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Abstract. Sap flow encodes information about how plants
regulate the opening and closing of stomata in response to
varying soil water supply and atmospheric water demand.
This study leverages this valuable information with model–
data integration and deep learning to estimate canopy con-
ductance in a hybrid catchment-scale model for more ac-
curate hydrological simulations. Using data from three con-
secutive growing seasons, we first highlight that integrating
canopy conductance inferred from sap flow data in a hydro-
logical model leads to more realistic soil moisture estimates
than using the conventional Jarvis–Stewart equation, partic-
ularly during drought conditions. The applicability of this
first approach is, however, limited to the period where sap
flow data are available. To overcome this limitation, we sub-
sequently train a recurrent neural network (RNN) to predict
catchment-averaged sap velocities based on standard hourly
meteorological data. These simulated velocities are then used
to estimate canopy conductance, allowing simulations for pe-
riods without sap flow data. We show that the hybrid model,
which uses the canopy conductance from the machine learn-
ing (ML) approach, matches soil moisture and transpiration
equally as well as model runs using observed sap flow data
and has good potential for extrapolation beyond the study
site. We conclude that such hybrid approaches open promis-
ing avenues for parametrizations of complex water–plant dy-
namics by improving our ability to incorporate novel or un-
typical data sets into hydrological models.

1 Introduction

Globally, about 26 % to 40 % of the precipitation that falls
on the continents is transpired by vegetation, making it one
of the dominant fluxes of the terrestrial water cycle (Ding-
man, 2015). Seasonal variations in plant–water use can thus
significantly affect the water balance of catchments, mod-
ify its runoff generation, and change its dynamic water stor-
age (Brown et al., 2005; Hrachowitz et al., 2021; Seibert et
al., 2017). Understanding the role of ecosystems in catch-
ment hydrology is crucial, particularly when investigating
the impacts of climate change (e.g., Duethmann et al., 2020).
Estimating transpiration at the catchment scale is, however,
challenging since plant–water uptake is difficult to measure,
parameterize, and scale up from the individual plant to the
ecosystem level (e.g., Mencuccini et al., 2019). As a conse-
quence, the predictive performance of hydrological models,
which represent water balance and vegetation dynamics in a
physically consisted manner, can be limited due to the a pri-
ori chosen vegetation-process parameterizations and param-
eter values (e.g., Bennett and Nijssen, 2021; Gharari et al.,
2021; Mendoza et al., 2015). Improving these uncertain pa-
rameterizations requires methods that can combine process-
based hydrological models with new information about how
plant transpiration varies with environmental conditions.

Flux towers provide the state-of-the-art evapotranspiration
data to train and validate hydrological models. One caveat
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in using these measurements is that they represent an effec-
tive flux integrating evaporation from the canopy interception
store and the soil with plant transpiration. An accurate parti-
tioning of this integral flux into its components is, however,
of key importance for improving transpiration modeling un-
der changing conditions (Stoy et al., 2019), including effects
of land-use changes such as deforestation (e.g., Hrachowitz
et al., 2021) and forest regeneration (e.g., Neill et al., 2021).
This is a key reason why sap flow is used as independent
measurement technique to characterize transpiration dynam-
ics in forest (e.g., Granier and Loustau, 1994) and agricul-
tural ecosystems (e.g., Dugas et al., 1994). While originally
established in the plant physiology community, sap flow data
have also proven useful in hydrological research. For in-
stance, Renner et al. (2016) showed that stand composition
of forests can counteract differences in sap flow on south-
and north-facing slopes, leading to similar transpiration rates
on both expositions. Hoek van Dijke et al. (2019) found that
the normalized difference vegetation index (NDVI) success-
fully captured sap flow dynamics during the green-up phase,
although it failed under dry conditions. Hassler et al. (2018)
highlighted that spatial differences of atmospheric demands
and soil moisture only explain a small fraction of observed
spatial variation of sap flow, while site-specific factors, like
geology and aspect, were more important. These findings im-
ply that accounting for relations between vegetation charac-
teristics, hydrometeorological drivers, and catchment proper-
ties can improve transpiration estimates and exemplifies the
potential of using sap flow data to advance hydrological sim-
ulations. The value of sap flow information is emphasized
by the growing availability of global open-source sap flow
databases (Poyatos et al., 2016) that provide opportunities to
develop generalized relations to better inform hydrological
models at places where no sap flow data are available.

Plants adapt transpiration depending on atmospheric water
demand and supply. One important regulation mechanism is
the opening and closing of the pores on their leaves, called
stomata, to regulate their CO2 and water vapor exchange with
the atmosphere. This process crucially governs the transpira-
tion of plants, which is also reflected by the wide range of
stomatal conductance models that are available in hydrologi-
cal models (e.g., Damour et al., 2010). One issue is that these
stomatal conductance models typically rely on several site-
specific parameters, and each approach has its own limita-
tions which makes the choice of the “right” process parame-
terization challenging. In this context, it is interesting to note
that sap flow can, besides being used to estimate transpiration
directly, also be used to infer canopy conductance or stom-
atal conductance scaled by leaf area index (LAI). This is done
by inverting a simplified formulation of either Fick’s Law or
the Penman–Monteith equation (e.g., Ewers and Oren, 2000;
Köstner et al., 1992; Phillips and Oren, 1998).

While the complex interactions between soil water supply,
vegetation behavior, and meteorology are challenging to pa-
rameterize in bottom-up empirical or physically based stom-

atal conductance models, machine learning (ML) methods
have recently proven to be a particularly useful alternative
to reproduce ecohydrological behavior and estimate transpi-
ration (e.g., Fan et al., 2021; Zheng et al., 2021). However,
despite their recent success, ML approaches also have short-
comings as they do not ensure mass and energy conserva-
tion and lack physical constraints. The latter makes extrapo-
lation and simulation under changing boundary conditions
challenging. Hybrid models that combine physical knowl-
edge of process equations with the flexibility of data-driven
predictions are therefore a promising tool to estimate fluxes
and state variables in the Earth’s system (e.g., Reichstein et
al., 2019).

In this study, we propose and test a hybrid ML approach
to integrate sap flow data into a process-based hydrological
model, and explore opportunities for improving soil moisture
and transpiration estimates at the catchment scale. Specifi-
cally, we leverage an extensive sap flow data set, spanning a
drought period, in a subcatchment of the well-monitored and
well-studied Attert experimental observatory (Pfister et al.,
2002). We first integrate canopy conductance inferred from
sap flow data into a process-based hydrological model and
compare its performance to the benchmark model that uses
an empirical stomatal conductance equation. We then train
a recurrent neural network (RNN) based on standard hourly
meteorological data, to predict sap flow beyond the tempo-
ral extent of the training period. These simulated velocities
are then used to estimate canopy conductance, allowing us to
replace the empirical stomatal conductance equation in the
hydrological model on forward simulations beyond the mon-
itoring periods. Our results support the value of such hybrid-
model approaches by comparing the different model variants
against each other and against hydrological data, such as soil
moisture and discharge. Importantly, we highlight the value
of sap flow measurement campaigns for improving simula-
tion at the catchment scale.

2 Materials and methods

2.1 Study area

The Weierbach is a 0.44 km2 large experimental headwater
catchment, nested in the Colpach catchment and located in
Luxembourg (Fig. 1; Hissler et al., 2021). The catchment is
characterized by coarse-grained and highly permeable soils
and a slate bedrock (Ardennes massif). It has a temperate
semi-marine climate with a mean annual rainfall of 950 mm
and mean monthly temperatures that range between 0 ◦C in
January and 17 ◦C in July. Precipitation is evenly distributed
across the seasons while the runoff generation has a dis-
tinct seasonal pattern with around 80 % of the annual dis-
charge being released between October and March (Loritz et
al., 2021). The Weierbach catchment is entirely forested and
dominated (> 70 %) by deciduous beech trees (Fagus sylvat-
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Figure 1. (a) Map of the Colpach and Weierbach catchments (lo-
cation: northern Luxembourg) indicating the gauges, soil moisture,
and sap flow sensors. Panel (b) is a picture of a typical forested hill-
slope within the Colpach catchment with installed sap flow sensors,
and (c) shows the Colpach River around 4 km north of the gauging
station.

ica) and oak trees (Quercus spec). A detailed description of
the Weierbach catchment and a comprehensive open-access
hydrological data set can be found in Hissler et al. (2021).
The Colpach is the parenting catchment of the Weierbach,
located in the same hydropedological area and characterized
by a similar runoff generation and formation (Loritz et al.
2019), but it comprises a larger variety of land-cover types
(65 % forest, 35 % agriculture).

2.1.1 Hydrometeorological data

This study requires hourly meteorological data to force the
water balance simulations and to calculate canopy conduc-
tance. For all these purposes, we use data records from
April 2014 to October 2016. We obtain air temperature (◦C),
relative humidity (%) and rainfall data (mm h−1) from the
Holtz meteorological station available in the open-access
data set from Hissler et al. (2021). We obtain measure-
ments of wind speed (m s−1) and global radiation (W m2)
from a meteorological station around 500 m southeast of the

catchment available from the Catchment as Organized Sys-
tems (CaOS) project observation network (Zehe et al., 2014).
Additionally, we use discharge data and averaged soil mois-
ture from Hissler et al. (2021) at 10 and 60 cm depth (based
on six individual sensors in each depth) to quantify the per-
formance of hydrological model simulations. Soil moisture
was additionally corrected for a stone content of 10 % and
30 % in 10 and 60 cm based on several soil profiles in the
research area (Jackisch, 2015).

2.1.2 Sap velocity measurements

We use hourly sap velocities (cm h−1), the rate of water flow
through a tree, from three growing seasons (April–October;
2014–2016) of an extensive measurement campaign in the
Colpach catchment (detailed description in Hassler et al.,
2018). We use a subset of the original data set of Hassler
et al. (2018) comprising 32 trees, including 17 beech trees
(Fagus sylvatica), 11 oaks (Quercus spec.), 2 hornbeams
(Carpinus betulus) and 2 common alders (Alnus glutinosa)
with individual tree diameters at breast height ranging from
8 to 80 cm (average 32 cm). Sample distribution ranges from
north- to south-facing slopes and up- and downslope sectors,
specifically selected to capture the typical hydropedologi-
cal characteristics of the Colpach and the Weierbach catch-
ments. Before the growing season, the campaign equipped
each tree with sap flow sensors, manufactured by East 30
Sensors (Washington, USA). The sensors have three mea-
surement depths, i.e., at 5, 18, and 30 mm in the xylem and
measure sap velocity with the heat ratio method (Campbell
et al., 1991; Burgess et al., 2001; Hassler et al., 2018). We es-
timate tree-specific sap velocities by calculating the median
from the measurements at the three different xylem depths.
We use the median to account for the skewed distribution of
sap velocities inside the sap wood, as sap velocities typically
decrease closer to the heartwood (e.g., Gebauer et al., 2008;
Jackisch et al., 2020).

2.1.3 Catchment-level transpiration based on sap flow

This study focuses on catchment-level transpiration to cir-
cumvent the challenge and uncertainty of characterizing tran-
spiration from individual tree sap flow (e.g., Gebauer et al.,
2008; Zhang et al., 2015) and to remain scale consistent with
simulated transpiration of the hydrological model. We em-
ploy an integral approach, assuming that the tree sample is
representative for the age spectrum in the catchment and that
trees dominate transpiration in this forested catchment com-
pared to understory and herbaceous vegetation. We average
the 32 tree-specific sap velocities to obtain a time series rep-
resenting an average tree in the study area. We then obtain
average hourly catchment-level transpiration per unit ground
area (Tsap, m s−1) based on sap flow by multiplying the
catchment-averaged sap velocity by the catchment-averaged
tree density of 42 m2 ha−1 (Hassler et al., 2018). This calcu-
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lation assumes that water storage in the tree relative to the
transpiration flux is negligible. Therefore, the observed day-
time water flux through the tree is equal to the transpiration
flux through the leaves into the atmosphere, with negligi-
ble time lags between dynamics of sap flow (converted to
Tsap) and environmental variables (Tyree and Ewers, 1991).
We use Tsap data to derive observation-based canopy conduc-
tance estimates and to evaluate model simulations.

2.2 Hydrological model CATFLOW

We model the water balance of the Weierbach with CAT-
FLOW (Maurer, 1997; Zehe et al., 2001), a process-based
hydrological model. CATFLOW discretizes hillslopes along
a two-dimensional cross section using curvilinear orthogo-
nal coordinates and a storage-weighting function to repre-
sent the varying hillslope width. The model simulates soil
water dynamics based on the Darcy–Richards equation and
represents surface runoff by a diffusion-wave approximation
of the Saint-Venant equation. CATFLOW estimates three
components of the evapotranspiration flux per unit ground
area, namely (1) direct evaporation of canopy interception,
(2) transpiration from canopy leaves, and (3) soil water evap-
oration, separately with a surface energy balance approach
using the Penman–Monteith equation. For each component,
soil, canopy (Sect. 2.2.2), and canopy interception conduc-
tances are each parameterized differently with a set of em-
pirical equations. Additional CATFLOW model descriptions
can be found in Loritz et al. (2017, 2021).

2.2.1 CATFLOW implementation of three canopy
conductance variations

We implement three approaches to estimate canopy conduc-
tance in the Penman–Monteith equation for transpiration in
CATFLOW. The benchmark model implements canopy con-
ductance calculated by the empirical Jarvis–Stewart equa-
tion, which is the built-in stomatal conductance equation of
CATFLOW (gc Jarvis; Sect. 2.2.2) scaled by the LAI. The
second model variant is a model–data integration, which
implements canopy conductance based on hourly observed
sap flow data for all three growing seasons from 2014 to
2016 (gc sap; Sect. 2.2.3). The third model variant is a hy-
brid model, which implements canopy conductance based on
sap flow predictions from a deep-learning network (gc DL;
Sect. 2.2.4).

2.2.2 Benchmark model: canopy conductance from the
reference empirical canopy conductance equation
(gc Jarvis)

The Jarvis–Stewart model (Jarvis, 1976; Stewart, 1988) is a
widely applied empirical equation for stomatal conductance
as a function of plant-available radiation (W m−2), vapor-
pressure deficit (Pa), temperature (◦C), and matric water po-
tential of the soil (m); it is implemented in CATFLOW. The

canopy conductance per unit ground area (gc Jarvis) is cal-
culated from the leaf-level stomatal conductance scaled by
the leaf area index (LAI, m2 leaf m−2 ground). Parameters
of the Jarvis–Stewart model are prescribed according to a
lookup table and are based on mean parameter values (root-
ing depth, plant albedo, interception capacity, etc.) for beech
trees taken from Breuer et al. (2003). The LAI measurements
are taken from satellites observations and change daily. We
used the Visible Infrared Imaging Radiometer Suite (VIIRS)
LAI product at an 8 d and 500 m resolution (product name
VNP15A2H). We extracted data for the entire simulation pe-
riod for each pixel in the basin area of the Colpach catchment
(70 pixels). We filtered the data to only process high-quality
cloudless images and created an averaged interpolated daily
time series for the whole Colpach catchment area. The model
variant that uses gc Jarvis to estimate transpiration serves as
benchmark model in this study.

2.2.3 Model–data integration: canopy conductance
from sap velocity measurements (gc sap)

We use a big-leaf approach, in line with most catchment-
scale transpiration models, to infer conductance to water va-
por per unit ground area (gc sap; m s−1) from sap veloc-
ity and meteorological data (wind speed, air temperature,
and relative humidity). We assume a well-mixed, convective
boundary layer during daytime, with high wind speed, small
leaves, and similar leaf and air temperature. Given these com-
mon simplifying assumptions (e.g., Ewers and Oren, 2000;
Köstner et al., 1992), we neglect leaf boundary layer con-
ductance and approximate the difference in water vapor con-
centration driving the vapor diffusion through the saturated
air space in the leaves to the atmosphere by the air vapor-
pressure deficit (es−ea; Pa). Hence, we can invert Fick’s Law
following Monteith and Unsworth (2013) to calculate total
water vapor conductance gt sap (m s−1) as:

gt sap=
γ λ

Cpρ (es− ea)
Tsap, (1)

where γ is the psychometric constant (Pa K−1); λ is the latent
heat of vaporization of water (MJ kg−1); Cp is the specific
heat of air (J kg−1 K−1); ρ is air density (kg m−3); γ , λ, Cp,
and ρ are all a function of air temperature; and Tsap (m s−1)
is the average catchment transpiration rate derived from sap
velocities (catchment-averaged sap flow velocity multiplied
by the basal area of the stand (0.0042 m2 m−2) Hassler et al.,
2018).

The total conductance gt sap represents the series of both
gc sap and the aerodynamic conductance (ga, m s−1). The lat-
ter is estimated from wind speed and canopy height following
the FAO reference approach (Allen et al., 1998). Finally, we
obtain the time series of canopy conductance gc sap inferred
from sap velocities as:
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1
gc sap

=
1

gt sap
−

1
ga
. (2)

This big-leaf approach assumes that all canopy leaves in the
catchment respond to the same environmental conditions and
behave in the same way. This is reasonable because hydrom-
eteorological data explained only a small fraction of spatial
variability in sap flow velocities in the study site (Hassler et
al., 2018).

We implement canopy conductance inferred from ob-
served and simulated sap velocities (gc sap, gc DL explained
in Sect. 2.2.4) in CATFLOW only during the time steps
for which the assumptions of Eq. (1) are met (Köstner et
al., 1992; Phillips and Oren, 1998): dry canopy (canopy
interception storage< 0 mm); daytime (between 06:00 and
22:00 LT); well-mixed atmosphere ( 1

ga
is at least 5 s m−1

larger than 1
gt

); air vapor-pressure deficit> 100 Pa. When
these conditions are not met, the transpiration flux and stom-
atal conductance are generally low (typically in the morning
or evening) and we fill in the gaps with canopy conductance
estimates from the built-in Jarvis–Stewart model. We need to
fill the gaps because CATFLOW requires a continues gc time
series larger than zero to solve the Penman–Monteith equa-
tion. We smooth canopy conductance time series inferred
from observed and predicted sap velocities using a rolling
mean with a 3 h window that uses the three previous time
steps to allow forward simulations. This preprocessing step
is required because Eq. (1) is very sensitive to small changes
of sap flow in the morning and evening hours when the vapor-
pressure deficit is typically low. Since the variance of the sap
flow measurements is highest during these periods (morning
and evening), the gc sap estimate can be noisy and uncertain.

2.2.4 Hybrid model: canopy conductance from
deep-learning-based sap flow predictions (gc DL)

We train an RNN to estimate hourly sap flow using the 2014
and 2016 data for training and the growing season of 2015 for
testing. We choose the 2015 growing season as the test period
because it has been identified as a drought year, during which
transpiration was impacted by plant–water stress (Hoek van
Dijke et al., 2019). We chose to predict sap flow and af-
terwards calculate the canopy conductance and not canopy
conductances directly since the performance differences be-
tween the two approaches are minor. However, adding the
intermediate step of estimating sap flow highlights that sap
flow (an independent observation) can be predicted by an
RNN and opens the option to (1) calculate transpiration di-
rectly in case catchment-averaged plant specific parameters
are available or (2) to validate the ML model in case addi-
tional sap flow sensors become available (Appendix A1). The
deep-learning network is driven by the same hourly meteoro-
logical inputs as the catchment models (temperature, relative
humidity, global radiation, rainfall, and wind speed).

The hyperparameters and the model architecture of the
deep-learning model was found within multiple trial-and-
error runs. Initially, we trained different model realizations
(e.g., hidden size, learning rate, sequence length, batch size,
and dropout) and different network types (e.g., artificial neu-
ral networks (ANNs), long short-term memory (LSTM),
gated recurrent units (GRU)) on the growing season 2014 and
tested these different realizations in the growing season 2016.
The best model, measured by the root mean square error
(RMSE), was used afterwards, without any changes, to esti-
mate the sap flow in the growing season 2015, using the 2014
and 2016 growing season as training. Both RNNs (GRUs and
LSTMs) outperformed different realizations of ANNs but
on average showed similar performances. We chose GRUs
as they need less computational time and have slightly less
weights, biases, and no cell state.

The identified network consists of four layers with
128 hidden states and uses a sequence length of 96 h (lag
time of 96 h preceding the prediction time step). The first
two layers of the network use GRUs; they are followed by
a third linear layer with a rectified linear unit (ReLU) activa-
tion function; finally the output is a linear layer without an
activation function. We add 40 % dropout between the layers
to avoid overfitting to the training data (regularization). We
use the mean square error as loss function, train the model in
15 epochs with a batch size of 360, and report the RMSE in
the results. We use an ADAM optimizer with a fixed learning
rate schedule. The initial learning rate is set at 1× 10−3 and
decreases after 5 epochs by a factor of 0.5. Additionally, after
12 epochs, we use a stochastic weight-averaging (SWU) ap-
proach with a learning rate of 0.0001 to improve the ability of
the network to generalize in comparison to using exclusively
an ADAM optimizer for the last 2 epochs. We use the sim-
ulated sap flow velocities to estimate gc DL using the same
method and under the same environmental condition as ap-
plied to estimate gc sap (Eqs. 1 and 2). Figure 2 shows a flow
chart of the different modeling steps when the hybrid-model
approach is applied in combination with the RNN.

2.2.5 CATFLOW parameterization

We use the well-tested, representative hillslope model from
Loritz et al. (2017, 2021) to simulate the water balance of
the Weierbach using CATFLOW. The representative hills-
lope model was set up based on field data for the bedrock to-
pography, soil properties, and surface topography. The model
was fine-tuned by exclusively adjusting the spatially explicit
macropore network (approach described in detail in Wien-
höfer and Zehe, 2014) with the goal of matching the seasonal
water balance and the hydrograph of the parenting Colpach
catchment during the hydrological year, October 2013 to Oc-
tober 2014. Loritz et al. (2017) showed that the representa-
tive hillslope model predicts the hydrograph of the Weier-
bach with a Nash–Sutcliff efficiency (NSE) of ≈ 0.7 and a
Kling–Gupta efficiency (KGE) of ≈ 0.8 for the hydrologi-
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Figure 2. Flow chart of the hybrid model that combines a recurrent neural network (RNN) and a process-based hydrological model to
estimate transpiration.

cal year 2012–2013 (test period) and the hydrological year
2013–2014 (training period) individually.

The simulation period in this study starts on 1 April 2014
and runs until 31 October 2016. This is preceded by a model
spin-up starting in October 2013 with initial states of 70 %
volumetric water content. We are using the exact same pa-
rameterization as explained in detail in our previous stud-
ies (Loritz et al., 2017, 2021) and do no recalibration of any
model parameters besides changes described above to esti-
mate the canopy conductance.

3 Results

3.1 Sap flow model–data integration provides realistic
canopy conductance and water balance estimates
for a temperate beech forest

The daily averaged canopy conductance (m s−1) inferred
from the sap flow measurements (gc sap) and those estimated
by the a priori parameterized CATFLOW built-in stomatal
conductance equation (gc Jarvis) correlate well (Spearman’s
rank correlation between gc Jarvis and gc sap is 0.85; the
Pearson correlation is 0.75), although gcJarvis estimates are
on average lower and show less temporal fluctuations than
gc sap (Fig. 1a). The latter is underpinned by a low KGE
coefficient (Gupta et al., 2009) of 0.15 and an RMSE of
0.01 m s−1. The gc sap estimates are within a reasonable
range for beech-dominated temperate forests and compa-
rable to literature values using a similar approach (inverse
Penman–Monteith equation) based on six beech trees in
the Czech Republic (Su et al., 2019). Differences between
gc Jarvis and gc sap are also reflected, although weaker,
in the monthly transpiration estimates (Fig. 1b). The CAT-
FLOW model variant using gc sap (model–data integration)
estimates about 130 mm more transpiration compared to the

benchmark model variant using gc Jarvis for all 3 hydrolog-
ical years, with the largest monthly difference of 21 mm per
month in May 2015 (31 mm of total rainfall in May 2015).

Implementing gc sap instead of gc Jarvis in CATFLOW
has only a weak effect on simulated runoff with a slight de-
cline of the NSE from 0.75 to 0.7 over the 3-year period. This
decrease in predictive performance likely occurs because the
macropore network was tuned to optimize the streamflow of
the Weierbach with gc Jarvis and not gc sap. This entails that
a better performance could likely be achieved by tuning the
macropore network once more with gc sap. However, we do
not to perform further CATFLOW calibrations because our
goal is to demonstrate the value of sap flow data in improv-
ing transpiration and soil moisture estimates and do not aim
to obtain the highest performance in streamflow simulation
(Appendix A2).

3.2 Ecohydrological simulations differ most during
drought periods

Noticeable ecohydrological, relevant model improvements
using gc sap occur during drought periods. For instance, 61 d
of the 3-year record had close to no runoff (> 0.001 mm h−1)
observed in the Weierbach catchment. This period is only
slightly overestimated by CATFLOW using gc sap (63 d),
while it is substantially underestimated using the benchmark
model with gc Jarvis (46 d). Both model variants (gc Jarvis
and gc sap) correlate well with the observed soil mois-
ture in 10 and 60 cm with Spearman’s rank coefficients of
around 0.9. However, simulations using gc sap result in over-
all lower soil moisture values with the largest difference
in October 2015 (Fig. 1a and b). Using gc sap instead of
gc Jarvis reduces the RMSE in the 2015 growing season from
0.033 to 0.01 (0.046 to 0.034) m3 m−3 at a 10 (and 60) cm
depth. Furthermore, using gc sap instead of gc Jarvis leads
to an average of about 2 mm less catchment storage after
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Figure 3. (a) Daily averaged canopy conductance estimates for gc sap (green) and gc Jarvis (orange); (b) monthly transpiration sums
estimated using gc sap (green) and gc Jarvis (orange); observed (blue) and simulated soil moisture± standard deviation of the corresponding
simulation and observations (gc sap: green; gc Jarvis: orange) at 10 (c) and 60 cm depth (d). Highlighted in yellow is a dry period from July
to August 2015.

each of the three growing seasons. These storage differences
are almost completely recharged during winter, typically un-
til January, due to the wet autumns in the region. However,
after the three growing seasons, the bedrock water storage
(characterized by very low hydraulic conductivities and low
porosities) is on average 2 % to 4 % lower when using gc sap
compared to gc Jarvis after 3 years of simulations.

3.3 Recurrent neural networks (RNNs) accurately
extrapolate sap flow data to different time periods
and locations

Figure 3a displays hourly simulated sap flow (cm h−1) esti-
mated by the deep-learning model against observed sap flow
(cm h−1) at daytime (06:00 and 22:00 LT) of the growing sea-
son 2015 (test period). Simulated sap flow differs from ob-
served sap flow by an RMSE of 0.8 cm h−1 during the train-
ing period (growing seasons 2014 and 2016) and 1.1 cm h−1

during the test period. If 2014 and 2015 are used as training
period and 2016 as test period, the RMSE during the test pe-
riod drops to 0.9 cm h−1, and if 2015 and 2016 are used as
the training period and 2014 as the test period, the RMSE
drops to 0.84 cm h−1. The Spearman’s rank correlation be-

tween the observed and simulated sap flow in the test pe-
riod is 0.91, indicating the ability of the deep-learning model
to capture the general dynamics of sap flow using hourly
meteorological data as predictors. Sap flow during the dry
spell in July and August 2015 is on average overestimated
by the deep-learning model. However, when adding 15 ran-
domly picked continuous days of the dry period to the train-
ing sample (and removing those from the test sample), this
bias and the RMSE are significantly reduced to 0.85 cm h−1.
Furthermore, we also tested the ability of the deep-learning
network to predict sap flow in a nearby catchment with a dif-
ferent geological and pedological setting but similar forest
land cover. This first test suggests that the deep-learning net-
work can predict sap flow in the test catchment, with lower
errors than in the training catchment. This good out of sample
performance points to the algorithm’s ability to also extrapo-
late to higher unseen sap flows without further training (Ap-
pendix A1) while the test with the 15 randomly picked con-
tinuous days hints towards an inability of the ML approach
to extrapolate to unseen dry conditions.
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Figure 4. (a) Hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015; (b) hourly canopy con-
ductances based on the hourly observed sap flow (gc sap) and simulated sap flow (gc DL); orange points in (a) and (b) are simulations or
observations within the dry period of July and August 2015; (c) monthly transpiration sums estimated by gc sap (green) and gc DL (purple);
(d) observed (blue) and simulated soil moisture (gc sap: green; gc DL: purple) in 20 cm. Highlighted in yellow is a dry period from July to
August in the growing season 2015.

3.4 The hybrid model provides accurate canopy
conductance and water balance estimates

The canopy conductance inferred from the observed sap flow
(gc sap) and based on the simulated sap flow (gc DL) are
compared in Fig. 4b. The two estimates differ by an RMSE
of 0.01 m s−1 in the test period and have a Spearman’s rank
correlation of 0.9. The relation between the conductance esti-
mates based on observed, (gc sap) and simulated (gc DL) sap
flows is characterized by more and stronger outliers (residual
larger than 0.025 m s−1, Fig. 4b). Note that more than 75 %
of these outliers occur in the morning (06:00 to 10:00 LT)
or evening time (16:00 to 22:00 LT). During these times, the
Fick’s law approximation is very sensitive to little changes in
sap velocities, but transpiration is typically very low during
these periods. This is further underpinned by the compari-
son of monthly transpiration sums displayed in Fig. 4c. The
differences in using gc sap or gc DL are less than 3 mm per
month during the majority of the growing season 2015 and

increase to 7 and 9 mm per month in July and August only.
During this period, sap flow, and to a smaller extent the corre-
sponding gc values, are systematically overestimated by the
RNN (Fig. 4a). As stated above, adding 15 dry days to the
training data can reduce these biases and decrease the tran-
spiration differences in July and August to below 4 mm per
month. However, even without changing the training data of
the RNN, the effect on simulated soil moisture dynamics is
minor (Fig. 4d). This is because the model based on gc DL
slightly underestimates transpiration in May and June, which
is then compensated in July and August, and the simulated
soil moisture from gc DL and gc sap differ only by an RMSE
of 0.003 m3 m−3 in 20 cm and 0.002 m3 m−3 in 40 cm from
1 May to 31 October 2015.
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Figure 5. Hourly canopy conductances of gc sap (green), gc Jarvis (orange), and gc DL (purple) for 3 selected days in June, July, and August
during the growing season 2015.

3.5 The hybrid model improves the diurnal cycle of
canopy conductance compared to the benchmark
model

Figure 5 shows three diurnal cycles of gc Jarvis, gc sap, and
gc DL in June, July, and August. The gc sap is about twice
as high in June compared to August and shows a stronger
decline in conductance during midday in July and August.
While such patterns are typical for humid forests under dry
conditions (Su et al., 2019), they are not or only weakly cap-
tured by the Jarvis–Stewart model (gc Jarvis), which sug-
gests a relatively constant conductance during daytime. As
already indicated by the high correlation between gc DL and
gc sap, the former also captures the dynamics of the diur-
nal cycles well. However, the gc DL model under- or over-
estimates several peaks, particularly during the morning and
evening hours. This is in line with Fig. 4b and explains the
larger spread of the gc estimates in contrast to sap flow pre-
dictions. The absolute cumulated difference of the transpira-
tion estimates using either gc DL or gc sap in the chosen 3 d
period is with 0.01, 0.014, and 0.07 mm d−1 low and high-
lights that errors in gc estimates in the morning and evening
are less important for transpiration estimates.

4 Discussion

4.1 Integrating sap flow data in a catchment-scale
hydrological model

The comparison between both stomatal conductance mod-
els revealed that the a priori parameterized Jarvis–Stewart

model (Jarvis, 1976; Stewart, 1988), in combination with the
satellite-based VIIRS LAI values, clearly underestimated the
canopy conductance, particularly during the spring and early
summer. This bias could potentially be corrected by tun-
ing the parameters of the Jarvis–Stewart equation. However,
beyond revealing absolute errors in the seasonal cycle, the
stomatal conductance model based on sap flow also demon-
strates that the Jarvis–Stewart model is not able to reproduce
diurnal hydraulic feedbacks along the soil–plant–atmosphere
continuum reflected in the dips in canopy conductance dur-
ing the midday water stress period. Mechanistic understand-
ing of these stress responses in plant–water flow is still lim-
ited and representing them using existing ecophysiological
models is challenging, especially beyond the individual tree
(e.g., Grossiord et al., 2020; Kannenberg et al., 2022; Novick
et al., 2019). On the other hand, these dynamics are embed-
ded in the sap flow data and were adequately reproduced by
the RNN for the purpose of hydrological modeling. The latter
entails that the hybrid-model approach presented in this study
may be more accessible to catchment hydrologist versus ven-
turing too deep into the plant ecophysiological modeling with
its promises and dangers. Therefore, learning this informa-
tion from sap flow data with an RNN provides an avenue
for catchment models to reproduce plant hydraulic behavior
without explicitly parameterizing the soil–plant–atmosphere
continuum at the catchment scale, which is complex and un-
certain (Mencuccini et al., 2019).

Our results go beyond the established approach of estimat-
ing canopy conductance from sap flow data by directly inte-
grating the data in a catchment-scale hydrological model and
improving water balance simulations. Additionally, we can
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demonstrate the value of sap flow data in identifying suit-
able catchment-specific model parameterizations (Gupta et
al., 1999) and show how the stomatal conductance model
can be replaced by a model–data integration. Using the sap
flow to calculate canopy conductance instead of transpira-
tion has the advantage of omitting species-dependent errors
in estimating the sap wood area and sap velocity distribu-
tions within the xylem. Faulty estimates of these parame-
ters can lead to an overestimation of daily water use of up
to 78 % for oak trees and −42 % in the case of oriental ar-
borvitae trees as shown by Zhang et al. (2015). Nevertheless,
the results of the RNN underpins the possibility to predict
sap flow with an ML approach. This approach could then
be extended to estimate transpiration based on catchment-
averaged, species-dependent parameters, which could, for in-
stance, be estimated by lidar measurements (Fassnacht et al.,
2016).

4.2 Predicting canopy conductance using sap flow and
an RNN

Recent studies have shown the large potential of decision
tree-based ML algorithms for ecohydrological applications
with a focus on predicting sap flow (Ellsäßer et al., 2020) or
stomata conductances (Saunders et al., 2021) using meteo-
rological data. In this study, we showed that RNNS are also
suitable tools to predict sap flow by exclusively using me-
teorological variables as input. Only during the dry period
in the growing season 2015, where the dormant trees most
likely experienced water stress (Hoek van Dijke et al., 2019),
the deep-learning network systematically overestimated sap
flow. The latter was the reason to choose 2015 as test period
and not 2016, which would have kept the chronological order
and led to overall lower errors without bias. Initial tests re-
veal that adding 15 randomly picked continuous days during
the drought period to the model training can reduce the resid-
uals as well as the bias significantly, although soil moisture
data were still not included as input. This indicates the po-
tential of the RNN to mimic sap flow that is also under water
stress and solely based on meteorological input. The latter
entails that the information about the drought period is al-
ready within the meteorological input and different aggrega-
tions and combinations of the input variables, for instance, by
estimating drought indices like the standardized precipitation
index (SPI), could potentially further improve the prediction
of sap flow under limited water availability. This study high-
lights the potential of the introduced deep-learning approach,
but a more systematic investigation is required. Specifically,
a next step could be to explore the potential of implementing
the RNN such that the internal hydrological model states (es-
pecially soil water status) affect the sap flow predictions and
the corresponding conductances. A similar hybrid-modeling
approach has recently shown large potential to represent tur-
bulent heat fluxes in hydrological models (Bennett and Ni-
jssen, 2021).

4.3 Generalizing canopy conductance models based on
sap flow data

This study is based on an unique data set with several sap
flow sensors installed in different trees and locations as well
as over several growing seasons (Hassler et al., 2018). Such
data sets are labor-intensive and rare, although sap flow mon-
itoring has become more common. While our proof of con-
cept is limited to well-monitored experimental catchments,
initial tests show that the RNN is capable of reproducing sap
flow in a neighboring catchment, characterized by a similar
forest structure but different hydropedological setting, even
with lower residuals (Appendix A1). Approaches like trans-
fer leaning, a concept to pretrain layers in a deep-learning
network on a large data set and only fine tune a subset of
these layers in the destination area, might be used to pre-
dict sap flow in a catchment with very little sap flow data
available as well. Additionally, global and open data sets like
SAPFLUXNET (Poyatos et al., 2016) in combination with
catchment or forest properties offer opportunities to gener-
alize our proposed approach. While ML predictions cannot
directly advance understanding of the soil–plant–atmosphere
continuum, we nevertheless show that they can be an im-
provement compared to reference empirical models that, if
ill parameterized (Damour et al., 2010), are known to poorly
capture non-linear responses of plant–water stress at the sea-
sonal and diurnal time scales. Using ML sap flow predictions
in combination with the inversed Fick’s law offers the pos-
sibility to replace stomatal conductance models entirely in
hydrological models.

5 Conclusion

The main findings from our study leveraging sap flow data
and machine learning in a catchment-scale model are as fol-
lows:

1. Hourly, catchment-averaged sap flow can be used to es-
timate canopy conductance and inform a process-based
hydrological catchment model to improve soil moisture
and transpiration estimates.

2. Seasonal and diurnal model improvements were notable
during drought periods when the reference empirical
model underestimated plant–water stress and point to
the valuable ecohydrological information encoded in
sap flow data.

3. Recurrent neural networks are suitable tools to pre-
dict sap flow by exclusively using meteorological vari-
ables as input and offer promising avenues for devel-
oping generalized canopy conductance models for for-
ward simulations beyond the monitoring time period
and catchment location.

This study highlights the potential of sap flow data for im-
proving hydrological simulations at the catchment scale by
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either constraining or informing hydrological models. We ar-
gue that sap flow sensors measure crucial information about
one of the major fluxes of the hydrological cycle and should
become the norm in experimental hydrology as soil moisture
sensors, piezometers, or gauging stations are today already.

Appendix A

A1 Sap flow predictions in Huewelerbach

The Huewelerbach is a 2.7 km2 large headwater catchment
located in Luxembourg within the experimental Attert basin
(Pfister et al., 2002). The prevailing geology is sandstones
above an impermeable layer of clay stones. It has a temperate
semi-oceanic climate with a mean annual rainfall of 845 mm
(Pfister et al., 2017) and mean monthly temperatures rang-
ing between 0 ◦C in January and 17 ◦C in July. The catch-
ment is entirely forested and dominated by deciduous beech
trees. Meteorological data to run the recurrent neural net-
work in this Appendix consisted of hourly global radiation
(W m2), temperature (◦C), wind speed (m s−1), and relative
humidity (%). Temperature and relative humidity are mea-
sured at a meteorological station located 3 km south of the
catchment from a station operated by the “Administration des
Services Techniques de l’Agriculture” (ASTA). Wind speed
and global radiation are measured at a meteorological sta-
tion in close proximity of the catchment that belonged to the
CAOS project observation network.

We use sap flow velocities from one growing season
(April–October 2015) measured within or in close proxim-
ity to the Huewelerbach catchment. Tree species consist of
27 beech trees (Fagus sylvatica), 7 oak trees (Quercus spec),
and 2 hornbeams (Carpinus betulus) with individual tree di-
ameter at breast height ranging from 22 to 91 cm (average
53 cm). Sap flow was measured and aggregated similarly as
described in the method section.

Figure A1 shows the simulated and observed hourly sap
flow in the Weierbach and Huewelerbach catchments for the
growing season 2015. Sap flow was predicted using the same
recurrent neural network trained exclusively in the Weier-
bach (growing season 2014 and 2016). There was no further
change to that network. The recurrent neural network was
capable of predicting sap flow in the Huewelerbach that was
in better agreement with the observations than in the training
catchment. One main reason for this performance increase
is that, although they are in close proximity to the Weier-
bach, the dormant trees in the Huewelerbach did not expe-
rience water stress in 2015, most likely due to a large and
accessible groundwater store (Hoek van Dijke et al., 2019).
Other factors such as higher-quality meteorological data or
(potential) sap flow data might also play a role but were not
further investigated. Interestingly, the recurrent neural net-
work is capable of simulating overall higher sap flow in the
Huewelerbach, although such values have not been observed
in the Weierbach. This supports the ability of the recurrent
neural network to extrapolate in different sites.

A2 Comparison of the observed and simulated
discharge

Figure A2 displays the observed discharge of the Weierbach
catchment, the simulated discharge of the benchmark model
(gc Jarvis), and the model–data integration that uses gc sap
to estimate the transpiration. The performance of the model
based on gc sap is reduced from an NSE of 0.75 to 0.7. The
main difference between the two models are in the period af-
ter the growing season when the model that uses gc sap sim-
ulates too little discharge. Runoff generation in CATFLOW,
particularly when the soil is dry, is significantly influenced by
both the spatial explicit macropore network and the extent of
the riparian zone. Hence, the decrease in predictive perfor-
mance can likely be explained by the fact that the macropore
network was tuned to optimize the streamflow of the Weier-
bach with gc Jarvis and not gc sap.
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Figure A1. (a) Hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015 in the Weierbach catchment;
(b) hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015 in the Huewelerbach catchment; orange
points in (a) and (b) are simulations or observations within the dry period of July and August 2015.

Figure A2. Observed discharge of the Weierbach catchment, simulated discharge of the benchmark model (gc Jarvis), and simulated dis-
charge of the model–data integration that uses gc sap to estimate transpiration.

Code and data availability. Codes to estimate canopy conduc-
tance from sap flow and the RNN are publicly available
at https://doi.org/10.5281/zenodo.6821189 (Loritz and Bassiouni,
2022). The meteorological data and the soil moisture data are
also publicly available at https://doi.org/10.5281/zenodo.4537700
(Hissler et al., 2022). The sap flow data are available from
Theresa Blume and Markus Weiler on request, however, a data pub-
lication is close to being finished. The link to the sap flow data pub-
lication will be added to https://doi.org/10.5281/zenodo.6821189
(Loritz and Bassiouni, 2022) in the near future.
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