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Abstract. Concurrent floods in multiple locations pose sys-
temic risks to the interconnected economy in East Asia via
supply chain disruptions. Despite these significant economic
impacts, understanding of the interconnection between rain-
fall patterns in the region is still currently limited. Here, we
analyzed the spatial dependence of the rainfall patterns of 24
megacities in the region using complex analysis theory and
discussed the technique’s applicability. Each city and rainfall
similarity were represented by a node and a link, respectively.
Vital-node identification and clustering analysis were con-
ducted using adjacency information entropy and multireso-
lution community detection. The results of vital-node identi-
fication analysis show that high-ranking nodes are cities that
are located near main vapor providers in East Asia. Using
multiresolution community detection, the groups were clus-
tered to reflect the spatial characteristics of the climate. In ad-
dition, the climate links between each group were identified
using cross-mutual information considering the delay time
for each group. We found a strong bond between Northeast
China and the southern Indochinese Peninsula and verified
that the links between each group originated from the sum-
mer climate characteristics of East Asia. The results of the
study show that complex network analysis could be a valu-
able method for analyzing the spatial relationships between
climate factors.

1 Introduction

East Asia accounts for 54 % of the global supply chain, pro-
viding a wide range of services and products across the world
(Ann et al., 2020). However, the region is prone to major
floods. According to the disaster database of the Centre for
Research on the Epidemiology of Disasters (CRED), which
offers essential core data on the occurrence and effects of
disasters all over the world, an annual average of 165 flood
disasters occurred worldwide during the period from 2000 to
2020, resulting in 5278 deaths and economic damage of up
to USD 29 million. While more than 22 % of these flood dis-
asters occurred in East Asia, more than 60 % of the global
flood-related deaths and economic damage was experienced
by this region. For instance, Thailand recorded 813 deaths
and USD 40 million worth of damage from floods in 2011
(Haraguchi and Lall, 2015), while China recorded 300 fa-
talities and USD 4.5 million of damage from floods in 2019
(CRED). This flood damage occurred in several areas of East
Asia simultaneously. Even though floods occurred simul-
taneously in distant areas, the impacts of floods propagate
through supply chains, incurring economic losses for the en-
tire region. In this sense, concurrent flooding causes severe
loss of life and economic damage in multiple countries at the
same time, disrupting the global economy more severely. For
example, in 2020, concurrent floods in East Asia inundated
automobile factories in Thailand, disrupting automobile sup-
ply, adversely affecting China’s rare earth and fertilizer in-
dustries along the Yangtze River and, thus, also impacting
the global rare earth industry (Podlaha et al., 2020).
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Changes in rainfall characteristics caused by climate
change are some of the primary causes of concurrent floods
in East Asia. These changes occur across all regions, and the
changed characteristics affect each other, resulting in even
more significant changes (Wang et al., 2020). Therefore, it is
vital to investigate the relationships among rainfall patterns
in each region. Many studies have been conducted to iden-
tify rainfall relations in East Asia. Most of them have inves-
tigated the relationship between major East Asian countries
using statistical techniques (Jeong et al., 2008; Kosaka et al.,
2020; Deng et al., 2014), and some have demonstrated con-
nections among weather factors, sea-level temperature, and
monsoons. (Wu et al., 2003; Lau and Kim, 2006; Li et al.,
2010; Sun and Wang, 2012; Wu, 2017). Researchers have
also used teleconnection methods to discover relationships
between precipitation in East Asia and other parts of the
world (Kripalani and Kulkarni, 2001; Sahai et al., 2003; Riyu
and Zhongda, 2009; Lin, 2014; Maity et al., 2020). These
studies have been used to anticipate rainfall in East Asia and
to aid in preparing for flood disasters. This study investigated
the usefulness of complex network concepts for relationship
analysis.

Complex network theory, developed by Leonard Euler in
1735, expresses and analyzes a subject or phenomenon as
a graph. In the late 1990s, Watts and Strogatz (1998) and
Barabási and Albert (1999) extended the analytical tech-
nique, making the theory fundamental in network science.
A complex network can display a complicated phenomenon
as a simple graph. Information obtained from the method-
ology can be used to identify the characteristics of subjects,
their physical behavior, and the roles and relationships of the
phenomenon’s components. Complex network analysis has
also been used in various fields because of its high applica-
bility. For example, researchers have applied it to social net-
works (Michael et al., 2010), world trade (Bader et al., 2007),
air transportation nets (Cardillo et al., 2013), patterns of hu-
man migration (Davis et al., 2013), and others. The analytical
method has also been used in the fields of hydrology and me-
teorology to discover new patterns and relationships (Donges
et al., 2009; Scarsoglio et al., 2013; Boers et al., 2015; Joo
et al., 2021; Wolf et al., 2020). In precipitation-related re-
search, the method had been used to analyze extreme rainfall
patterns around the world (Boers et al., 2019), track rainfall
events caused by typhoons (Ozturk et al., 2018), and study
the spatial connectivity of rainfall (Ihsan et al., 2018) in or-
der to determine new information or characteristics.

With the encouraging results of previous rainfall-related
studies, this study applied complex network theory to rainfall
in East Asia in order to understand the relationships among
rainfall patterns in each region. The complex networks in
the fields of hydrology and meteorology define connectivity
using statistical interdependence methods. Therefore, char-
acteristics can be analyzed from the relationships. In addi-
tion, for clustering analysis, complex network-based meth-
ods consider the entire network, rather than the independent

regions, unlike many other traditional methods. This feature
results in a more accurate clustering (Long and Liu et al.,
2019). Despite this advantage, one of the challenges in com-
plex network theory is to identify thresholds, which deter-
mine whether the links exist. While no perfect methodology
exists to clearly address this challenge, new methodologies
are constantly being proposed. In this study, we assumed that
each region (node) is connected to all of the other regions
(nodes) in the network and that each connection (link) has
a similarity, which is used as a weight. By using the simi-
larity measures as weights, the network reflects the relation-
ships between regions. Using the similarity measure makes
a network the reflect relationship between regions. The link
weight is one of the most important input variables for con-
structing and analyzing a network. We assessed the effects of
each region using centrality analysis and grouped the regions
according to clustering analysis. Subsequently, mutual infor-
mation (MI) was calculated with a time lag (i.e., cross-mutual
information) in order to identify the relationships between
each group. Past studies on complex networks only consid-
ered spatial factors, whereas we add also temporal factors.

The remainder of this paper is organized as follows: Sect. 2
describes the study area and data used in this study; the com-
plex network theory and related indicators are detailed in
Sect. 3; Sect. 4 presents the results of the complex network
analysis of East Asia and a discussion of these results; and
Sect. 5 presents the conclusions.

2 Study area and materials

In this research, the major cities in East Asia are analyzed
(Fig. 1). Among the East Asian cities, we used the same
cities as selected by Haraguchi et al. (2019). They chose
cities with more than 5 million people and with a high degree
of urbanization. As rainfall often causes numerous floods in
the region and due to growing urbanization, more and more
cities have began to experience small and medium-sized fre-
quent floods as well as large-scale, low-probability floods
(The World Bank, 2015). It should be noted that we excluded
Surabaya, Jakarta, and Badung (Indonesia) from the selected
cities because of the changes in the location of rainfall obser-
vations since 2007. Instead, we included Ho Chi Minh City,
Hai Phong (Vietnam), and Cebu (Philippines), which are eco-
nomically emerging. Thus, a total of 24 cities were selected.

This study used daily precipitation data from the “Asian
Precipitation – Highly-Resolved Observational Data Integra-
tion Toward Evaluation” (APHRODITE) gridded precipita-
tion dataset (Akiyo et al., 2012). The APHRODITE dataset
contains long-term, high-resolution daily rainfall data of the
Asian continent obtained from a dense precipitation obser-
vation network (Fig. 2). The data were obtained from the
APHRODITE “Water Resources” project conducted by the
Research Institute for Humanity and Nature (RHIN) and the
Meteorological Research Institute of the Japan Meteorologi-
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Figure 1. The 24 major East Asian cities used in this work.

cal Agency (MRI/JMA). These data have been used in many
studies because of their high definition. We extracted the
rainfall data from the grid (0.25◦×0.25◦) to which each city
belongs.

Daily rainfall data for each city consisted of observations
from 1 January 1981 to 31 December 2015. The basic statis-
tics for each city’s rainfall data are listed in Table 1. Taipei
records the largest rainfall amount on average, approximately
6 times higher than that of Bangkok, which has the lowest
rainfall. Bangkok also has the largest variation, whereas Kula
Lumpur has the least variation.

3 Methodologies

3.1 Complex network analysis

Complex network analysis effectively visualizes a subject or
phenomenon using a network and analyzes its characteristics,
components, and relationships among nodes in the network.
To apply complex network analysis, nodes and links must be
defined. A node represents some entity or agent that serves
as a point of intersection/junction within a network (Kivelä
et al., 2014). For example, in the global airways network,
airports become nodes. A link is an element that connects
each node. Thus, in a global airways network, airways are the
links. Defining these two elements is crucial in the analysis

because even networks with the same number of nodes and
links can potentially take various forms (Fig. 3).

In a complex network, links are the most influential as-
pects of the network. This is because the type and character-
istics of the graph vary depending on the type of link used
and how it is defined. Based on the directionality and weight
of the link, the network can be an undirected/directed net-
work or an unweighted/weighted network. Generally, it is
easy to define links in transportation systems or power grid
systems, which show clear connections between elements.
However, if uncertainties in the connections exists, such as
in social networks, researchers must define them. The most
widely used methodology for defining uncertainty in the con-
nections is the similarity measure (Donges et al., 2009). De-
pending on the value of the similarity calculated between two
nodes, the researcher can define whether a link exists. While
various previous studies have used the Pearson correlation
coefficient for links, it tends to derive inaccurate values when
it is applied to nonlinear data (Zadian et al., 2018). To address
this problem, some researchers have utilized mutual informa-
tion (MI) as an alternative (e.g., Donges et al., 2009; Kim et
al., 2019; Ghorbani et al., 2021). MI is based on the infor-
mation and probability theory. For two variables (A and B),
it quantifies and represents the amount of information on B
contained in the variable A:

MI(A,B)=
∑
b∈B

∑
a∈A

p(a,b) log
(
p(a,b)

p(a)p(b)

)
, (1)
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Figure 2. The APHRODITE data (http://aphrodite.st.hirosaki-u.ac.jp/products.html, last access: 26 November 2019) for the cities. Dots
show the station data distribution of the data used in this work: red represents individual collections, black represents pre-complied data, and
blue represents global telecommunication network (GTS) based data obtained from Global Surface Summary of the Day (NCEI/NOAA).
Rectangles show the domain of precipitation data. In this research, precipitation data on a 0.25◦ grid for monsoon Asia (MA) for the period
from 1981 to 2015 were utilized.

Table 1. Basic statistical values for the rainfall data of cities. The statistics shown are the average, standard deviation, coefficient of variation,
and skewness.

Station Average Standard Coefficient of Skewness
(mmd−1) deviation variation

Pearl River Delta 4.277 9.416 2.202 4.063
Tokyo 3.637 10.736 2.952 7.044
Shanghai 2.985 6.446 2.160 3.993
Beijing 1.316 4.377 3.325 6.395
Manila 6.241 12.514 2.005 5.023
Seoul 3.457 9.427 2.727 5.543
Osaka 2.802 5.900 2.105 4.619
Bangkok 1.101 4.067 3.694 7.308
Tianjin 3.903 9.932 2.544 4.910
Shantou 2.211 4.853 2.195 5.279
Chengdu 3.782 6.241 1.650 3.246
Ho Chi Minh City 4.551 11.314 2.486 4.919
Nagoya 3.176 7.762 2.444 4.492
Wuhan 4.583 11.278 2.461 4.427
Hong Kong SAR 4.889 6.460 1.321 2.177
Shenyang 1.590 4.946 3.11 6.183
Taipei 6.955 16.128 2.319 6.192
Hangzhou 3.614 7.413 2.051 3.981
Kuala Lumpur 6.196 7.970 1.286 2.311
Xi’an 1.527 4.099 2.684 5.054
Ha Noi 4.053 8.870 2.189 4.417
Chongqing 2.790 5.751 2.061 4.890
Cebu 4.126 6.759 1.638 4.923
Hai Phong 3.801 9.530 2.507 5.023
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Figure 3. Various shapes of networks with the same number of nodes and links. Each network has four nodes and four links; however, these
networks take various shapes and have different topological characteristics.

where p(a) and p(b) are the probability distributions of the
respective variables, and p(a,b) indicates the joint probabil-
ity density function of the variables. MI values range from 0
to ∞, and an MI value of 0 indicates that the two variables
are independent of each other. MI can consider the nonlin-
earity of the data and has the advantage of calculating the
similarity between datasets of different sizes (Goyal, 2014).

3.2 Vital-node identification using adjacency
information entropy

Important nodes in a network have various effects on the
structure or function of the network. Identifying these nodes
is of practical and theoretical value (Xu et al., 2020). For ex-
ample, if a government identifies the locations that play a key
role in power grids and traffic networks, it can effectively in-
vest and create defensive measures to prepare for blackouts
and traffic jams. While some methods of identifying impor-
tant nodes have been developed, these methods have limi-
tations and are only applicable to certain types of networks
(Mester et al., 2021), such as undirected networks. Xu et al.
(2020) developed a new methodology based on information
entropy, making it applicable to all types of networks. This
method has more efficient and accurate results than the exist-
ing methods. The procedure of the method is briefly outlined
in the following (a more detailed explanation of the vital-
node identification method is given in Xu et al., 2020). The
first step is calculating strength of each node in a weighted
network:

ki =
∑
j∈0i

wji, (2)

where j is the neighbor of node i, 0i is the set of neighbors of
node i, and wji is the weight of the link that connects node
j and node i. If a network is unweighted, the degree is the
number of neighbor nodes. The next step is to estimate the
adjacency degree of each node:

Ai =
∑
j∈0i

kj , (3)

where Ai is the adjacency degree, representing the total
weight of the neighboring nodes of node i. Based on Eqs. (2)
and (3), the selection probability can be calculated as fol-

lows:

Pij =
ki

Aj
. (4)

Eventually, the adjacency information entropy of a node is
then calculated:

Ei =
∑
j∈0j

(
Pij log2Pij

)
. (5)

After comparing the calculated adjacency information en-
tropy of each node, the importance is determined according
to the descending power. In the rainfall studies, vital nodes
are interpreted as important points for the propagation of a
rainfall event.

3.3 Multiresolution community detection in weighted
complex networks

A complex network consists of many nodes and links. Some
nodes with strong relationships or similar characteristics can
be clustered together. These clusters have several features
and perform specific network functions. However, the clus-
ter results depend on the level of analysis. Therefore, the
multiresolution community detection method can be a use-
ful method for understanding complex networks (Newman,
2012). Several cluster analysis methods have been used for
complex networks, but they require intense computations for
complicated network shapes and focus only on graphical
properties (Long and Liu, 2019). To address these problems,
Long and Liu (2019) proposed a new clustering methodol-
ogy using an intensity-based community detection algorithm
(ICDA) in weighted networks. This method is advantageous
because it forms groups more accurately and faster than other
methods. To form groups, the belonging coefficient of the
nodes should be calculated. The first step for estimating be-
longing coefficient is defining a distinct path. The simple
(non-repeating links between nodes) and elementary (non-
repeating nodes) path θ between node i and j with k edges
is denoted as a k-edge distinct path if the path has no identi-
cal intermediate nodes or edges with any other distinct paths.
After defining distinct paths, the link intensity of each link
must be calculated as follows:

IP (eij )=

{∑P
p=1αp ×

σ(pathp(vi ,vj ))
min(wi ,wj )

, eij ∈ E

0, otherwise.
(6)
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Here, σ(pathp(vi,vj )) is the sum of the link weights in p-
edge distinct paths from node i (vi) to node j (vj ), P is the
parameter of the path, and αp is a polygonal effect parameter.
For edge eij between node i and node j , wi and wj are the
respective strengths. Based on the link intensity, links must
then be found that have a larger link intensity value than a
threshold, and a group of nodes with the identified links is
created:

vj =

{
vj ∈ V, IP (eij ) > t

vj ∈ cu, IP (eij ) > t.
(7)

Here, t (0< t ≤ 1) is the selected threshold, and cu is a group
of nodes. The threshold is determined according to the re-
searcher’s personal view. The final step is calculating the be-
longing coefficient (IP ) of the nodes in node set u (cu):

IP (cu,vj )=
∑
vi∈cu

IP (eij ). (8)

To evaluate the result of the cluster method, we used
Newman–Girvan modularity. The Newman–Girvan modu-
larity method compares the number of links connecting
nodes inside a group of nodes with an expectation of this
number under a random null model (Newman and Girvan,
2004). The modularity (Q) is calculated as follows:

Q=
1

2m

∑
ga∈P

∑
i,j∈ga

(
Aij −

kikj

2m

)
, (9)

where P is a cluster of node groups (P = {g1,g2, . . .,ga}),
ga is a node group, and m is the total weight of links. The
modularity measure assigns high scores to communities if
they are densely connected internally but only weakly con-
nected to other groups. We set the threshold groups by divid-
ing by 2.5 % intervals from 95 % to 75 % and then calculated
the Newman–Girvan modularity according to the threshold
groups.

4 Application and results

4.1 Construction of East Asia rainfall network

In this research, we designed a rainfall network as a weighted
and undirected graph. Each node was selected from 24 ma-
jor cities, and link weights represented shared knowledge be-
tween nodes. Table 2 compares the results of the link weights
of the nodes.

According to Table 2, the ranges of the average, maxi-
mum, and minimum link weights are 0.22–0.37, 0.27–1.67,
and 0.13–0.24, respectively. The standard deviation of the av-
erage, minimum, and maximum values are 0.041, 0.033, and
0.394, respectively. The standard deviations of the maximum
values were 10 times larger than the minimum values. We
observed that the cities with the maximum values for each

node were closely located. This is because the rainfall char-
acteristics of cities located in close proximity to one another
are similar; thus, the MI value is high. Each node had a maxi-
mum value for several different cities, whereas the minimum
values were observed for certain cities such as Beijing and
Tokyo. Beijing and Tokyo were selected as the cities with
the lowest MI values (8 and 6 times lower than the maximum,
respectively). These two cities have a common feature: their
location is on the outskirts of the study area.

4.2 Vital-node identification by adjacency information
entropy

For the network, we apply vital-node identification (VNI) to
determine the influence of nodes. VNI can be used to analyze
all types of networks and to more precisely determine the ef-
fects of nodes more accurately. The cities with high-ranking
nodes are located around the South China Sea (Fig. 4). In
addition, they have a high adjacency in the adjacency ma-
trix. Cities with low-ranking nodes are located on the north-
east outskirts, except for Taipei, and have a low average MI
value. From these results, we can deduce that the location of
a node affects its influence. However, location is not the only
factor affecting vital-node identification. Despite its proxim-
ity to the South China Sea, Taipei has a low rank because its
link weight is the smallest on average (0.220). We also find
another commonality between high-ranking cities: they are
located in the threshold regions with respect to the beginning
of the impact of the main factors influencing rainfall in East
Asia. We will elaborate on this in Sect. 4.5.

4.3 Clustering analysis using multiresolution
community detection

In clustering analysis, multiresolution community detection
is applied to 24 nodes to create groups. After calculating the
belonging coefficient, we determine the groups based on the
threshold value. The threshold value is the 95th quantile of
the calculated belonging coefficient, 0.06, in order to form a
group of nodes with a strong relationship.

Nodes in close proximity form a group (Fig. 5). The
cities of Seoul (South Korea) and Kuala Lumpur (Malaysia)
are not clustered with the others. Seoul has low belonging
coefficients with the nearby nodes because of its location
on the Korean Peninsula. This area is influenced by mar-
itime air masses in summer and continental air masses in
winter. Therefore, the precipitation of Seoul is affected by
both features and has different characteristics. This feature
means that Seoul did not cluster with G2 and G4. For the
Kuala Lumpur node, the belonging coefficients calculated
with other nodes are between 0.03 and 0.05. Unlike other
cities, Kuala Lumpur is significantly influenced by the bo-
real winter season and the Australia summer monsoon (Sigh
and Xiaosheng, 2020). Therefore, Kuala Lumpur has a dif-
ferent rainfall pattern, and this results in a lower belonging
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Table 2. The average, maximum, and minimum link weights of each node. The parentheses next to link weights are nodes that form a
maximum or minimum value for target nodes.

Node Average Maximum (Node) Minimum (Node)

Pearl River Delta 0.352 1.674 (Hong Kong SAR) 0.203 (Tokyo)
Tokyo 0.226 0.528 (Nagoya) 0.140 (Tianjin)
Shanghai 0.253 1.076 (Hangzhou) 0.153 (Tokyo)
Beijing 0.232 0.850 (Tianjin) 0.130 (Osaka)
Manila 0.294 0.467 (Ho Chi Minh City) 0.219 (Shanghai)
Seoul 0.227 0.276 (Ha Noi) 0.155 (Tokyo)
Osaka 0.244 0.870 (Nagoya) 0.130 (Beijing)
Bangkok 0.272 0.520 (Ho Chi Minh City) 0.194 (Shanghai)
Tianjin 0.252 0.850 (Beijing) 0.143 (Osaka)
Shantou 0.284 0.861 (Hong Kong 0.183 (Beijing)
Chengdu 0.293 0.621 (Chongqing) 0.200 (Shanghai)
Ho Chi Minh City 0.308 0.520 (Bangkok) 0.217 (Shanghai)
Nagoya 0.254 0.870 (Osaka) 0.139 (Beijing)
Wuhan 0.292 0.529 (Hangzhou) 0.195 (Taipei City)
Hong Kong SAR 0.364 1.674 (Pearl River Delta) 0.215 (Tokyo)
Shenyang 0.240 0.367 (Tianjin) 0.166 (Tokyo)
Taipei 0.220 0.333 (Shantou) 0.147 (Beijing)
Hangzhou 0.279 1.076 (Shanghai) 0.164 (Beijing)
Kuala Lumpur 0.308 0.377 (Wuhan) 0.207 (Beijing)
Xi’an 0.271 0.508 (Chengdu) 0.188 (Osaka)
Ha Noi 0.341 1.162 (Hai Phong) 0.238 (Tokyo)
Chongqing 0.289 0.621 (Chengdu) 0.207 (Beijing)
Cebu 0.246 0.354 (Manila) 0.179 (Beijing)
Hai Phong 0.342 1.162 (Ha Noi) 0.235 (Shanghai)

coefficient. To evaluate the cluster result, we calculated the
Newman–Girvan modularity. We set the threshold groups by
dividing by 2.5 % intervals from 95 % to 75 %. In the mod-
ularity result, 95 % show the largest modularity (Table 3). In
Table 3, there are thresholds with the same modularity value;
these thresholds have same clustering result.

4.4 Relationships between node groups

Nodes are grouped based on their belonging coefficients
(Sect. 4.3). The relationships between the groups are de-
termined using cross-mutual information analysis. Cross-
mutual information is a methodology for calculating MI by
adding time lags between targets. It can estimate an appropri-
ate correlation coefficient by considering the time intervals
for geographically distant points. In this study, the time lag
ranges from −10 to 10 d, and we check the maximum cross-
mutual information value and corresponding time lag of each
group.

As Fig. 6 shows, most groups have strong relationships
with G5 or G6, with maximum cross-mutual information val-
ues. G5 and G6 have the maximum cross-mutual informa-
tion value with each other, and this value is larger than other
cross-mutual information results. This result indicates that
the two regions have a comparatively strong relationship. A
comparison of the lag times that form the maximum cross-

mutual information indicated that the maximum values are
in an interval of fewer than 5 d. Therefore, East Asian re-
gions can meaningfully relate to each other within a window
of 5 d.

In order to establish the rainfall relationships in East Asia,
an analysis of the East Asian summer rainfall system is re-
quired, as East Asian summer rainfall comprises more than
90 % of the total rainfall in the region (Chen et al., 2015). The
relationships in Fig. 6 are derived from the synoptic atmo-
spheric circulation in East Asia. The Indian and East Asian
monsoons are major factors affecting rainfall in East Asia.
The Indian monsoon brings highly humid wind from the sea
that conveys a large quantity of vapor across India and the
Bay of Bengal to East Asia; this vapor can also reach the
northern part of China (Wu, 2017). If the Indian monsoon
is strong, a large amount of rainfall can occur in India and
northern China. This characteristic is observed in the rela-
tionship between G5 and G4 (G5 is the first place affected by
the Indian monsoon in East Asia, and G4 is the first place af-
fected in northern China). Water vapor from the Indian mon-
soon moves northwest from the Bay of Bengal, passing main-
land China into the Sea of Okhotsk, which is located between
the Russian Kamchatka Peninsula and the Japanese island of
Sakhalin. Thus, G5, G6, and G7, which are located along
this pathway, are related to each other by the Indian mon-
soon. The movement of water vapor from the Indian mon-
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Figure 4. The adjacency information entropy value of cities. The colors and sizes of the circles are proportional to the respective entropy and
rank. The color bar on the right shows the adjacency information entropy values of nodes; except for Taipei city, nodes near the South China
Sea have higher values.

Table 3. Results of the Newman–Girvan modularity analysis according to different thresholds.

Threshold 95 % 92.5 % 90 % 87.5 % 85 % 82.5 % 80 % 77.5 % 75 %
Modularity 0.0313 0.0311 0.0311 0.0311 0.0309 0.0309 0.0294 0.0286 0.0286

soon is caused by the low-level jet stream from the Somalian
coast. The effect of the South China Sea, which supplies va-
por to the mainland, is shown in the relationship between G1
and G6. In the summer, vapor from the the South China Sea
arrives on the mainland and causes much rainfall in south-
ern China (Kalnay et al., 1996). Like the Indian Monsoon,
the East Asian monsoon affects East Asian rainfall. The East
Asian monsoon begins in the western Pacific, moves east-
ward through Indonesia, and ends in Japan and South Korea.
If it is strong, it also affects southern Vietnam and Thailand
(Renhe and Akimasa, 2002). This is observed in the relation-
ship between G8 and G5. In the summer, there is an anoma-
lous anticyclone between China and Korea; this anticyclone
is located in the western sea and forms a clockwise wind cy-
cle throughout China, Korea, and Japan (Wu, 2017). This
wind cycle results in the transport of vapor from Japan to
eastern and central China, thereby forming the relationships
between G2 and G6 and between G3 and G6.

4.5 Discussion

Complex network analysis is advantageous, as it reduces
complex phenomena or systems to a graph form, making it
easier to determine characteristics. In addition, it can be used
to analyze the effects of network components and perform
clustering analysis. Given these merits, we used complex net-
work analysis to examine the relationships between major
cities in East Asia.

To create a rainfall network, we first calculated the MI be-
tween nodes and used it as the link’s weight. Thus, the net-
work reflected the relationship of rainfall in each city and
was used as the most important factor in subsequent analy-
ses. Based on the MI results, we found that many cities had
the lowest value with Tokyo and Beijing. We attempted to es-
tablish why this was the case, but we could not find any dif-
ferences in the rainfall data. Therefore, future studies should
collect and analyze data on other climate and geographical
factors to discover why Tokyo and Beijing have unique rain-
fall characteristics.
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Figure 5. The group of nodes using multiresolution community detection. There are eight groups in East Asia: G1 (Pearl River Delta, Hong
Kong SAR, Shantou, and Taipei City), G2 (Osaka, Nagoya, and Tokyo), G3 (Wuhan, Hangzhou, and Shanghai), G4 (Tianjin, Shenyang, and
Beijing), G5 (Bangkok and Ho Chi Minh City), G6 (Xi’an, Chengdu, and Chongqing), G7 (Ha Noi and Hai Phong), and G8 (Manila and
Cebu). Seoul and Kuala Lumpur did not group with other nodes.

The adjacency information entropy was calculated and
compared to check the effects of nodes in the network. The
results indicate that nodes surrounding the South China Sea
and nodes located in threshold region with respect to the be-
ginning of the effect of the two monsoons (Indian and East
Asian) were highly ranked and that a node’s location is one
of the essential factors in identifying vital nodes. In the rain-
fall complex network research, high-ranking nodes are im-
portant sites for the propagation of a rainfall event. Based
on the interpretation of a high-ranking node, we verified that
the South China Sea and the two monsoons are the primary
moisture sources in East Asia. The South China Sea sup-
plies a huge amount of moisture to East Asia, and the two
monsoons pass through it. Vapor from the South China Sea
first affects coastal cities and then moves to other cities in
the continent. Thus, rainfall from some cities affects neigh-
boring cities. Based on this phenomenon, cities in the South
China Sea obtained high ranks. Kuala Lumpur and Manila
also obtained high ranks; these cities have a commonality in
that their location is at the beginning of each major mon-
soon influence. The two monsoons pass Kuala Lumpur and
Manila first and then move as shown in Fig. 7. Due to these
characteristics, high-ranking nodes have a higher rainfall in-
tensity and a higher number of rainfall days compared with
other cities. Conversely, low-ranking cities have low rainfall

intensity and a lower number of rainfall days. As low-ranking
cities are commonly located in the north, which is very far
from the moisture sources, these cities get less moisture and
have less similarity to other cities. Using vital-node identifi-
cation, we established the major rainfall influence elements
in East Asia, and this helped to interpret the relationships be-
tween groups in Sect. 4.4.

As described in Sect. 4.3, the belonging coefficient of each
node was calculated by using the link weight. Each group
consists of nodes located nearby, and their coefficients are
significantly higher than those of the other nodes. We also
tried to find common physical factors between nodes in the
same group. We found that the nodes of some groups are
located in the same basin or share a river; however, these fac-
tors do not apply to all groups. The cluster analysis result
is conducted based on the similarity of rainfall. Rainfall is a
meteorological phenomenon caused by a combination of var-
ious factors such as geographic, hydrologic, meteorological,
and ecological elements. If two regions have a high similar-
ity with respect to rainfall, they share similar characteristics
of factors influencing rainfall. This study attempted to find
the common factors that resulted in the groups, but it failed
to find them. These factors are essential to predict concur-
rent floods in multiple locations. Therefore, in a future study,
we will attempt to establish the factors responsible for the
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Figure 6. The maximum cross-mutual information relationship and its time lag value. Each arrow indicates the maximum relationship
group, and the numbers under the arrows express the lag time (days) of the maximum cross-mutual information value. The figure shows the
relationships between groups and the influence time intervals in East Asia.

high similarity between nodes in the same group using geo-
graphic, meteorological, and hydrological data.

After clustering, we applied cross-mutual information
analysis to determine the relationships between groups. Dur-
ing the analysis, the lag time was considered because the
groups were geographically separated. The cross-mutual in-
formation results were interpreted using the rainfall char-
acteristics of East Asia. Two monsoons (the Indian and
East Asian monsoons) and the anomalous anticyclone af-
fect group relationships. This result could also be con-
firmed when creating groups using various thresholds in
Sect. 4.3. When the threshold reached 92.5 %, G5 and G7
were merged. After a threshold of 85 %, G3 and G6 became
the same group. At thresholds of 80 % and 77.5 %, G8 was
added to the combination of G5 and G7, and Kuala Lumpur
was subsequently add to the combination of G5, G7, and G8.
As seen from Fig. 6, G7 and G8 have a strong relationship
with G5 due to the two monsoons, and G3 and G6 also have
a strong relationship due to the anomalous anticyclone. One
intriguing finding is the strong relationship between G5 and
G6: even with G7 between them, they have a strong connec-
tion. Previous research has primarily focused on the relation-
ship between southern China (G1) and regions surrounding
the East China Sea (G5, G7, and G8) (Yuan and Qie, 2008;
Hu et al., 2014; Zhao et al., 2017). These studies analyzed
the effects of monsoons in the East China Sea but did not ex-

pand the region to G6. Therefore, research into the physical
interpretation of the link between the G5 and G6 regions is
required.

Complex network analysis facilitates a simple analysis of
the relationship between East Asian cities. Unlike previous
studies, we incorporated temporal factors into the relation-
ships. Thus, we discover new relationships and rainfall char-
acteristics in East Asia. During the analysis, vital-node iden-
tification helped to identify important sites for the propaga-
tion of rainfall as well as major moisture sources in East Asia.
Vital-node identification is a useful method to analyze a sys-
tem or phenomena. Therefore, it can be used to research natu-
ral disasters or a meteorological system. The multiresolution
community detection method found cities with similar rain-
fall characteristics according to threshold values. This tech-
nique created groups with similar characteristics and simpli-
fied the rainfall network, thereby helping to develop our un-
derstanding of rainfall relationships between the major East
Asian cities.

The two abovementioned methods draw out different re-
sults, but they help to interpret the results. For example, the
major moisture sources found by vital identification helped
to explain the relationship between groups. In addition, their
results ultimately helped to deepen our understanding of the
rainfall system in East Asia. These results verify that our
research framework, using a complex network, is a helpful
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Figure 7. Major water vapor transport routes in East Asia. These routes could explain why the relationships between groups occur as they
are shown in Fig. 6. The Indian monsoon brings vapor from the Indian Ocean, whereas the East Asian monsoon transports vapor from the
Pacific Ocean and East China Sea. An anomalous anticyclone provides vapor to East China, Korea, and Japan.

process for studying regional relationships and weather sys-
tem. The framework contains not only topological analysis
but also statistical analysis, and it considers temporal factors.
Moreover, it ultimately reflects climate cycle factors and re-
veals their characteristics.

5 Conclusions

Concurrent floods in East Asia can simultaneously inundate
a firm’s production facilities at multiple locations, thereby
causing supply chain disruptions at a global level. In this
study, we analyzed the spatial relationships of rainfall be-
tween major cities in East Asia using a complex network. The
East Asia rainfall network comprises major cities (nodes) and
mutual information (links). Once the network was created,
vital-node identification and multiresolution community de-
tection were conducted using adjacency information entropy
and multiresolution community detection. Cross-mutual in-
formation defined relationships between cluster groups in
East Asia. The results revealed that the network reflected the
rainfall characteristics of East Asia, and the relationships sig-
nificantly affected vital nodes and clustering analysis. In ad-
dition, we observed that Southeast Asia and Northwest China
have a strong relationship. This work observed that, while
the computational burden of implementing complex network

analysis is not overly high, the method accurately reflects the
relationship between regional rainfall and can be used to an-
alyze the relationships between various weather factors. In
a subsequent study, we intend to evaluate the applicability
of complex network methodology to interpret key climate
factors, such as the El Niño–Southern Oscillation, the In-
dian Ocean Dipole, and the North Atlantic Oscillation, which
have complex interconnection characteristics.
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