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Abstract. Spatially explicit quantification on design storms
is essential for flood risk assessment and planning. Due to the
limited temporal data availability from weather radar data,
design storms are usually estimated on the basis of rainfall
records of a few precipitation stations only that have a sub-
stantially long time coverage. To achieve a regional picture,
these station-based estimates are spatially interpolated, in-
corporating a large source of uncertainty due to the typical
low station density, in particular for short event durations.

In this study we present a method to estimate spatially ex-
plicit design storms with a return period of up to 100 years on
the basis of statistically extended weather radar precipitation
estimates, based on the ideas of regional frequency analyses
and subsequent bias correction. Associated uncertainties are
quantified using an ensemble-sampling approach and event-
based bootstrapping.

With the resulting dataset, we compile spatially explicit
design storms for various return periods and event durations
for the federal state of Baden Württemberg, Germany. We
compare our findings with two reference datasets based on
interpolated station estimates. We find that the transition in
the spatial patterns of the design storms from a rather random
(short-duration events, 15 min) to a more structured, oro-
graphically influenced pattern (long-duration events, 24 h)
seems to be much more realistic in the weather-radar-based
product. However, the absolute magnitude of the design
storms, although bias-corrected, is still generally lower in the
weather radar product, which should be addressed in future
studies in more detail.

1 Introduction

In the light of flood risk preparedness preparation and cli-
mate change adaptation planning, there is a rising need for
reliable information on the regional to local impacts of ur-
ban and suburban storm flows (e.g., European Flood Direc-
tive: EC, 2007). This information is usually provided based
on data from hydrological and hydraulic modeling chains,
which themselves need spatially homogenized information
on the magnitude of design storms for various durations and
frequencies as input data.

In order to be able to provide reliable information, de-
sign rainfall estimates have to be based on sufficiently long
time series of rainfall observations from climate stations at a
high temporal resolution (e.g., Charras-Garrido and Lezaud,
2013). Especially for the estimates of rare events (Tr ≥

100 a), this restricts the analyses usually to a rather limited
number of precipitation stations, hence requiring substantial
spatial interpolation among the few stations to produce re-
gionalized maps. A further issue when dealing with long-
term station data is the nonstationarity requiring an adapta-
tion of the extreme value analyses (e.g., temporally depen-
dent location parameters of the generalized extreme value
(GEV) distribution; Cheng et al., 2014).

Apart from station data, temporally and spatially homog-
enized and station-adjusted precipitation data from weather
radar are becoming increasingly available and have been
used in the analysis of design storms (e.g., Overeem et
al., 2009; Haberlandt and Berndt, 2016; Panziera et al.,
2016; Pöschmann et al., 2021). The main advantage of us-
ing weather radar data is the provision of a spatially com-
plete picture of storm events on various temporal and spatial
scales, as many short-term and small-scale storm events are
not captured by the typical network of precipitation gauges
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(Lengfeld et al., 2020). Hence, design storm estimates based
on weather radar data are supposed to provide a more reliable
spatial picture than interpolated station data.

One serious drawback of this approach, however, is the
lack of long-term weather radar records as spatially and
temporally consistent data are only available for the last 2
decades (e.g., Saltikoff et al., 2019). Although recent studies
have shown that statistical techniques are available to esti-
mate design storms (with return periods in the range from 50
to 100 years) on the basis of shorter data series (e.g., Zorzetto
et al., 2016), they still have larger uncertainties when com-
pared to estimates on data series equal to/longer than the re-
spective return periods.

In order to overcome short records (or ungauged sites), re-
gional frequency analysis is often used for rainfall as well as
for discharge records. Based on the so-called region of influ-
ence (ROI) approach (Burn, 1990), the records of a target sta-
tion are extended by pooling data from neighboring stations
located within a target-station-specific region. While numer-
ous applications of regional frequency analysis are reported
for station data (e.g., Gaál and Kyselý, 2009; Requena et al.,
2019), fewer examples are available for the extension of time
series from weather radar. Goudenhoofdt et al. (2017) based
a regional frequency analysis over Belgium on pooled radar
data time series with a sampling scheme considering radar
cells in a radius of 10 km around the target cell for the exten-
sion of the precipitation records. While in general their ap-
proach led to promising results, the radial sampling scheme
led to some artificial circular patterns in the final product and
only defined similar regions based on distance alone.

A slightly different approach to conduct a regional fre-
quency analysis is the spatial bootstrapping method (e.g.,
Uboldi et al., 2014). For a specific station/cell, a large num-
ber of samples are established by the repeated sampling of
independent events from surrounding stations/cells. This ap-
proach was recently applied to 11 years of radar data (spatial
resolution of 4km×4 km) over the state of Louisiana, United
States (Eldardiry and Habib, 2020). Also in this study, the
cell-specific ROI, out of which the samples were pooled, was
defined by the distance to the target cell. For each cell they set
up 500 samples with a sample size of 11 events (in order to
equal the actual number of years) each. They found that the
method can provide a robust representation of extreme pre-
cipitation which is less affected by single outlier events than
a non-regional pixel-based approach. However, when com-
pared with station-based data, the resampled weather radar
data have a tendency to underestimate the station records.
Reasons for this could be on the one hand that the defini-
tion of the target-cell-specific ROI based on the distance only
might not be sufficient, but other factors (e.g., elevation, cli-
mate) should be incorporated as well, as is usually done with
station data (e.g., Uboldi et al., 2014). Also the fact that each
sample only considers 11 events could be a source of uncer-
tainty.

On the other hand, a general “bias” in the weather radar
when compared with stations is visible, generally increasing
with rainfall intensity (e.g., Schleiss et al., 2020; Kreklow
et al., 2020) as the radar precipitation is an indirect product
(derived from reflectivity) integrated over a larger area. This
fact is another serious drawback when using radar data for
the estimation of design storms. A common approach to cor-
rect for such structural biases is the so-called bias correction
approach (see, e.g., Maraun, 2016, for a review on bias cor-
rection) developed in climate impact research but previously
applied to weather radar data (Rabiei and Haberlandt, 2015).
The basic idea behind bias correction is that structural biases
in the data are removed while the specific characteristics (ei-
ther spatial or temporal) are kept.

We believe that combining regional frequency analysis
with bias correction could be a promising approach to gener-
ate a robust radar-based dataset for the spatially explicit esti-
mation of design storm events. In our study, we apply a ROI-
based approach to extend a climatological record of 19 years
of spatially and temporally homogenized weather radar data
in combination with a station-based bias correction. We fo-
cus our study regionally on the federal state of Baden Würt-
temberg (BaWu), Germany, as we have two station-based,
regionally interpolated design storm products available for
this region that can be used to evaluate the newly generated
design storm product based on weather radar data. Further-
more, BaWu is topographically quite complex with an eleva-
tion range from 90 to 1495 m (Fig. 1a), leading to spatially
rather inhomogeneous rainfall patterns (see Fig. 1a and c).

2 Data and methods

2.1 Radar-based rainfall estimates

We use the spatially and temporally homogenized climato-
logical precipitation radar product of the German Weather
Service referenced as RADKLIM (Winterrath et al., 2017)
that is available as a quasi-gauge-adjusted 5 min precipi-
tation product (RADKLIM_YW_V2017.002; Winterrath et
al., 2018). These data consist of post-processed (artifact and
attenuation correction) and station-adjusted (but only hourly
values) precipitation rates on a 1km× 1 km grid for the time
period from 2001 to 2019. To be able to directly compare
our data product to a station-based spatially interpolated data
product (see Sect. 2.2.2 below), we only use data for the
(summer) months from April to October. Furthermore, the
increased uncertainty connected to the measurement of solid
precipitation can be avoided when focusing on the summer
season only.

2.2 Station-based reference data

For an independent reference, we use two spatially inter-
polated design storm estimates based on station data. Both
datasets are frequently used by practitioners in Germany.
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Figure 1. (a) Topography of Baden Württemberg (BaWu) as well as location of the precipitation gauges used in the BW-Stat dataset and
some of the geographical regions referred to in the text. (b) Probability for a specific radar cell to be sampled based on the distance to cell of
interest (bI), orography (bII), and orography and distance combined (bIII). Final sampled cells (orange) and reduced probabilities around
the selected cells are depicted in panel (bIV). All panels reflect the area indicated with a red square in (a). The respective cell of interest is
marked in red. (c) April to October rainfall sum (1991 to 2020) of the REGNIE (Regionalisierte Niederschlagshöhen) dataset compiled by
the German Weather Service.

Both datasets are based on a limited number of stations only,
and hence, a substantial spatial interpolation effort was nec-
essary to provide a map of design storms on a regional scale.

2.2.1 KOSTRA

The KOSTRA dataset (KOSTRA-DWD-2010R; Junghänel
et al., 2017) was compiled by the German Weather Service
and can be seen as the national standard with respect to de-
sign rainfall in Germany. It provides design rainfall estimates
for the whole of Germany for various return periods and
event durations. KOSTRA is based on station data for du-
rations below 24 h and the raster-based REGNIE (Regional-
isierte Niederschlagshöhen, Rauthe et al., 2013; in German
only) daily precipitation dataset for longer durations. The
temporal record covered by the data products (station and
REGNIE) is from 1951 to 2010. Design storms are locally
estimated for four different event durations (D = 15 min, 1 h,
12 h and 72 h) by applying a two-parameter GEV distribution
to the event data. Design storms for other durations are inter-
polated from these four durations. In order to map the data
to Germany, the local design rainfall estimates are spatially
interpolated to a grid on the scale of about 8.2km× 8.2 km.
It has however to be noted that in the case of the station data
used for the durations below 24 h, only a very limited number
of stations (only 56 stations cover the whole period; 94 sta-
tions cover the period after 1961) are available for Germany.

2.2.2 BW-Stat

Due to the limited spatial resolution of KOSTRA, an addi-
tional station-based dataset (available on 1km× 1 km) has

been recently compiled for the federal state of Baden Würt-
temberg (subsequently referred to as BW-Stat; Weiler et al.,
2016). This dataset provides the basis of the state’s envi-
ronmental agency for the management of heavy rainfall and
resulting pluvial floods in municipalities (LUBW, 2016; in
German only). Since the focus is on short- to medium-range
storm events dominated by convective events, only the ex-
tended summer season (April to October) was considered for
creating the BW-Stat dataset, representing the fact that the
extended summer season is the main season for these kind
of storm events (e.g., Ruiz-Villanueva et al., 2012; Haacke
and Paton, 2021). Nevertheless, the BW-Stat dataset repre-
sents design storm estimates for event durations from 5 min
to 24 h, since also heavy rain events of rather frontal nature,
characterized by longer time durations but still substantial
spatial variability, can occur between the beginning of April
and the end of October.

Like KOSTRA, this dataset is also based on station-
specific local design rainfall estimates which were spatially
interpolated using a multilinear regression approach. The
finer resolution of BW-Stat when compared to KOSTRA
could be achieved by incorporating data from more stations
and other precipitation networks than in KOSTRA into the
analyses. The length of the time series, however, varies be-
tween 4 and 55 years, with 90 % of the stations having 18
or fewer years of data. Also the temporal coverage differs
substantially between the stations, with some reaching back
until the early 1960s but the majority of the stations cov-
ering the period after 2000 up to the year 2014. In order
to set up a robust database at each of the locations despite
the large heterogeneity in the length of the station records,
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a ROI-based event pooling approach (similar to the one de-
scribed in this paper – see Sect. 2.3) including neighboring
stations at similar altitudes was used. However, due to the
limited station density and the fact that generally stations at
similar altitudes are pooled together, the horizontal distance
between the pooled stations is generally much larger than in
the RADKLIM case. Especially over the mountain regions
of the Black Forest, Swabian Jura and Alpine Foothills (see
Fig. 1a) the horizontal distance between the stations can be
up to 80 km. It further has to be mentioned that in the final
product all design rainfall values below/above the 5th/95th
percentile (spatially) have been set constant (to the 5th/95th
percentile) by the developers of the dataset in order to pre-
vent extremely low/high outliers.

In order to estimate design storms, the concept of partial
series was applied to identify heavy rainfall events, and a
three-parameter generalized Pareto distribution was applied.
For details see Sect. 2.3.3 below, since we use an identical
approach in order to make our dataset directly comparable
to the BW-Stat data. Also BW-Stat design storms are avail-
able for different return periods and event durations (5 min
to 24 h). To allow for a direct comparison with the radar-
based design storm estimates, the BW-Stat data were spa-
tially re-interpolated to the radar grid, using the multilinear-
regression-based interpolation process and station data of the
original product.

2.3 Data preparation and extreme value analysis

To estimate design storms with a return period of up to
100 years from the available 19 years of RADKLIM data,
we developed and applied a multi-step data processing pro-
cedure. The data preparation and subsequent extreme value
analysis (EVA) was conducted separately for four differ-
ent event durations D (15, 60, 360 and 1440 min). Unlike
KOSTRA, no interpolation was applied between the four
event durations. An overview of the complete data processing
chain is given in the form of a flow chart depicted in Fig. 2.
Below, we describe the data processing in more detail.

2.3.1 Calculating event precipitation and selection of
independent events

Starting with the original 5 min gridded RADKLIM data, we
first calculate cell-specific precipitation event sums PSUM for
each of the four durations D using the method of running
sums.

PSUM(t)=
∑ D

1t

i=0
P(t + i) ; with 1t = 5min (1)

From this dataset we then select the 350 largest and temporal
independent precipitation events. The number of 350 events
has been chosen to guarantee that the sample size is large
enough for the subsequent EVA, already knowing that not all
events will be included in the EVA. Temporal independence
of the individual events is ensured by selecting only events

that are at least 48 h apart. This time spacing is applied for
all durations, although for short-duration events this might
be a rather conservative definition of independence. For the
selection of the events we rank the precipitation events from
the largest to the lowest events and select the rank 1 event
from the full event dataset (see Eq. 2). Subsequent to this,
we remove all events from the dataset that are within a 48 h
range of the rank 1 event and select again the rank 1 event
from the remaining event dataset. This procedure is repeated
until we have identified 350 events for each of the radar cells
and the four durations.

PMAX(Xi, t)=

 max(PSUM(t)),Xi
...

max(PSUM(t)),Xi+1

 ;
with 1txi; x(i+1) ≥ 48h (2)

2.3.2 Regional subsampling

We assume a storm event with a return period of 100 years to
represent the upper end of our analysis. Therefore, we aim
for a target length of the underlying time series of about
100 years of rainfall data to meet the requirements for a pro-
found EVA, although we are aware of the fact that a 100-year
event is not necessarily present when analyzing 100 years of
data. Given the 19 years of RADKLIM data, we need to pool
the data from four additional radar cells for each radar cell
(cell of interest, COI) to statistically extent the RADKLIM
data series to a respective length (95 years).

Based on the ROI concept, we defined a specific sampling
area for each COI with a specific sampling probability for
each cell assigned. The definition of the COI-specific sam-
pling area has to fulfill two criteria. On the one hand, the
specific sampling area has to be located in close proximity
(in terms of horizontal as well as vertical distance) to the
COI in order to be spatially representative. On the other hand,
we also want to make sure that we sample additional rainfall
events or intensities not present in the COI, so we also have
to make sure that the sampling happens not too close to the
COI.

For each COI we first estimated a specific sampling area
based on the radial and vertical distance of an individual
radar cell to the COI. The underlying spatial sampling prob-
abilities SProb are separately assigned for the radial (circ) and
altitudinal (oro) sampling, each following a normal distribu-
tion N(µ,σ) and normalized to its respective maximum.

SProb(x)circ; oro =
f (x)circ; oro

max(f (x)circ; oro)
;

with f (x)circ; oro =N(µcirc; oro,σcirc; oro) (3)

The respective parameters underlying the sampling probabil-
ities are summarized in Table 1. With respect to the radial dis-
tance we set the maximum sampling radius (RMax) to 25 km
to somehow reflect the typical area impacted by a convective
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Figure 2. Flow chart visualizing the data processing chain to establish the RAD-BC dataset. The boxes describe the respective input/output
dataset of each data processing steps. Note that the full data processing chain was repeated for each of the four event durations (D = 15, 60,
360 and 1440 min) considered in this study.

cell in Germany (∼ 25 to 40 km for hourly events in the sum-
mer season in BaWu; Lengfeld et al., 2019) but still keep the
spatial representation of the sampling region for the COI.

In a subsequent step, we combine the radial- and vertical-
based sampling probabilities into a COI-specific, normalized
final sampling probability SProb.

SProb(x)=
f (x)

max(f (x))
;

with f (x)= SProb(x)circ+ SProb(x)oro (4)

For each COI we now randomly sample four additional cells
out of all cells with SProb > 0.8 (with 0.8 defining the thresh-
old probability PTresh). This sampling is conducted itera-

tively, and each time after a sample is drawn, SProb of all
cells in a radius of 4 km to the sampled cell is reduced to a
value below PTresh. This is done in order to prevent neighbor-
ing cells being sampled since this would limit the number of
additional rainfall events. A graphical illustration of the sam-
pling process for one specific COI is given in Fig. 1 (panels
bI to bIV).

After finishing the sampling process for a specific COI, we
merge the data of the 350 independent events of the five cells
(COI plus the additional four sampled cells) into an extended
set of 5× 350 events. Since after the merging the temporal
independence of the events is no longer guaranteed, we re-
peat the event selection procedure described in Sect. 2.3.1.
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Table 1. Parameters used for defining the COI-specific sampling probabilities as well as the respective parameter range used to estimate the
uncertainty related to the sampling parameters.

RAD-BC subsampling Sensitivity tests (parameter range)

µ σ RMax µ σ RMax

Circle (SProb circ) 9 km 6 km 25 km 6–12 km 3–9 km 15–35 km
Altitude (SProb oro) Altitude of COI∗ 50 m – Altitude of COI∗ 35–65 m –

PTresh 0.8 0.65–0.95

∗ Note that for all COI with an altitude above 1150 m (∼ 70 cells), µ was set to 1150 m instead of the COI altitude to enhance the number of
cells available for sampling.

The resulting dataset of 350 independent events for a spe-
cific COI is then used as input data for the subsequent EVA
and bias correction.

Since we allow for random sampling out of all cells with
SProb > PTresh, repeating the sampling process will likely re-
sult in a different set of sampled cells for a given COI. Hence,
it is possible to follow an ensemble approach for the sam-
pling to be able to quantify the sampling uncertainty. Fol-
lowing this, we repeat the sampling process for each COI 10
times. However, to minimize the effect of duplicated samples
(cells) in the individual ensemble members at a given COI
and therefore maximize the effective ensemble size, only the
five ensemble members with the lowest number of cell dupli-
cates at each COI are selected.

Ensxi =min(Ensxi ∈ [Ensxi , . . .,Ensxj ]) (5)

It has to be noted that the regional subsampling is not adapted
for the four event durations. However, this does not imply
that the identical events are analyzed since the sampled cells
can contribute different numbers of events for each of the
event durations, depending on the actual rain amounts. The
main reason behind keeping the sampling process constant
is that we wanted to make sure that any change in the spa-
tial patterns of the design storms between the different event
durations is not affected by the sampling process but by the
rainfall data themselves.

In order to support the choice of the underlying sampling
parameters µ, σ , RMax and PTresh, we analyzed the relative
contribution of each sampled cell to the final dataset and the
distance of the sampled cells to the COI, as well as the ef-
fective ensemble size (see Fig. S1 in the Supplement, upper
panels). We find that for most parts of BaWu the effective en-
semble size is five. Also the frequency of occurrence as well
as the distance of the sampled cells to the COI is in close
proximity to what is theoretically expected.

2.3.3 Extreme value analysis

We follow the same approach as applied in Weiler et al.
(2016) to directly compare our data product with the BW-
Stat dataset, and it follows the guidelines for EVA given by
the German Association for Water, Wastewater and Waste

(DWA, 2012). As input data we use the set of 350 precip-
itation events for each duration generated through the re-
gional subsampling process. For each radar cell these events
reflect the maximum independent events of a data series of 95
(5× 19) artificial years. Each radar cell and each of the five
ensemble members is hereby treated as an individual station.
Although a time series of 95 years was generated, it has to be
kept in mind that the events are selected based on 19 years of
weather radar rainfall estimates only. Hence, the concept of
partial series (value over threshold concept) instead of annual
series is applied to select the events for the EVA. The thresh-
old value varies from cell to cell and is estimated to be the
value that has a return period of 1 year using the approach of
plotting positions Tk for each element k of the partial series
(with k = 1 representing the maximum event for the specific
cell, duration and ensemble member within the 95 artificial
years).

Tk =

(
L+ 0.2
k− 0.4

)
·

(
M

L

)
, (6)

with M as the length of the time series in years (95 years in
our case). L is the total number of independent events finally
included into the EVA, which is in our case estimated by e
(Euler’s number) times the number of years, which equals
258 events.

For all 258 events with rainfall rates equal to or above the
threshold value, the generalized Pareto distribution (GPD;
see also, e.g., de Zea Bermudez and Kotz, 2010, for details
on the parameters of the GPD) is fitted in order to be able to
calculate precipitation rates for various return periods. The
three (location, scale and shape) parameters describing the
GPD are estimated using the L-moment parameter estima-
tion method. Note that the estimation of the GPD parameters
is done individually for each event duration, radar cell and
ensemble member. Also the application of the GPD and the
fitting process is similar to the approach used for the genera-
tion of the BW-Stat dataset and enables the direct comparison
between our dataset and the BW-Stat estimates.
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2.3.4 Bias correction of RADKLIM data

As mentioned in the Introduction, rainfall estimates from
weather radar are known to frequently underestimate the
magnitude of extreme rainfall events when compared to sta-
tion data (e.g., Schleiss et al., 2020). This is usually caused
by the fact that radar measurements represent an integrated
measurement of 1 km× 1 km, while station data are a point
measurement, but other effects like an underestimation of
high-intensity rainfall estimates using fixed Z–R relations
for typical convective and stratiform events may also play a
role (e.g., Thorndahl et al., 2014). In order to compensate for
such structural biases, we decided to match the magnitude
of 1-year design storms of the BW-Stat dataset and the radar
data. The decision to base the correction on the location pa-
rameter (which can be taken as a proxy for a 1-year event) is
motivated by the fact that also the time series of the stations
underlying the BW-Stat dataset are rather short themselves
(see Sect. 2.2.2). While the location parameter can still be
derived in a rather robust manner in both datasets, the scale
and especially the shape parameters would be more affected
by the regional subsampling applied.

To achieve this match of the location parameter of the two
datasets, a quantile mapping (QM) approach (e.g., Cannon et
al., 2015) was applied. The basic principle behind quantile
mapping is that the cumulative frequency distribution func-
tions (CFDs) of the two datasets are equalled via a transfer
function.

x̂rad = F
−1
stats {Frad [xrad]} (7)

The major advantage of the QM approach is that it cor-
rects the bias for the whole CFD but keeps the respective
spatial pattern of the data. For each station within the analy-
sis region, we select the location parameter of the closest four
radar cells. The respective spatial CFDs are calculated for all
stations and their corresponding cells for each duration and
ensemble member separately. The transfer function between
the two CFDs is estimated on the basis of 100 discrete bins
and is then applied to the CFD of the location parameter of
the full radar dataset (again separately for each duration and
ensemble member).

2.3.5 Calculation of design storms and uncertainty
estimate

All radar-based design storms are calculated based on the
corrected location parameter; however the shape and scale
parameters of the GPD have not been corrected in order
to keep the consistency within the data. The design storm
estimates from bias-corrected weather-radar-based GPD pa-
rameters is referred to as RAD-BC, whereas the non-bias-
corrected version is named RAD.

In order to estimate the uncertainty of the estimated de-
sign storms of RAD-BC, we apply a twofold uncertainty es-
timation. First we quantify the uncertainty related to the spa-

tial subsampling via the application of an ensemble approach
caused by the five-member ensemble generated in the sam-
pling process. Second, we can estimate the uncertainty of the
EVA parameter fitting. This is done by applying a classical
bootstrapping method for each duration, cell and ensemble
member to generate 1000 random samples of the events iden-
tified for the extreme value statistics. This results in a final
total ensemble of 5000 parameter estimates for each cell and
duration, hence allowing confidence intervals to be explicitly
assigned to the estimated design storms. The advantage of
the chosen approach is that it allows us to eventually sepa-
rate between the uncertainty range resulting from the spatial
pooling and the parameter fitting. While the latter is repre-
sented by the full range of all 5000 members, the uncertainty
related to the pooling can be estimated by the span within the
five ensemble members.

3 Results

3.1 Bias correction

The impact of the quantile-based correction of the location
parameter is depicted in the form of spatial CFDs in Fig. 3.
While the uncorrected radar data substantially underestimate
the 1-year design storms, the bias-corrected version mim-
ics (by design) the station data almost perfectly when only
the grid cells representing station points are included (upper
row). Considering all of BaWu, the comparison between in-
terpolated station data and bias-corrected radar data leads to
slightly larger differences (bottom row), also partly resulting
from the assumptions behind the spatial interpolation of the
station data. It has to be noted that both BW-Stat and RAD-
BC estimates still show substantially lower rain rates for the
1-year design storms than the KOSTRA reference dataset,
for most parts of the distribution. Besides the methodologi-
cal differences of the station-based datasets (see Sect. 2.2) the
overestimation of extremes in the case of shorter event du-
rations can also be attributed to the lower spatial resolution
of KOSTRA. Linked to this is also the substantially lower
variability of KOSTRA, when compared with the other two
datasets.

What should be kept in mind is the fact that the applied
bias correction does not have the same effect for longer return
periods. Correcting 1-year design storms only means that a
certain rain amount is added to all events included in the
EVA; hence, the relative contribution of the bias correction
decreases for less frequent design storms (see the differences
between RAD and RAD-BC in Fig. 5).

3.2 Comparison of design storms

The spatial patterns of a 100-year design storm for four dif-
ferent selected event durations (15, 60, 360 and 1440 min)
for the two station-based reference datasets (KOSTRA, BW-
Stat) as well as for the bias-corrected and resampled RAD-
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Figure 3. Spatial cumulative frequency distributions (CFDs) of the location parameter for four different event durations when comparing
stations and radar data at the location of stations only (upper row) and integrated over the whole of BaWu (bottom row). The dotted blue
lines in the bottom row represent the range of the five ensemble members (sampling uncertainty only, no bootstrapping).

KLIM dataset (RAD-BC) are depicted in Fig. 4. Addition-
ally, the absolute difference between BW-Stat and RAD-BC
datasets is depicted. Note that the RAD-BC dataset repre-
sents the ensemble mean of the five individual sample prod-
ucts and that the data are spatially smoothed with a 3 by 3 cell
filter to avoid single outliers. For comparison we compiled
the identical figure for a 1-year design storm (see Fig. S2 in
the Supplement).

In the KOSTRA dataset orographic induced patterns with
elevated storm intensities along the Black Forest mountains
and the Swabian Jura as well as the Alpine foothills (see
Fig. 1a for regional specification) in the far southeast can be
seen for short- and long-duration events. This rather stabile
pattern can be expected since the z coordinate was incorpo-
rated in the interpolation of the station data (Junghänel et
al., 2017). Further, the 360 min design storm in KOSTRA
is interpolated from the 60 min and 12 h (not shown) de-
sign storms, and also the 24 h design storm represents an
interpolated value (interpolation between 12 and 72 h de-
sign storms). In BW-Stat, the Black Forest region is also

characterized by high-intensity design storms for both short-
and long-duration events. However, especially for events
with longer duration, BW-Stat shows very dominant, high-
intensity design storms in a region located between Lake
Constance and the Black Forest, usually known to represent
rather a rain shadow area due to fronts moving in from the
west (see Fig. 1c).

The spatial patterns in the RAD-BC dataset differ quite
substantially from the patterns of the two station-based ref-
erence datasets and also show a distinct pattern change be-
tween short- and long-duration events. While the spatial pat-
terns of the 15 and 60 min 100-year design storms show no
relation to the orography or orographically induced rainfall
patterns (but a slight north–south gradient), it changes in the
case of the 1440 min 100-year design storm events to a pic-
ture very similar to the April to October mean rainfall distri-
bution. This finding is supported by a cross-correlation anal-
yses between the RAD-BC data and the mean rainfall esti-
mates from REGNIE, which reveals an increase in the corre-
lation coefficient from r = 0.25 (15 min events) to r = 0.75
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Figure 4. Magnitude of design storms with a return rate of 100 years for four different event durations (15, 60, 360 and 1440 min, depicted in
rows) and three different datasets (KOSTRA, BW-Stat, RAD-BC, depicted in columns). Additionally, the difference between BW-Stat and
RAD-BC is depicted (right column).

(1440 min events). In the case of BC-Stat, r remains below
0.6. The spatial pattern of RAD-BC design storms is much
more in line with what is expected from the underlying pro-
cesses, representing pure convection triggered, small-scale
features for short-duration events and more organized larger-
scale frontal systems for longer-duration events (Lengfeld et
al., 2019; Kaiser et al., 2021). Interestingly, the spatial pat-
tern in the BW-Stat dataset follows this behavior in the case
of a 1-year design storm (similar to RAD-BC, see Fig. S2).

This can be attributed to the fact that the 1-year design storm
is less affected by the spatial pooling than the 20- or even
100-year design storms. Since the spatial pooling in the BW-
Stat dataset is based on a limited number of stations, the un-
derlying sampling area can be rather large. In combination
with the spatial interpolation, this leads to the effect that for
low-frequency design storms, large areas of BaWu are influ-
enced by events of single stations.
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Figure 5. Spatial cumulative frequency distributions (CFDs) of the magnitude of 20-year (upper row) and 100-year (bottom row) design
storms for four different event durations and different datasets. The blue shaded range depicts the ensemble uncertainty (5th and 95th
percentile of the range from the 1000 bootstraps for each of the five ensemble members). The dotted blue lines in the bottom row represent
the range of the five ensemble members (sampling uncertainty, no bootstrapping) only. For comparison we added the interpolation error
(RMSE) – red shaded area of the underlying stations (dotted red line) of the BW-Stat dataset. Note that for the RAD, RAD-BC, BW-Stat
(interpolated) and KOSTRA dataset, the CFDs are calculated on the gridded data (with fewer grid boxes in KOSTRA), while for the BW-Stat
(Stations) data, the stations have been binned in 10 bins. In the latter dataset all stations are included in the CFD while in the gridded BW-Stat
no values above/below the 5th/95th percentile are available.

With respect to the absolute values, the direct compari-
son of BW-Stat and RAD-BC design storm intensities reveals
that there are regions with substantially larger intensities in
the RAD-BC dataset (e.g., especially in the far southeast for
the 1440 min events) due to the difference in the spatial pat-
terns. Also, in the case of the 1-year design storms (Fig. S2)
RAD-BC shows generally larger intensities than present in
BW-Stat over the mountainous regions, although this is most
probably largely affected by the fact that in BW-Stat all val-
ues above the 95th percentile were set to the respective per-
centile value.

However, when integrated over the whole study region
RAD-BC shows lower rainfall magnitudes for 20- and 100-
year design storms than the two station-based reference
datasets. In Fig. 5 we depict the spatial CFD of the differ-
ent datasets for the different durations and two (20- and 100-

year) return periods. To illustrate the effect of the bias correc-
tion, the non-bias-corrected radar dataset (RAD; green line)
is also shown. Additionally, the respective confidence inter-
val for the RAD-BC dataset (see Sect. 3.3 below) is included.

Apart from the very high and low percentiles, the ensem-
ble mean of the RAD-BC storm events is about 5 to 15 mm
lower than the respective rain rate of BW-Stat. Nevertheless,
the uncertainty range spanned within the two station-based
reference datasets is quite large itself. While there are cases
where the KOSTRA dataset lies within the confidence inter-
val of the RAD-BC dataset (e.g., 100-year design storm with
duration of 15 min), the difference to KOSTRA is sometimes
even larger than to BW-Stat (e.g., 20-year design storm with
duration of 360 min). For the BW-Stat data we additionally
can estimate the error (RMSE) resulting from the spatial in-
terpolation using a cross-validation approach directly at the
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location of the stations (light-red band). Although the RAD-
BC dataset is mostly at the lower end of the uncertainty range
from the spatial interpolation, it becomes obvious that the un-
certainty from the spatial interpolation of BW-Stat is an im-
portant factor that can be circumvented when using a spatial
rainfall product.

3.3 Uncertainty of design storms

In order to be able to quantify the uncertainties for the newly
developed RAD-BC dataset we conducted a twofold uncer-
tainty analysis based on an ensemble-based cell-sampling ap-
proach and classical bootstrapping for the identification of
parameter uncertainty. The confidence interval in Fig. 5 is
defined by the 5th and 95th percentile of the large data sam-
ple generated by 1000 bootstraps runs for each of the five en-
semble members representing a combination of both sources
of uncertainty. The confidence band of the CFD spans about
5 mm in the case of 20-year design storms and about 10 mm
in the 100-year case. The range of the five ensemble mem-
bers only (without bootstrapping) is defined by the stippled
line and accounts for a large amount of the total uncertainty
band. This demonstrates the importance of the ensemble-
based sampling approach.

The spatial patterns of the 5th and 95th percentile are
rather similar to the patterns of the ensemble mean (see
Fig. 6), and the uncertainty range of the respective rain rate is
for most regions between 15 % and 20 % in the case of 60 min
events and between 10 % to 15 % in the case of 1440 min
events, with relatively larger ranges in regions with lower val-
ues for the mean storm intensity. However, there are certain
spots (e.g., the northern parts of the Black Forest in the case
of a 100-year 1440 min design storm – framed with a dashed
square in Fig. 6 – or various smaller regions in both exam-
ples) that have a slightly larger uncertainty range, although
the mean storm intensities are large as well. In order to re-
veal the uncertainty resulting from the ensemble sampling,
we highlighted regions with a relatively large (> 65 % of the
range) ensemble spread. Generally, the contribution of the
sampling uncertainty is larger in regions with a lower overall
uncertainty range. However, there are various spots that are
dominated by the sampling uncertainty that have a relatively
larger overall uncertainty range. An example for this is the
previously mentioned enhanced uncertainty in the northern
Black Forest region that seems to be substantially influenced
by sampling uncertainty in its eastern parts. This can be seen
as an indication for a rather inhomogeneous pool of heavy
rainfall events sampled in this region.

On top of these directly quantifiable uncertainties there is
also the uncertainty related to the choice of the sampling pa-
rameters underlying the regional pooling. In the lower part of
Fig. S1 we compare the mean rainfall sum of the maximum
10 events (R10Max) of the original (RAD) as well as the
spatially resampled but not bias-corrected (RAD_resampled)
radar dataset to the data of a multi-parameter ensemble that

has been generated by systematically varying the sampling
parameters (see right part of Table 1 for the parameter range).
While the sampling parameters underlying RAD-BC main-
tain the balance between adding new events but still reflect
the spatial distribution of RAD, increasing the potential sam-
pling area (e.g., via lowering PTresh or increasing µ, σ , or
RMax) substantially increases R10Max, but the spatial pat-
terns start to blur. Selecting the parameters in a way that the
potential sampling area is rather small, the spatial patterns are
closer to RAD; however, the increase in R10Max is smaller.
Additionally, in this case the effective ensemble size is re-
duced (not shown), since the number of duplicated cells per
COI in the different ensemble members is higher.

4 Discussion

One of the difficulties of our study is that there is no clas-
sical validation dataset available. Although we include two
station-based gridded design storm products in our analysis,
they differ themselves quite largely in both absolute amounts
and spatial patterns. Given the methodological differences of
the two datasets, with different number and time coverage
of stations, different extreme value statistics and different
spatial interpolation methods being the three most important
features, these substantial differences between the two refer-
ence dataset are not surprising. Especially the different time
periods covered by the station data can be a serious source
of uncertainty, given the high temporal variability in the oc-
currence of heavy rainfall events. A recent study based on
RADKLIM revealed that the year 2018 was characterized as
a year with an exceptional number of heavy rainfall events
in Germany (Lengfeld et al., 2021), but no general trend in
extreme rainfall events could be identified on the basis of the
radar period since 2001. These events from the year 2018,
however, are only included in the RAD-BC dataset but not in
BW-Stat or KOSTRA.

The major added value of the RAD-BC dataset is the pos-
sibility to derive spatially homogenized heavy rainfall esti-
mates for events with a return period of up to a 100 years.
A comparison with the station-based spatially interpolated
reference products revealed that the spatial patterns of the
design storms for the four different durations fit the theoreti-
cally expected spatial patterns much better than in the inter-
polated station products. In KOSTRA, e.g., the stability of
the spatial patterns of design storms of different event du-
rations can partly be contributed to the interpolation of val-
ues between different event durations (see Sect. 2.2.1). While
this might be beneficial from an engineering perspective, we
explicitly calculated the design storms separately for all du-
rations in order to preserve the spatial patterns of the under-
lying radar product. In BW-Stat, the subsampling of stations
seems to have a substantial impact on the sequence of spatial
patterns for the different durations (see Sect. 3.2)
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Figure 6. Ensemble mean (left column) and the 5th and 95th percentiles (two middle columns) of a 100-year design storm based on two
durations (60 min events – upper row; 1440 min events – bottom row). Additionally, the ensemble uncertainty range (difference between the
95th and the 5th percentile of the full (bootstrapping and sampling) 5000-member ensemble) is depicted (right column). Regions with a large
(> 65 % of the range) contribution of the sampling uncertainty are marked with red. The dashed black square in the panel in the lower right
defines the northern Black Forest region discussed in the text.

Although the spatial patterns are identified to be more re-
liable in RAD-BC, the general tendency to underestimate the
magnitude of design storms is something which should be
examined in further detail. Given the methodological differ-
ences in the datasets, a direct one-to-one comparison is only
possible (with certain limitations) with the BW-Stat data.
Comparing the non-bias-corrected scale and shape parame-
ters of the GPD fitted to BW-Stat and to an arbitrary ensem-
ble member of RAD-BC over all of BaWu (Fig. 7, left pan-
els) reveals that for the short durations (15 and 60 min) the
scale parameter is lower in the RAD-BC data. For the long
(1440 min) events, however, the deviations in the magnitude
of the design storms seem to result mainly from the shape
parameter, which is lower in RAD-BC. This finding again
can partly be attributed to the large contribution of single
stations to the most extreme events of BW-Stat as a conse-
quence of the subsampling over relatively large regions. This
underestimation of the scale/shape parameters in RAD-BC
for short/long durations is confirmed when looking at vari-
ous topographic sub-regions (Fig. 7, other panels) and other
ensemble members (not shown) of the RAD-BC dataset.

The lower values for the scale/shape parameters of RAD-
BC can partly also be attributed to the fact that for high rain-
fall intensities, radar data are known to underestimate rain-
fall amounts due to the fixed Z–R relationship not reflecting
changes in raindrop characteristics with increasing rainfall
intensities (e.g., Schleiss et al., 2020). A recent comparison

of the RADKLIM data to station data further revealed that
fewer heavy rainfall events are detected in RADKLIM than
in the station data. The average rainfall amount of a heavy
rainfall day (> 20 mm of rainfall) is, however, almost identi-
cal (Kreklow et al., 2020).

The general underestimation of heavy rain events in RAD-
KLIM is only partly corrected for by the applied bias correc-
tion of the location parameter since it is an additive correc-
tion which corrects more frequent events relatively stronger
than the less frequent events. Another approach that not only
impacts the location but also the scale and shape parameters
of the GPD is to apply the bias correction in a multiplica-
tive manner. A grid-specific multiplication factor can be es-
timated on the basis of the uncorrected and corrected 1-year
design storms. Applying the resulting multiplication factor to
the data would also lead to a substantial increase in the rain-
fall amounts for the less frequent events (see Fig. S3 in the
Supplement), but the spatial patterns of the RADKLIM data
would be preserved. Nevertheless, one has to keep in mind
that a multiplicative correction is disrupting the homogeneity
of the sampled events of the radar data, adding much higher
rainfall amounts to the more intense rainfall events than to
the less extreme events. It is also questionable if a correction
factor derived from the correction of 1-year events can be ap-
plied to events with a much lower frequency. Further it has to
be kept in mind that the BW-Stat data themselves are an in-
direct product with events pooled from surrounding stations
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Figure 7. Spatial cumulative frequency distributions (CFDs) of the scale (upper row) and shape (bottom row) parameter for the BW-Stat and
RAD-BC datasets, when comparing stations and radar data at the location of all stations (left column) and for three different subsets filtered
by the altitude of the respective station locations.

with similar altitude but sometimes rather large distances. In
combination with the substantial uncertainty through the in-
terpolation process, this itself could lead to a biased picture
in the magnitude of the derived design storms in BW-Stat.

While the location parameter still can be seen as rather ro-
bust, it is highly questionable if the derived scale and shape
parameters of BW-Stat could be used with the same reliabil-
ity for the bias correction of the radar data. Figure 7 further
reveals that including only the scale parameter as an addi-
tional parameter into the bias correction might improve the
representation of short-duration events in RAD-BC but will
not reduce the remaining bias for the 1440 min events. Look-
ing at the spatial CFD of the BW-Stat scale parameter at
higher elevations (upper right panel in Fig. 7), however, re-
veals a rather inhomogeneous CFD regime most pronounced
for the long-duration events. This again indicates the weak-
nesses of the regional subsampling in BW-Stat due to the low
station density. Using this as the reference baseline for the
QM would impose a large regional heterogeneity on the radar
data.

A promising way to proceed without the limitations from
the regional subsampling of the BW-Stat data could be to
only use a small subset of stations that have a reasonable
long record. Based on this subset of data, a frequency- and
duration-specific correction function could be developed,
which could then be regionally applied to the radar data.
However, for BaWu there are only two stations with high
temporal precipitation records available with a data series
length of more than 50 years (Weiler et al., 2016) posing
a major challenge for this approach. Another possible ap-
proach could be to base the correction on the underlying
observed rainfall events themselves instead of correcting the
parameters of the GPD. This would have the benefit that the
high-intensity events would be directly corrected and not de-
rived based on the correction factors estimated for less in-
tense events. However, the different time periods covered by
the station and radar data limit the number of stations and
events that could be included in such an analyses.

On top of applying bias correction methods, using a
weather radar product that is compiled at a higher spatial
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resolution and additionally uses an adapted calibration pro-
cedure that does not necessarily distort the radar signal to
match the station record (e.g., Weiler et al., 2019) could also
be a promising approach. While a higher spatial resolution
is expected to enhance the measured rainfall amounts due
to the lower integration areas, the adapted calibration pro-
cedure has the positive aspect that high rainfall intensities
captured by the radar are not reduced by nearby stations that
are not affected by the heavy rainfall event itself. However, a
real benefit would only be achieved if the deviations between
rainfall estimates of weather radar and station data are not in-
creasing with rainfall intensities, which could be reached by
a non-static application of the Z–R relation in the weather
radar product.

5 Conclusions

We present an ROI-based approach to prolongate a 19-year
climatological weather radar dataset of rainfall estimates in
order to enhance its usability for the development of region-
specific design storm events. The established method has var-
ious positive aspects. The main improvement is the develop-
ment of a spatially homogeneous dataset that allows for the
calculation of extreme events without spatial interpolation,
which often is the main error source when building a regional
dataset based on station data. Moreover, the chosen sampling
approach allows the sampling region to be controlled based
on physical aspects while preventing artificial circular struc-
tures previously reported in literature (e.g., Goudenhoofdt et
al., 2017). By the combination of an ensemble-based sam-
pling approach and a bootstrapping-based parameter estima-
tion, an explicit designation of associated uncertainty ranges
is possible, representing major added value for the applica-
tion by practitioners.

Nevertheless, the current version of the RAD-BC data
preparation method still has some shortcomings that need
to be addressed in the future. While the applied bias correc-
tion approach substantially improved the outcome and can be
classified as a robust method, the persisting deviation to the
two station-based reference datasets is still something that
has to be clarified in the near future. To improve the com-
patibility with the KOSTRA dataset, it might be worthwhile
applying the KOSTRA EVA to the resampled event database
which underlies RAD-BC. Furthermore, the previously pro-
posed training of the RAD-BC dataset on some high-quality
long-term temporally highly resolved station data could be a
way forward to further enhance the credibility of the RAD-
BC dataset.

Data availability. RADKLIM, KOSTRA and REGNIE
data are freely available via the open-access Climate
Data Center of the German Weather Service (RADKLIM:
https://opendata.dwd.de/climate_environment/CDC/grids_

germany/5_minutes/radolan/reproc/2017_002/bin/, DWD, 2022a;
KOSTRA: https://opendata.dwd.de/climate_environment/CDC/
grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_
DWD_2010R/, DWD, 2022b; REGINE: http://opendata.dwd.de/
climate_environment/CDC/grids_germany/daily/regnie/, DWD,
2022c). The BW-Stat data were compiled for the State Office
for the Environment, Measurements and Nature Conservation
of the Federal State of Baden-Württemberg (LUBW) and are
currently only available for the state’s activities with respect to
the management of heavy rainfall and resulting pluvial floods in
municipalities (LUBW, 2016; in German only). Also the RAD-BC
dataset is currently not freely available. For research purposes,
however, access to the data can be granted via direct contact to the
authors of this study.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-5069-2022-supplement.

Author contributions. AH and MW jointly designed the experi-
ment. All data analyses were conducted by AH. The interpretation
of the results as well as the drafting of the manuscript was con-
ducted jointly by AH and MW.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Hydrology and Earth System Sciences. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Marc Schleiss and the two anony-
mous reviewers for their constructive comments which helped to
substantially improve the manuscript.

Financial support. This work was partly conducted within the
AVOSS project (funded by the Federal Ministry of Education
and Research (BMBF) in the frame of the WaX program) as well
as within the research activities on heavy rainfall at the Chair of
Hydrology, University of Freiburg (funded by the State Office
for the Environment, Measurements and Nature Conservation
of the Federal State of Baden-Württemberg (LUBW) and the
Regierungspräsidium (governing council) Stuttgart).

This open-access publication was funded by the University
of Freiburg.

Review statement. This paper was edited by Nadav Peleg and re-
viewed by Marc Schleiss and two anonymous referees.

Hydrol. Earth Syst. Sci., 26, 5069–5084, 2022 https://doi.org/10.5194/hess-26-5069-2022

https://opendata.dwd.de/climate_environment/CDC/grids_germany/5_minutes/radolan/reproc/2017_002/bin/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/5_minutes/radolan/reproc/2017_002/bin/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/
http://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/regnie/
http://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/regnie/
https://doi.org/10.5194/hess-26-5069-2022-supplement


A. Hänsler and M. Weiler: Enhancing usability of weather radar data for analysis of precipitation extremes 5083

References

Burn, D. H.: Evaluation of regional flood frequency analysis with
a region of influence approach, Water Resour. Res., 26, 2257–
2265, 1990.

Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of
GCM Precipitation by Quantile Mapping: How Well Do Methods
Preserve Changes in Quantiles and Extremes?, J. Climate, 28,
6938–6959, 2015.

Charras-Garrido, M. and Lezaud, P.: Extreme value analysis: an in-
troduction, Journal de la Société Française de Statistique, 154,
66–97, 2013.

Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-
stationary extreme value analysis in a changing climate, Climatic
Change, 127, 353–369, 2014.

de Zea Bermudez, P. and Kotz, S.: Parameter estimation of the gen-
eralized Pareto distribution – Part I, J. Stat. Plan. Infer., 140,
1353–1373, 2010.

DWA: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer,
DWA: German Association for Water, Wastewater and Waste,
Hennef, Germany, ISBN 978-3-942964-28-9, 2012 (in German).

DWD: Index of /climate_environment/CDC/grids_germany/
5_minutes/radolan/reproc/2017_002/bin/, DWD [data set],
https://opendata.dwd.de/climate_environment/CDC/grids_
germany/5_minutes/radolan/reproc/2017_002/bin/ (last access:
6 October 2022), 2022a.

DWD: Index of /climate_environment/CDC/grids_germany/ re-
turn_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/,
DWD [data set], , (last access: 6 October 2022), 2022b.

DWD: Index of /climate_environment/CDC/grids_germany/daily/
regnie/, DWD [data set], http://opendata.dwd.de/climate_
environment/CDC/grids_germany/daily/regnie/ (last access:
6 October 2022), 2022c.

EC: Directive 2007/60/EC of the European Parliament and of the
Council of 23 October 2007 on the assessment and management
of flood risk, Official Journal of the European Union, L 288, 27–
34, 2007.

Eldardiry, H. and Habib, E.: Examining the Robustness of a Spatial
Bootstrap Regional Approach for Radar-Based Hourly Precipita-
tion Frequency Analysis, Remote Sens.-Basel, 12, 3767, 2020.

Gaál, L. and Kyselý, J.: Comparison of region-of-influence methods
for estimating high quantiles of precipitation in a dense dataset
in the Czech Republic, Hydrol. Earth Syst. Sci., 13, 2203–2219,
https://doi.org/10.5194/hess-13-2203-2009, 2009.

Goudenhoofdt, E., Delobbe, L., and Willems, P.: Regional fre-
quency analysis of extreme rainfall in Belgium based on
radar estimates, Hydrol. Earth Syst. Sci., 21, 5385–5399,
https://doi.org/10.5194/hess-21-5385-2017, 2017.

Haacke, N. and Paton, E. N.: Analysis of diurnal, sea-
sonal, and annual distribution of urban sub-hourly to hourly
rainfall extremes in Germany, Hydrol. Res., 2, 478–491,
https://doi.org/10.2166/nh.2021.181, 2021.

Haberlandt, U. and Berndt, C.: The value of weather radar data for
the estimation of design storms – an analysis for the Hannover
region, P. Int. Ass. Hydrol. Sci., 373, 81–85, 2016.

Junghänel, T., Ertel, H., and Deutschländer, T.: KOSTRA-DWD-
2010R – Bericht zur Revision der koordinierten Starkregenre-
gionalisierung und -auswertung des Deutschen Wetterdienstes
in der Version 2010, https://www.dwd.de/DE/leistungen/kostra_

dwd_rasterwerte/download/bericht_revision_kostra_dwd_2010.
pdf (last access: 6 October 2022), 2017.

Kaiser, M., Günnemann, S., and Disse, M.: Spatiotemporal anal-
ysis of heavy rain-induced flood occurrences in Germany us-
ing a novel event database approach, J. Hydrol., 595, 125985,
https://doi.org/10.1016/j.jhydrol.2021.125985, 2021.

Kreklow, J., Tetzlaff, B., Burkhard, B., and Kuhnt, G.: Radar-Based
Precipitation Climatology in Germany – Developments, Uncer-
tainties and Potentials, Atmosphere, 11, 217, 2020.

Lengfeld, K., Winterrath, T., Junghänel, T., Hafer, M., and Becker,
A.: Characteristic spatial extent of hourly and daily precipitation
events in Germany derived from 16 years of radar data, Meteorol.
Z., 28, 363–378, 2019.

Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A.,
Flamig, Z., and Gourley, J.: Use of radar data for character-
izing extreme precipitation at fine scales and short durations,
Environ. Res. Lett., 15, 085003, https://doi.org/10.1088/1748-
9326/ab98b4, 2020.

Lengfeld, K., Walawender, E., Winterrath, T., and Becker, A.:
CatRaRE: A Catalogue of radar-based heavy rainfall events in
Germany derived from 20 years of data, Meteorol. Z., 30, 469–
487, https://doi.org/10.1127/metz/2021/1088, 2021.

LUBW: Leitfaden Kommunales Starkregenrisikomanagement in
Baden-Württemberg, ISBN 978-3-88251-391-2, 2016.

Maraun, D.: Bias Correcting Climate Change Simulations – a Criti-
cal Review, Current Climate Change Reports, 2, 211–220, 2016.

Overeem, A., Buishand, T. A., and Holleman, I.: Extreme rain-
fall analysis and estimation of depth-duration-frequency
curves using weather radar, Water Resour. Res., 45,
https://doi.org/10.1029/2009WR007869, 2009.

Panziera, L., Gabella, M., Zanini, S., Hering, A., Germann, U.,
and Berne, A.: A radar-based regional extreme rainfall anal-
ysis to derive the thresholds for a novel automatic alert sys-
tem in Switzerland, Hydrol. Earth Syst. Sci., 20, 2317–2332,
https://doi.org/10.5194/hess-20-2317-2016, 2016.

Pöschmann, J. M., Kim, D., Kronenberg, R., and Bernhofer, C.:
An analysis of temporal scaling behaviour of extreme rainfall in
Germany based on radar precipitation QPE data, Nat. Hazards
Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-
21-1195-2021, 2021.

Rabiei, E. and Haberlandt, U.: Applying bias correction for merging
rain gauge and radar data, J. Hydrol., 522, 544–557, 2015.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz A., and
Gratzki, A.: A Central European precipitation climatology –
Part I: Generation and validation of a high-resolution grid-
ded daily data set (HYRAS), Meteorol. Z., 22, 235–256,
https://doi.org/10.1127/0941-2948/2013/0436, 2013.

Requena, A. I., Burn, D. H., and Coulibaly, P.: Pooled frequency
analysis for intensity–duration–frequency curve estimation, Hy-
drol. Process., 33, 2080–2094, 2019.

Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume,
E., and Ehret, U.: Extreme flood response to short-duration con-
vective rainfall in South-West Germany, Hydrol. Earth Syst.
Sci., 16, 1543–1559, https://doi.org/10.5194/hess-16-1543-2012,
2012.

Saltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B.,
Becker, A., Hollmann, R., Urban, B., Heistermann, M., and Tas-
sone, C.: An Overview of Using Weather Radar for Climatologi-

https://doi.org/10.5194/hess-26-5069-2022 Hydrol. Earth Syst. Sci., 26, 5069–5084, 2022

https://opendata.dwd.de/climate_environment/CDC/grids_germany/5_minutes/radolan/reproc/2017_002/bin/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/5_minutes/radolan/reproc/2017_002/bin/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/
http://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/regnie/
http://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/regnie/
https://doi.org/10.5194/hess-13-2203-2009
https://doi.org/10.5194/hess-21-5385-2017
https://doi.org/10.2166/nh.2021.181
https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/download/bericht_revision_kostra_dwd_2010.pdf
https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/download/bericht_revision_kostra_dwd_2010.pdf
https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/download/bericht_revision_kostra_dwd_2010.pdf
https://doi.org/10.1016/j.jhydrol.2021.125985
https://doi.org/10.1088/1748-9326/ab98b4
https://doi.org/10.1088/1748-9326/ab98b4
https://doi.org/10.1127/metz/2021/1088
https://doi.org/10.1029/2009WR007869
https://doi.org/10.5194/hess-20-2317-2016
https://doi.org/10.5194/nhess-21-1195-2021
https://doi.org/10.5194/nhess-21-1195-2021
https://doi.org/10.1127/0941-2948/2013/0436
https://doi.org/10.5194/hess-16-1543-2012


5084 A. Hänsler and M. Weiler: Enhancing usability of weather radar data for analysis of precipitation extremes

cal Studies: Successes, Challenges, and Potential, B. Am. Mete-
orol. Soc., 100, 1739–1752, 2019.

Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorn-
dahl, S., Nielsen, R., Ellerbæk Nielsen, J., Bozhinova, D.,
and Pulkkinen, S.: The accuracy of weather radar in heavy
rain: a comparative study for Denmark, the Netherlands, Fin-
land and Sweden, Hydrol. Earth Syst. Sci., 24, 3157–3188,
https://doi.org/10.5194/hess-24-3157-2020, 2020.

Thorndahl, S., Nielsen, J. E., and Rasmussen, M. R.: Bias adjust-
ment and advection interpolation of long-term high resolution
radar rainfall series, J. Hydrol., 508, 214–226, 2014.

Uboldi, F., Sulis, A. N., Lussana, C., Cislaghi, M., and Russo, M.:
A spatial bootstrap technique for parameter estimation of rainfall
annual maxima distribution, Hydrol. Earth Syst. Sci., 18, 981–
995, https://doi.org/10.5194/hess-18-981-2014, 2014.

Weiler, M., Steinbrich, A., and Stölzle, M.: Konsistente Grund-
lagendaten als Eingangsgröße für die in-stationäre 2-D hy-
draulische Starkregen – Gefährdungsanalyse, in: Leitfaden Kom-
munales Starkregenrisikomanagement in Baden-Württemberg,
Anhang 3: Methodische Grundlagen Oberflächenabflusswerte
Baden-Württemberg, ISBN 978-3-88251-391-2, 2016.

Weiler, M., Haensler, A., Zimmer, J., and Moser, M.:
Nutzung von Radardaten im Starkregenrisikomanagement
in Baden-Württemberg, Wasserwirtschaft, 109, 63–67,
https://doi.org/10.1007/s35147-019-0311-4, 2019.

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth,
A., Walawender, E., Weigl, E., and Becker, A.: Erstellung einer
radargestützten Niederschlagsklimatologie, ISBN 978-3-88148-
499-2, 2017.

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth,
A., Lengfeld, K., Walawender, E., Weigl, E., and Becker,
A.: RADKLIM Version 2017.002: Reprocessed quasi
gauge-adjusted radar data, 5 min precipitation sums (YW),
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002,
2018.

Zorzetto, E., Botter, G., and Marani, M.: On the emergence of
rainfall extremes from ordinary events, Geophys. Res. Lett., 43,
8076–8082, 2016.

Hydrol. Earth Syst. Sci., 26, 5069–5084, 2022 https://doi.org/10.5194/hess-26-5069-2022

https://doi.org/10.5194/hess-24-3157-2020
https://doi.org/10.5194/hess-18-981-2014
https://doi.org/10.1007/s35147-019-0311-4
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002

	Abstract
	Introduction
	Data and methods
	Radar-based rainfall estimates
	Station-based reference data
	KOSTRA
	BW-Stat

	Data preparation and extreme value analysis
	Calculating event precipitation and selection of independent events
	Regional subsampling
	Extreme value analysis
	Bias correction of RADKLIM data
	Calculation of design storms and uncertainty estimate


	Results
	Bias correction
	Comparison of design storms
	Uncertainty of design storms

	Discussion
	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

