmelt and runoff in low-flow headwater basins, then
more physical realism is required in the river network. These
findings also shed light on scaling up the GNNs for modeling
large river basins.

5.2 Fine-tuning

After pretraining, we fine-tune the GWN models by follow-
ing the procedure described in Sect. 4.2. Table 2 reports the
metrics of the NWM as well as pretrained and fine-tuned
GWN-O models against the five USGS gages (see Fig. 3
for their locations) over the testing period. The correspond-
ing hydrographs are presented in Fig. 7. The KGE values of
NWM simulations are relatively low, only Gage 09107000
(upstream of Taylor Park Dam) and Gage 09110000 (at pour
point Taylor River) have KGE values greater than 0.5. The
pretrained GWN-O model reports similar KGE values to the
NWM, which is by design. The fine-tuned GWN-O model,
which is trained using the historical observations falling in
the training period, improves the KGE values slightly over
most gages, except for Gage 09112500 located in the mid-
stream of the East River. We also calculate the KGE values
for the winter season (NDJF) and summer season (MJJA)
separately. The fine-tuned model captures the low flow on the
East River relatively well (Gage 09112200 and 09112500).
However, all peak flows are underestimated, as can be seen
from Fig. 7. In comparison, the fine-tuned model generally
makes more improvement on R, except at Gage 09107000.
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Figure 6. Node correlation heatmap generally exhibits a block structure within subbasins: (a) subbasin boundary map, where subbasins 1–13
are on the Taylor River side and subbasins 14–23 are on the East River side; (b) node correlation heatmap, where solid white lines separate
nodes in different subbasins; (c) node betweenness centrality map .

The summer correlation values are higher than the winter val-
ues.

Overall, fine-tuning of the GWN-O only leads to mild per-
formance improvements in this case. There can be multiple
reasons. First, in this case, fine-tuning is restricted to a few
nodes and the total effect is not as significant as when ob-
servations are available over many nodes/cells, such as the
gridded data used in many climate applications (Ham et al.,
2019). Second, the forcing data we used in driving the GWN
are not accurate enough to allow the models to capture high
flows. Third, the NWM may have underestimated snowmelt
quantity and timing. Nevertheless, the bias corrections result-
ing from the fine-tuning stage, especially in the phase of the
time series, are important for the subsequent data-fusion step.
In this work, we mainly utilized streamflow data, but other
types of Earth observation data may also be integrated in the
fine-tuning step to further improve model performance.

5.3 Data fusion

We investigate the efficacy of data fusion on the five USGS
gages. The value of hyperparameter ω is determined accord-
ing to the LOOCV procedure described in Sect. 4.2. For the

fine-tuned 295-node GWN-O model, the optimal ω value is
found to be 1500. Figure 8 compares NWM v2.0, corrected
GWN-O, and observed streamflow time series for the testing
period, in which the KGE and correlation (R) between the
corrected GWN-O and observations are shown in the subplot
titles for each gage.

After data fusion, R becomes greater than 0.85 at all gage
locations. In terms of KGE, the LOOCV data fusion has
the greatest impact on Gage 09109000, achieving a value
of 0.944. It also improves the two East River gages signif-
icantly (i.e., Gages 09112500 and 09112200). It has little
effect on Gage 09107000, which is upstream of the Taylor
Park Reservoir. It has a slightly negative impact on Gage
09110000, which is at the outlet of the Taylor River. In
this case, Gages 091125000 and 09110000 are very close
to each other (indirectly connected via the confluence node
between the East and Taylor rivers), but reflecting different
flow patterns. Specifically, Gage 09110000 is affected by the
reservoir releases, as can be seen from the zigzag pattern in
Fig. 8, while Gage 091125000 is not subject to such human-
intervention impacts. The current data-fusion scheme does
not differentiate these different dynamics. However, when all
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Table 2. Comparison of the KGE and R of the NWM, pretrained GWN-O, fine-tuned GWO-O against the USGS gage data. The last four
columns show the values for winter and summer seasons.

USGS gage KGE

NWM GWN-O GWN-O NWM GWN-O NWM GWN-O
pretrain fine-tune (winter) fine-tune (summer) fine-tune

(winter) (summer)

09107000 0.563 0.559 0.596 0.169 0.205 0.467 0.485
09112200 0.332 0.328 0.348 0.192 0.625 0.266 0.258
09112500 0.355 0.348 0.341 −0.076 0.741 0.289 0.248
09109000 0.425 0.425 0.624 −1.418 −0.146 0.323 0.524
09110000 0.616 0.610 0.665 −0.632 0.148 0.534 0.614

USGS gage R

09107000 0.877 0.876 0.851 0.698 0.318 0.855 0.771
09112200 0.904 0.900 0.961 0.348 0.660 0.898 0.953
09112500 0.901 0.899 0.957 0.074 0.756 0.894 0.948
09109000 0.554 0.554 0.782 −0.471 −0.112 0.442 0.650
09110000 0.706 0.715 0.868 −0.337 0.195 0.618 0.788

Figure 7. Hydrographs simulated by the NWM (dark blue) and GWN-O (ML, dark red) vs. the USGS data (Obs, gray) over the testing
period.
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Figure 8. Hydrographs simulated by the NWM (dark red) and corrected GWN-O (data fusion, light blue) vs. the USGS data (observations
(Obs), gray) over the testing period. KGE and R shown in the subplot titles are calculated between data fusion and observations.

Figure 9. Residuals resulting from the data fusion using all five USGS gages. The greatest correction effect is seen at the downstream points.

https://doi.org/10.5194/hess-26-5163-2022 Hydrol. Earth Syst. Sci., 26, 5163–5184, 2022



5178 A. Y. Sun et al.: Basin-scale river network learning using GNN

gages are used simultaneously in data fusion, we expect such
interference to be reduced.

Figure 9 shows the data-fusion residual map, defined as
the flow difference between data fusion and the NWM (i.e.,
r in Eq. 9). The data-fusion effect is greatest at the most
downstream locations of both East and Taylor rivers and then
gradually fades out toward the upstream headwater basins,
reflecting the reduction in flow magnitudes when traversing
upstream, as well as the diminished influence of downstream
gages.

The effect of data fusion is further validated using an ex-
tra USGS gage on the East River, Gage 385106106571000,
that is not part of the model training and residual propaga-
tion (see Fig. 3 for its location). This is the only extra gage
in the ETW that has a meaningful length of records (4475 d)
for the study period. Results (Fig. 10) show that data fusion
significantly improved streamflow, increasing the KGE from
0.056 to 0.892.

As an ablation study, we applied the same data-fusion pro-
cedure to two other models, the GWN-Impute model and the
GWN-O model trained without using the NWM as predic-
tors. The LOOCV results, shown in Tables S1 and S2, sug-
gest that data fusion in general improves the results at most
gage locations. The GWN-Impute model shows compara-
ble performance to the GWN-O model, although it is chal-
lenging for the GWN-O trained without using the NWM to
yield good results. Thus, these results further demonstrate
the robustness of a coarsened graph network for modeling
the study area.

6 Perspectives on GNN scaling up

So far, the performance of our GNN-based framework has
been demonstrated over a single HUC-8 watershed (i.e.,
ETW). A remaining question is how well the proposed GNN
framework can be adapted to larger river basins, which is
an important aspect in practice. For this purpose, we con-
sider the HUC-4 Gunnison River basin (GRB, drainage area
20 790 km2) that encompasses the ETW as a subbasin (see
Fig. 11). We focus on the surrogate modeling part, which al-
lows us to investigate not only the scalability, but also trans-
ferability of the GNN to other basins.

After applying the same network extraction procedure that
is used to obtain the ETW network, we get a 1708-node
network, which is about 6 times larger than the ETW net-
work used in previous examples. The GRB consists of 225
HUC-12 subbasins, the corresponding pour points are also
extracted and used as inputs to the GWN-Impute model. We
adopt the same training configurations as used for the ETW
to test how the framework can be applied to other basins with
little modifications. For the 1708-node GWN model, each
training epoch takes about 6.2 min in wall-clock time, while
it takes only 1 min for the GWN-Impute model on the same
compute node.

Figure 10. The effect of data fusion is validated on Gage
385106106571000 which is not used in any ML training and resid-
ual propagation. The KGE is improved from 0.056 to 0.892.

Again, the trained GWN and GWN-Impute models give
good and comparable performance in terms of approximat-
ing the original NWM outputs over the GRB, with a median
KGE value of 0.90 for both models (see Table 3 for all statis-
tics). Areas of lower performance are mainly found in the
high-elevation parts of the basin in the south and northwest.
Thus, this additional use case provides additional evidence
on the transferability of the GNN framework, at least in the
same snow-dominated, mountainous region.

7 Conclusions

The GNNs provide a conceptually simple yet powerful
ML framework for learning vector hydrography. This study
presents a multi-stage, physics-guided ML framework that
combines physics-based river network models with GNNs
for streamflow forecasting. In particular, our workflow, con-
sisting of pretraining, fine-tuning, and data-fusion stages,
leverages existing investment in high-performance river net-
work models (e.g., the US National Water Model) and Earth
observation data.

We demonstrated the merits of the GNN-based framework
over the HUC-8 East–Taylor watershed and HUC-4 Gun-
nison River basin. Both are located in the Upper Colorado
River basin and representative of the snow-dominated river
basins in the western United States. These snow-dominated
basins present meaningful challenges from both the process
understanding and the ML perspectives. On the science side,
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Figure 11. The HUC-4 Gunnison River basin (GRB) is located within the Upper Colorado River basin and encompasses the ETW as a
subbasin (indicated by orange outline).

Figure 12. The node KGE maps obtained using (a) 1708-node GWN and (b) 225-basin GWN-Impute models for the testing period. Panel
(b) shows the locations of the subbasins that are labeled as triangles.

significant research interests exist in understanding and pre-
dicting snowpack depth and shift in snowmelt timing un-
der climate change. On the ML side, challenges remain on
scaling graphs for solving large-scale graph-based regression
problems. We showed that graph coarsening offers a feasible
solution by exploiting the parameter structure of the under-
lying physics-based model. Thus, the designs of GNN and
physics-based models can be asymmetric. When the physics-
based model is already fine grained, which is the case in our
work, the number of nodes in the GNN models can be signif-
icantly reduced. This same idea can be further expanded to
embrace multiscale and/or multi-fidelity modeling to address
different study objectives, such as coupling a fine-mesh net-
work for biogeochemical transport with a coarse-mesh net-
work for streamflow modeling. Finally, we show that graph-
based data fusion provides a powerful post-processing tool

for “nudging” streamflow observations, allowing bias correc-
tions to traverse over the entire network. This study therefore
provides important insights into adapting GNNs for large-
scale river basin forecasting.
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Appendix A: Definition of performance metrics

The performance metrics used in this work are defined as
follows:

NRMSE=
1

Qobs

√∑n
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where Qobs and Qsim are observed and predicted values, re-
spectively,Q denotes the mean values, and n is the total num-
ber of test data. The KGE score combines the linear Pearson
correlation (R), the bias ratio µsim/µobs, and the variability
ratio σsim/σobs (Gupta et al., 2009). The range of KGE is
(−∞,1]. A KGE value greater than −0.41 indicates that the
model improves upon the mean flow (Knoben et al., 2019).
The range of NRMSE is [0,∞). The mean absolute error
(MAE), or L1 norm, quantifies the absolute difference be-
tween simulated and measured values.

Code and data availability. We adapted the open-source Graph-
Wavenet code from https://github.com/nnzhan/Graph-WaveNet
(Wu et al., 2019), data-fusion code from https://github.com/
000Justin000/gnn-residual-correlation (Jia and Benson, 2020), and
DropEdge algorithm from https://github.com/DropEdge/DropEdge
(Rong et al., 2019). The graph betweenness is generated us-
ing NetworkX https://networkx.org (last access: 22 March 2022,
Hagberg et al., 2008). The NWM retrospective simulation (v2.0
and v2.1) data can be downloaded from AWS (https://registry.
opendata.aws/nwm-archive, last access: 15 February 2022, NOAA,
2022). Alternatively, NWM data (v2.0) can be downloaded
from Hydroshare (https://www.hydroshare.org, last access: 22
March 2022, Johnson and Blodgett, 2020). Daymet data can
be downloaded from https://daymet.ornl.gov/ (last access: 10
March 2022, ORNL, 2022). NHDPlus database can be down-
loaded from EPA’s NHDPlus site, https://www.epa.gov/waterdata/
get-nhdplus-national-hydrography-dataset-plus-data (last access:
22 March 2022, EPA, 2022).
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