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Abstract. The regionalization of hydrological model param-
eters is key to hydrological predictions in ungauged basins.
The commonly used multiple linear regression (MLR)
method may not be applicable in complex and nonlinear rela-
tionships between model parameters and watershed proper-
ties. Moreover, most regionalization methods assume lumped
parameters for each catchment without considering within-
catchment heterogeneity. Here we incorporated the Penman–
Monteith–Leuning (PML) equation into the Distributed Time
Variant Gain Model (DTVGM) to improve the mechanistic
representation of the evapotranspiration (ET) process. We
calibrated six key model parameters, grid by grid across
China, using a multivariable calibration strategy which in-
corporates spatiotemporal runoff and ET datasets (0.25◦;
monthly) as reference. In addition, we used the gradient
boosting machine (GBM), a machine learning technique, to
portray the dependence of model parameters on soil and ter-
rain attributes in four distinct climatic zones across China.
We show that the modified DTVGM could reasonably esti-
mate the runoff and ET over China using the calibrated pa-
rameters but performed better in humid rather than arid re-
gions for the validation period. The regionalized parameters
by the GBM method exhibited better spatial coherence rel-
ative to the calibrated grid-by-grid parameters. In addition,
GBM outperformed the stepwise MLR method in both pa-
rameter regionalization and gridded runoff simulations at a
national scale, though the improvement pertaining to water-
shed streamflow validation is not significant due to most of
the watersheds being located in humid regions. We also re-
vealed that the slope, saturated soil moisture content, and el-

evation are the most important explanatory variables to in-
form model parameters based on the GBM approach. The
machine-learning-based regionalization approach provides
an effective alternative to deriving hydrological model pa-
rameters from watershed properties, particularly in ungauged
regions.

1 Introduction

Hydrological modeling can provide a quantitative extrap-
olation or prediction of runoff and water balance (Beven,
2001; He et al., 2011), which serves as the basis for wa-
ter management for human livelihood, agriculture, industry,
and the environment (Hobeichi et al., 2019; Montanari et al.,
2013; Parajka et al., 2013b; Zhang et al., 2020). Hydrolog-
ical models often require streamflow and/or other observa-
tions to calibrate parameters (Beck et al., 2020). However,
it is difficult to parameterize a hydrological model at large
scales (e.g., from national to global) or remote regions due
to the sparse, or the lack of, observing stations. Under such
circumstances, attempts have been made to use reanalysis
datasets, not the observations, for model calibration and val-
idation (Bai et al., 2018b; Dembélé et al., 2020; Huang et al.,
2020; Immerzeel and Droogers, 2008; Zhang et al., 2020).
For example, Dembélé et al. (2020) developed a novel multi-
variate calibration framework on spatial patterns by combin-
ing streamflow with satellite datasets, including evapotran-
spiration (ET), soil moisture, and terrestrial water storage,
to parameterize a distributed hydrological model. Zhang et
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al. (2020) and Huang et al. (2020) demonstrated encourag-
ing potential in the calibration of hydrological models solely
against remotely sensed ET data (or bias-corrected remotely
sensed data) without the need for observed streamflow data
(i.e., the runoff-free calibration approach) to predict runoff
in ungauged basins. The current study attempted to use spa-
tiotemporal ET and runoff data for a grid-by-grid calibration
of a distributed hydrological model.

Hydrological models generally rely on regionalization
methods to tackle the predictions in ungauged basins (PUBs)
by transferring information from gauged to ungauged catch-
ments (He et al., 2011; Parajka et al., 2013b; Razavi and
Coulibaly, 2013). The regionalization of hydrological pa-
rameters generally includes three categories, namely simi-
larity based, regression based, and hydrological signatures
based (Guo et al., 2021). The similarity-based regionaliza-
tion presumes that the catchments with similar characteris-
tics have the same hydrological response, such as the spatial
proximity (Oudin et al., 2008; Parajka et al., 2005; Samuel
et al., 2011; Vandewiele and Elias, 1995) and the physical
similarity (Beck et al., 2016; Oudin et al., 2010; Yang et
al., 2018; Zhang and Chiew, 2009). The regression-based
method aims to establish the regression relationship between
hydrological parameters and catchment characteristics (e.g.,
soil, topography, and climate variables), which helps to esti-
mate model parameters in ungauged regions (Hundecha and
Bárdossy, 2004; Livneh and Lettenmaier, 2013; Xu, 1999;
Young, 2006). In addition, some researchers have managed to
transplant hydrological signatures (runoff depth, runoff ratio,
flow percentile, flood frequency, baseflow index, flow change
rate, etc.) from gauged catchments to ungauged basins (Cas-
tiglioni et al., 2010; Oubeidillah et al., 2014; Yang et al.,
2019).

Among the most utilized regionalization techniques are
probably the regressions between the model parameters and
physiographic catchment attributes, as they are simple, fast,
and intuitive (Bao et al., 2012; Heuvelmans et al., 2006;
Oudin et al., 2008; Pagliero et al., 2019; Parajka et al., 2005;
Razavi and Coulibaly, 2013; Young, 2006). Typically, the
multiple linear regression (MLR) is widely used to estimate
model parameters (Pagliero et al., 2019; Parajka et al., 2005;
Sefton and Howarth, 1998). However, there are several limi-
tations to the regression approach, including fewer represen-
tative results of linear regression due to multicollinearity in
catchment attributes, a high correlation between explanatory
variables, and complex and nonlinear relationships with high
nonstationarity between physical catchment descriptors and
model parameters (Blöschl, 2005; Guo et al., 2021; Kuczera
and Mroczkowski, 1998; Pagliero et al., 2019; Yang et al.,
2020; Y. Zhang et al., 2018).

Machine learning techniques provide an alternative to
overcome these issues for the linear regression approaches.
For example, Sun et al. (2014) found that the Gaussian pro-
cess regression is superior to traditional linear regression
and artificial neural network models in most cases for prob-

abilistic streamflow forecasting in 438 catchments across
the United States. Y. Zhang et al. (2018) assessed the re-
gression tree ensemble approach compared with MLR, log-
transformed MLR, and hydrological modeling in 605 catch-
ments across Australia, which outperforms the two linear re-
gressions in predicting signatures of flow dynamics. Prieto
et al. (2019) implemented a machine learning technique, i.e.,
random forests, combined with a Bayesian inference formu-
lated for the regionalized principal components of a set of
flow indices in 92 catchments in northern Spain. Heuvel-
mans et al. (2006) demonstrated that artificial neural net-
works could provide a useful alternative in some cases, com-
pared with linear regression, especially when we could phys-
ically explain the nonlinear relationship between parameters
and catchment descriptors.

Here we attempted to estimate parameters as a function
of watershed features in ungauged areas using a machine
learning method, i.e., the gradient boosting machine (GBM;
Friedman, 2001). GBMs are a family of powerful machine
learning techniques that have achieved considerable suc-
cess across many domains, such as image classification
(Lawrence, 2004), text classification (Natekin and Knoll,
2013), pattern recognition (Schütz et al., 2019), motion de-
tection (Bouwman et al., 2020), and ecological and environ-
mental issues (Fan et al., 2021; Liao et al., 2020; Wei et al.,
2019; Xia et al., 2020). The principal idea behind the GBM is
to consecutively construct the new base learners, which op-
timally improves prediction in combination with the already
existing ensemble, leading to a more accurate estimate of the
response variable (Natekin and Knoll, 2013; Schütz et al.,
2019). We used the MLR to evaluate and compare the effec-
tiveness of GBM for parameter regionalization.

We incorporated the Penman–Monteith–Leuning (PML)
equation (Leuning et al., 2008) into the Distributed Time
Variant Gain Model (DTVGM; Wang et al., 2009; Xia et al.,
2005) forced with state-of-the-art meteorological data to pre-
dict runoff and ET over China. Our specific objectives were
to (i) explore the capability of GBM for parameter regional-
ization relative to the traditional MLR method, (ii) develop
hydrological parameters that are linked to soil and terrain
properties, and (iii) identify the critical factors for these hy-
drological parameters in distinct climatic zones.

2 Materials and methods

We ran a hydrological model, i.e., Distributed Time Vari-
ant Gain Model with the Penman–Monteith–Leuning equa-
tion (DTVGM-PML) developed in this study, for the coun-
try of China in a spatially distributed manner to account
for within-catchment heterogeneity, the discrepancy in scale,
and, thus, rainfall–runoff behavior between catchments and
grid cells (Beck et al., 2020). Figure 1 presents an overview
of this study. We first conducted a multivariable calibration
to derive an ensemble of grid-by-grid parameter maps for re-
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Figure 1. Flowchart of parameter calibration, validation, and regionalization. DTVGM-PML – the Distributed Time Variant Gain Model with
the Penman–Monteith–Leuning equation; VIC-R – runoff simulated by the variable infiltration capacity (VIC) model; GLEAM-ET – evap-
otranspiration dataset from the Global Land Evaporation Amsterdam Model (GLEAM) V3.3a; MLR – stepwise multiple linear regression;
GBM – gradient boost machine; KGE – Kling–Gupta efficiency; NSE – Nash–Sutcliffe efficiency; PBIAS – percent bias; RMSE – root mean
square error; TSS – Taylor skill score.

gionalization. The multivariable datasets for model calibra-
tion and validation included a runoff product (Zhang et al.,
2014) and an evapotranspiration (ET) dataset (Martens et al.,
2017). The runoff product (0.25◦× 0.25◦) was derived from
the variable infiltration capacity (VIC) model, where the sim-
ulated monthly streamflow matches well with the measure-
ments at the major river basins in China (Zhang et al., 2014).
We obtained the total runoff depths from the dataset for
model calibration and validation. The ET product used in
this study was the 0.25◦ resolution Global Land Evaporation
Amsterdam Model (GLEAM) V3.3a dataset (Martens et al.,
2017), which has been demonstrated to estimate actual ET
with reasonable accuracy in China (Yang et al., 2017).

We regionalized the model parameters using the MLR and
GBM methods in terms of the explanatory variables, includ-
ing topographic and edaphic characteristics. Finally, we com-
pared the model performance with parameters from grid-by-
grid calibration and regionalization.

2.1 Application of the hydrological model across China

We developed the DTVGM-PML model (Fig. 2) in this study
to implement hydrological modeling across China. The orig-
inal DTVGM model has been successfully applied to many
river basins in China (Cai et al., 2014; Ning et al., 2016;
Wang et al., 2009; Xia et al., 2005; Zeng et al., 2020; Zhan et
al., 2013; Zou et al., 2017). We selected the model for its par-
simonious model structure with limited free parameters due
to the lack of ground-based measurements (e.g., observed

streamflow) for model calibration in many regions of China.
A great deal of previous studies have highlighted the impor-
tance of incorporating the vegetation change information into
hydrological models to achieve better performance in hy-
drological simulations (Donohue et al., 2007, 2010; Gerten,
2013; Ivanov et al., 2008; Lei et al., 2014; Thompson et al.,
2011). Additionally, it has been demonstrated that coupling
the PML equation into hydrological models can improve the
hydrological simulations under vegetation greening condi-
tions (Bai et al., 2018a; Li et al., 2009; Zhang et al., 2009;
Zhou et al., 2013). Thus, we replaced the empirical evap-
oration module in the DTVGM with the PML equation to
improve the mechanistic representation of the ET process.
We also coupled a snow routine from the HBV (Hydrolo-
giska Byråns Vattenavdelning) model (Seibert and Vis, 2012)
and the Gash rainfall interception model (van Dijk and Brui-
jnzeel, 2001) to improve relevant processes in DTVGM. The
DTVGM-PML model ran on a grid scale, with a spatial reso-
lution of 0.25◦× 0.25◦. The gridded runoff simulated by the
DTVGM-PML was routed by the Lohmann routing model
for specific watersheds (Lohmann et al., 1996).

In the PML equation, we estimated the ratio of soil evapo-
ration to the equilibrium rate (f ) using the relative soil water
storage, W/WM, simulated in the DTVGM. Another key pa-
rameter, the maximum stomatal conductance (gsx), was as-
signed for each land cover type recommended by Zhang et
al. (2017). Other insensitive parameters were held constant
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Figure 2. The model structure of the DTVGM-PML.

since ET simulations have no significant accuracy loss (Bai
et al., 2018a; Leuning et al., 2008; Zhang et al., 2008).

In this study, we calibrated the following six parameters
in the runoff generation process of the DTVGM-PML: two
parameters (g1, g2) that control the nonlinear surface runoff
generation, the subsurface runoff generation coefficient (ks),
the groundwater recharge coefficient (kr) and recession co-
efficient (kg), and the soil moisture storage capacity (WM;
Fig. 2). We provided detailed descriptions of the DTVGM-
PML in the Supplement.

2.2 Parameter calibration strategy

In this study, we performed the 0.25◦ grid-by-grid calibra-
tion by fitting gridded monthly runoff and ET data at a na-
tional scale (a total of 15 640 grid cells) owing to the limited
long-term observed streamflow data. The modeling period
spanned from 1982–2012 and consisted of 15 years (1998–
2012) of the calibration period and 16 years (1982–1997)
of the validation period. We used the shuffled complex evo-
lution (SCE-UA) algorithm (Duan et al., 1992, 1994) for
model calibration by minimizing a multi-variable function
(see Eq. 1). The objective function is expressed as the Eu-
clidean distance (denoted by F ) that combines the Kling–
Gupta efficiency (KGE; see Eq. 2; Gupta et al., 2009; Kling
et al., 2012) of monthly runoff (KGER) and ET (KGEET).
The KGE is a comprehensive criterion to measure the agree-
ment between the observed and simulated values ranging
from −∞ to 1, with an optimal value of 1.

F =

√
w1(1−KGER)

2
+w2(1−KGEET)

2, (1)

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (2)

where w1 and w2 are the weights assigned to runoff and
ET evaluation, respectively. In this study, w1 and w2 were
both equal to 1. r is the Pearson correlation coefficient, β de-
notes the bias term (i.e., a ratio of means), and γ is the vari-
ability term (i.e., a ratio of coefficients of variation).

2.3 Parameter regionalization strategy

Regionalization techniques generally include two types, such
as distance-based (spatial proximity and physical similarity)
and regression-based methods (He et al., 2011). In this study,
we obtained the 0.25◦ gridded parameters of the DTVGM-
PML, based on a multi-variable calibration, which were then
divided into four climatic zones over China (see Fig. 3; i.e.,
humid, semi-humid, semi-arid, and arid regions). For each
grid cell, we estimated the relationship between the cali-
brated parameters (response variable) and physical proper-
ties (explanatory variables, e.g., topographic attributes and
edaphic characteristics; see Table 1) by a machine learn-
ing technique called the gradient boosting machine (GBM;
Friedman, 2001). For a comparison of the performance of
GBM, we also examined a traditional regression method, i.e.,
the multiple linear regression method (MLR; Heuvelmans et
al., 2006; Waseem et al., 2016), for parameter regionalization
as the benchmark.

The GBM is a powerful machine learning technique to
train decision trees in a gradual, additive, and sequential
manner (Friedman et al., 2000; Friedman, 2001; Natekin and
Knoll, 2013). The main idea of the GBM is to add new mod-
els with respect to the error of the whole ensemble learned
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Figure 3. Location of climatic zones (humid, semi-humid, semi-arid, and arid) and hydrological stations in China.

Table 1. Model input for model simulation, training, and evaluation.

Data type Name Unit Sources

Forcing data 2 m air temperature K http://data.tpdc.ac.cn (last access: 28 January 2022)
Surface air pressure Pa http://data.tpdc.ac.cn (last access: 28 January 2022)
Specific humidity kg kg−1 http://data.tpdc.ac.cn (last access: 28 January 2022)
10 m wind speed m s−1 http://data.tpdc.ac.cn (last access: 28 January 2022)
Downward shortwave radiation W m−2 http://data.tpdc.ac.cn (last access: 28 January 2022)
Downward longwave radiation W m−2 http://data.tpdc.ac.cn (last access: 28 January 2022)
Precipitation rate mm h−1 http://data.tpdc.ac.cn (last access: 28 January 2022)
LAI m2 m−2 http://www.geodata.cn (last access: 28 January 2022)
Albedo Unitless http://www.geodata.cn (last access: 28 January 2022)

Topographic– Elevation (elev) m http://srtm.csi.cgiar.org/ (last access: 28 January 2022)
edaphic data Slope (slp) ◦ Estimated using elevation

Sand content (snd) g kg−1 Liu et al. (2020)
Silt content (slt) g kg−1 Liu et al. (2020)
Clay content (cly) g kg−1 Idem
Field capacity (fc) cm3 cm−3 Liu et al. (2020)
Wilting point (pw) cm3 cm−3 Liu et al. (2020)
Residual moisture content (thr) cm3 cm−3 Liu et al. (2020)
Saturated moisture content (ths) cm3 cm−3 Liu et al. (2020)
Saturated hydraulic conductivity (ksat) cm d−1 Liu et al. (2020)

Evaluation data Runoff kg m−2 VIC simulation for China (Zhang et al., 2014)
ET mm per month GLEAM v3.3a product (https://www.gleam.eu/, last access: 28 January 2022)
Streamflow m3 s−1 China’s Hydrological Year Book

Note: the topographic–edaphic variable abbreviation is shown in the parenthesis after the variable name. LAI is the leaf area index.

so far to the ensemble sequentially in order to boost its per-
formance iteratively. The final GBM model is a stage-wise
additive model of previous individual trees. The GBM has
been proven successful across many domains, including clas-
sification problems (Lawrence, 2004; Xia et al., 2020) and
regression problems (Liao et al., 2020; Xenochristou et al.,
2020; Yan et al., 2019), which is the case for this study.

The MLR approach is a standard multiple linear regression
to relate the response variables to the explanatory variables
in a simple, fast, and straightforward manner (Lima et al.,
2015; Y. Zhang et al., 2018). And the stepwise selection of
predictors is applied to minimize the possible errors, result-
ing in the best performing model, and then identify the most
influenced physiographical variable (Lima et al., 2015; Shu
and Ouarda, 2012; Waseem et al., 2016). Unlike the GBM
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method, the MLR can explicitly quantify the relationship be-
tween explanatory variables and response variables through
a regression equation.

The GBM and MLR modeling were conducted using the
gbm and lmStepAIC methods, respectively, with the k-fold
cross-validation in the R package of caret (Kuhn et al., 2020).
The performance of the k-fold cross-validation (k = 10 in
this study) can help to reduce the chances of overfitting, lead-
ing to less prediction variability and, therefore, improved ac-
curacy (Natekin and Knoll, 2013). First, we considered the
following two categories of the representative explanatory
variables for regression modeling in each grid cell: (i) to-
pographic variables, e.g., elevation (meters) and slope (de-
grees), and (ii) edaphic variables, e.g., sand content (grams
per kilogram; hereafter g kg−1), silt content (g kg−1), clay
content (g kg−1), field capacity, wilting point, residual mois-
ture content, saturated moisture content, and saturated hy-
draulic conductivity (centimeters per day; hereafter cm d−1).
Second, we eliminated the grid cells with either KGER or
KGEET less than zero, which perform poorly in simulating
runoff or ET, and then split the remaining grid cells into four
subsets according to the climatic zones. Finally, we trained
and evaluated the GBM and MLR modeling using the model
parameters in each subset and the relevant explanatory vari-
ables.

2.4 Evaluation criteria

We used the root mean square error (RMSE) to evaluate the
performance of the parameter prediction based on the GBM
and MLR modeling. A lower RMSE indicates a better per-
formance than a higher one. We also calculated the Taylor
skill score (TSS; Taylor, 2001) to express a synthetic mea-
sure of the prediction skill of the MLR and GBM model-
ing for model parameters. The TSS is a numerical summary
of the Taylor diagram, varying from zero (least skillful) to
one (most skillful). The TSS, as a comprehensive metric
of the correlation coefficient, standard deviation, and root
mean square error, has been widely used in model evaluation
(Mohan and Bhaskaran, 2019; Taylor, 2001). As defined in
Eq. (4), the TSS increases monotonically with increasing cor-
relation (r→ r0) for any given variance, and increases as the
modeled variance approaches the observed variance (stan-
dard deviation ratio or SDR→ 1) for any given correlation.
The Kling–Gupta efficiency (KGE; Gupta et al., 2009; Kling
et al., 2012), percent bias (PBIAS; Gupta et al., 1999), and
Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970)
were used for the evaluation of model simulations based on
three parameter sets. The PBIAS, varying from −∞ to +∞,
measures the extent to which the simulated values are over-
estimated (a positive value) or underestimated (a negative
value) relative to the observed values. The NSE is a widely
used evaluation index to assess the predictive skill of hydro-
logical models, which ranges from −∞ to its perfect score,

that is, 1. In addition to the KGE shown in Eq. (2), other
evaluation criteria are formulated as follows:

RMSE=

√√√√1
n

n∑
i=1

(Xi −Yi)
2, (3)

TSS=
4(1+ r)4(

SDR+ 1
SDR

)2
(1+ r0)4

, (4)

r =

1
n

n∑
i=1

(
Xi −X

)(
Yi −Y

)
σXσY

, (5)

SDR=
σX

σY
, (6)

σX =

√√√√√ n∑
i=1

(
Xi −X

)2
n

, σY =

√√√√√ n∑
i=1

(
Yi −Y

)2
n

, (7)

where X and Y are the calibrated parameter and regionalized
parameter in DTVGM-PML (e.g., the runoff generation pa-
rameters g1 and g2), respectively. The subscript i denotes the
ith sample of the gridded parameter. X and Y are the mean
values of X and Y , respectively. σX and σY are the spatial
standard deviation of calibrated parameter and regionalized
parameter, respectively. r represents the spatial correlation
coefficient between X and Y . r0 is the maximum correlation
attainable and usually set to 0.999. SDR is the ratio of σX
to σY , and n is the total number of values for X (and Y ).

PBIAS=

n∑
i=1
(Yi −Xi)

n∑
i=1
Xi

× 100%, (8)

NSE= 1−

n∑
i=1
(Xi −Yi)

2

n∑
i=1

(
Xi −X

)2 , (9)

where X and Y are the observed and simulated values (e.g.,
observed streamflow and DTVGM-PML-simulated stream-
flow), respectively. The subscript i denotes the ith time step
(day or month) of the hydrological variables (i.e., runoff, ET,
and streamflow). X is the mean value of X, and n is the total
number of values for X (and Y ).

3 Data sources and processing

Data used in this study consisted of three categories, such as
forcing data, topographic–edaphic data, and evaluation data
(see Table 1).

1. Model forcing data, including the climate forcing data
and land surface data, were used for DTVGM-PML
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Figure 4. Spatial patterns of mean annual runoff (a) and evapotranspiration (ET) (b) simulations by the DTVGM-PML during 1982–2012.

simulation. We used the China Meteorological Forcing
Dataset (CMFD) provided by National Tibetan Plateau
Data Center (He et al., 2020; Yang et al., 2010; Yang and
He, 2019), which contains seven daily variables (see Ta-
ble 1) with a spatial resolution of 0.1◦. The land surface
variables used here included leaf area index (LAI) and
albedo obtained from the 8 d composite 0.05◦× 0.05◦

GLASS product in National Earth System Science Data
Center. The 8 d composite data were interpolated into
the daily data, using a piecewise cubic Hermite polyno-
mial, and then smoothed by the Savitzky–Golay filter-
ing method (Fang et al., 2008; Li et al., 2009; Ruffin et
al., 2008).

2. In total, 10 topographic–edaphic variables were con-
sidered, including topographic attributes and edaphic
characteristics. The elevation and slope were derived
from 90 m digital elevation model. The soil data pro-
vided by Liu et al. (2020) included eight variables sum-
marized in Table 1 at multiple depths (0–5, 5–15, 15–
30, 30–60, 60–100, and 100–200 cm). We transformed
multiple-layer soil data into single-layer soil data using
a weighted-average method.

3. In addition to the total runoff data from the VIC simu-
lation for China and ET data from the GLEAM v3.3a
product used for parameter calibration (Sect. 2.2), the
evaluation data also included observed daily stream-
flow from 31 representative watersheds (see Fig. 3) for
streamflow validation over China. Table S1 in the Sup-
plement lists the basic information of the 31 hydrologi-
cal stations.

Since the DTVGM-PML ran at a daily time step for 1982–
2012, with a spatial resolution of 0.25◦, all spatial data used
in this study were resampled to 0.25◦ consistently.

4 Results

4.1 Simulation of DTVGM-PML

The model calibration set out using reference data (gridded
monthly runoff and ET) from the former 16 years (1982–
1997) or the latter 15 years (1998–2012), with the remain-
ing period as the validation period. The model shows slightly
better results when using data from the latter period than the
first period for calibration (Fig. S1 in the Supplement), which
was probably due to the better data quality in the latter pe-
riod than in the former period. Several previous studies have
adopted this strategy, i.e., using data from the latter period
for model calibration (Mizukami et al., 2017; Newman et al.,
2017; Yang et al., 2018). Thus, the present study used the cal-
ibrated model parameters from the latter period for regional-
ization.

We also performed the comparison of model performance
in hydrological simulation between the original DTVGM
(without PML) and DTVGM-PML. As shown in Fig. S2,
the KGE and PBIAS values of runoff simulation (Fig. S2a
adn b) by DTVGM were lower than those from DTVGM-
PML. The median KGE and PBIAS values of the ET sim-
ulation (Fig. S2c and d) were comparable between the two
models. In summary, DTVGM-PML can help to improve
hydrological simulations relative to DTVGM. Additionally,
the consideration of vegetation dynamics by the PML equa-
tion in DTVGM-PML would improve the mechanistic un-
derstanding of the hydrological response under vegetation
greening, which is lacking in DTVGM.

Figure 4 presents the spatial patterns of mean annual
runoff and ET simulations derived from the DTVGM-PML
during 1982–2012. Both the mean annual runoff and ET sim-
ulations show a decreasing trend from southeastern to north-
western China, with the highest values in humid tropical
and subtropical regions, intermediate values in temperate re-
gions, and lowest values in cold and arid regions. Figure 5
shows the model performance of runoff and ET simulations
in the calibration and validation periods. The median KGE
and PBIAS values for runoff simulation were 0.78 and 0.8 %,
respectively, in the calibration period, and 0.69 and−14.2 %,
respectively, in the validation period. The corresponding sta-
tistical values for ET simulation were 0.70 (−8.2 %) and 0.68
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Figure 5. Model performance of runoff (KGE in panel a and PBIAS
in panel b) and evapotranspiration (ET; KGE in panel c and PBIAS
in panel d) simulations in the calibration and validation periods.
The box plot was generated using data from a total of 15 640 grid
cells over China. KGE denotes the Kling–Gupta efficiency. PBIAS
denotes the percent bias.

(−13.1 %), respectively. Overall, the DTVGM-PML could
simulate the monthly runoff and ET over China well.

4.2 Regionalization of model parameters

We evaluated the regionalization model performance in terms
of RMSE for six parameters in four climatic zones. As shown
in Fig. 6, GBM appears better at predicting model parame-
ters than MLR because of the lower RMSE for all parame-
ters in humid regions. We found consistently better accuracy
of GBM in semi-humid, semi-arid, and arid areas (Figs. S3
to S5). Additionally, the difference in the model performance
between GBM and MLR was significant (p value< 0.05), as
per the Kruskal–Wallis test (Hollander et al., 2013). Overall,
these results suggest that the performance of GBM is signifi-
cantly better than that of MLR for six parameters in four cli-
matic zones. We also calculated the Taylor skill scores (TSS)
with the grid-scale calibrated parameters as the reference pa-
rameters to evaluate the regionalized model performance for
estimating each parameter at each grid. As shown in Fig. S6,
GBM obviously outperformed MLR with a higher TSS, sug-
gesting that the GBM regionalized parameters presented a
higher spatial agreement with reference parameter values
than the MLR-generated parameters.

Figure 7 shows the spatial patterns of the three parame-
ter sets derived from calibration and regionalization (MLR
and GBM). Generally, both MLR- and GBM-derived pa-
rameters exhibited good agreement spatially with the cal-
ibrated parameters. As the model parameters were related
to topography and soil properties, the parameters generated
by MLR and GBM show exquisite spatial patterns and a
much better spatial coherence than the calibrated parameters.

Compared with the MLR-generated parameters, the GBM-
generated parameters presented more consistency with the
calibrated parameters in space. For example (Fig. 7e1–e3),
the MLR underestimated the parameter kg in part of Western
China (nearly 0.25–0.5) relative to the calibrated parameters
(about 0.5–0.8), while the GBM-derived parameters (0.5–
0.75) were more consistent with calibrated values. In sum-
mary, the regionalized parameters generated by the region-
alization methods (MLR and GBM) exhibited better spatial
coherence relative to the calibrated parameters with spatial
discontinuities. The GBM derived more accordant parame-
ters with the calibration than the MLR.

4.3 Validation of gridded runoff and ET simulations
based on parameter regionalization

To assess the effectiveness of parameter regionalization, we
compared the model performance of the runoff and ET simu-
lations with the regionalized parameter sets (MLR and GBM)
to that with the calibrated parameters. Figure 8 presents cu-
mulative density function (CDF) plots of KGE values for
runoff simulations in both the calibration (solid lines) and
validation (dashed lines) periods over four climatic zones.
The KGE values were computed based on the DTVGM-
PML simulations using the following three parameter sets:
(1) grid-by-grid calibration (black lines), (2) MLR genera-
tion (blue lines), and (3) GBM generation (red lines).

Regarding the runoff simulation (Fig. 8), median KGE val-
ues produced by calibrated parameters were 0.783 in humid
regions, 0.755 in semi-humid regions, 0.704 in semi-arid re-
gions, and 0.442 in arid regions for the validation period. The
median KGE score based on the MLR method was worse
by 0.139 averaged in four climatic zones than that from sim-
ulation using calibrated parameters for the validation period.
While, as shown in Fig. 8, all the KGE values in the four
regions from GBM parameters were superior to the MLR pa-
rameters. The corresponding difference of KGE was 0.023
relative to the calibration for the validation period.

In contrast to runoff simulation, however, the distributions
of KGE for the ET simulation from the regionalized parame-
ters were significantly close to those based on the calibrated
parameters in each region, as shown in Fig. S7. The median
KGE values from three parameter sets were around 0.68 in
humid regions, 0.74 in semi-humid regions, 0.72 in semi-arid
regions, and 0.53 in arid regions for the validation period.
Overall, the performance of the ET simulation from region-
alization was satisfactorily comparable to that from calibra-
tion.

4.4 Validation of watershed streamflow simulations
based on parameter regionalization

To give insight into the performance of streamflow simula-
tions based on parameter regionalization, we calculated NSE,
KGE, and PBIAS at 31 representative watersheds with both
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Figure 6. Performance evaluation of multiple linear regression (MLR) and gradient boosting machine (GBM) for six parameters, i.e., (a) g1,
(b) g2, (c) ks , (d) kr , (e) kg , and (f) WM , in a humid region. MLR and GBM denote the multiple linear regression with stepwise selection
and a gradient boosting machine model. The box plot is generated from the 10 samples in k-fold cross-validation. We use the non-parametric
Kruskal–Wallis (KW) test to determine the significance of difference in the performance between MLR and GBM at a significance level
of 0.05.

daily and monthly streamflow validation (Fig. 9). Accord-
ing to the Kruskal–Wallis test, there were insignificant differ-
ences (p values> 0.05) in five criteria based on the three pa-
rameter sets. Both MLR and GBM performed as well as the
calibration, with high median scores of NSE and KGE at both
daily (NSE was nearly 0.64 and KGE was nearly 0.67) and
monthly (NSE was nearly 0.84 and KGE was nearly 0.78)
scales and median PBIAS close to zero (around −4.1 %).
Since the stations were almost located in humid and semi-
humid regions (28 of 31 in Fig. 3), we could expect that
the parameters derived from the regionalization can reason-
ably generate monthly streamflow with good agreement to
the observations (in line with results from Fig. 8). We also
obtained encouraging results from the daily streamflow sim-
ulation with satisfying accuracy. In terms of the three stations
in the arid and semi-arid regions, the performance of MLR
was slightly poorer than that of calibration and GBM, as the
daily and monthly NSE values, for instance, at Tangnaihai
station, were 0.494 and 0.586 compared with the correspond-
ing values of 0.675 and 0.751 for calibration and 0.631 and
0.719 for GBM, respectively.

4.5 Identification of important factors for model
parameters

We further estimated the relative importance of each ex-
planatory variable based on the GBM model, which was de-
termined by averaging the improvement (decrease) in the
squared error at each split over all the trees made by each
variable, with a range from 0 (least important) and 100 (most
important; Natekin and Knoll, 2013; Xia et al., 2020). Fig-

ure 10 presents the relative importance of the explanatory
variables from the GBM model for all six parameters in four
climatic zones and the margin plots containing the mean rel-
ative importance for each parameter or each climatic zone.

Generally, we found that the slope (slp), saturated mois-
ture content (ths), and elevation (elev) were the most crit-
ical explanatory variables to inform the model parameters
(Fig. 10g5), whereas there were several differences among
parameters or regions. In humid and semi-humid regions, the
terrain properties, including slope and elevation, were likely
to determine most model parameters (Fig. 10g1 and g2). As
for semi-arid and arid regions, most parameters primarily
depended on the saturated moisture content that becomes a
constraining factor for runoff generation in dry areas. For the
three parameters (g1, g2, and ks) that control surface and sub-
surface runoff generation, the dominant factors were slope
and saturated moisture content (Fig. 10a5, b5, and c5). How-
ever, the parameters for groundwater recharge (kr) and reces-
sion (kg) were mainly controlled by the saturated moisture
content, followed by elevation (Fig. 10d5 and e5). In terms
of the parameterWM, which represents the soil moisture stor-
age capacity, i.e., the slope, elevation followed by the satu-
rated hydraulic conductivity were more essential predictors
than the saturated moisture content (Fig. 10f5).
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Figure 7. Spatial patterns of the model parameters, i.e., (a) g1, (b) g2, (c) ks , (d) kr , (e) kg , and (f) WM , derived from (1) calibration (CLB),
(2) multiple linear regression (MLR), and the (3) gradient boosting machine (GBM).
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Figure 8. Cumulative density functions (CDFs) of KGE for runoff
simulation based on three parameter sets – black lines are for cali-
bration (CLB), blue lines are for multiple linear regression (MLR),
and red lines are for the gradient boosting machine (GBM) – in the
validation period over four climatic zones. KGE denotes the Kling–
Gupta efficiency.

5 Discussion

5.1 Performance of calibration and regionalization for
DTVGM-PML

Previous studies have established the effectiveness of the
multivariate calibration framework for hydrological models
(Bai et al., 2018b; Dembélé et al., 2020; Demirel et al., 2018;
Finger et al., 2015; Nijzink et al., 2018; Xie et al., 2020). The
current study performed a multiple variable calibration strat-
egy to calibrate model parameters in each grid against the ref-
erence datasets (VIC runoff and GLEAM ET) during the 15-
year calibration period, followed by an independent model
validation against the reference gridded runoff and ET during
the 16-year validation period. We also validated the model
using observed streamflow at 31 representative hydrologi-
cal stations in diverse climatic zones. The gridded runoff in
each watershed was routed to the corresponding hydrologi-
cal station using consistent routing parameters. Despite the
fact that the streamflow data are commonly used in the cali-
bration of hydrological models (Dembélé et al., 2020), previ-
ous studies have explored the potential in model calibration
solely against remotely sensed ET data (without the need for
gauged streamflow data) and achieved encouraging results
in streamflow simulation (Huang et al., 2020; Zhang et al.,
2020). The satisfactory performance in the model validation

of streamflow suggests the high reliability of the multivariate
calibration strategy used in this study.

Hydrological simulation in arid and semi-arid regions is
still challenging (Huang et al., 2016; Wheater et al., 2007;
Yang et al., 2019). There appears to be a better performance
in runoff simulations in (semi-)humid regions than (semi-
)arid regions (Fig. 8). Regionalization methods tend to per-
form more poorly in drier regions, which is expected in com-
mon modeling practices (Guo et al., 2021; Parajka et al.,
2013a). The results support the general knowledge of runoff
prediction in different climatic zones, i.e., it is more challeng-
ing to achieve good performance in (semi-)arid regions than
humid regions. The relatively poor performance in (semi-
)arid regions may be attributed to model structural deficien-
cies, forcing errors, and uncertainties in the reference data for
calibration. For example, the large-scale hydrological models
may ignore complex processes like surface–groundwater in-
teractions and channel losses (Oubeidillah et al., 2014). The
quality of the forcing data (e.g., precipitation) also influences
the performance of hydrological models in runoff simulation
(Mizukami et al., 2017). Wang et al. (2016) found system-
atic overestimates of CMFD precipitation over the Qinghai–
Tibetan Plateau. Furthermore, unlike the observed stream-
flow, the reference data, such as runoff and ET data, are not
the standard actual observed data. This might also explain the
better performance in our model validation against observed
streamflow at the watershed scale with regionalized parame-
ters than calibrated parameters. Zhang et al. (2014) suggested
that the data should be used with caution in Western China
as there are significant potential uncertainties in the hydro-
logic simulation due to the lack of meteorological observa-
tions. And issues in arid regions have always been a chal-
lenge for the VIC model (Oubeidillah et al., 2014; Yang et
al., 2019). Yang et al. (2017) indicated that the GLEAM ET
data showed a significant systematic bias and overestimated
the eddy covariance ET measurements at forest sites. We ar-
gue that these reanalysis datasets are precious for the large-
scale calibration of hydrological models in terms of both spa-
tial and temporal dynamics, though they will inevitably intro-
duce uncertainties to a certain degree.

5.2 Prediction of model parameters by machine
learning methods

Given the complex and nonlinear relationships with high
nonstationarity between physical catchment descriptors and
model parameters, it is a daunting challenge to develop a ro-
bust method for the regionalization of hydrological models
(Guo et al., 2021). Machine learning approaches provide a
promising tool, as an alternative to conventional linear re-
gression models, to regionalize hydrological model param-
eters. Machine learning techniques are focused on specific
tasks, like classification and regression, and have been widely
used for many hydrological issues (Adnan et al., 2019; Hunt-
ingford et al., 2019; Lima et al., 2015; Rajaee et al., 2019;
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Figure 9. The model performance statistics of streamflow simulations on 31 hydrological stations based on three parameter sets. “D” and
“M” denote the daily and monthly evaluations, respectively.

Figure 10. Relative importance of explanatory variables from the gradient boosting machine (GBM) model for (a) g1, (b) g2, (c) ks , (d) kr ,
(e) kg , and (f) WM in four climatic zones (1 – humid; 2 – semi-humid; 3 – semi-arid; 4 – arid). The mean relative importance over the four
regions for each parameter is shown in the right column (a5–g5). The mean relative importance over six parameters for each climatic zone is
shown in the bottom row (g1–g5). Explanatory variables include elev (elevation), slp (slope), snd (sand content), slt (silt content), cly (clay
content), fc (field capacity), pw (wilting point), thr (residual moisture content), ths (saturated moisture content), and ksat (saturated hydraulic
conductivity).
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Shen, 2018; Yaseen et al., 2015; Z. Zhang et al., 2018). In
this study, we built a predictive GBM model for the parame-
ter regionalization of DTVGM-PML compared with an MLR
model using the terrain and soil properties as explanatory
variables. Overall, the GBM outperformed the MLR based
on evaluation in the following three aspects: (i) higher accu-
racy in reproducing the calibrated parameters, as indicated by
significantly lower RMSE with GBM against MLR (Fig. 6),
and more consistent spatial patterns with calibrated parame-
ter values (Fig. 7), (ii) better performance in runoff simula-
tions based on parameters generated from GBM than MLR
(Fig. 8), and (iii) comparable results of streamflow validation
in 31 watersheds based on regionalization and better perfor-
mance in several stations in (semi-)arid regions by GBM than
MLR (Fig. 9). Note that the parameters in the ET estima-
tion (PML method in DTVGM-PML) were not involved in
model calibration. Consequently, the performance of ET sim-
ulation from regionalization was comparable to that from cal-
ibration (Fig. S7). Taken together, the GBM method, as an
ensemble technique, can achieve higher accuracy in parame-
ter regionalization than MLR (Natekin and Knoll, 2013).

We noticed that the GBM outperformed the MLR in grid-
scale runoff simulations but showed an insignificant differ-
ence in watershed streamflow validation. It is likely because
of the following reasons: (i) the observed watershed stream-
flow data are independent of the gridded runoff data in this
study, which could lead to differential modeling performance
in these two datasets; (ii) most of the watersheds (i.e., 28 out
of 31) for streamflow validation are within humid regions,
where the difference in performance of grid-scale runoff
simulations was relatively small, when compared with non-
humid regions, between regionalized and calibrated parame-
ters; and (iii) the flow routing of the grid-scale runoff within
a watershed may smooth the heterogeneity in runoff from
multiple spatially distributed grids. We suggest that stream-
flow from diverse watersheds, especially in arid regions, is
needed for model validation with parameters derived from
different regionalization approaches. The possible inconsis-
tencies in the results between the evaluation of the parameter
regionalization and the validation of streamflow also imply
the necessity of watershed-scale streamflow validation fol-
lowing parameter regionalization.

The proposed GBM method explored the relationship be-
tween model parameters and the terrain and soil attributes
and offered a helpful approach to estimate model parameters
for hydrological simulations. It can also achieve satisfactory
accuracy, especially in (semi-)humid regions. This study also
motivates further investigations including, but not limited to
(i) improvement in the model structure to better represent
hydrological mechanisms in complicated underlying surface
conditions and changing environment and the (ii) selection of
more physical attributes, such as vegetation or climatic fac-
tors, for regionalization.

Although the GBM cannot provide an explicit formula that
intuitively links the response variable with explanatory vari-

ables like the MLR, it can estimate response variables based
on explanatory variables. More importantly, the machine-
learning-based regionalization methods can identify essen-
tial driving factors which develop a primary appraisal of how
important terrain and soil properties are for parameters of hy-
drological models.

5.3 Important attributes dominating model parameters

The runoff process is primarily controlled by regional cli-
matic regime, vegetation, land use, topography, and soils
(Dunne and Leopold, 1978; Freeze, 1974; Mizukami et al.,
2017; Tarboton, 2003). We used the GBM method to predict
parameter values from available topographic and edaphic
properties, such as slope, elevation, saturated moisture con-
tent, saturated hydraulic conductivity, field capacity, and soil
texture. Our findings of the variable importance when using
the GBM model quantitatively indicate that the runoff gen-
eration parameters of DTVGM-PML are majorly controlled
by slope, saturated moisture content, and elevation. More-
over, the results in different climatic zones show that terrain
attributes significantly influence the runoff process in rela-
tively humid regions. At the same time, the saturated mois-
ture content becomes a limiting factor in drier areas.

Prior studies have noted the incredible impact of slope on
runoff generation (Akbarimehr and Naghdi, 2012; Chaplot
and Le Bissonnais, 2003; Garg et al., 2013; Tarboton, 2003).
Steeper slopes lead to faster drainage in aquifers (Beck et
al., 2020; Post and Jakeman, 1996; Zecharias and Brutsaert,
1988). The slope seems to be the most critical factor for
parameters g1, g2, and ks that control surface and subsur-
face runoff generation. Garg et al. (2013) investigated how
the slope affects surface runoff estimation significantly for
the Solani watershed in northern India using the modified
NRCS-CN (Natural Resources Conservation Service curve
number) method. Several reports have shown that storm
runoff by subsurface flow requires steep, convex slopes and
high saturated hydraulic conductivities (Freeze, 1972, 1974;
Montgomery and Dietrich, 2002). The parameter g1 presents
the surface runoff coefficient when the soil water storage
reaches its maximum value, i.e., W/WM = 1, and the pa-
rameter g2 is the power of the relative soil water storage
(W/WM). A steeper slope results in an increase in the value
of g1 and a decrease in g2 (Fig. S8a1 and b1), thus leading
to an increase in the amount of surface runoff, which sup-
ports the previous findings that runoff amount increases with
increasing slope (Chaplot and Le Bissonnais, 2003; Huang,
1995).

Regarding the groundwater recharge and baseflow, the cor-
responding parameters (kr and ks) strongly depend on the
saturated moisture content. The results are consistent with
Chiew and Siriwardena (2005), who found that the ground-
water recharge parameter and baseflow recession param-
eter of the SIMHYD model (a simplified version of the
HYDROLOG model) are highly correlated with the plant-
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available water holding capacity, a proxy of the soil water
storage capacity (Mckenzie et al., 2000). While concerning
the soil moisture storage capacity, WM, in DTVGM-PML,
the saturated moisture content is likely to be less important
than the slope, elevation, and saturated hydrologic conduc-
tivity. Note that WM is different from the saturated mois-
ture content in soil. The latter is equivalent to the effective
porosity and is simplified as a one-layer value in this study,
whereas the soil moisture state variables in many conceptual
hydrological models do not act in the same way as in the
real world (Zhuo and Han, 2016). The surface slope is cor-
related with soil depth (Tesfa et al., 2009), which strongly
influences WM. If the soil depth data, more likely to be as-
sociated with WM, are available, then they should be incor-
porated in parameter regionalization to obtain more reliable
and intelligible results.

5.4 Necessity of parameter regionalization

Hydrologic models often rely on regionalization approaches
to transfer information from small to large spatial scales (e.g.,
from grid cell to subbasin, watershed, and regional scale;
Beck et al., 2020; Mizukami et al., 2017) and from gauged
to ungauged catchments (He et al., 2011; Hrachowitz et al.,
2013; Pagliero et al., 2019; Parajka et al., 2013b). In this
study, though parameters were calibrated and, thus, available
at each grid cell, the parameter values at around 450 grid
cells were not reliable owning to poor model performance
(i.e., KGE< 0; Knoben et al., 2018; Koskinen et al., 2017;
Sutanudjaja et al., 2018). Therefore, we only used the cal-
ibrated parameters with KGE≥ 0 (i.e., representing better
model performance) for the regionalization of parameters.
The model performance for 53 % of these grid cells (with
KGE< 0 prior to regionalization) were improved when we
reran the model with regionalized parameters. Particularly,
the KGE values in 37 % of the grid cells (with KGE< 0 prior
to regionalization) became positive, indicating a substantial
improvement in the modeling performance.

Even though the parameters were well calibrated and
available at each grid cell, one might consider whether and
which topographic and edaphic properties mediate these
hydrological parameters. Our machine-learning-based (i.e.,
GBM) regionalization of parameters enables us to estimate
six key hydrological parameters using site-specific charac-
teristics. Following the regionalization of the parameters, our
results of variable importance quantitatively indicate that the
runoff generation parameters are majorly controlled by slope,
saturated soil moisture content, and elevation. Moreover, the
terrain attributes significantly regulate the runoff processes
in relatively humid regions, while the saturated soil moisture
content becomes a limiting factor in arid areas. The region-
alization of parameters will improve our mechanistic under-
standing of the runoff generation processes and associated
key hydrological parameters under different topographic and
edaphic conditions.

6 Conclusion

We conducted parameter regionalization for the DTVGM-
PML model using a machine learning technique, i.e., the gra-
dient boosting machine, compared with the traditional multi-
ple linear regression method. We show that the GBM model
is superior to the MLR in predicting model parameters as a
function of topographic and edaphic characteristics due to
its significantly lower biases and higher spatial agreement
for almost all parameters in four distinct climatic zones. The
regionalized parameters also exhibited better spatial coher-
ence relative to the grid-by-grid calibrated parameters. Re-
garding the model validation of streamflow simulations in
31 hydrological stations, MLR- and GBM-generated param-
eters could simulate streamflow as accurately as the results
with grid-by-grid calibrated parameters (the median daily
and monthly NSE are 0.65 and 0.84, respectively), with the
GBM being preferable to MLR in the arid regions. This study
suggests that the watershed-scale streamflow validation fol-
lowing parameter regionalization is necessary due to poten-
tially inconsistent results between the parameter regionaliza-
tion evaluation and the streamflow validation. Based on the
GBM regionalization results, we found that the slope, sat-
urated moisture content, and elevation are the most impor-
tant explanatory variables to inform model parameters. Our
results indicate that machine learning techniques can be a
useful alternative to the conventional regression approach to
better predict hydrological model parameters. This is partic-
ularly significant for hydrological predictions in ungauged
basins. The methods developed and insights gained from
this study can also improve the interpretation and prediction
of parameters in other large-scale hydrological and environ-
mental models.

Code and data availability. The model code used in this study is
available via https://doi.org/10.5281/zenodo.5914086 (Song, 2022).
The climatic forcing data, land surface data, elevation data, and
evapotranspiration data are available online, as described in Table 1.
The streamflow for the 31 watersheds was obtained from China’s
Hydrological Year Book. These data are not publicly available be-
cause of governmental restrictions but can be accessed by contact-
ing the corresponding author. The soil properties are provided by
Liu et al. (2020). The VIC simulations for China are obtained from
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