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Abstract. Accurate and reliable subseasonal precipitation
forecasts are of great socioeconomic value for various
aspects. The atmospheric intraseasonal oscillation (ISO),
which is one of the leading sources of subseasonal pre-
dictability, can potentially be used as predictor for sub-
seasonal precipitation forecasts. However, the relationship
between atmospheric intraseasonal signals and subseasonal
precipitation is of high uncertainty. In this study, we de-
velop a spatiotemporal-projection-based Bayesian hierarchi-
cal model (STP-BHM) for subseasonal precipitation fore-
casts. The coupled covariance patterns between the preced-
ing atmospheric intraseasonal signals and precipitation are
extracted, and the corresponding projection coefficients are
defined as predictors. A Bayesian hierarchical model (BHM)
is then built to address the uncertainty in the relationship
between atmospheric intraseasonal signals and precipitation.
The STP-BHM model is applied to predict both the pentad
mean precipitation amount and pentad mean precipitation
anomalies for each hydroclimatic region over China during
the boreal summer monsoon season. The model performance
is evaluated through a leave-1-year-out cross-validation strat-
egy. Our results suggest that the STP-BHM model can pro-
vide skillful and reliable probabilistic forecasts for both the
pentad mean precipitation amount and pentad mean precipi-
tation anomalies at leads of 20–25 d over most hydroclimatic
regions in China. The results also indicate that the STP-BHM
model outperforms the National Centers for Environmen-
tal Prediction (NCEP) subseasonal to seasonal (S2S) model
when the lead time is beyond 5 d for pentad mean precipita-
tion amount forecasts. The intraseasonal signals of 850 and
200 hPa zonal wind (U850 and U200) and 850 and 500 hPa
geopotential height (H850 and H500) contribute more to the
overall forecast skill of the pentad mean precipitation amount

predictions. In comparison, the outgoing longwave radiation
anomalies (OLRAs) contribute most to the forecast skill of
the pentad mean precipitation anomaly predictions. Other
sources of subseasonal predictability, such as soil moisture,
snow cover, and stratosphere–troposphere interaction, will be
included in the future to further improve the subseasonal pre-
cipitation forecast skill.

1 Introduction

Accurate and reliable subseasonal precipitation forecasts can
provide vital information for many management decisions in
water resources, agriculture, and disaster mitigation (Vitart
et al., 2012; Vitart and Robertson, 2018). One approach for
subseasonal precipitation forecasts is to run dynamical mod-
els such as global climate models (GCMs). Projects such as
the Subseasonal to Seasonal Prediction (S2S) Project and the
Subseasonal Experiment (SubX) have been launched to pro-
vide subseasonal precipitation forecasts with lead time of up
to 60 d from GCMs (Pegion et al., 2019; Vitart et al., 2017).
However, the subseasonal precipitation forecasts derived di-
rectly from GCMs are of low accuracy as the physical equa-
tions are always simplified, and small-scale processes cannot
be well represented in the GCMs (De Andrade et al., 2019).
Post-processing is always required to improve the accuracy
and reliability of GCM forecasts before they can be used for
other applications. Schepen et al. (2018) and our previous
study (Li et al., 2020) used the Bayesian joint probability
(BJP) method to post-process subseasonal precipitation fore-
casts over different regions, and the results suggested that the
forecast skill and reliability were improved compared to raw
GCM forecasts. Vigaud et al. (2020) proposed a new spa-
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tial correction method to improve submonthly precipitation
forecasts derived from multimodel ensembles. Nevertheless,
the results also indicated that the accuracy of post-processed
subseasonal precipitation forecasts were still limited when
the lead time was beyond 10–14 d.

An alternative approach for subseasonal precipitation fore-
casts is to establish statistical models based on the rela-
tionship between precipitation and preceding atmospheric or
oceanic indices. Although dynamical models perform bet-
ter for short- to medium-term forecasts, statistical models
are still found to be useful, especially for long-term fore-
casts (Tuel and Eltahir, 2018; Abbot and Marohasy, 2014;
Mekanik et al., 2013; Lü et al., 2011; Kirono et al., 2010).
Schepen et al. (2012) suggested that the lagged climate in-
dices were potentially useful for seasonal precipitation fore-
casts over Australia. Plenty of statistical algorithms, such
as multiple linear regression or canonical correlation anal-
ysis, have been developed for seasonal precipitation fore-
casts based on the assumption that the seasonal anomalies
are caused by slow-varying sea surface temperature, sea ice,
snow cover, and other boundary conditions (Hwang et al.,
2001; Barnston and Smith, 1996; Eden et al., 2015). A new
cluster-based empirical method was proposed to predict win-
ter precipitation anomalies over the European and Mediter-
ranean regions (Totz et al., 2017). This method used the sea
surface temperature, geopotential height, sea level pressure,
snow cover extent, and sea ice concentration as predictors.
A random-forest-based statistical model, whose the predic-
tors were identified from the gridded sea surface temperature,
was developed to predict central and south Asian seasonal
precipitation (Gerlitz et al., 2016).

However, much fewer statistical models have been built
and applied for subseasonal precipitation forecasts, as the
sources of subseasonal predictability are not yet fully un-
derstood. Compared to seasonal precipitation forecasts, the
slow-varying boundary forcings may have limited impact on
subseasonal precipitation as the timescale is too short. The at-
mospheric intraseasonal oscillation (ISO), which is the domi-
nant mode of the subseasonal variability, is one of the leading
sources of subseasonal predictability (Robertson and Vitart,
2018). The boreal summer intraseasonal oscillation (BSISO)
in the tropics, which is also known as Madden–Julian Os-
cillation (MJO) in winter, is characterized as a slow-moving
system with a period of 30–90 d in the tropical atmosphere
(Madden and Julian, 1971, 1972; Zhang, 2005; Woolnough,
2019; Wang and Xie, 1997). The circulation anomalies as-
sociated with the intraseasonal oscillation (ISO) are iden-
tified to have an impact on monsoon activities and heavy
rainfall events (Annamalai and Slingo, 2001; Chen et al.,
2004). Zhang et al. (2009) found that the rainfall patterns
in southeastern China were transited from being enhanced to
being suppressed when the MJO center moved from the In-
dian Ocean to the western Pacific Ocean. Jia et al. (2011)
suggested that the MJO influenced the rainfall patterns in
China mainly by modulating the circulation in the subtrop-

ics and mid–high latitudes in winter. This suggests that the
ISO signals could be potentially used for predicting subsea-
sonal precipitation not only in tropical regions but also in
extra-tropical regions.

Several statistical models have been built to predict sub-
seasonal precipitation based on the relationship between at-
mospheric intraseasonal signals and precipitation. The spa-
tiotemporal projection (STP) model, which extracts the cou-
pled patterns of the predictors and the predictand, has been
developed in recent years (Hsu et al., 2020; Zhu and Li,
2017c, a, b, 2018). Hsu et al. (2015) established a set of
spatiotemporal projection models (STPMs) to predict sub-
seasonal precipitation at a lead time of 10–30 d over south-
ern China. Their results suggested that the forecast skill was
still promising at a 20–25 d lead time. Zhu and Li (2017c)
predicted subseasonal precipitation by constructing STPMs
over the whole of China, and independent forecasts of rain-
fall anomalies during the period of Olympic Games in 2008
and Shanghai World Expo in 2010 suggested that the STPMs
were able to reproduce intraseasonal rainfall patterns at a
20 d lead time. However, we should note that the relation-
ship between ISO signals and precipitation is highly uncer-
tain and depends on the region and lead time. In previous
studies, an optimal ensemble (OE) strategy was applied to
generate probabilistic forecasts by picking up the best pre-
dictors (Zhu and Li, 2017c; Zhu et al., 2015). Nevertheless,
the number of best predictors was always limited. Further
statistical assumptions were required to interpret limited en-
sembles as probabilistic forecasts. The uncertainty in rela-
tionship between preceding ISO signals of atmospheric field
and precipitation has not been fully considered yet.

There are several ways to address the above challenge.
Lepore et al. (2017) established an extended logistic regres-
sion model to link the relationship between the El Niño–
Southern Oscillation (ENSO) and convective storm activ-
ity. Sohrabi et al. (2021) coupled the large-scale climate in-
dices with a stochastic weather generator to provide ensem-
ble streamflow forecasts. Compared to the above-mentioned
traditional probabilistic model solutions, the Bayesian sta-
tistical models are more flexible and more efficient for as-
sessing multiple sources of uncertainties. Wang et al. (2009)
proposed a multivariate normal-distribution-based Bayesian
joint probability (BJP) approach to predict seasonal stream-
flow over Australia using antecedent streamflow, ENSO in-
dices, and other climate indicators as predictors. Peng et al.
(2014) utilized the same BJP approach to predict seasonal
precipitation over China using lagged oceanic–atmospheric
indices. The Bayesian hierarchical model (BHM) has also
been developed in recent years (Gelman and Hill, 2006). The
BHMs are always constructed with several model layers. The
predictand is assumed to follow a distribution with unknown
parameters in the first layer, and the parameters are linked
with the predictors, using linear regression models, in the
second layer. The regression coefficients are given hyperprior
distributions with the BHMs. The utility of BHMs has been
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demonstrated in modeling the spatiotemporal variability in
hydrological variables in many studies (Renard, 2011; Reza
Najafi and Moradkhani, 2013; Bracken et al., 2016; Lima
and Lall, 2009, 2010; Devineni et al., 2013). The BHMs are
also used for seasonal predictions in many fields. Chen et al.
(2014) used the BHM to predict summer rainfall and stream-
flow over the Huai River basin, while Chu and Zhao (2007)
developed a BHM model to predict seasonal tropical cyclone
activity over the central North Pacific. However, the BHMs
have not been used to predict subseasonal precipitation be-
fore. In this study, we follow a similar BHM structure to that
proposed by Devineni et al. (2013) to predict subseasonal
precipitation.

China is located in East Asia and is frequently subject to
rainstorm and flood disasters during the boreal summer mon-
soon season. Accurate and reliable subseasonal precipitation
forecasts can provide valuable information for mitigating the
risks from rainstorm and flood disasters. However, the origin
of intraseasonal precipitation variability is of high complex-
ity owing to the mixed impact of tropical convection, forc-
ing of Tibetan Plateau, and mid–high latitude systems (Zhu
and Li, 2017c). In this study, we develop a spatiotemporal-
projection-based Bayesian hierarchical model (STP-BHM)
to predict both the pentad mean precipitation amount and
pentad mean precipitation anomalies over each hydrocli-
matic region in China during the boreal summer monsoon
season. The performance of the STP-BHM model is evalu-
ated through a leave-1-year-out cross-validation strategy.

In the following section, the datasets, main model com-
ponents (including intraseasonal signal extraction, predictor
definition, and Bayesian hierarchical model construction),
and verification methods are introduced. The forecast skill
of both the pentad mean precipitation amount and pentad
mean precipitation anomalies is presented in Sect. 3. Sec-
tion 4 discusses the forecast skill, possible mechanism, lim-
itations, and future work. Key findings are summarized in
Sect. 5.

2 Data and methodology

2.1 Data

In this study, China is divided into 17 hydroclimatic regions,
as suggested by Lang et al. (2014). The division is based on
both the watershed division standard and climate classifica-
tions. This will ensure that the climatic characteristics are
nearly uniform in each region. The southeastern hydrocli-
matic regions are mostly of a temperate and warm/hot sum-
mer climate without a dry season (Cfb/Cfa), while the north-
western regions are mostly arid with limited precipitation
(Bwk, Bsh, and Bsk climate types; Peel et al., 2007; Fig. 1).
The observed precipitation is derived from the Multi-Source
Weighted-Ensemble Precipitation, version 2 (MSWEP V2),
dataset. The MSWEP V2 dataset is of a high spatial (0.1◦)

and temporal (3 h) resolution. Compared to other gridded
datasets, MSWEP V2 exhibits more realistic spatial patterns
and higher accuracy over land (Wu et al., 2018; Beck et al.,
2019). The 0.1◦ gridded precipitation data are area-weighted
and averaged through 17 hydroclimatic regions over China
from May to October.

The intraseasonal oscillation is always represented by out-
going longwave radiation (OLR) and zonal winds in the up-
per (200 hPa) and lower (850 hPa) troposphere. Although
several indices, including the RMM (real-time multivariate
MJO) index (Wheeler and Hendon, 2004) and BSISO in-
dex (Lee et al., 2013), have been proposed to monitor the
propagation of the oscillation, these indices may not cover
patterns which might be important for subseasonal precipi-
tation in certain regions. To overcome this problem, we ana-
lyze the correlation between the ISO signals of the preceding
global OLR, zonal wind at 850 hPa (U850), zonal wind at
200 hPa (U200), and precipitation for each grid cell. In ad-
dition, the correlations with geopotential height at 850, 500,
and 200 hPa (H850, H500, and H200) are also analyzed. The
H850, H500, and H200 values have been proved to be as ca-
pable of reflecting the MJO structure as the zonal wind (Le-
ung and Qian, 2017). The OLR data used in this study are
derived from National Climatic Data Center (NCDC) on a
1.0◦ squared resolution over the globe. The OLR data are de-
veloped from high-resolution infrared radiation sounder in-
struments and are valuable for a wide range of applications.
A more detailed description of the OLR dataset can be found
at https://www.ncei.noaa.gov/access/metadata/landing-page/
bin/iso?id=gov.noaa.ncdc:C00875, last access: 24 Decem-
ber 2021). The global gridded daily average U850, U200,
H850, H500, and H200 data are derived from the ERA5 re-
analysis dataset at https://cds.climate.copernicus.eu/ (last ac-
cess: 24 December 2021). The ERA5 reanalysis dataset is
produced using advanced 4D-Var data assimilation scheme,
and its horizontal resolution is approximately 30 km, with
137 pressure levels in the vertical (Hersbach et al., 2020). It
provides an hourly record of global atmosphere, land surface,
and ocean waves from 1950 to present. To focus on large-
scale features and increase the computational efficiency, both
the OLR data and the ERA5 reanalysis data are bilinearly
interpolated onto 2.5◦× 2.5◦ latitude–longitude resolution.
Moreover, we choose to focus on the period of 1979–2016
to be consistent with the temporal coverage of the observed
precipitation data.

The STP-BHM model we built in this study is compared
to the dynamical models to provide a benchmark for subsea-
sonal precipitation forecasts. In this study, we compare our
results of the STP-BHM model with the National Centers
for Environmental Prediction (NCEP) model archived in the
S2S database for the same period of 1999–2010, from May
to October (http://apps.ecmwf.int/datasets/data/s2s/, last ac-
cess: 24 December 2021). The NCEP hindcasts are produced
by the Climate Forecast System Version 2 (CFSv2), which is
composed of land, ocean, and atmosphere components. The
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Figure 1. The 17 hydroclimatic regions over China.

system provides a four-member ensemble that is run every
day from 1 January 1999 to 31 December 2010. More details
on the NCEP hindcasts are available at https://confluence.
ecmwf.int/display/S2S/NCEP+Model+Description (last ac-
cess: 1 July 2022). The pentad mean precipitation amount
forecasts of the NCEP model are generated to be consistent
with the STP-BHM model.

2.2 Methodology

2.2.1 Modeling structure

The spatiotemporal-projection-based Bayesian hierarchical
model (STP-BHM) consists of three parts, as shown in Fig. 2.
The first part (Sect. 2.2.2) extracts the intraseasonal signals
of each global atmospheric field (U850, U200, OLR, H850,
H500, and H200) and precipitation, using a non-filtering
method proposed by Hsu et al. (2015). In the second part
(Sect. 2.2.3), the cell-wise correlation between the ISO sig-
nals of atmospheric field and precipitation is analyzed in the
six preceding pentads. The spatiotemporal coupled covari-
ance patterns are constructed for grid points where the corre-
lation is statistically significant at the 5 % level. The predic-
tor is then defined by summing the product of the covariance
field and atmospheric intraseasonal signals of atmospheric
field at each preceding pentad. In the statistical modeling step
(Sect. 2.2.4), both predictors and the predictand are trans-
formed to follow normal distributions. A Bayesian hierarchi-
cal model is then built to address the uncertainty in the re-

lationship between the predictors and predictand. The model
is applied to generate probabilistic subseasonal precipitation
forecasts after parameter inference.

2.2.2 Intraseasonal signal extraction

As briefly introduced in the previous section, extracting
meaningful intraseasonal signals is important for subsea-
sonal precipitation forecasts. However, high-frequency (un-
predictable) noise exists for both raw daily atmospheric vari-
ables (U850, U200, OLR, H850, H500, and H200) and raw
daily precipitation. Band-pass filtering methods, such as the
fast Fourier transformation, are always used to isolate in-
traseasonal low-frequency (10–60 d) signals from raw data
(Zhang, 2005). However, a traditional band-pass filtering
method is impractical for real-time applications as future in-
formation beyond the current date is needed. In this study, a
non-filtering method proposed by Hsu et al. (2015) is used
to extract 10–60 d signals of both atmospheric variables and
precipitation. Compared to the traditional intraseasonal sig-
nal extraction method, this approach is easy to implement
and could be used for real-time applications. The climato-
logical annual cycle of the raw daily data is first removed
by subtracting a 90 d low-pass filtered climatological com-
ponent, as follows:

X′ =X−X, (1)

where X is the raw daily data of the atmospheric field or pre-
cipitation. X is the corresponding climatological 90 d low-
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Figure 2. Workflow of the spatiotemporal-projection-based Bayesian hierarchical model (STP-BHM).
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pass filtered component derived by the Lanczos filtering
method during the period of 1981–2010 (Duchon, 1979). In
the second step, lower-frequency signals longer than 60 d are
removed by subtracting the running mean of the last 30 d, as
follows:

X′′ =X′−X′
30 d
, (2)

where X′
30 d

is the running mean of the last 30 d of X′.
The higher-frequency signals are then removed by taking

a pentad mean, as follows:

X∗ =X′′
5 d
. (3)

The so-derived variable represents the 10–60 d signals of the
daily atmospheric field or precipitation. The daily intrasea-
sonal signals are then averaged to pentad data to further re-
duce the noise and improve the predictability. The pentad
mean 10–60 d signal of precipitation is also referred to as the
pentad mean precipitation anomalies in the following sec-
tions.

2.2.3 Predictor definition

To identify relevant areas of atmospheric fields that could
affect the 10–60 d precipitation variability, we analyze the
correlation between the preceding 10–60 d signals of atmo-
spheric fields and precipitation for each hydroclimatic region
during the period of 1979–2016, from May to October. Ow-
ing to the data persistence introduced by the filtering method,
the effective degree of freedom for each grid cell and each
preceding pentad is estimated following Livezey and Chen
(1983).

As an example, Figs. 3 and 4 present the correlation be-
tween the preceding pentad mean 10–60 d signals of U850,
U200, OLRAs, H850, H500, and H200 and precipitation
over Region 1 (inland rivers in Xinjiang) at different lead
times. At leads of 25 to 20 d, the significantly correlated
U850 signals are mainly over the western Indian Ocean. The
U850 signals are then propagating eastward toward the equa-
torial Indian Ocean at leads of 15 to 10 d. The U850 anoma-
lies then gradually moved eastward and northward toward
western Pacific Ocean, Mongolian Plateau, Iranian plateau,
and Qinghai–Tibet Plateau from the lead of 10 to 0 d. The
U200 signals are more pronounced compared to the U850
signals. The spatial distribution of potential predictive U200
regions is rather concentrated, indicating more robust statis-
tical relationships. The OLR anomalies appear near the Bay
of Bengal at 20 to 15 d leads. At leads of 5 to 0 d, the sig-
nificantly correlated OLR signals are mainly over the eastern
European Plain and West Siberian Plain.

The H850 anomalies appear near the equatorial Indian
Ocean and Philippine Sea at lead times of 25 to 20 d. At leads
from 15 to 20 d, the significantly correlated H850 signals are
mainly over Africa. The signals gradually move eastward and
northward toward Indian Ocean, Iranian Plateau, and central

Asia from lead times of 10 to 0 d. Unlike the H850 fields that
originated over Africa, the H200 anomaly appears to origi-
nate from the Arabian Sea, southern Indian Ocean, and west-
ern Pacific Ocean from leads of 25 to 15 d. At lead times of
10 to 0 d, the significantly correlated H200 signals are mainly
over eastern European Plain, West Siberian Plain, and Cen-
tral Siberian Plateau.

The correlation maps between preceding pentad mean 10–
60 d signals of U850, U200, outgoing longwave radiation
anomalies (OLRAs), H850, H500, and H200 and precipita-
tion over other regions are presented in Figs. S1 to S32 in the
Supplement.

The spatiotemporal coupled covariance patterns are then
constructed for a grid point where the correlation is statisti-
cally significant at the 5 % level. The predictor is then defined
by summing the product of the covariance patterns and ISO
signals of atmospheric field at each preceding pentad, as fol-
lows:

cov(Xi,p,Y )=
1
T

T∑
t=1
(yt −E(y))(xi,p,t −E(xi,p)) (4)

Xp =

N∑
i=1

cov(Xi,p,Y ) ·Xi,p, (5)

where Xi,p denotes the pentad mean 10–60 d signal of the
pth atmospheric field where the correlation is statistically
significant at the 5 % level for grid i, p = 1,2, . . .,6. Y de-
notes the pentad mean precipitation amount or pentad mean
precipitation anomalies. T is the total number of pentads, and
N is the total number of grid points at which the correlation
is statistically significant at the 5 % level. Thus, there is only
one predictorXp for each atmospheric field and each preced-
ing pentad.

2.2.4 Statistical modeling

In previous steps, we defined the predictors by analyzing the
relationship between the ISO signals of the atmospheric field
and precipitation. The so-derived predictors can be used to
predict the pentad mean precipitation amount and the pentad
mean precipitation anomalies. Consider, for example, pre-
dicting the pentad mean precipitation amount for the period
between 1 and 5 May 1979. In this case, the pentad mean
ISO signals of the atmospheric field on 26–30, 21–25, 16–
20, 11–15, 6–10, and 1–5 April 1979 are used as predictors
to generate precipitation forecasts at different lead times. A
leave-1-year-out cross-validation strategy is implemented for
data normalization, model building, parameter inference, and
verification to avoid any bias in skill (Michaelsen, 1987). For
instance, to produce subseasonal precipitation forecasts in
1979, the predictors (preceding ISO signals) and predictand
(pentad mean precipitation) during the period of 1980–2016
are pooled together for statistical modeling. The forecasts for
the year 1979 are then issued by models trained on 1980–
2016, and the performance is evaluated against the obser-
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Figure 3. Correlation coefficient between the preceding pentad mean 10–60 d signals of U850, U200, outgoing longwave radiation anomalies
(OLRAs), and precipitation over Region 1 (inland rivers in Xinjiang) at different lead times during the period of 1979–2016, from May to
October. Correlation coefficients that are statistically significant at the 5 % level are shaded.

vations. This cross-validation strategy ensures that the data
used for the evaluation are never used for statistical model-
ing.

Before establishing the Bayesian hierarchical model, the
predictors XT = [X1X2· · ·XP ] are normalized to XTnorm =

[Xnorm,1Xnorm,2· · ·Xnorm,P ] through the Yeo–Johnson trans-

formation method, as the input variables are allowed to be
negative (Yeo and Johnson, 2000). The predictand Y is nor-
malized to Ynorm, using the Yeo–Johnson method for pen-
tad mean precipitation anomalies. However, the pentad mean
precipitation amount is highly skewed with numerous zero
values. Here, we normalize the pentad mean precipitation
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Figure 4. Same as Fig. 3 but for H850, H500, and H200.

amount Y to Ynorm, using the log-sinh transformation method
proposed by Wang et al. (2012). The normalization param-
eters are estimated using the SCE-UA (shuffled complex
evolution method developed at the University of Arizona)
method that maximizes the log-likelihood function for both
the Yeo–Johnson transformation method and log-sinh trans-
formation method.

There are many versions and variations in BHMs. In this
study, we establish the BHM model following Devineni et al.
(2013) and Chen et al. (2014). The spatial correlation of pre-
cipitation over different regions is not considered here. A tra-
ditional no-pooling BHM is built for each hydroclimatic re-
gion separately. The normalized predictand Ynorm is assumed
to follow the normal distribution, as follows:

Ynorm ∼N(µ,σ
2). (6)

Hydrol. Earth Syst. Sci., 26, 4975–4994, 2022 https://doi.org/10.5194/hess-26-4975-2022
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We then link the parameter µwith the normalized predictors,
using a linear model, as follows:

µ= β0+

P∑
p=1

βpXnorm,p, (7)

where βp is the slope term corresponding to the normalized
predictor Xnorm,p, and P is the total number of predictors
used for prediction.

To complete the hierarchical formulation, we assume that
the unknown parameters, including σ,β0, . . .,βP , follow
these non-informative priors, as follows:

1
σ 2 ∼ U(0,100) (8)

β0 ∼N(0,104) (9)

βp ∼N(0,104), p = 1, . . .,P . (10)

This implies that the information used for a posterior distri-
bution inference is only provided by the data.

Given that θ = {(σ,β0,βp), p = 1, . . .,P } denotes param-
eters in the Bayesian hierarchical model for a certain region
and lead time, the full posterior of the parameters is given as
follows:

p
(
θ |Ynorm,X

T
norm

)
∝ p

(
Ynorm|θ ,X

T
norm

)
p(θ), (11)

where p(Ynorm|θ ,X
T
norm) is the likelihood, and p(θ) is the

prior of the parameters θ . As the posterior distributions of
the parameters θ are not standard distributions, it is difficult
to conduct an analytical integration. In this study, we use the
R package runjags (Denwood, 2016) to estimate the param-
eters of the BHM. The runjags package offers an interface
to facilitate calibrating BHMs by employing a Gibbs sam-
pling algorithm in Just Another Gibbs sampler (JAGS). The
initial values of the model parameters θ are first randomly
sampled from prior distributions. The parameters θ are then
updated based on the full conditional distributions. We use
five independent Markov chains in each model run, with a
total number of 10 000 iterations for each chain. The con-
vergence is ensured by the potential scale reduction factor R̂
(Brooks and Gelman, 1998). An approximate convergence is
diagnosed when the R̂ is less than 1.1 for all parameters.

Once the parameters are sampled, the Bayesian hierar-
chical model can be used to predict the pentad mean pre-
cipitation amount or pentad mean precipitation anomalies
using the preceding ISO signals. Given the new preceding
predictors X∗T = [X∗1X

∗

2 · · ·X
∗

P ], the normalized predictors
X∗Tnorm = [X

∗

norm,1X
∗

norm,2· · ·X
∗

norm,P ] are found using the es-
timated transformation parameters during the training period.
The posterior predictive distribution of normalized predic-
tand is given as follows:

Y ∗norm ∼N(µ
∗,σ 2) (12)

µ∗ = β0+

P∑
p=1

βpX
∗
norm,p. (13)

Again, the Gibbs sampling algorithm is used to obtain sam-
ples of Y ∗norm by giving each of the 1000 sets of parameter
values θ . The samples of Y ∗norm are then back-transformed to
produce ensemble precipitation forecasts of Y ∗.

2.2.5 Verification

In this study, we assess the performance of the STP-BHM
model for both the pentad mean precipitation amount and
the pentad mean precipitation anomalies. The Continuous
Ranked Probability Score (CRPS) is used to provide an over-
all evaluation of the accuracy of probabilistic forecasts for
both the pentad mean precipitation amount and pentad mean
precipitation anomalies as follows:

CRPS=
1
N

N∑
i=1

∫
[Fi(y)−H(y− oi)]

2dy, (14)

where Fi() is the cumulative distribution function of the en-
semble forecasts for the pentad mean precipitation amount
or the pentad mean precipitation anomalies for case i. H() is
the Heaviside step function, which is defined as follows:

H(y− oi)=

{
0 y < oi

1 y ≥ oi
, (15)

where oi is the corresponding observation.
The CRPS skill score is then calculated by comparing the

CRPS of the ensemble forecasts with the CRPS of the fol-
lowing reference forecasts:

CRPSSS =
CRPSREF−CRPS

CRPSREF
× 100%. (16)

The reference forecasts are generated using the Bayesian hi-
erarchical model with no predictors used for prediction. This
is also referred to as the cross-validated climatology. A skill
score of 100 % indicates that the ensemble forecasts are the
same as the observations, whereas a skill score of 0 % sug-
gests that the ensemble forecasts show no improvement over
the cross-validated climatology. A negative skill score means
that the ensemble forecasts are inferior to the cross-validated
climatology.

We also use the Brier score (BS) to assess the capabil-
ity of the STP-BHM model for predicting below-normal and
above-normal events. The below-normal and above-normal
events are defined using the terciles of the pentad mean pre-
cipitation amount or the pentad mean precipitation anomalies
of cross-validated climatology.

BS=
1
N

N∑
i=1
(pi − oi)

2, (17)
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where pi is the forecast probability of the below- or above-
normal event for case i, and oi is the observed occurrence (0
or 1).

The Brier skill score (BSS) is then calculated as follows:

BSS=
BSREF−BS

BSREF
× 100%, (18)

where the BSREF is the BS of the cross-validated climatol-
ogy. The BSS measures the relative skill of the forecast com-
pared to climatology. Like the CRPS skill score, the Brier
skill score takes the value of 100 % for perfect forecasts and
0 % for the cross-validated climatology.

In this study, we use the attribute diagram to assess the re-
liability, resolution, and sharpness of probabilistic forecasts
for both below-normal events and above-normal events. The
attribute diagram shows the observed frequencies against the
forecast probabilities for a given event with binary outcomes
(Hsu and Murphy, 1986). The forecast probability is binned
as five equal-width intervals, which are [0.0,0.2), [0.2,0.4),
[0.4,0.6), [0.6,0.8), and [0.8,1.0]. The corresponding ob-
served relative frequency is plotted against the mean forecast
probability in each bin. The forecasts are reliable if the scat-
ters are along the 45◦ diagonal. The sharpness is also shown
in the attribute diagram. The forecasts are sharp if the prob-
abilities tend to be either very high (e.g., > 90 %) or very
low (e.g., < 10 %; Peng et al., 2014). The size of each dot
represents the fraction of forecasts that fall into a particular
probability bin. Thus, the sharpness is indicated by the size
of dots in each bin. The attribute diagram requires a large
number of samples to draw robust conclusions. In this study,
the probabilistic forecasts over the 17 hydroclimatic regions
are pooled together to increase the sample size for each lead
time.

3 Results

3.1 Forecast skill of pentad mean precipitation amount

Figure 5 presents the cross-validated CRPS skill scores
for subseasonal forecasts of the pentad mean precipitation
amount at different lead times (lag times). Positive CRPS
skill scores are found over all regions and all lead times,
indicating that the STP-BHM model outperforms the cross-
validated climatological forecasts. The CRPS skill scores are
mostly over 10 % in southern China, even when the lead
time is beyond 10 d. On the contrary, the performance of the
STP-BHM model is relatively poorer in northern China, with
CRPS skill scores ranging from 5 % to 10 % at the same lead
time.

Figure 6 illustrates the Brier skill scores of the STP-BHM
model for both below-normal and above-normal events at
different lead times. As can be seen in Fig. 6, the Brier
skill scores are mostly above 15 % for both the below-normal
and above-normal events. This indicates that the STP-BHM

Figure 5. The cross-validated CRPS skill scores of the STP-BHM
model for the pentad mean precipitation amount forecasts at differ-
ent lead times during the period of 1979–2016, from May to Octo-
ber.

model can provide skillful subseasonal forecasts for extreme
events as well. Furthermore, the Brier skill scores are mostly
ranging from 20 % to 25 % in southern China at leads of 20–
25 d for below-normal events. The STP-BHM model shows
lower forecast skills for above-normal events, for which the
Brier skill scores are mostly between 15 % and 20 %. This
indicates that the below-normal events are more predictable
compared to the above-normal events.

To help identify the main sources of subseasonal precipi-
tation predictability, we also establish the STP-BHM model
for each atmospheric field separately. Figure 7 compares the
CRPS skill scores of the pentad mean precipitation forecasts
with different predictors. In general, U850, U200, H850, and
H500 show higher forecast skill compared to the OLRAs and
H200 for almost all hydroclimatic regions and lead times.
This suggests that the ISO signals of these atmospheric fields
contribute more to the overall forecast skill. Compared to the
STP-BHM model built with only one predictor, the forecast
skill is further improved when all ISO signals of atmospheric
fields are used.

The attribute diagrams of the subseasonal forecasts of
the pentad mean precipitation amount for below-normal and
above-normal events at different lead times are shown in
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Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal and above-normal events of the pentad mean
precipitation amount at different lead times during the period of 1979–2016, from May to October.

Fig. 8. Most points fall near the 1 : 1 line for both below-
normal and above-normal events at all lead times. This sug-
gests that the probabilistic forecast distributions are reliable.
However, the forecast probabilities deviate slightly from the
1 : 1 line at higher forecast probabilities for above-normal
events, indicating that the sharpness for above-normal events
should be further improved.

Figure 9 compares the CRPS skill scores of the STP-BHM
model and the NCEP model from May to October during
the period of 1999–2010. It is not surprising that the NCEP
model outperforms the STP-BHM model when the lead time
is within 5 d. However, we should note that the STP-BHM
model shows a much higher probabilistic forecast skill com-
pared to the NCEP model at longer lead times. Positive CRPS
skill scores are observed for the STP-BHM model over most
hydroclimatic regions, whereas the skill scores are mostly
negative for the NCEP model.

3.2 Forecast skill of pentad mean precipitation
anomalies

The cross-validated CRPS skill scores for the subseasonal
forecasts of the pentad mean precipitation anomalies are
shown in Fig. 10. The STP-BHM model shows positive
CRPS skill scores over most hydroclimatic regions, except
inland rivers in Xinjiang (Region 1) and inland rivers in
northern Tibet (Region 2). This may be explained by the
relatively lower variability in the pentad mean precipitation
anomalies in these regions. In addition, the STP-BHM model
shows higher forecast skill in eastern China, with CRPS skill

scores ranging from 10 % to 15 %. In comparison, the fore-
cast skill in inland rivers in Inner Mongolia (Region 3), the
upper Yellow River (Region 5), the upper Yangtze River
(Region 9), the southwestern rivers in southern Tibet (Re-
gion 11), the southwestern rivers in Yunnan (Region 12),
the Yangtze River (Region 13), and the Pearl River (Region
16) are lower. Similar results are also found by Zhu and Li
(2017c), for which southwestern China shows a lowest fore-
cast skill compared to other regions.

The Brier skill scores of the pentad mean precipitation
anomalies for below-normal and above-normal events are
presented in Fig. S33. Positive Brier skill scores are found
over all regions and all lead times, indicating that the STP-
BHM model outperforms the cross-validated climatological
forecasts for extreme events. Meanwhile, the differences in
the Brier skill scores in different hydroclimatic regions are
small, where the Brier skill scores are mostly ranging from
5 % to 15 % for both below-normal and above-normal events.

Figure 11 compares the CRPS skill scores of pentad mean
precipitation anomalies with different predictors. Overall, the
STP-BHM model with OLRAs used as predictors shows
higher forecast skill compared to other predictors for almost
all hydroclimatic regions and lead times. This suggests that
the OLRAs contribute most to the overall forecast skill of the
pentad mean precipitation anomalies.

Shown in Fig. S34 is the attribute diagram of the sub-
seasonal forecasts of the pentad mean precipitation anoma-
lies for below-normal and above-normal events at different
lead times. Most points fall close to the 1 : 1 line for both
below-normal and above-normal events. This suggests that
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Figure 7. The cross-validated CRPS skill scores of the STP-BHM model for the pentad mean precipitation amount forecasts with different
predictors (U850, U200, OLRAs, H850, H500, and H200). The term “ALL” denotes that the ISO signals of all atmospheric fields are used
as predictors.
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Figure 8. The attribute diagram of the STP-BHM model for the prediction of below-normal and above-normal events of the pentad mean
precipitation amount at different lead times. The forecast probability is binned with a width of 0.2. The size of each dot represents the fraction
of forecasts that falls into a particular probability bin.

the probabilistic forecast distributions are reliable for the
pentad mean precipitation anomalies as well. The sharpness
of STP-BHM model is also observed, especially for below-
normal events.

4 Discussion

4.1 Forecast skill and possible mechanism

In this study, we first analyze the relationship between the
preceding ISO signals of the atmospheric fields and precip-
itation. The coupled patterns are extracted, and the corre-
sponding projection coefficients are defined as predictors. A
Bayesian hierarchical model is then established and applied
to predict both the pentad mean precipitation amount and the
pentad mean precipitation anomalies over China. Our results
suggest that the STP-BHM model can provide skillful and
reliable probabilistic forecasts for both the pentad mean pre-
cipitation amount and the pentad mean precipitation anoma-
lies at a lead of 20–25 d over most hydroclimatic regions

in China. However, the spatial patterns of skill scores sug-
gest that the STP-BHM model is more skillful over southern
China. This may be explained by the different characteristics
of intraseasonal variability and different possible mechanism
over different hydroclimatic regions. Wang (2007) analyzed
the precipitation variability from April to September over
China, and the results suggested that the seasonal component
accounted for nearly 70 % of the total variability over north-
eastern China. The intraseasonal (10–90 d) component only
accounted for nearly 7 % of the total variability, which in-
dicates that the intraseasonal precipitation over these regions
has no significant frequency peak. In comparison, the subsea-
sonal component accounted for over 20 % of the total vari-
ability in southeastern China. Ouyang and Liu (2020) also
found that the boreal summer monsoon intraseasonal vari-
ability in precipitation over the lower Yangtze River basin
was mainly dominated by the relatively low-frequency 12–
20 d variability and high-frequency 8–12 d variability. Wang
and Duan (2015) demonstrated that the quasi-biweekly oscil-
lation (QBWO; 10–20 d oscillation) was the dominant mode
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Figure 9. Comparison of the CRPS skill scores of the STP-BHM
model and the NCEP model during the period of 1999–2010, from
May to October.

of intraseasonal variability in summer precipitation over the
Tibetan Plateau. The relations between atmospheric intrasea-
sonal oscillation and the low-frequency variability in precip-
itation vary from region to region as well. Ren and Shen
(2016) suggested that the impact of the tropical atmospheric
intraseasonal oscillation on precipitation was more signifi-
cant in regions in southern China and the Tibetan Plateau ar-
eas during the boreal summer. We also note that the forecast
skill of pentad mean precipitation amounts and precipitation
anomalies is different. The precipitation amounts vary at dif-
ferent timescales (interannual, intraseasonal, and synoptic).
The large-scale circulation anomalies (U850, U200, H850,
and H500) may be dominant for the total variability in pre-
cipitation amounts. In comparison, the precipitation anoma-
lies only represent the intraseasonal component of precipita-
tion. The OLR plays a more important role for intraseasonal

Figure 10. Same as Fig. 5 but for pentad mean precipitation anoma-
lies.

convections compared to other dynamical fields (Ventrice et
al., 2013; Liu et al., 2016).

We should also note that the CRPS skill scores of the STP-
BHM model are lower than NCEP dynamical models at short
lead times. The Calibration, Bridging, and Merging (CBaM)
method, which makes the best use of GCM outputs, has been
proved to be efficient for improving seasonal precipitation
over many regions (Strazzo et al., 2019; Schepen and Wang,
2013; Peng et al., 2014). Recently, Specq and Batté (2020)
proposed a similar statistical dynamical approach to improve
the subseasonal precipitation forecasts over the southwestern
tropical Pacific. In the future, the statistical forecasts gener-
ated from lagged atmospheric indices should be included in
the calibrated forecasts to further improve the subseasonal
precipitation forecast skill.

4.2 Limitations and future work

In this study, the correlation between the ISO signals of
atmospheric fields and precipitation is analyzed using the
whole record, despite the cross-validation strategy used for
statistical modeling. This may introduce artificial skill into
the model to some extent. However, the correlation analysis
for each step of the cross-validation is difficult in practice.
We analyze the spatial patterns of the correlations between
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Figure 11. Same as Fig. 7 but for pentad mean precipitation anomalies.

the preceding ISO signals of U850 and the precipitation over
Region 1 at the lead time of 0 d for the period of 1979–2016
and 1980–2016 (Fig. S35). The results show a small variabil-
ity between the cross-validated correlation and the whole-
period correlation. In addition, the cross-validation strategy

used in the statistical modeling procedure can also reduce the
chance of overfitting (Vehtari and Lampinen, 2002; Delsole
and Shukla, 2009).

Another limitation of this study is the treatment of zero
values adopted in the statistical modeling procedure. We treat
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the zero values as censored data, also referred as the explicit
approach in McInerney et al. (2019). Although this treatment
performed well in low-ephemeral and mid-ephemeral catch-
ments, the performance of this explicit approach was poor
in high-ephemeral (> 50 % zero flows) catchments. Further
development is required to overcome this problem. The cop-
ula functions are flexible in choosing marginal distributions
and have been widely used in hydrological simulations in re-
cent years (Zhang and Singh, 2007; Vernieuwe et al., 2015;
De Michele and Salvadori, 2003). Compared to the Bayesian
statistics we used in this study, the copula functions are more
general, and the normalization may not be required when the
skewed distributions are used as the marginal distribution of
precipitation. This may provide a possible solution to over-
come the problems caused by the large number of zero val-
ues.

We built the Bayesian hierarchical model for each hy-
droclimatic region separately. However, the spatial patterns
of precipitation have not been considered yet. The spatial
Bayesian hierarchical model, which can capture the spa-
tial dependence of precipitation between different regions,
could be used to provide subseasonal precipitation forecasts
with spatial coherence (Reza Najafi and Moradkhani, 2013;
Bracken et al., 2016). An alternative way to reconstruct the
spatial patterns of probabilistic precipitation forecasts is to
use the Schaake shuffle method or ensemble copula coupling
method (Roman et al., 2013; Clark et al., 2004). Higher spa-
tial or temporal resolutions of the precipitation forecasts are
also needed for the subseasonal streamflow forecasts. How-
ever, our previous studies indicated that post-processed daily
precipitation forecasts from GCMs are of low accuracy when
the lead time is beyond 10–14 d (Li et al., 2020). In this study,
the large-scale ISO signals are only used to predict the pen-
tad mean precipitation, as the noise of daily precipitation is
too large. Spatial or temporal disaggregation may be required
in the future to provide daily precipitation forecasts as inputs
for hydrological models.

5 Conclusions

Accurate and reliable subseasonal precipitation forecasts are
difficult, as the predictability from atmospheric initializa-
tion is lost after 2 weeks, while the slowly varying bound-
ary conditions do not have a substantial impact at such a
timescale. The intraseasonal oscillation (ISO) is considered
to be one of the leading sources of subseasonal predictabil-
ity. However, the relationship between atmospheric intrasea-
sonal signals and precipitation is of high uncertainty. In this
study, we first analyze the correlation between the preced-
ing atmospheric intraseasonal signals (U850, U200, OLRAs,
H850, H500, and H200) and precipitation. The spatiotem-
poral coupled covariance patterns are constructed for grid
points where the correlation statistically significant at the 5 %
level. The predictors are then defined by summing the prod-

uct of the covariance fields and ISO signals of atmospheric
field. A Bayesian hierarchical model (BHM) is then built to
address the uncertainty in the relationship between the ISO
signals of atmospheric fields and precipitation. The poste-
rior distributions of the model parameters are sampled using
a Gibbs sampling algorithm. The STP-BHM model is used
to predict both the pentad mean precipitation amount and
pentad mean precipitation anomalies after parameter infer-
ence. The performance is evaluated through a leave-1-year-
out cross-validation strategy.

Our results suggest that the STP-BHM model we built
in this study can provide skillful and reliable probabilistic
forecasts for both the pentad mean precipitation amount and
the pentad mean precipitation anomalies at a lead time of
20–25 d over most hydroclimatic regions in China when all
ISO signals of the atmospheric fields are used as predic-
tors. In addition, the STP-BHM model shows useful pre-
dictive skill for below-normal and above-normal events as
well, and positive Brier skill scores are observed at all lead
times. The spatial patterns of the skill scores suggest that the
STP-BHM model is more skillful over southern China com-
pared to other regions. The STP-BHM model outperforms
the NCEP S2S dynamical model when the lead time is be-
yond 5 d. To help identify the main sources of the subsea-
sonal precipitation predictability, we also establish the STP-
BHM model for U850, U200, OLRAs, H850, H500, and
H200 separately. The results suggest that the ISO signals of
U850, U200, H850, and H500 contribute more to the overall
forecast skills for the pentad mean precipitation amount pre-
dictions. In comparison, the OLRAs contribute the most to
the forecast skill for predictions of the pentad mean precipi-
tation anomalies.

In this study, the spatial patterns between the ISO sig-
nals of the zonal wind at 850 and 200 hPa, outgoing long-
wave radiation, and the geopotential height at 850, 500, and
200 hPa are extracted and used to define predictors. Other
sources of the subseasonal predictability, such as soil mois-
ture, snow cover, and stratosphere–troposphere interaction,
will be included in the Bayesian hierarchical model to further
improve the subseasonal precipitation forecasts. The Calibra-
tion, Bridging, and Merging (CBaM) method can also be
investigated at a subseasonal timescale to further improve
the forecast skill (Schepen and Wang, 2013; Schepen et al.,
2014).

Data availability. The precipitation dataset used in this study
can be derived from http://www.gloh2o.org/mswep/ (Beck et al.,
2021). The outgoing longwave radiation (OLR) dataset can be
found at https://www.ncei.noaa.gov/products/climate-data-records/
outgoing-longwave-radiation-daily (Lee and NOAA CDR Pro-
gram, 2021), and the ERA5 dataset can be sourced from https:
//cds.climate.copernicus.eu/ (Copernicus Climate Change Service,
2021).
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