

Supplement of

A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion

Alexander Y. Sun et al.

Correspondence to: Alexander Y. Sun (alex.sun@beg.utexas.edu)

The copyright of individual parts of the supplement might differ from the article licence.

1 Fig S1. PRISM annual data

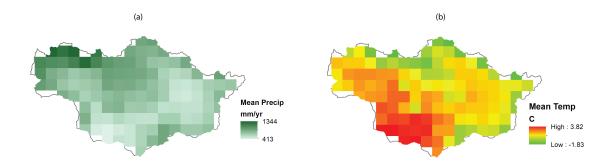


Figure 1: PRISM 30-year mean (a) precipitation and (b) air temperature for the East Taylor Watershed.

2 Fig S2. GraphWaveNet (GWN-O) trained without using antecedent NWM outputs as predictors

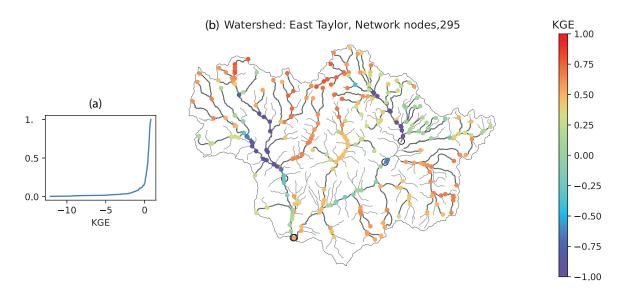


Figure 2: KGE of the GWN-O model trained using only Daymet meteorological forcing. Median KGE=0.433, mean KGE=0.065

3 Fig S3. Sensitivity study using NWM2.1 data

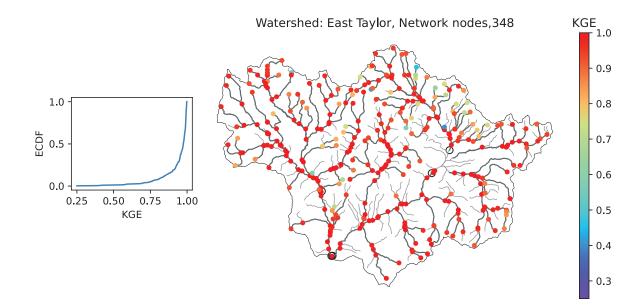


Figure 3: KGE of the GWN-O model trained using NWM2.1 data. Median of KGE = 0.974, mean of KGE=0.937.

4 Data fusion on the GWN-Impute model

(boldface numbers indicate better performance).									
USGS	NWM		KGE						
Gage	COMID	NWM	GWN-	Data	_				
			Impute	Fusion					
09107000	1333022	0.563	0.567	0.567					
09112200	1333198	0.332	0.330	0.695					
09112500	1333418	0.355	0.353	0.666					
09109000	1333490	0.425	0.425	0.879					
09110000	1333564	0.616	0.613	0.508					

Table 1: Results of leave-one-out cross validation using the five USGS gages (boldface numbers indicate better performance).

5 Data fusion on the GWN-O model without using NWM

 Table 2: Results of leave-one-out cross validation using the five USGS gages

 (boldface numbers indicate better performance).

USGS	NWM		KGE	
Gage	COMID	NWM	GWN-O	Data Fusion
09107000	1333022	0.563	-2.465	-2.465
09112200	1333198	0.332	0.667	0.860
09112500	1333418	0.355	0.611	0.707
09109000	1333490	0.425	-0.042	0.334
09110000	1333564	0.616	0.426	0.690

6 Testing result on Gunnison River Basin models

Table 3: Comparison of KGE statistics of the Gunnison River Basin GNN models $% \mathcal{G}(\mathcal{G})$

Model	Mean	Median	Min	Max
GWN GWN- Impute	$\begin{array}{c} 0.825\\ 0.810\end{array}$	$\begin{array}{c} 0.907 \\ 0.904 \end{array}$	$\begin{array}{c} 0.150 \\ 0.111 \end{array}$	0.995 0.998