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Abstract. Germany’s 2018–2020 consecutive drought events
resulted in multiple sectors – including agriculture, forestry,
water management, energy production, and transport – be-
ing impacted. High-resolution information systems are key
to preparedness for such extreme drought events. This study
evaluates the new setup of the one-kilometer German drought
monitor (GDM), which is based on daily soil moisture (SM)
simulations from the mesoscale hydrological model (mHM).
The simulated SM is compared against a set of diverse ob-
servations from single profile measurements, spatially dis-
tributed sensor networks, cosmic-ray neutron stations, and
lysimeters at 40 sites in Germany. Our results show that the
agreement of simulated and observed SM dynamics in the
upper soil (0–25 cm) are especially high in the vegetative ac-
tive period (0.84 median correlation R) and lower in winter
(0.59 median R). The lower agreement in winter results from
methodological uncertainties in both simulations and obser-
vations. Moderate but significant improvements between the
coarser 4 km resolution setup and the ≈ 1.2 km resolution
GDM in the agreement to observed SM dynamics is observed
in autumn (+0.07 median R) and winter (+0.12 median R).
Both model setups display similar correlations to observa-
tions in the dry anomaly spectrum, with higher overall agree-

ment of simulations to observations with a larger spatial foot-
print. The higher resolution of the second GDM version al-
lows for a more detailed representation of the spatial vari-
ability of SM, which is particularly beneficial for local risk
assessments. Furthermore, the results underline that nation-
wide drought information systems depend both on appropri-
ate simulations of the water cycle and a broad, high-quality,
observational soil moisture database.

1 Introduction

The extreme drought events since 2018 in Germany led to
multi-sectoral impacts (Madruga de Brito et al., 2020; Orth
et al., 2022) and increased stakeholder awareness. Moreover,
recent studies emphasized that extreme SM drought events
will be more likely and more severe in Central Europe un-
der future warming scenarios (Samaniego et al., 2018; Gril-
lakis, 2019). The singularity of the 2018/19 drought within
observational records in terms of consecutive multiyear wa-
ter deficits has been confirmed for Germany and Central Eu-
rope (Boergens et al., 2020; Hari et al., 2020; Rakovec et al.,
2022). With these prospects comes an increased need for
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state-of-the-art information on droughts as a basis for pre-
cise assessment of the uniqueness and potential impacts of
drought events from local to continental scales.

In recent years, several national and international drought
monitoring systems have been developed. The German
drought monitor (GDM) was first introduced in 2014 as an
information platform for agricultural droughts in Germany
under https://www.ufz.de/droughtmonitor (last access: 5 Oc-
tober 2022) and is operationally updated daily (Zink et al.,
2016). Core to the GDM is simulated SM using the open-
source mesoscale hydrological model (mHM; Samaniego
et al., 2010; Kumar et al., 2013). The GDM provides a near
real-time status of SM and drought in Germany, with a time
lag of one day due to the meteorological data availability.
Information on the drought status is provided for the upper-
most soil layer (25 cm) and total soil column (varying depth
depending on the soil map) by calculating the soil moisture
index (SMI; Samaniego et al., 2013) and plant available wa-
ter (PAW). With around 2 200 media contributions in the year
2020 and more than four million website views since 2018
alongside its use in national and federal state agencies, it
proved its important role as a drought information tool in
Germany. The feedback and requests received show that the
GDM is used by interested public and practitioners as well
as in media and politics to obtain up-to-date drought infor-
mation.

A crucial aspect for the optimal use of scientific environ-
mental data, from a practitioner’s point of view, is applica-
bility to local purposes. Data from targeted stakeholder inter-
views within the EDgE project (https://climate.copernicus.
eu/decision-making-water-sector-europe, last access: 5 Oc-
tober 2022) and in Climalert (http://climalert.eu/, last access:
5 October 2022), with a core stakeholder group of 15 farmers
in Central Germany, supported this need. So far, hydrologi-
cal models applied at the national or international level in
operational drought services were mostly run on relatively
low spatial resolutions, e.g., with grid cell size 5 km× 5 km
in the European drought observatory (EDO) (Sepulcre-Canto
et al., 2012) or 4 km× 4 km in the GDM (Zink et al., 2017).
The spatial resolution is mainly restricted due to input data
availability, such as the soil map BUEK1000 (spatial resolu-
tion 1 : 1000000) for Germany.

Recently, an updated version of the nationwide German
soil database (BGR, 2020) was published, with a 25 times
higher resolution, enabling hydrological modeling at a much
higher spatial resolution (≈ 1.2 km× 1.2 km, an≈ 11 fold in-
crease to the prior GDM version). Nevertheless, it was not
clear how the quality of the SM simulations would change at
a higher spatial resolution.

In contrast to other environmental variables, it is very chal-
lenging to aggregate SM to a larger scale due to its highly
heterogeneous nature and measurement uncertainties (West-
ern et al., 2004; Bogena et al., 2010; Rosenbaum et al., 2012).
Simulated SM derived from hydrological models is the prime
alternative to observed SM and is widely employed for

SM estimation on regional to global scales (Keyantash and
Dracup, 2002). Nevertheless, simulations also face method-
ological uncertainties, especially under transient conditions
such as those caused by climate change (Marx et al., 2018; O
et al., 2020). Cammalleri et al. (2015) investigated the use of
hydrological models for drought monitoring in Europe using
SM anomalies and drought classification metrics and found
that including multiple hydrological models improved over-
all performance. Furthermore, hydrological models are typ-
ically calibrated based on streamflow, which represents the
integral hydrological catchment response. Besides validating
the modeled streamflow, there is a clear need to thoroughly
evaluate other water cycle components that are not used for
constraining the model parameters. Ideally, such validations
require observations of the variable of interest that (a) cover
the same spatial scales as the model and extend over differ-
ent climate regimes within the study area, and (b) extend
over long temporal scales, which would allow them to be
termed “representative”. Although large-scale, meteorology-
driven SM variations can display seasonal varying length
scales up to 500 km (Koster et al., 2019), small-scale SM
variability largely depends on local site characteristics, such
as soil properties, topography, and land use. Therefore, op-
timal drought monitoring systems over large areas should
make use of the best available observation data in combi-
nation with a smart simulation system.

Enormous efforts have been and are being made to con-
struct environmental observation networks from regional to
global scales. Within global environmental monitoring net-
works such as FLUXNET, which focuses on measuring
ecosystem carbon fluxes (Baldocchi et al., 2001), SM is
sometimes measured in multiple depths at single profiles.
However, extensive validations of simulated SM from hy-
drological models are hampered by the limited spatial repre-
sentativeness of point-scale sensors and hence require novel
measurement approaches to bridge the scale gap between lo-
cal observations and model resolutions. Measurements that
capture the spatial structure of SM at larger scales are ex-
pensive and time-consuming, and for this reason are rare
and only applicable in comparatively small catchments of
a few tens of hectares (Bogena et al., 2010). In Germany,
the infrastructure of Terrestrial Environmental Observatories
(TERENO) was established in 2008 to build up a nationwide,
long-term monitoring network in which one of the focuses
is on hydrological variables (Zacharias et al., 2011; Bogena,
2016). Many of those sites were equipped with spatially dis-
tributed measurements of SM networks (SDM, Bogena et al.,
2010) and cosmic-ray neutron sensors (CRNS, Zreda et al.,
2012; Andreasen et al., 2017; Schrön et al., 2018). CRNS de-
tectors count neutrons of the natural cosmic-ray background
radiation as a proxy for soil water content (Desilets et al.,
2010; Köhli et al., 2021). The integral measurement foot-
print covers areas of 300–600 m diameter and depths of 15–
70 cm, both increasing for dryer conditions (Köhli et al.,
2015; Schrön et al., 2017). The CRNS method has emerged
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as a reliable technique to continuously monitor root-zone SM
at the field scale (Bogena et al., 2015; Andreasen et al., 2017)
and has been used recently for the validation of land sur-
face and hydrological models (Han et al., 2016; Iwema et al.,
2017; Dimitrova-Petrova et al., 2020).

Satellite-based SM data benefits from spatial coverage at
the kilometer scale, but the shallow penetration of the signal
in the upper few centimeters of the soil is a significant con-
straint. While those signals also depend on the surface con-
dition, vegetation density, and microwave frequencies, these
products themselves require ground-based SM observations
for validation (Peng et al., 2021). The time series of SDM and
CRNS observations at the TERENO sites appear to be better
suited for evaluation of the drought monitor model in terms
of long-term continuity and root-zone representation. In par-
ticular, the data covers recent wet (e.g., 2017) and dry (e.g.,
2015, 2018–2020) years, including extreme drought condi-
tions.

Here, we evaluate SM simulations from mHM at the one
and four kilometer scale, simulated against an unprecedented
compilation of SM observations from 40 locations across
Germany. A wide range of climatic conditions and vege-
tation types is covered. Specifically, the study aims to an-
swer two questions. Firstly, how well do the high-resolution,
German-wide SM simulations capture the dynamics in ob-
served SM? Emphasis is given to the comparison of differ-
ent SM measurement techniques due to their relevance for
interpreting the evaluation results. Secondly, can SM sim-
ulations at a higher spatial modeling resolution, including
refined spatial-resolution soil input data, be provided with
a consistent quality? Higher resolution does not necessar-
ily improve the model performance and may even worsen
the quality of the simulation results. To assess this, the low-
resolution model setup GDM-v1-2016 as well as the one
kilometer setup GDM-v2-2021 are compared against multi-
method SM observations. Furthermore, drought characteris-
tics estimated with both model setups are compared using an-
nual drought intensities over the last 69 years (1952–2020).

2 Methods and datasets

2.1 The mesoscale hydrological model (mHM)

The mesoscale hydrological model is a grid-based, spatially
distributed hydrological model driven by daily precipita-
tion, temperature, and potential evapotranspiration (PET).
It accounts for major hydrological processes such as snow
generation and snowmelt, canopy interception, soil infiltra-
tion, ET, deep percolation, baseflow generation, and surface
runoff routing. The open-source model code repository is
available and is under active development and maintenance
(https://git.ufz.de/mhm/mhm, last access: 5 October 2022).
The model uses three distinct levels to organize the model-
ing procedures: level 0 (L0) for input data of the sub-grid

physical basin characteristics, level 1 (L1) for the realization
of the integrated hydrological processes, and level 2 (L2) for
the specification of meteorological forcing inputs. An unique
component of mHM is the multiscale parameter regionaliza-
tion (MPR) technique (Samaniego et al., 2010) that allows
for the seamless inference of the spatial variability of the re-
quired model parameters on various modeling scales. One of
the distinguishing aspects of the MPR approach compared to
other regionalization techniques is to deliver a quasi scale-
invariant model performance across modeling scales and to
improve the transferability of model parameters to ungauged
basins (Kumar et al., 2013; Rakovec et al., 2016; Samaniego
et al., 2017). The model was applied and evaluated in multi-
ple climatological regions, including Europe (Thober et al.,
2015; Rakovec et al., 2016), West Africa (Dembélé et al.,
2020), India (Saha et al., 2021), and the conterminous United
States (Livneh et al., 2015; Rakovec et al., 2019). Within
the MPR technique, the subgrid physical basin character-
istics at L0 are linked to model parameters through trans-
fer functions and a set of global parameters and are sub-
sequently upscaled to generate effective parameters at L1.
The aggregation is based on a set of upscaling rules (e.g.,
arithmetic or harmonic mean) following flux conservation
schemes (Samaniego et al., 2010).

A general overview on the model processes and parame-
terization can be obtained from Samaniego et al. (2010) and
Kumar et al. (2013). Only the SM component of mHM is de-
scribed here, due to its relevance for this study. The incom-
ing precipitation and snowmelt are partitioned into root-zone
SM and runoff components, depending on the degree of soil
saturation, using a power function similar to the well-known
HBV model (Samaniego et al., 2010). The degree of non-
linearity depends on the underlying vegetation and soil char-
acteristics following the MPR framework (Samaniego et al.,
2010; Kumar et al., 2013). The evapotranspiration from soil
layers is estimated as a fraction of the potential evapotranspi-
ration depending on the SM stress and the fraction of vegeta-
tion roots present in each layer (Samaniego et al., 2010). The
moisture stress function depends on the specification of soil-
water content at a permanent wilting point as well as at crit-
ical and saturation levels, which are determined using a set
of pedo-transfer functions estimated within the MPR frame-
work (Livneh et al., 2015; Zacharias and Wessolek, 2007).

2.2 Model setups at 4 km × 4 km and 1.2 km × 1.2 km
spatial resolution

The new setup GDM-v2-2021, as used in the GDM ver-
sion 2, includes several changes to the previous model setup
GDM-v1-2016. The main features of the two mHM setups
that are used in the analysis are described in Table 1. While
the GDM-v1-2016 uses mHM version 5.6, mHM was up-
dated to version 5.10 (see https://github.com/mhm-ufz, last
access: 5 October 2022) in GDM-v2-2021. The implemented
changes in mHM did not change the hydrological process
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Table 1. Main features of the model setups GDM-v1-2016 and GDM-v2-2021. Core to the setups is the mesoscale hydrological model mHM.
Vertical discretization of soil layers in the hydrological model mHM and projection system are denoted. In the spatial model resolution,
the Level 0 (L0) describes the subgrid variability of relevant basin characteristics. Level 1 (L1) and Level 2 (L2) describe the dominant
hydrological processes and meteorological forcings, respectively. Datasets used as model inputs for soil as well as land use and geology on
L0 model resolution are stated.

Setup Spatial model
resolution

Soil dataset Vertical soil
discretization

Projection Land use
dataset

Hydro-
geology
dataset

GDM-v2-2021 L1 and L2: BUEK200 4 layers: Latlon GLOBCOVER GLIM
0.01562◦× 0.01562◦ 0–5 cm (EPSG:4326)
eq. ∼ 1.2 km× 1.2 km 5–25 cm
L0: 0.001953125◦× 25–60 cm
0.001953125◦ 60–variable cm

GDM-v1-2016 L1 and L2: BUEK1000 3 layers: Gauss Krüger-4 CORINE HUEK200
4 km× 4 km 0–5 cm (EPSG:31468)
L0: 5–25 cm
100 m× 100 m 25–variable cm

representations related to SM that were used in the simu-
lations here. Between the setups GDM-v1-2016 and GDM-
v2-2021, the projection system was changed from the pro-
jected coordinate system Gauss–Krueger 4 (EPSG:31468) to
the World Geodetic coordinate system (EPSG:4326). While
the size of the grid cells in the GDM-v1-2016 setup was fixed
at 4 km× 4 km (L1 level), the grid cell size in the GDM-v2-
2021 setup is measured in degrees. As such, the grid cell size
varies with latitude, with grid cell width in an east–west di-
rection decreasing from 1.23 km at 47.25◦ N latitude (south
of Germany) to 0.98 km at 55.5◦ N latitude (north of Ger-
many) and with a constant grid cell length of 1.7 km in a
north–south direction.

Soil texture (sand and clay fraction) and mineral bulk den-
sity are derived from national digital soil maps provided
by the BGR (Federal Institute for Geosciences and Natu-
ral Resources). The BUEK200 dataset (BGR, 2020) used
in the GDM-v2-2021 setup substantially increased the map-
ping resolution compared to the BUEK1000 dataset (BGR,
1998) used in the GDM-v1-2016 setup (scale 1 : 1 000000
to 1 : 200000). At the time of the creation of this study, the
database version of BUEK200 was v0.5. Figure 1 shows
the depth-averaged clay contents for an exemplary region
in Central Germany, where SM observations that were used
in the analysis are located. The soil map used for the study
(BUEK) is the standardized basic soil mapping for Germany.
It shows the distribution and association of soils and their
properties in Germany. The map content is classified accord-
ing to soil regions and soil landscapes. For each map unit, a
soil series is given, composed of an index soil (dominant soil)
and accompanying soils. For modeling, the soil properties of
the index soil within the spatial mapping unit were used to
derive the model parameters.

The soil depths in mHM are discretized into an upper soil
layer at depth 0–25 cm, including a top layer at depth 0–5 cm,

and the remaining depth of the soil profile. In the GDM-v2-
2021 setup, an additional layer at 25–60 cm was added due
to stakeholder feedback, mainly from the agricultural sec-
tor. The tillage depth is set to 30 cm in both model setups.
The land use datasets used in the model setups GDM-v1-
2016 and GDM-v2-2021 were CORINE (EEA, 2009) and
GLOBCOVER (ESA, 2009), respectively. Hydrogeological
input data that define the aquifer properties and govern the
baseflow recession rates were derived from the HUEK200
database for GDM-v1-2016 (BGR, 2009) and the GLIM
database for GDM-v2-2021 (Hartmann, Jörg and Moosdorf,
Nils, 2012). Digital elevation models were derived from
BKG (2010) and USGS (2017), respectively.

2.2.1 Meteorological input data

Precipitation as well as minimum, maximum, and average air
temperature are interpolated on a daily timescale based on
meteorological station data from the German Weather Ser-
vice (DWD) using external drift kriging (EDK) with eleva-
tion as the drift variable. The meteorological station data is
subject to extensive quality controls (Kaspar et al., 2013).
Additionally, quality controls such as checking the plausible
variable range are implemented in the preprocessing steps
of the interpolation routine. Theoretical variograms are es-
timated based on all available station data to derive seam-
less fields of hydro-meteorological fluxes and states for the
whole of Germany (Zink et al., 2017). An exponential model
is used for precipitation and spherical models for the tem-
perature variables. The interpolation method and variogram
parameter estimation for Germany are described and evalu-
ated in detail in Zink et al. (2017), including cross-validation
metrics and comparison to the comparable REGNIE-gridded
dataset by the German Weather Service (Rauthe et al., 2013).
PET is calculated using the Hargreaves–Samani Method
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Figure 1. Average derived clay [%] over the soil column from the BUEK1000 soil dataset used in the GDM-v1-2016 model setup (a) versus
the BUEK200 soil dataset used in the GDM-v2-2021 model setup (b). The grid shows the respective modeling resolution L1, at which the
hydrological processes are simulated (see Table 1). Both setups are projected in WGS 84 (EPSG:4326).

(Hargreaves and Samani, 1985) that is based on the interpo-
lated temperature fields (average, minimum, and maximum)
and (potential) extraterrestrial radiation, which is computed
depending on the latitude of the location and day of the year.

2.2.2 Multi-basin model calibrations

The unknown parameters of the mHM setup GDM-v2-2021
were calibrated against observed discharge using the Kling–
Gupta efficiency (KGE; Gupta et al., 2009) as the objec-
tive function. The parameter optimization was conducted us-
ing the dynamically dimensioned search (DDS; Tolson and
Shoemaker, 2007) algorithm with 1 000 iterations, which un-
derwent detailed scrutiny, as follows. In a first step, 200 pa-
rameter sets were obtained using a multi-basin or domain-
wide joint basin calibration strategy, in which a subset of 6
basins was randomly selected (out of 201 total basins) and
then jointly calibrated during a common period of 1990–
2005 (see Table S1 in the Supplement). Subsequently, all
200 parameter sets were evaluated against the full ensem-
ble of 201 basins during an extended period of 1986–2005
(with a warming period of 5 years). The parameter set with
the best performance in terms of the median daily KGE over
201 basins was selected and used for the consequent analysis
(See Table S2 in the Supplement). This updated approach is
based on the earlier calibrations of the GDM-v1-2016 setup
(Zink et al., 2017), in which the Nash–Sutcliffe efficiency in-
stead of the KGE was applied, and individual single-basin
instead of the multi-basin calibrations were carried out as in-
put to the model cross-evaluation at locations that were not

used for model calibration. Previous works also focused on
multi-basin calibrations of mHM in other regions, such as
Mizukami et al. (2017); Rakovec et al. (2019). The model
performance of the best cross-evaluated parameters of the
GDM-v2-2021, based on daily streamflow from 201 catch-
ments in Germany, yielded a median performance of 0.761
KGE (see Fig. A1).

2.3 Soil moisture observations

The SM observations used to conduct the model evalua-
tions were gathered from the environmental observation net-
works TERENO (Zacharias et al., 2011) and FLUXNET
(FLUXNET2015 Dataset; Pastorello et al., 2020a) as well
as from the Cunnersdorf site operated by the DWD. In total,
SM data from 40 locations were compiled and processed for
the analysis (see Fig. 1). Although it is not feasible to es-
tablish an evenly distributed grid of SM measurements on a
national level (Vereecken et al., 2008), the available locations
cover a wide range of climatic and vegetation conditions in
Germany.

In total, we analyzed 46 measurements from 24 grassland
sites, 9 crop sites, 6 forest sites, and 1 site containing a forest
clearing. Four of the sites have multiple measurement meth-
ods available, which allowed for the comparison of the evalu-
ations between the measurement methods at single sites. The
elevation ranges from 4 to 1252 ma.m.s.l., and the long-term
yearly precipitation sums range from below 500 mm to more
than 1500 mm. Time series lengths of the observations are
between 2.8 and 17.8 years with a median (mean) of 6.5
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Table 2. Overview of SM measurement sites. Method denotes the different data sources: cosmic-ray neutron sensing (CRNS), spatially
distributed measurements (SDM), single profile measurements (SPM), and lysimeter (LYSI). Network denotes the environmental observation
network name (for TERENO: GC=Central Germany; Rur/E=Rur/Eifel; NE=Northeast; PAO=Pre Alpine Observatory), and Land Use
describes the site characteristics (grass= grassland, crop= cropland, DBF= deciduous broadleaved forest, ENF= evergreen needled forest,
clear= clearing). For FLUXNET, the original site name is included in parentheses. Sensor depths and numbers are denoted. R Spearman
correlation coefficients of simulated versus observed deseasonalized SM anomalies in the GDM-v2-2021 setup shown are based on the whole
period at 0–25 and 25–60 cm depth.

Network Site Method Land use Begin End Availability Data n Elevation Precipitation Sensor n Sensor depth R R

[%] [m] [mm] 0–25 cm 25–60 cm 0–25 cm 25–60 cm

T
E

R
E

N
O

C
G

Bad Lauchstädt LYSI Crop 1 Jan 2016 31 Dec 2018 100 1091 118 498 3 10 30, 50 0.73 0.71
Ermsleben SPM Grass 25 Jan 2012 31 Dec 2019 81 2343 167 541 1 10, 20 30, 40, 50, 60 0.80 0.68
Am Grossen Bruch CRNS Grass 24 Jun 2014 28 Nov 2019 95 1892 81 545 0.79 –

SDM 30 Jul 2014 18 Nov 2019 84 1618 20 var. var. 0.82 0.84
SPM 7 Feb 2014 31 Dec 2019 98 2114 1 10, 20 30, 40, 50 0.86 0.85

Hecklingen SPM Grass 5 Jul 2013 31 Dec 2019 94 2223 93 525 1 10, 20 30, 40, 50 0.72 0.71
Hohes Holz CRNS DBF 27 Aug 2014 28 Nov 2019 91 1745 203 645 0.80 –

SDM 20 Jul 2012 30 Dec 2019 96 2613 39 var. var. 0.88 0.86
SPM 25 Apr 2013 31 Dec 2019 97 2358 2 10, 20 30, 40, 50 0.87 0.88

Hordorf CRNS Crop 29 Sep 2016 28 Nov 2019 88 1022 80 554 0.83 –
SPM 6 Nov 2015 31 Dec 2019 98 1493 1 10, 20 30, 40, 50 0.82 0.74

T
E

R
E

N
O

R
ur

/E

Aachen CRNS Crop 13 Jan 2012 1 May 2019 91 2437 216 875 0.67 –
Gevenich CRNS Crop 6 Jul 2011 4 Jan 2019 91 2496 104 766 0.84 –
Heinsberg CRNS Grass 8 Sep 2011 1 May 2019 94 2628 61 712 0.83 –
Kall CRNS Grass 14 Sep 2011 1 May 2019 78 2185 492 861 0.82 –
Kleinau CRNS Grass 25 Aug 2015 26 Apr 2019 87 1169 355 937 0.88 –
Merzenhausen CRNS Crop 18 May 2011 3 Apr 2019 90 2597 91 767 0.85 –
Rollesbr1 CRNS Grass 18 May 2011 31 Dec 2018 87 2409 516 1183 0.77 –
Rollesbr2 CRNS Grass 30 Jun 2012 25 Dec 2018 86 2045 516 1183 0.82 –
Ruraue CRNS Grass 8 Nov 2011 1 Jan 2019 90 2340 102 734 0.77 –
Schoeneseiffen CRNS Grass 13 Aug 2015 25 Apr 2019 83 1120 567 1119 0.82 –
Selhausen CRNS Crop 6 Mar 2015 26 Apr 2019 95 1441 102 726 0.77 –
Wildenrath CRNS Clear 11 May 2012 23 Mar 2019 91 2273 79 776 0.80 –
Wüstebach CRNS ENF 12 Mar 2011 5 Oct 2018 79 2173 614 1165 0.44 –

SDM 27 Jan 2009 31 Dec 2019 100 3989 150 10, 20 (2x) 50 0.75 0.74

T
E

R
E

N
O

N
E

Alt Tellin SPM Grass 10 May 2014 30 Dec 2019 90 1859 9 551 1 10, 20 30, 40, 50 0.87 0.26
Bentzin SPM Grass 19 Aug 2013 30 Dec 2019 98 2281 5 568 1 10, 20 30, 40, 50, 60 0.53 0.77
Droennewitz SPM Grass 12 Apr 2014 30 Dec 2019 73 1519 33 598 1 10, 20 30, 40, 50, 60 0.59 0.66
Goermin SPM Grass 19 Aug 2013 30 Dec 2019 95 2207 7 569 1 10, 20 30, 40, 50, 60 0.73 0.47
Leppin SPM Grass 28 Jan 2013 30 Dec 2019 96 2420 6 563 1 10, 20 30, 40, 50, 60 0.71 0.53
Medrow SPM Grass 13 Jul 2015 30 Dec 2019 100 1627 5 595 1 10, 20 30, 40, 50, 60 0.78 0.76
Muehlenkamp SPM Grass 1 Jan 2012 30 Dec 2019 82 2388 8 574 1 10, 20 30, 40, 50, 60 0.71 0.37
Ueckeritz SPM Grass 28 Jan 2013 30 Dec 2019 93 2349 4 562 1 10, 20 30, 40, 50, 60 0.63 0.61
Wotenick SPM Grass 30 Apr 2014 30 Dec 2019 95 1964 11 588 1 10, 20 30, 40, 50, 60 0.63 0.51
Zarnekla SPM Grass 23 Jan 2013 30 Dec 2019 95 2404 6 590 1 10, 20 30, 40, 50, 60 0.83 0.77

T
E

R
E

N
O

PA
O

Fendt LYSI Grass 1 Jan 2017 31 Dec 2019 100 1090 634 1059 18 10 30, 50 0.80 0.7
Graswang LYSI Grass 17 Mar 2017 31 Dec 2019 93 948 916 1570 6 10 30, 50 0.77 0.66
Rottenbuch LYSI Grass 17 Mar 2017 31 Dec 2019 93 948 765 1265 12 10 30, 50 0.54 0.53

FL
U

X
N

E
T

Gebesee (DE-Geb) SPM Crop 16 Jan 2001 31 Dec 2014 91 4657 156 522 1 8, 16 32 0.38 0.33
Grillenburg (DE-Gri) SPM Grass 21 Nov 2006 31 Dec 2014 98 2891 394 856 1 10 – 0.68 –
Hainich (DE-Hai) SPM DBF 27 Dec 2002 31 Dec 2012 98 3570 420 774 1 8, 16 32 0.72 0.57
Klingenberg (DE-Kli) SPM Crop 27 Nov 2004 31 Dec 2014 87 3208 478 860 1 10 – 0.57 –
Lackenberg (DE-Lkb) SPM ENF 1 May 2009 31 Dec 2013 90 1533 1252 1573 1 4 – 0.44 –
Leinefelde (DE-Lnf) SPM DBF 1 May 2002 31 Dec 2012 72 2796 453 784 1 8, 16 32 0.83 0.77
Tharandt (DE-Tha) SPM ENF 6 Mar 1997 31 Dec 2014 95 6189 369 791 1 10 – 0.57 –

D
W

D

Cunnersdorf CRNS Crop 23 Jun 2016 31 Dec 2019 95 1217 131 634 0.83 0.68

(6.7) years. A detailed overview of the location character-
istics is shown in Table 2.

The data is comprised of four different SM measure-
ment methods. SM observations from 7 FLUXNET and 16
TERENO sites in Germany, based on several vertically dis-
tributed sensors within one soil profile, were used (in the fol-
lowing abbreviated SPM). The sensor depths are described
in Table 2. SPM sites used from TERENO-Northeast Ob-
servatory are further described in Itzerott et al. (2018a) and
Itzerott et al. (2018b). SM data from lysimeters are avail-
able for four sites from the TERENO-SOILCan lysimeter
network (Pütz et al., 2016) at the Bad Lauchstädt experi-

mental site and the TERENO Pre-Alpine Observatory (PAO)
(Kiese et al., 2018). Lysimeters are large vessels contain-
ing an undisturbed soil column to allow gravimetric mea-
surements. Since the lysimeter vessels are closed at the bot-
tom, water tension is adjusted to reference measurements at
the same depth in the undisturbed soil close to the lysime-
ter (Pütz et al., 2016; Kiese et al., 2018). In the lysimeters,
SM is measured by single sensors in multiple depths. At each
SOILCan-site, multiple lysimeters are organized in hexagons
(Pütz et al., 2016). The number of lysimeters per site are de-
scribed in Table 2.
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Figure 2. SM observations of 40 locations distributed over Germany were used in the SM evaluations of the GDM-v2-2021 and GDM-
v1-2016 model setups. The subplots display the experimental sites in greater detail, representing different climate gradients in Germany.
The maps show the digital elevation model on the hydrological subgrid variability resolution L0 of mHM in the GDM-v2-2021 setup
(0.001953125◦× 0.001953125◦). The grid corresponds to the modeling resolution L1 in the GDM-v2-2021 setup (0.01562◦× 0.01562◦,
which equals≈ 1.2 km× 1.2 km), at which the hydrological processes are simulated. The lower panel (b–d) shows the distribution of different
SM observations depending on land use type, elevation, and average yearly precipitation. Note that some of the 40 locations have multiple
SM data sources (n = 46).
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For 3 of the 40 sites (Am Grossen Bruch, Hohes Holz,
and Wüstebach), spatially distributed measurements (SDM)
of SM are available. Multiple sensors are installed in a spatial
grid at different depths, covering an area of some hundreds of
square meters. For the locations Hohes Holz and Am Grossen
Bruch, 39 and 20 profiles with sensors at multiple depths
were used, respectively (depths varied slightly between pro-
files depending on soil property changes). Therefore, they are
not denoted explicitly. For the Wüstebach site, 51 profiles
with two sensors each at 5, 20, and 50 cm depth were used
(Wiekenkamp et al., 2019). The Wüstebach SM measure-
ment network is described in detail in Bogena et al. (2018).

SM observations derived from cosmic-ray neutron sens-
ing (CRNS) stations were used from 17 sites (see Table 2)
of the TERENO observatories (Bogena et al., 2022). The
soil albedo component of cosmic-ray neutrons is particularly
prone to changes of SM (Desilets et al., 2010; Köhli et al.,
2021). However, since neutrons are sensitive to all pools of
hydrogen, the measured neutron signal is also affected by
biomass (Baatz et al., 2015), intercepted water (Bogena et al.,
2013; Schrön et al., 2017), and snow (Schattan et al., 2017)
and therefore requires a correction of the measured signal in
this respect. In this study, periods of snow cover have been
excluded from the CRNS data. SM from CRNS data has been
calculated by standard methods (Desilets et al., 2010; Zreda
et al., 2012) and aggregated to daily time steps. This leads to
typical statistical uncertainties of less than 3 vol.% (Schrön
et al., 2018).

All SM data were checked according to their flagging con-
ventions for doubtful or low-quality values. In some cases,
doubtful data was removed manually after personal com-
munication from site maintainers (e.g., some sites from the
TERENO PAO lysimeter sites showed doubtful data after
frost in early 2017). The available SM data in the respec-
tive depths, as noted in Table 2, were aggregated to weighted
vertical averages according to the soil discretization depths
in mHM (0–25, 25–60 and 0–60 cm). Highest weights were
allocated when the sensor depth was located in the center of
the soil depth range and when weights linearly decreased to-
wards the edges of the soil depth range. The spatial mean
values were calculated for the SDM measurements based on
the available sensors.

2.4 Soil moisture data preparation and evaluation
metrics

Since the computation of SM drought indices, including the
estimation of SM probability distributions by kernel density
estimates, is hampered for the available observed data due
to the limited length of observed SM data (< 10 years for
most locations), the analysis here is based on a comparison
of observed to simulated SM (e.g., Samaniego et al., 2013).
It is widely known that absolute SM values cannot be ad-
equately determined by a regional model (partly due to the
spatial heterogeneity), yet the hydrological model typically

captures the temporal dynamics well (Koster et al., 2009). As
drought is defined by the deviation from normal conditions,
SM anomalies were calculated. To preserve the units of vol-
umetric SM (mmmm−1) and the original range of SM dy-
namics, standardization by dividing standard deviation was
not undertaken in this study. The anomalies are calculated in
two ways. First, the mean of all values in each SM time series
is subtracted:

θ(anom)i,k = θi,k − θ. (1)

Secondly, the multi-year mean for each day of the year is
subtracted to deseasonalize the anomalies. The removal of
the annual average cycle of SM is necessary for the subse-
quent drought classification based on percentile thresholds,
as described in the next section.

θ(deseas− anom)i,k = θi,k − θ i, (2)

where i is the calendar day of the year (DOY 1, . . .,365)
and k is the year. To reduce uncertainty in the mean result-
ing from heterogeneous and small sample sizes, for each i, a
moving window with 15 d on each side of the day was used to
increase the sample size, and the multi-year mean of each i
was calculated based on the mean of 500 randomly drawn
bootstrap samples. Since there are some data gaps in the ob-
served data (see Table 2 for data availability), the simulated
data was masked to the available observed data to allow a
comparable calculation of SM seasonality. Leap days were
removed before calculating the deseasonalized anomalies.

The evaluation of observed against simulated SM is based
on the Spearman rank correlation coefficient (R). The Spear-
man rank correlation coefficient is a non-parametric mea-
sure to quantify the strength of the monotonic relationship
between two variables. The correlations are calculated on
whole data records as well as on sub-periods (months, sea-
sons, and vegetative active period) to investigate the seasonal
variability in the performance metrics. Paired Wilcoxon
signed rank tests were conducted to identify significant
changes between the model setups.

2.4.1 Soil moisture index computation and analysis

Simulated SM by the two model setups is used to compute a
soil moisture index (SMI) following Samaniego et al. (2013)
and Zink et al. (2016), enabling a SM drought analysis based
on long-term SM data. The SMI for a given cell and day is
estimated as

SMIt = F̂T(xt ), (3)

and it represents the quantile at the SM fraction value x (nor-
malized against the respective saturated soil water content);
xt denotes the simulated monthly SM fraction at a time t ,
and F̂T is the empirical distribution function, estimated using
non-parametric kernel density estimates. The optimal band-
widths are estimated by minimizing a cross-validation error
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estimate. Details regarding the computation of the SMI can
be found in Samaniego et al. (2013).

The SMI drought threshold concept used in the German
drought monitor is based on the D0–D4 classification sys-
tem for droughts from the US drought monitor (Svoboda
et al., 2002) that related drought categories to potential im-
pact types. The drought thresholds reflect the occurrence of
similar SM conditions in the past and hence indicate the po-
tential impacts of these conditions (Zink et al., 2016). A cell
at time t is under drought when SMIt < τ . Here, τ denotes
that the soil water content in a cell is less than the values oc-
curring τ × 100 % of the time. The 20th percentile used as
τ in this study is defined as moderate drought conditions,
which indicates conditions of “possible damages to crops
and pastures”. Extreme drought conditions are defined as the
5th percentile, indicating “high probability of major losses
in crops and pastures”. The resulting impact of SM drought
conditions needs to be identified for each specific impact type
based on the timing within the year and the duration of the
drought conditions. For example, Peichl et al. (2018, 2021)
identified specific monthly damage functions between the
SMI and different crops using varying statistical methods.
The work showed that dry SM anomalies in some months
can reduce yield (e.g., August, September for maize), while
in other months, it may increase crop yield (e.g., May for
maize). Impacts of SM droughts can affect a broad range
of sectors besides agriculture. Especially, the considered soil
depth of the SMI is relevant for different sectors. While the
drought conditions in the upper soil (0–25 and 0–60 cm) are
more relevant to agriculture, drought in the total soil column
(up to 2 m) indicate potential impacts on water resources and
the forestry sector.

SMI-based drought statistics are calculated for the years
1952–2020 on fixed temporal (annual and vegetative active
period from April to October) and spatial (per grid cell and
aggregated for Germany) scales. When calculating the cu-
mulative density functions of SM, a common statistical basis
of 1951–2015 was used for both model setups. The drought
intensities (DI) per year are calculated by

DI=
1

d ·A

t1∑
t0

∫
A

[τ −SMIi(t)]+, (4)

with the area of interest A (here Germany) and duration d
(t1− t0) in days (annual t0 1 January to t1 31 December and
vegetative active period t0 1 April to t1 31 October). The
drought intensities take into account the degree of negative
departure from drought conditions (hence, the more extreme
the drought conditions, the higher the intensities) as well the
temporal aggregation length and the spatial aggregation area.
The area under drought is calculated as the percentage of grid
cells where SMI< 0.2 averaged over the respective temporal
periods.

3 Results and discussion

In the following sections, the comparisons of the multi-
method SM observations with two hydrological model sim-
ulations are presented and discussed to investigate the pro-
posed research objectives. In Sect. 3.1, a comparison of
SM observations to the simulations from the high-resolution
operational model setup GDM-v2-2021 is shown. The setup
allows a comparison of observations to the 0–25 cm layer as
well as to the additional, deeper soil layer of 25–60 cm. In
Sect. 3.2, the differences between the two simulation setups
are shown for annual drought intensities during 1952–2020
and compared to SM observations. The two mHM simula-
tions are used in their operational setups, meaning that only
data and information available for the whole of Germany
were used. Additional available information on soils or me-
teorological measurements at the observation sites was not
incorporated in the simulations.

3.1 Comparison of high-resolution simulations against
observed SM dynamics

Here, 1.2 km× 1.2 km simulations in two soil layers (GDM-
v2-2021) are compared to SM observations using four dif-
ferent measurement methods: cosmic-ray neutron sensing
(CRNS), spatially distributed measurements (SDM), sin-
gle profile measurements (SPM), and lysimeter (LYSI).
SM anomalies as well as deseasonalized SM anomalies are
used.

Figure 3 shows the results for three selected locations that
contain both CRNS and SDM measurements for the six-year
period 2014–2019. In general, the SM anomalies and desea-
sonalized data agree well, with a small reduction of corre-
lations for the deseasonalized data. Furthermore, observa-
tions and simulations agree well both in the uppermost soil
layer (0–25 cm) and in the deeper layer (25–60 cm depth).
The correlation strength between simulations and observa-
tions from different measurement techniques is similar for
the sites Am Grossen Bruch and Hohes Holz but deviates
more for the Wüstebach site. It is worth noting that differ-
ent spatial scales are mapped by those measurements. While
the SPM (not included here) represents point information,
the SDM and CRNS cover an area less than 0.1 km2, and the
mHM simulations cover an area of ≈ 1.44 km2. In general,
the day-to-day variability is lower in simulations than in ob-
servations. At the forest sites Wüstebach and Hohes Holz,
the day-to-day variability in the CRNS data is higher than
in SDM. Several environmental factors other than SM can
influence the CRNS signals (see Methods). While the chang-
ing biomass might have a low impact on the signal, it can
introduce a (constant) systematic bias. Since only anomalies
are analyzed here, the impact of such bias on this (compara-
tive) anomaly analysis should be minimal. Intercepted water
on leaves and in the litter layer can be particularly challeng-
ing to quantify, especially in forested stations such as Hohes
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Figure 3. SM time series for 2014–2019 for the selected locations Am Grossen Bruch, Hohes Holz, and Wüstebach, showing SDM and
CRNS data against simulated data from mHM in 0–25 and 25–60 cm depth in the GDM-v2-2021 setup. The Hordorf site also contains both
CRNS and SDM measurements but with much shorter time series length. The stations with longer time series were selected for visualization.
Spearman rank correlation coefficients are denoted at the left side of each time series. Panel (a) shows SM anomalies, including seasonality,
and panel (b) shows deseasonalized SM anomalies.

Holz or Wüstebach (Bogena et al., 2013; Schrön et al., 2017).
It might lead to stronger dynamics in the CRNS signal during
and shortly after rain events in comparison to the model out-
put or other observation methods. Additionally, partial defor-
estation in 2013 at the Wüstebach site modified SM flows, re-
sulting in a stronger response to rainfall (Wiekenkamp et al.,
2019). Nevertheless, there is no general tendency for lower
correlations at forest sites than at crop and grassland sites
(see Fig. 4). Crop sites show slightly lower correlations than
grassland sites, which is expected, since anthropogenic activ-
ities (e.g., crop rotation) are not represented in mHM. Cor-
relations display no clear tendency across the range of ele-
vation and precipitation regimes. In general, Fig. 4 reveals
that the model performance does not systematically depend
on site conditions. Moreover, no systematic relationship be-

tween correlations and the length of the time series can be
found (see Fig. 4d).

Monthly Spearman correlation coefficients for all loca-
tions and measurement methods at 0–25 cm depth are shown
in Fig. 5. The correlation coefficients show an apparent clear
seasonal variation, with the highest values in summer and
autumn months and the lowest values in winter. The high-
est median correlation is detected in August (0.87), while
the lowest median correlation is found in January (0.37). The
spread of the correlation coefficients within the different lo-
cations is largest in winter months, with some locations hav-
ing correlations close to 1.0, while in February and March,
some locations with CRNS, SPM, and LYSI measurements
show correlations below zero. The intra-annual variation of
performance metrics was similar to the findings of Xia et al.
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Figure 4. Spearman rank correlation coefficients of the simulated versus observed deseasonalized SM anomalies against site characteristics:
(a) land use, (b) elevation, (c) average yearly precipitation, and (d) length of the time series. See Table 2 for a detailed overview per location.
Colors denote the SM data method (cosmic-ray neutron sensing, CRNS; spatially distributed measurements, SDM; single profile measure-
ments, SPM; and lysimeter, LYSI) and shapes the land use types reported at the locations (abbreviated as following: grass= grassland,
clear= forest clearing, LYSI= lysimeter).

(2014), who extensively evaluated simulated SM from four
different hydrological models (Noah, Mosaic, SAC, VIC) in
the North American Land Data Assimilation System phase 2
(NLDAS-2) dataset, which is used for drought monitoring
in the United States and similarly observed generally higher
correlations in summer and lower correlations in winter. The
lower correlations observed in winter could be related to
higher uncertainties in simulations and observations with re-
spect to frozen soils and snow cover. The sensor quality of
SDM, SPM, and LYSI in winter can be reduced during frost
days. In particular, SPM and LYSI measurements can be af-
fected by sensor failures, as they rely only on a few sensors
compared to the spatially distributed measurements (SDM)
with a larger number of sensors. Appendix Fig. A3 shows
correlations between simulated SM, CRNS, and SDM. Low
correlations between simulations and observations are ac-

companied by low correlations between the measurement
methods, especially in winter. In a climate impact study in-
vestigating low flows over Europe, it could be shown that
uncertainty due to the selection of the hydrological model
dominates the overall uncertainty, including the meteorologi-
cal drivers in snow-dominated areas (Marx et al., 2018). Fur-
thermore, the mHM does not contain a full energy balance
model, which limits the description of soil frost depths.

Observations using different SM measurement methods
display considerably different correlations. The SPM gener-
ally vary more, with large variation in winter and the pres-
ence of low-performance outliers in summer months. CRNS
measurements show a consistently high performance in sum-
mer months but notably low correlations in winter (especially
January). As snow days were removed from the time series
in the CRNS measurements, the anomaly calculation from
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Figure 5. Comparison of the simulated mHM SM (0–25 cm) in the GDM-v2-2021 setup to observed SM anomalies without (a) and with (b)
subtraction of the mean seasonal SM cycle for each month, depicted with boxplots. SM anomalies are plotted for each location and colored
according to the SM measurement method used. Note that sample sizes between measurement methods differ (CRNS: n= 17, SDM: n= 3,
SPM: n= 23, LYSI: n= 4). Data points that are not both significantly (p-value< 0.05) and positively correlated are marked with x. See
Fig. A2 for detailed comparisons.

the remaining data was impacted by a smaller sample size.
Another reason for the lower correlations observed might be
due to the variable penetration depth of CRNS, which ranges
between 15 to 70 cm depending on SM (Köhli et al., 2015;
Schrön et al., 2017). This could introduce systematic and
temporally variable errors and affect the correlation between
observed and simulated soil water content (Baroni et al.,
2018). Comparison to the mHM top soil (0–25 cm) layer is
assumed to remain a good compromise, since the soil wa-
ter distribution is rather homogeneous between 0 and 25 cm
under wet conditions. Under dry conditions, the footprint
is deeper and more heterogenous, but the highest sensitiv-
ity is in the upper soil layers (exponential sensitivity). The
SDM measurements show the most consistent performance
across all months, with the exception of May, as illustrated
in Fig. A2a. All measurement methods at these sites show a
drop in correlations to the SM simulations in May and June,
while the observations have higher correlations between each
other (see also Fig. A3). This points to deficiencies in the
model, which may be related to the static vegetation module
in mHM, which does not include processes such as possi-
ble early onset of the growing season and consequent earlier
depletion of the soil water storage. Moreover, lower correla-

tions of deseasonalized anomalies in May are detected, es-
pecially at forest locations (median of 0.63 over all forest
locations). The timing of leaf unfolding in trees, usually be-
tween late April to May (Chen et al., 2018), is subject to
annual fluctuations and affects evaporation from the soil and
therefore SM dynamics. Figure A2b depicts the SPM data
from FLUXNET and TERENO – which cover the time pe-
riods 1997–2014 and 2011–2019, respectively – separately.
The seasonal variation of the correlations is in good agree-
ment among both monitoring networks and time periods. The
performance at TERENO sites is generally higher than at the
FLUXNET sites, possibly due to a larger number of sensors
installed along the soil depth in the TERENO sites, which
may improve the vertical averaging of SM (see Table 2).

The Spearman correlation coefficients for each season and
soil depth are depicted in Fig. 6. Note that, here, only lo-
cations that have SM data in all depths were considered,
and CRNS data were excluded, as its varying penetration
depth does not allow a consistent depth-wise evaluation. This
leads to a smaller sample size of locations (n= 26). Figure 6
shows that the median correlation is lower for the deeper
SM simulations for all seasons, except for winter. In spring,
the lower depth also shows the strongest negative difference
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Figure 6. Spearman correlation coefficients of the simulated mHM SM in the GDM-v2-2021 against observed deseasonalized SM anomalies,
depicted with boxplots for three depths (0–25, 0–60, 25–60 cm). Values of each location are plotted, and colors denote the measurement
method of the SM data (SDM: spatially distributed measurements; SPM: single profile measurements; LYSI: lysimeter). Here, only locations
with measurements at 25–60 cm depth are taken into account (SDM: n= 3, SPM: n= 19, LYSI: n= 4). Data points that are not both
significantly (p-value< 0.05) and positively correlated are marked with x.

to the upper depth in comparison to summer and autumn
(spring 1−0.19, summer 1−0.12, fall 1−0.02). The cor-
relations vary more in the 25–60 cm depth between loca-
tions in all seasons, with more outliers of very low correla-
tions observed. Since the mHM was conceptualized for dom-
inant processes at the large scale (mesoscale), not all pro-
cesses that are important at the local scale are currently ac-
counted for (e.g., species-specific root water uptake, lateral
flow, or groundwater–soil water interaction). For instance,
Rosenbaum et al. (2012) showed that, for the distributed
SM measurements at the Wüstebach catchment, SM dynam-
ics in the topsoil (5–50 cm depth) are influenced by ground-
water. Processes of capillary rise are not modeled in mHM;
hence, it is expected that agreement to simulated SM by
mHM at sites with groundwater influence is lower compared
to groundwater-distant sites. This effect should increase with
depth due to increasing groundwater influence, which could
explain the lower correlations in the 25–60 cm depth. SPM
sites might be more affected by this than SDM, in which
these effects can be averaged out. Identification of ground-
water characteristics at each measurement site was, however,
out of scope for this study.

The SDM outperform SPM and LYSI, with higher-than-
average correlation values, especially for the 25–60 cm
depth, which underlines the assumption that the local char-
acteristics of single sensors – e.g., groundwater influence
and the resulting spatial variability of SM (Famiglietti et al.,
2008) – are averaged out over a larger area and generally sup-
ports the closer-scale match of SDM measurements and the
1.2 km× 1.2 km simulation grid cells. It has to be noted that
the SPM at the same sites as the SDM also show comparable

high correlation values (for an overview of the locations, see
Table 2).

3.2 Comparison of different mHM model setups

In the following, the comparison between observations and
the two model setups GDM-v1-2016 and GDM-v2-2021
(i.e., GDM version 1 and 2) as well as drought metrics be-
tween the two simulation setups are shown and discussed.
Table 3 shows the median values of the Spearman correla-
tion coefficients for selected sub-periods (seasons, vegetative
active period April–October) and for the full year. Consider-
ing the observed SM data from all locations and measure-
ment methods, the median correlations between the two sim-
ulation setups increase slightly by +0.05 in GDM-v2-2021.
On a seasonal scale, the results show a small decrease in
the correlations in spring (1−0.03) and summer (1−0.01)
but a significant increase of correlations in fall (1+ 0.07)
and winter (1+ 0.12) in the new model setup. Several of
the changes in the model setup may provide explanations
for the improved model agreement to observed SM dynam-
ics in fall and winter. The higher modeling resolution of
the 1 km runs may better resolve the sub-grid variability of
cold-season-related processes, such as snow accumulation,
that improve the simulated SM dynamics. In addition, the
finer spatial soil texture representation possibly contributes
to an improved model representation of soil wetting and dry-
ing – e.g., especially during saturated conditions in the cold
season. When analyzing the metric over the vegetative and
non-vegetative active period (defined as April–October and
November–March, respectively), the increase in median cor-
relations is +0.03 and +0.10, respectively. Median correla-
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Table 3. Median Spearman rank correlation coefficients R of simulated (GDM-v1-2016, GDM-v2-2021) versus observed deseasonal-
ized SM anomalies at depth 0–25 cm. The correlation coefficients are calculated annually, seasonally (spring=March, April, May; sum-
mer= June, July, August; fall=September, October, November; winter=December, January, February) and over the vegetative and non-
vegetative active periods (defined as April–October and November–March, respectively). Note that some of the 40 locations have multiple
SM data sources available, resulting in n= 46; see Table 2. ∗ denoting significant differences (p-value< 0.05) in correlations between the
model setups according to the paired Wilcoxon signed rank test.

Metric Method Setup Annual Spring Summer Fall Winter Non-veg vVg

ALL GDM-v2-2021 0.78 0.65 0.85 0.84 0.49 0.59 0.84
(n= 46) GDM-v1-2016 0.73 0.68 0.86 0.77 0.37 0.49 0.81

1 +0.05 −0.03 −0.01 +0.07 (∗) +0.12 (∗) +0.10 (∗) +0.03

R [–] CRNS GDM-v2-2021 0.81 0.63 0.88 0.86 0.60 0.65 0.86
(n= 17) GDM-v1-2016 0.79 0.67 0.88 0.80 0.46 0.48 0.84

1 +0.02 −0.04 0.0 +0.06 (∗) +0.14 (∗) +0.17 (∗) +0.02

SPM GDM-v2-2021 0.72 0.67 0.79 0.78 0.39 0.45 0.82
(n= 23) GDM-v1-2016 0.71 0.69 0.80 0.76 0.34 0.42 0.77

1 +0.01 −0.02 −0.01 +0.02 +0.05 +0.03 +0.05

tions using CRNS and SPM measurements support the over-
all findings. In general, the results show that the CRNS yields
higher median correlations than the SPM measurements for
both model setups, except for spring. While the median cor-
relation in winter increased by +0.17 between GDM-v1-
2016 and GDM-v2-2021 for CRNS, there is only a small in-
crease of+0.03 in correlation for SPM. Similar results show-
ing an overall increase in simulation performance were found
by Albergel et al. (2012). In their study, the EMCWF oper-
ational and re-analysis SM product using the hydrological
model H-TESSEL was improved due to changes in the soil
hydrology in the model and an increase of model resolution.
They concluded that a better representation of soil texture
might obtain further improvements. Furthermore, De Lannoy
et al. (2014) found moderate improvements in the agreement
of SM simulations compared to observations through imple-
menting updated soil texture information.

Spearman rank correlations between simulated and ob-
served deseasonalized SM anomalies that fall below the
20th percentile in the observed SM time series are shown
in Fig. 7 to specifically analyze the dry anomaly spectrum.
It is important to emphasize that we do not aim to estimate
drought periods here, as its solid calculation requires a much
longer time series. The drought estimation is performed us-
ing histograms for every grid cell and day of the year (see
method Sect. 2.4.1). Consequently, estimating robust per-
centiles requires time series lengths of minimum 30 years –
this means that the time series length of the observational
data is considered insufficient. Figure 7a shows a median cor-
relation of 0.61 over all observations in the GDM-v2-2021
setup. The performance in the two model setups remains
similar. However, the comparison between the measurements
with a larger spatial footprint (SDM, CRNS) and point-scale
measurements (SPM, LYSI) shows that the agreement be-
tween simulations and the larger footprint observations in-

creased towards the high resolution setup, but the median
agreement to the point-scale SM measurement decreased. In
general, the measurements with a larger spatial footprint dis-
play higher agreement to the simulations. Due to the vary-
ing day-to-day variability of SM between the SM observation
types and the simulations, in Fig. 7b, an additional statistical
smoothing was applied by calculating a running 30 d mean
on the daily SM time series before subtraction of the seasonal
SM cycle. This approach is similar to the SM preprocessing
for the SMI, as proposed in Zink et al. (2016). Figure 7b
shows that, when smoothing is applied, the agreement be-
tween observations and simulations during dry periods can
be substantially improved to a median correlation of 0.7 over
all observations in the GDM-v2-2021 setup (≈ 1 km reso-
lution). In particular, the agreement between the point-scale
measurements and simulations is increased to a median cor-
relation of 0.63 in both model setups.

Next, we contrast the drought characteristics based on the
two model setups to assess the differences in drought ranking
and the spatial structure of drought events. Annual drought
intensities aggregated over Germany based on the daily SMI
using simulated SM from 1952–2020 are presented in Fig. 8
and are grid-based for the last decade in Fig. 9. Figure 8
shows only marginal differences between the model setups,
which are slightly more prominent in the top soil compared to
the total soil column. The model setups largely agree on the
three years with the most intensive droughts. The ranking in
the top soil during the vegetative active period differs slightly
due to the similar drought intensities in the years 1959, 1976,
and 2003. The drought years are more pronounced with re-
spect to drought intensities in the GDM-v2-2021 setup in the
top soil, but in contrast, the average drought area is estimated
to be larger in the GDM-v1-2016 setup in those years. Gener-
ally, the classification of drought years aggregated over Ger-
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Figure 7. Correlations of deseasonalized daily SM below the 20th percentile (based on the observed SM time series) between simulations
and observations (a). In (b), an additional statistical smoothing was applied by calculating a running 30 d mean on the daily SM time series
before subtraction of the seasonal cycle. The correlations are shown for all observations (n= 46) and separated between observations with
a larger spatial footprint (n= 20), including cosmic-ray neutron sensing (CRNS) and spatially distributed measurements (SDM) as well as
point measurements (n= 26), including single profile measurements (SPM) and lysimeters (LYSI).

Figure 8. SM drought intensities spatially aggregated over Germany during the vegetative active period (April–October) in the top soil (5–
25 cm) and total soil column (up to 2 m). The size of the circles represents the average area under drought. The three largest drought events
are numbered in each panel. Colors represent the two model setups.
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Figure 9. SM drought intensities (DI) per grid cell for (a) upper soil (5–25 cm) and (b) total soil column (up to 2 m) during the vegetative
active period (April–October) in the last decade (2011–2020) for the model setups GDM-v1-2016 and GDM-v2-2021 and for the absolute
differences between the setups (GDM-v1-2016−GDM-v2-2021). The GDM-v1-2016 data were remapped to the GDM-v2-2021 grid for the
difference calculation. Graphs, including of years from 1952 onwards, can be found at https://www.ufz.de/index.php?de=47252 (last access:
5 October 2022).

many results in similar estimates using the different opera-
tional drought monitor setups.

To assess regional differences in drought characteristics
between the model setups, Fig. 9 shows the drought intensity
maps in the vegetative active period for 2011–2020. Drought
intensities are more spatially diverse in the GDM-v2-2021
setup, stemming from the higher granularity of the GDM-v2-
2021 setup, which includes higher-resolution soil informa-
tion and less smooth patterns than the GDM-v1-2016. Nev-
ertheless, the general patterns are similar between the two
setups. Regionally, large differences can be seen (e.g., the

drought intensities in the Swabian and Franconian Jura re-
gions are more pronounced than the neighboring areas in
the GDM-v1-2016 setup – see years 2017 and 2019 for the
total soil). Additionally, the differences in drought intensi-
ties are more pronounced in the total soil column in the last
decade, which can be explained by multi-annual, cumula-
tive effects. The current total soil drought lasts, in many re-
gions, for at least three years. In Fig. 10, the variance be-
tween grid cells for drought intensities during the vegetative
active period are shown as semi-variograms. In general, the
spatial variance is larger in the total soil than top soil. The
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Figure 10. Empirical semi-variograms for drought intensities during the vegetative active period in upper soil for the GDM-v1-2016 and the
GDM-v2-2021 setups. The bin size was set to 5 km, which corresponds to the nearest, larger, even kilometer bin size relative to the GDM-
v2-2016 modeling resolution. The length scale and nugget of the fitted exponential theoretical semi-variograms are noted in the legend.
Subplot (b) shows the semivariance normalized by distance, and the x axis is log scaled.

GDM-v2-2021 setup shows a generally larger spatial vari-
ance between grid cells in the top soil and a larger increase
with distance (see Fig. 10a). The spatial variance in the total
soil is lower at smaller distances in the GDM-v1-2016 setup
but slightly higher at larger distances. Figure 10b, showing
semi-variance normalized by distance, demonstrates that, in
the GDM-v2-2021 setup, the distance-normalized variance
of drought intensities is increased, especially at small spa-
tial scales in both the top and total soil, indicating larger
local differences in response to drought intensities. These
findings are in line with Livneh et al. (2015), who investi-
gated the influence of different soil databases on resulting
hydrologic fluxes. They reported that the higher variability
of soil properties in the finer soil database generally resulted
in simulations with more variability in (extreme) hydrologic
responses.

We would like to highlight that, in our study, several
changes besides changing the underlying soil dataset were
implemented between the operational model setups, as de-
scribed in Sect. 2.2. The changes, such as the land use and
geology datasets, influence the hydrological simulations, yet
they play a minor role for the SM simulations compared
to the change in the soil dataset. The SM simulations are
not influenced by the geological dataset, because no di-
rect feedback from the saturated aquifer to the SM reser-
voir is implemented in mHM. To demonstrate the differ-

ent role of the change in SM dynamics related to the spe-
cific soil and land use datasets, temporal correlations be-
tween SM from separated model runs fixing all model set-
tings (L1≈ 1.2 km× 1.2 km resolution, default mHM pa-
rameters), only changing the soil dataset (BUEK200 –
BUEK1000), and, in a separate step, only changing the
land use dataset (CORINE – GLOBCOVER) are shown in
Fig. A4. The change of the soil dataset has a much larger
impact on the SM simulations compared to the change of the
land use dataset in these specific model setups. The CORINE
and GLOBCOVER land use datasets both already have high
horizontal resolutions (≈ 100 and 300 m, respectively). The
differences between the land use datasets mostly lie in the
subgrid scale of the mHM hydrological modeling resolu-
tion and have a minor effect on the upscaled hydrological
response at the L1 level (here ≈ 1.2 km× 1.2 km).

4 Summary and conclusions

This study evaluates soil moisture (SM) dynamics from
two mHM simulations used as operational model setups
in the German drought monitor (GDM). The increase in
hydrological modeling resolution between the model se-
tups – from 4 km× 4 km in the GDM-v1-2016 setup to
≈ 1.2 km× 1.2 km in the GDM-v2-2021 setup – was moti-
vated by the implementation of higher-resolution input soil
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data (BUEK1000 to BUEK200). The comparisons between
observed and simulated SM were conducted using various
ground-based SM observations, with multiple measurement
methods and different climate gradients. The agreement be-
tween simulated and observed SM dynamics is especially
high in the vegetative active period (median R 0.84 in GDM-
v2-2021) and lower in winter (median R 0.59 in GDM-v2-
2021). It was shown that the ≈ 1.2 km resolution GDM not
only produces simulated SM with a similar quality to that of
the lower resolution model setup but also partly enhances the
model’s ability to simulate observed SM dynamics. We iden-
tified significant improvements between the first and second
GDM versions in terms of agreement to observed SM, with
enhanced correlations during fall (+0.07 median) and winter
(+0.12 median). However, the overall improvements were
relatively small, partly because the lower resolution model
setup (4 km× 4 km grid cells) was already capturing the ob-
served SM dynamics well. Both model setups display simi-
lar correlations to observations in the dry anomaly spectrum,
with higher overall agreement of simulations to observations
with a larger spatial footprint. Although several changes were
made between the operational model setups – such as chang-
ing land use and hydrogeology datasets in addition to the
change in the underlying soil dataset (see Sect. 2.2) – it was
demonstrated that the soil dataset played the dominant role
in the changes in simulated SM dynamics. Annual drought
statistics and ranking based on drought intensities and aver-
age area under drought computed for the time frame 1952–
2020 were robust between the model setups, with only minor
differences on the scale of Germany. The spatial structures in
the higher-resolution GDM-v2-2021 setup, including an up-
dated soil map, display larger granularity and, spatially, more
diverse responses to drought, allowing a more refined repre-
sentation of spatial SM heterogeneity. The higher spatial res-
olution achieved is of great relevance, especially concerning
local risk assessments.

The results underline the importance of long-term mea-
surement series for developing and optimizing data products
such as the GDM. Good coverage of relevant environmen-
tal gradients with suitable measurement networks is essen-
tial due to rapidly changing environmental conditions. The
direct comparison of the different measurement methods for
recording SM showed the importance of measurement meth-
ods such as CRNS or SDM, which allow better estimates of
mean SM conditions across larger areas. However, the tem-
poral and spatial availability still limits the studies, such as
the one presented here, in terms of statistical robustness. Fur-
thermore, we did not analyze deeper soil depths (> 60 cm),
as most measurement sites do not have SM data at those
depths. Continuous improvements of the SM observational
database will be beneficial for future hydrological model
evaluations. For future studies, a solution to the variable pen-
etration depth of CRNS could be to compare observed and
simulated neutron counts directly by using the COSMIC for-
ward model (Shuttleworth et al., 2013), which is designed

to account for irregular SM profiles in all modeled depth lay-
ers. While COSMIC has already been implemented in mHM,
its proper parameterization would require dedicated research
and is outside of the scope of this study. Regarding the SDM
measurements, a source of uncertainty remains in the calcu-
lation of the spatial average. The mean calculation is chal-
lenging due to the varying number of available sensors in
the measurement grids over time. A robust mean calculation
with advanced sensor weighting is currently a subject of ac-
tive research.

We compared the model simulations in terms of SM dy-
namics for their relevance to SM droughts, which are defined
as a negative deviation from normal SM conditions. The in-
tegration of observed SM data in the model calibration itself
could improve the absolute estimations of simulated SM and
the model internal flux partitioning. This approach has been
successfully demonstrated using CRNS data in the Rur catch-
ment in Germany (Baatz et al., 2017) and remotely sensed
SM in the Danube catchment (Wanders et al., 2014). An
extended model validation of the SM component of mHM,
forced with on-site precipitation and local soil maps with
soil physical property information at even higher resolutions
(e.g., BUEK25 or BUEK50), would help to further under-
stand the current limitations of mHM in modeling SM dy-
namics and to separate the analyses from the limited data
availability at the scale of Germany.

Several other aspects are relevant to further improving the
simulation of SM states with mHM on a national scale in
Germany (or larger, towards a continental scale). A decisive
input that influences hydrological model performance is pre-
cipitation (Mo et al., 2012). Model performance of mHM was
related to rain gauge density on a European scale by Rakovec
et al. (2016). While Germany has a very dense meteorologi-
cal station network, local precipitation can still differ signif-
icantly from the interpolated products. Although Samaniego
et al. (2013) showed that the interpolation results on daily
precipitation data – here compared to the high resolution Ger-
man Weather Service reanalysis product REGNIE (Rauthe
et al., 2013) – only differ marginally, the difference of lo-
cal precipitation from interpolated values is expected to have
a large influence on SM dynamics. Thus, improvements in
the interpolated precipitation may result in increased model
performance. Additionally, a more precise estimation of po-
tential evapotranspiration may be achieved by implementing
the Penman–Monteith methods.

Finally, we conclude that the resolution of
≈ 1.2 km× 1.2 km is currently the best compromise between
the need for increased model resolution (user perspective)
and the current data availability and process representation
in mHM (scientific perspective). We emphasize the need
for continuous dialogue between stakeholders and the sci-
entific community to improve the underlying model system
alongside the provision of user-tailored drought information.
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Appendix A

Figure A1. Results of mHM multi-basin model calibration based on streamflow data from 201 catchments. (a) Spatial map of KGE for each
basin. (b) KGE cumulative density function of 200 parameter sets, generated by random sampling of the basins. Bold red marks indicate the
selected parameter set.

Figure A2. Spearman correlation coefficients of simulated soil moisture by mHM in the GDM-v2-2021 setup versus observed de-
seasonalized soil moisture anomalies for each month; this serves as a supplement to Fig. 5 by (a) comparing the locations Hohes Holz
and Am Grossen Bruch equipped with CRNS, SDM, and SPM soil moisture measurements, and (b) comparing FLUXNET (n= 7) and
TERENO (n= 20) SPM data.
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Figure A3. Monthly Spearman rank correlation coefficients for 2014–2019 between deseasonalized SM anomalies simulated by mHM and
SM observations from CRNS and SDM measurements and between the CRNS and SDM observations for the three locations Am Grossen
Bruch, Hohes Holz, and Wüstebach.

Figure A4. Correlations between simulated daily SM in the upper soil (5–25 cm) and the total soil column (up to 2 m) using model runs for
the time period 1991–2019, keeping the model settings identical (L1 1.2 km2 resolution, default mHM parameters) except for changing the
soil dataset BUEK200 versus BUEK1000 (left) and secondly changing land cover dataset CORINE versus GLOBCOVER (right).
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Code and data availability. Observational and simulated
SM data (https://doi.org/10.48758/ufz.12541, Boeing,
2022a) as well as simulated SMI drought characteristics
(https://doi.org/10.48758/ufz.12534, Boeing, 2022b) that
were used in the study are available in UFZ Data Inves-
tigation Portal. Open-source mHM code is available at
https://github.com/mhm-ufz (mHM, 2022) and SMI code at
https://doi.org/10.5281/zenodo.5842486 (Samaniego et al.,
2022). TERENO and FLUXNET soil moisture data can be
obtained at https://ddp.tereno.net/ddp/ (TERENO, 2020) and
https://fluxnet.org/data/fluxnet2015-dataset/ (Pastorello et al.,
2020a), respectively.
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