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Abstract. The topic of evaporation estimates is fundamental
to land-surface hydrology. In this study, FAO-56 Penman–
Monteith equation (FAO56–PM), multiple stepwise regres-
sion (MLR), and Kohonen self-organising map (K–SOM)
techniques were used for the estimation of daily pan evapora-
tion (Ep) in three treatments, where C was the standard class
A pan with top water, S was a pan with sediment covered bot-
tom, and SM was class A pan containing submerged macro-
phytes (Myriophyllum spicatum, Potamogeton perfoliatus,
and Najas marina), at Keszthely, Hungary, in a six-season ex-
periment, between 2015 and 2020. The modelling approach
included six measured meteorological variables. Average Ep
varied from 0.6 to 6.9 mm d−1 for C, 0.7 to 7.9 mm d−1 for S,
and from 0.9 to 8.2 mm d−1 for SM during the growing sea-
sons studied. Correlation analysis and K–SOM visual repre-
sentation revealed that air temperature and global radiation
had positive correlation, while relative humidity had a neg-
ative correlation with the Ep of C, S, and SM. The results
showed that the MLR method provided close compliance
(R2
= 0.58–0.62) with the observed pan evaporation values,

but the K–SOM method (R2
= 0.97–0.98) yielded by far the

closest match to observed evaporation estimates for all three
pans.

To our best knowledge, no similar work has been pub-
lished previously using the three modelling methods for
seeded pan evaporation estimation.

The current study differs from previous evaporation esti-
mates by using neural networks even with those pans con-
taining sediments and submerged macrophytes. Their evapo-
ration will be treated directly by K–SOM, in which the mod-
elling is more than the simple Ep of a class A pan filled with
clean tap water.

1 Introduction

Open water evaporation is one of the paramount elements of
the hydrological cycle (Brutsaert, 1982). Evaporation losses
from various surfaces appear to be increasing in recent
decades (Mbangiwa et al., 2019). Due to climate change,
it is also extremely important to determine evaporation as
accurately as possible (Fournier et al., 2021), for which
both direct and indirect methods are available. As a direct
method, the evaporation pans (primarily the class A pan pro-
posed by the World Meteorological Organization, WMO, are
used extensively throughout the world to measure open wa-
ter evaporation and to estimate reference evapotranspiration
(Rahimikhoob, 2009; Fuentes et al., 2020). Measurements
of pan evaporation may be spatially and temporally limited
(Jensen et el., 1990; Rahimikhoob, 2009), like in case of
maintenance problems which can affect the accuracy of evap-
oration measurements, e.g. most often turbidity of water, or
watering of birds or other animals (Tabari et al., 2010).

To indirectly determine evaporation, several methods can
be used: empirical equations are applied that estimate evap-
oration based on meteorological variables (air temperature,
Ta; relative humidity, RH; global radiation, Rs), or transfer
and water budget methods (Burman, 1976). The most widely
used empirical formula is a FAO-56 Penman–Monteith equa-
tion (FAO56–PM) (Allen et al., 1998), which is the stan-
dard method for computation of daily reference evapotran-
spiration. However, measuring meteorological variables re-
quires sophisticated instruments, which can often be chal-
lenging (Arunkumar and Jothiprakash, 2013; Sattari et al.,
2020). The amount of required data and the difficulty of the
estimation of the unknown meteorological elements may be
additional problems (Sanikhani et al., 2015; Khatibi et al.,
2020). Therefore, there is a need for alternative methods that
are simple and effective, require fewer inputs, and are also
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able to solve problems which are difficult to formalise (Sud-
heer et al., 2003; Kisi, 2015; Malik et al., 2020a).

A promising tool that can be used to estimate Ep and
is a suitable alternative to the empirical models is differ-
ent neural networks (Kim et al., 2015), thus neural net-
works are increasingly used in evaporation and evapotran-
spiration estimation (Kumar et al., 2002; Keskin and Terzi
2006; Rahimikhoob, 2009; Alsumaiei, 2020). The machine
learning techniques can map high-dimensional data to a low-
dimensional space and show some similar properties based
on internal data relationships (Pearce et al., 2011; Zelazny
et al., 2011). In recent years, machine learning techniques
have been broadly employed in hydrological and environ-
mental models, including to forecast evaporation (Wu et al.,
2020). Numerous results in the literature indicate that ma-
chine learning algorithms such as artificial neural network
(ANN), M5 model tree (M5T), support vector machines
(SVMs), multivariate adaptive regression splines (MARS),
gradient boosting with categorical features support (Cat-
Boost), and random forest (RF) perform excellently in pre-
dicting pan evaporation as well (Dong et al., 2021).

Of the available methods, self-organising maps (SOMs)
are able to handle noisy, irregular, and multivariate data well
(Nakagawa, 2017). As a result, it has become one of the
most popular neural network (NN) methods for data anal-
ysis (Nada et al., 2017). SOMs are used in many disciplines
(Nakagawa 2017, 2020), such as agriculture (Li et al., 2019;
Kumar et al., 2021a, b), ecology (Bedoya et al., 2009, Ristić
et al., 2020), hydrology (Guntu et al., 2020; Rivas-Tabares,
2020; Lee and Kim, 2021), meteorology (Nada et al., 2017;
Berkovic et al., 2021, Doan et al., 2021), and water manage-
ment (Gu et al., 2019, Gholami et al., 2020; Lee et al., 2021).
The unsupervised NNs, including Kohonen self-organising
maps (K–SOMs), have several advantages (Kohonen, 1982,
2001). The essence of this method is to group the large-
dimensional array of the input layer into a 2-dimensional ar-
ray in the output layer, so that all variables of the input vec-
tors can be found in each node of the output layer (Adeloye
et al., 2011). Another advantage of K–SOM over traditional
models is that it also has visualisation abilities (Hadjisolo-
mou et al., 2018).

The study site, Lake Balaton, is the largest shallow fresh-
water lake in Central Europe with a surface area of 596 km2

(Fig. 1). The three most dominant submerged macrophytes
in Lake Balaton are Potamogeton perfoliatus, Myriophyllum
spicatum, and Najas marina, therefore it was appropriate to
include these three species in the observation. In Hungary,
submerged macrophytes colonise in lakes in the summer sea-
son (from June to September). Evaporation of open water
surfaces is usually measured by means of pans endowed with
unrealistic properties. These pans are filled with clean tap
water and the evaporated water is also replaced with tap wa-
ter unlike in natural ecosystems. In nature, there may also be
submerged macrophytes living in the open water. The pres-
ence of these plants is essential, and affects the chemical and

physical water properties including its quality (Kimmel and
Groeger, 1984; Zhang et al., 2017; Yan et al., 2019). Fur-
thermore, the species that are rooted in the sediment can sta-
bilise the sediment by inhibiting its resuspension (Madsen
and Cedergreen, 2002; Vymazal, 2013).

Changes in the heat regime of a water body had been re-
ported to result in alterations of macrophyte community com-
position (Barko et al., 1982; Poikane et al., 2015; Fritz et al.,
2017; Kim and Nishihiro, 2020), which may affect the tem-
poral appearance and spatial distribution of macrophytes in
the future. As a result, due to global climate change, it is
important to examine submerged macrophytes in all aspects,
including their effect on evaporation.

The aim of the study was to investigate the effect of lit-
toral sediment and macrophytes on lake evaporation, and not
an introduction of a new method in pan evaporation esti-
mation. The previous results in FAO-56 Penman–Monteith
equation (Allen et al., 1998), Kohonen self-organising map
techniques (Kohonen, 1982), and multiple stepwise regres-
sion are classic methods, highlighted widely by citations in
the study. They are the tools in analysing the effect of sedi-
ment and macrophytes in pan (lake) evaporation estimation
only. The novelty of the paper is in the way the evaporation
estimation is carried out.

To our best knowledge, there are no studies attempt-
ing to project water bodies’ evaporation using traditional A
pan measurements, taking the macrophytes- and sediment-
related factors into account under such climate conditions as
our experimental site.

2 Materials and methods

2.1 Case study and data description

The climate of the region – see also Fig. 1 – is mild conti-
nental (Cfb) with warm, dry summers and fairly cold win-
ters according to the Köppen–Geiger classification (Kottek,
Grieser, Beck, Rudolf and Rubel, 2006). Months were in-
cluded in the study (from June to September). Meteorolog-
ical variables were recorded by a QLC-50 climate station
(Vaisala, Helsinki, Finland) fitted with a CM-3 pyranome-
ter (Kipp & Zonen Corp., Delft, the Netherlands) located at
Keszthely agrometeorological research station (ARS) (lati-
tude: 46◦44′ N, longitude: 17◦14′ E, elevation: 124 m a.s.l.)
between 2015–2020. The ARS is placed on the area of the
Hungarian University of Agriculture and Life Sciences. With
the exception of wind speed, meteorological data of Ta, RH,
Rs, daily maximum temperature (Tmax), daily minimum tem-
perature (Tmin), and precipitation (P ) were measured at 2 m
above the ground surface. The height of wind speed (u) mea-
surements was 10.5 m. The daily mean values of meteorolog-
ical variables were calculated as average of 10 min observa-
tions of a 24 h period.
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Figure 1. Location map of the study area with agrometeorological research station (ARS) at Keszthely, Hungary (from https://www.
vectorstock.com, last access: 3 November 2021).

In this study, class A evaporation pans were used to deter-
mine daily evaporation (Ep). The class A pans were 1.21 m
in diameter and 0.25 m in height located on an elevated (∼
0.15 m) wooden grid, with a water surface area of∼ 1.15 m2.
The daily rate of Ep was calculated from the difference in
water level for two consecutive days, considering any pre-
cipitation that may have fallen into the pans. The daily water
loss was measured every morning at 07:00 LMT (local mean
time).

In the ARS area, three class A pans were placed 5 m apart
(Fig. 2). A class A pan was recommended by the WMO to be
used as a standard treatment (control, C). Two class A pans
were covered on the bottom with sediment to a thickness of
0.002 m (S). The used sediment was psammal/psammopelal
(Ø > 6 µm–2 mm, sand/sand with mud) with the following
composition: quartz, calcite, aragonite, dolomite, muscovite,
chlorite, feldspar, smectite, kaolinite, and pyrite (Anda et
al., 2016). Submerged, freshwater aquatic macrophytes were
planted in third class A pans with sediment-covered bottom
(Anda et al., 2016, 2018). Macrophyte samples were gath-
ered from Lake Balaton (Keszthely Bay) with similar wa-

ter depth (0.6–0.8 m) each year. The amount of crop density
was controlled monthly without variation in the green mass
weight of crops between natural habitat and “seeded” class A
pans. In the experimental area, three species of submerged,
freshwater aquatic macrophytes: Potamogeton perfoliatus,
Myriophyllum spicatum, and Najas marina were colonised.
Due to the development of submersed macrophytes, class A
pans were operational from June to September in the growing
season 2015–2020.

In the last vegetation period, to detect vertical water tem-
perature (Tw) profiles, four fastened thermistors of Delta
Ohm HD-226-1 (accuracy: 0.3 ◦C) collected the temperature
data at 0.05, 0.10, and 0.15 m depth from the pan bottom and
on the water surface, at 10 min intervals. Hourly averaged Tw
values were used in the analysis. To present diurnal variation
in Tw and stratification, sample days were selected for clear-
sky, calm, and cloudy weather conditions.

The weather of the studied growing seasons was specified
by the monthly Thornthwaite index (TI) of the World Mete-

https://doi.org/10.5194/hess-26-4741-2022 Hydrol. Earth Syst. Sci., 26, 4741–4756, 2022

https://www.vectorstock.com
https://www.vectorstock.com


4744 B. Simon-Gáspár et al.: Pan evaporation

Figure 2. Class A pans with different treatments: C, S, and SM denote “empty”, sediment-covered, and macrophyte-planted class A pans in
the middle of the meteorological garden.

orological Organization (WMO) report (1975):

TI= 1.65
(
Pm

Tam
+ 12.2

)10/9

, (1)

where Pm and Tam are the monthly sum of precipitation and
the monthly mean air temperature, respectively.

In classifying the weather in each season’s months, a 20 %
deviation was assumed from climate norms (1981–2010),
above and below the TInorm for both included meteorolog-
ical variables (Pm and Tam), allowing the following weather
classes to be distinguished:

– warm–dry month (h): TImonth > TInorm× 0.8;

– cooler–wet month (c): TImonth > TInorm× 1.2;

– month with normal weather (n): TInorm× 0.8≤
TImonth ≤ TInorm× 1.2.

By counting the highest number of months within each of
these three groups, the season was considered to be either
normal, cool, or warm.

2.2 Multiple stepwise regression (MLR)

The regression models are important tools for investigating
relations between dependent and independent data (Razi and
Athappilly, 2005), which is a method that has been used
for a long time in the investigation of meteorological vari-
ables. Evaporation can be modelled by multiple linear re-
gressions using different meteorological variables (e.g. Ta,
RH, u) (Almedeij, 2012).

The MLR can be expressed by the following equation:

y = b0+ b1x1+ . . .+ bkxk + a, (2)

where b0, b1. . ., and bk are fitting constant, x1. . . and xk rep-
resent the observed meteorological variables, and a is a ran-
dom error term. The a is the remaining effects on estimated
Ep (y) of variables not explicitly included in the model (Patle
et al., 2020). The dependent variable, y, was Ep.

2.3 FAO-56 Penman–Monteith (FAO56–PM) method

The Penman–Monteith model is considered as the interna-
tional standard for computing potential evapotranspiration
and predicting crop water requirement. FAO56–PM may also
be proper method to get pan evaporation with submerged
macrophytes. Wang et al. (2021) reported that actual evapo-
ration is important for hydrological research due to its direct
impact on the hydrologic processes (water cycle, water re-
sources management). The above authors concluded that to
estimate pan evaporation, it is essential to find the proper for-
mulation of the Penman–Monteith equation, a special case
of the multiple stepwise regression methods. It may be es-
pecially true even in pans with seeded macrophytes. In ac-
cordance with composition of lake ecosystems, this is the
method in evaporation estimation that implies living organ-
ism.

The reference evapotranspiration ET0 was estimated by
the WMO standardised FAO-56 Penman–Monteith method
(Allen et al., 1998, 2005) at a daily step for short reference
crops (clipped grass of 12 cm) as follows:

ET0 =
0.4081(Rn−G)+ γ

900
Ta+273u(es− ea)

1+ γ (1+ 0.34u)
, (3)

where Rn is net radiation (MJ m−2 d−1), G is the soil heat
flux density (MJ m−2 d−1), Ta is the mean daily air tempera-
ture at 2 m height (◦C), u is wind speed (m s−1) at 2 m height,
es is the saturation vapour pressure (kPa), ea is the actual
vapour pressure (kPa), 1 is the slope of the vapour pressure
curve (kPa ◦C−1), γ is a psychrometric constant (kPa ◦C−1),
and 0.408 is a conversion factor from MJ m−2 d−1 to equiva-
lent evaporation in mm d−1.
Rn was estimated from global radiation, mean daily tem-

perature, the mean daily vapour pressure, the site latitude,
and elevation after Allen et al. (2005). A fixed value of 0.23
was applied for the albedo. It was assumed that soil heat flux
density was G= 0 on a daily basis. Detailed description of
the process can be read in Soós and Anda (2014).

The Tetens equation (Monteith and Unsworth, 2008; Allen
et al., 1998; Tetens, 1930) was used for calculating saturation
vapour pressure (es) as follows:

es = 0.6108× exp(17.27Ta/(Ta+ 237.3)), (4)
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Figure 3. Illustration of the winning node and its neighbourhood in
the Kohonen self-organising map (K–SOM).

where Ta is the air temperature in ◦ C. The actual vapour
pressure, ea, was calculated from the relative humidity (RH):

ea =

(
RH
100

)
× es. (5)

2.4 Kohonen self-organisation map (K–SOM)

The K–SOM is a nonlinear mapping technique, which iden-
tifies groups of similarity in data sets without normal distri-
bution assumption (Kohonen, 1982). SOM is a powerful and
effective tool for complex data analyses such as data mining,
estimation, and prediction. Using SOM, informative refer-
ence vectors are obtained via iterative updates under three
main successive procedures: competition with nodes (1), se-
lection of a winner node (2), and updating of the reference
vector (3) (Yu et al., 2018). Every node has its vector ad-
justed according to sequential algorithm with the Gaussian
neighbourhood function. The SOM consists of an input layer
and an output layer (Park et al., 2006), where the output layer
consists of so-called neurons, which are usually located in a
hexagonal grid and are fully interconnected (Peeters et al.,
2007). A schematic illustration of K–SOM is presented in
Fig. 3. As similar input patterns could have different outputs,
to determine the best output for a given input pattern is to
use the mean output value as the clustered input patterns to
the correspondent neuron, and then the closest (most simi-
lar) neuron would be directly used for the given input pattern
(Chang et al., 2010; Kohonen, 1990).

The importance of K–SOM in the field of environmental
science lies in the fact that SOMs can be used for prediction
and correlation analysis, mostly with visual representation
(Barreto and Pérez-Uribe, 2007). An outstanding element of
this is that K–SOM finds statistically significant dependen-
cies among the variables in a multidimensional data sample.
In the case where two variables are highly correlated, K–
SOM produces two similar component planes (Barreto and
Pérez-Uribe, 2007).

K–SOM as NN provides a method above the standard es-
timations of pan evaporation, which seems necessary to get
evaporation of natural ecosystems including lakes. In other
words, applying a method in which the pan evaporation is
estimated from other, easily measurable meteorological pa-
rameters such as sun radiation, air temperature, and relative
humidity, has primary importance. This approach has widely
been used for pan evaporation projection among others by
Kisi et al. (2016) and Lin et al. (2013). Kisi et al. (2016) com-
pared the soft computing model K–SOM and multiple linear
regression (MLR). The authors demonstrated the superiority
of K–SOM over MLR even in the model performance.

2.5 Statistics and performance evaluation criteria

The Shapiro–Wilk test was used as a statistical test for nor-
mality, with a chosen alpha value of 0.05 (p < 0.05). Two-
way analysis of variance (ANOVA) with Tukey’s HSD test
was performed to examine the impacts of treatments C, S,
and SM on class A pan Ep. To study the impact of meteoro-
logical elements onEp of C, S, and SM treatments, Pearson’s
correlation analysis was used. This, as well as the MLR,
was carried out with SPSS Statistics software. In this study,
the K–SOM algorithm was executed using MATLAB 2019b
software. To train (years: 2015–2017) and test the models
(years: 2018–2020), half of the data were used.

Performance of the proposed models is evaluated by com-
puting statistical indices, such as root mean square error
(RMSE), mean absolute error (MAE), scatter index (SI), and
Nash–Sutcliffe efficiency (NSE) between observed and esti-
mated values of Ep for the data sets considered. The RMSE
range is zero to infinity (0< RMSE<∞); the lower the
RMSE, the better the model’s performance. The RMSE is
proportional to the observed mean, as a result, SI (Shiri
and Kişi, 2011) forms a good non-dimensional error mea-
sure. NSE (Nash and Sutcliffe, 1970; ASCE, 1993) compares
the congruence between the observed and predicted data. A
high value of NSE (NSE≤ 1) indicates high efficiency of the
model (Duan et al., 2016; Li and Liu, 2020).
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These evaluation criteria calculate as the following equa-
tions:

RMSE=

√∑n
i=1(Epobs,i −Epest,i )

2

n
, (6)

MAE=

∑n
i=1

∣∣∣Epest,i −Epobs,i

∣∣∣
n

, (7)

NSE= 1−

∑n
i=1(Epobs,i −Epest,i )

2

n∑
i=1
(Epest,i −Epest,m)

2
, (8)

SI=

√√√√√∑N
i=1

[
(Epest,i −Epest,m)− (Epobs,i −Epobs,m)

]
∑N
i=1E

2
pobs,i

, (9)

where Epobs,i , Epest,i is observed and estimated pan evapora-
tion values on the ith day; and Epobs,m and Epest,m is the mean
value of Epobs,i and Epest,i , respectively. The total number of
testing patterns is denoted by n, and i represents the number
of particular instances of the testing pattern.

3 Results

3.1 Meteorological variables and pan evaporation

The long-term (1971–2000) growing season’s average Ta at
Keszthely is 18.8 ◦C, the hottest month is July with a mean
monthly Ta of 20.5 ◦C, while the coolest month is Septem-
ber (15.7 ◦C). In the study period, the seasonal mean Ta was
5.5 %–15.7 % higher than the 30-year average. Out of six
seasons studied, three warm (2015, 2017, 2019) and three
close to normal (2016, 2018, 2020) ones could be distin-
guished (Fig. 4). The seasonal mean Ta in warm seasons were
11.5 %–15.7 % higher than that of the climate norms.

The climate of Keszthely is characterised by highly vari-
able and irregular P with a long-term seasonal total of
274.3 mm from June to September. Monthly seasonal mean
precipitation sums varied from 78.5 mm (June) to 57.1 mm
(September). Warm seasons (2015, 2017, 2019) were char-
acteristically arid with 4.9 %–21.6 % less seasonal total P ,
respectively, compared to the 30-year average. In the other
study seasons, there were 23.9 %–40.4 % more P (data not
shown) than that of the climate norm.

Figure 4 displays the meteorological variables and ob-
served daily Ep in different pan treatments determined in a
box and whisker plot between growing season 2015–2020,
indicating minimum, first quartile, median, third quartile,
and maximum values. An increasing trend was observed in
the Tmin with an increment of 9.6 %, while the Tmax ex-
hibited an unchanged trend over the studied growing sea-
sons. In the study location, there were hardly any differences
in seasonal mean RH values (0.6 %–9.2 %) and daily Rs
sums (21.3–24.3 W m−2) between 2015 and 2020. The high-

est (1.6 m s−1) and lowest (0.9 m s−1) seasonal mean wind
speeds were measured in 2016 and 2018, respectively.

Daily Ep rates were related to seasonal Ta variations and
not to rainfall patterns. Higher daily mean water losses were
registered during the warm–dry seasons (C: 3.5–3.8 mm d−1,
S: 4.2–4.3 mm d−1, SM: 4.5–4.9 mm d−1), while somewhat
lower average Ep rates were measured in the three normal
seasons (C: 3.0–3.5 mm d−1, S: 3.4–4.0 mm d−1, SM: 3.6–
4.2 mm d−1). As a result of pan seeding, differences in daily
mean Ep rates were more pronounced in warm summers.
In warm seasons, significant deviations of daily mean Ep
between C and S (p < 0.001) and S and SM (p < 0.001)
were observed. At the same time, significant differences in
daily mean Ep between C and S (p < 0.001) and C and
SM (p < 0.001) were registered in normal seasons. No sig-
nificant impact of pan seeding in all the remaining treat-
ments was detected (p = 0.0693–0.0896) (Fig. 4). A two-
way ANOVA was conducted to explore the impact of the
studied seasons and the treatment on Ep rates. There were
significant main effects caused by the growing season (F
(5, 211)= 24.241, p = 0.001) and the pan treatment (F (2,
236)= 67.855, p = 0.001) in the full dataset. The interac-
tion between seasons and treatments was not significant (F
(10, 29)= 0.085, p = 0.503). Tukey HSD post-hoc tests re-
vealed significant differences among the three pan treatments
(p < 0.001 for all pairwise comparisons) for the training,
testing phase, and full dataset (Table 1).

The correlation of evaporation of different pan treatments
with other meteorological variables is also given in Table 2.
There was a statistically significant difference in evaporation
rates of full datasets and in the case of training and testing
datasets between the seeded and classic class A pan. The Ta,
Tmax, and Rs positively impacted the Ep, while RH had a
negative correlation with Ep. In this study, u hardly affected
the Ep rates irrespective to treatment. The descriptive statis-
tics of both training and testing datasets showed that most of
the meteorological variables and Ep were similar to the full
data set.

On the basis of the daily variation of Tw in differ-
ent depths, two time periods were distinguished (Fig. 5);
daytime (07:00–18:00 LMT) and nighttime cooling (19:00–
06:00 LMT). With clear-sky conditions, the surface Tw
peaked at 14:00, irrespective to treatment. The magnitudes of
surface Tw in daytime (between 07:00 and 14:00) increased
from 21.6 to 37.5 ◦C in C, from 23.0 to 37.4 ◦ C in S, and
from 19.8 to 38.0 ◦ C in SM. Then, with declining solar radi-
ation, the Tw slightly decreased during the nighttime cooling
to 21.2, 21.8, and 18.7 ◦C in C, S, and SM, respectively, until
sunrise. In deeper water depth, a similar pattern of Tw with
slightly smaller magnitudes was measured with a time lag of
1 to 2 h from the surface Tw. In the classic A pan, the Tw in
deeper depth from the surface did not reduce as rapidly as Tw
in seeded pans. On cloudy days, insignificant Tw differences
less than 1 ◦C (p = 0.059–0.969) between the neighbouring
layers were observed in every treatment.
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Figure 4. Box plot of meteorological parameters (Ta – daily mean temperature (◦C), Tmax – daily maximum temperature (◦C), Tmin –
daily minimum temperature (◦C), RH – relative humidity (%), Rs – global radiation (MJ m−2 d−1), u – wind speed (m s−1)), and daily
evaporation of different pan treatments (mm d−1) (C – control, S – class A pan with sediment cover bottom, SM – class A pan with
submerged macrophyte) in 2015–2020 growing seasons (June–September). The lower and upper ends of the box indicate the 25th and 75th
percentiles of the variances, respectively, while the horizontal bar within the box indicates the median. The two horizontal bars indicate the
range that covers 90 % of the variances. Outliers are indicated with circles.

3.2 K–SOM features

Table 3 shows the usual parameter table for K–SOM. The
following steps were required to present Fig. 5: inputs were
normalised, the code book was generated, and the map size
complied with the dimensions of the component planes. The
neighbouring function of the pixels was Gaussian, the shapes
of component planes were sheets, and the planes shapes
were hexagonal. Two indicators are most often used to qual-
itatively evaluate the two main goals of the K–SOM algo-
rithm: quantisation error (QE) and topographic error (TE)
(Table 3). The QE shows how closely the map vectors match
the data vectors, thereby quantifying map resolution (Koho-
nen, 1995). The TE, in turn, determines the extent to which
the topology of the input data structure is preserved on the
output map (Kiviluoto, 1996). QE and TE do not have a de-
fault value, but the smaller the QE and TE (if the values tend
to be zero), the better the model is. In this study, the values of
QE and TE were equal to 0.016 and 0.820, respectively, in-
dicating that the K–SOM was appropriately trained in topol-
ogy.

K–SOM can be interpreted using the output map and the
individual component planes, so the relationships between
each variable can be explored. The component planes help to
visually illustrate areas in which the intensity of the relation-
ship of the variables is high, low, or average, and thus helps
to better understand the relationship between the Ep and me-
teorological variables. The component planes for each vari-
able of the K–SOM model are shown in Fig. 6. Superimposed
on K–SOM patterns of input meteorological variables, radi-
ation, air temperatures including minimum and maximum,
relative humidity, and wind speed could be captured reveal-
ing their co-variability with the pan evaporation.

In the map, the similar weight vectors have similar colours,
based on the U matrix according to a naïve contraction
model proposed by Himberg (2000) and Peeters et al. (2007).
Among NN features, as the clustering, classification, pre-
diction, and data mining in large datasets (Kohonen and
Somervuo, 2002; Kalteh et al., 2008), only the prediction
and data mining were applied in the study. As there was no
group distinction (classification), the U matrix has not been
presented here.
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Table 1. The impact of sediment (S) and submerged aquatic macrophytes (SM) on evaporation rates (Ep) of class A pan (C) in the full data
set (2015–2020), training (2015–2017), and testing (2018–2020) phase with 95 % confidence intervals.

Multiple comparisons

95 % Confidence interval

(I) Treatment (J) Treatment Mean difference (I–J) Std. error Sig. Lower bound Upper bound

Full dataset (2015–2020)

C S −0.490∗ 0.0733 0.000 −0.662 −0.318
SM −0.845∗ 0.0735 0.000 −1.017 −0.672

S C 0.490∗ 0.0733 0.000 0.318 0.662
SM −0.355∗ 0.0733 0.000 −0.526 −0.183

SM C 0.845∗ 0.0735 0.000 0.672 1.017
S 0.355∗ 0.0733 0.000 0.183 0.526

Based on observed means. The error term is mean square (error)= 1.741

Training data set (2015–2017)

C S −0.712∗ 0.1066 0.000 −0.962 −0.462
SM −0.731∗ 0.1072 0.000 −0.982 −0.479

S C 0.712∗ 0.1066 0.000 0.462 0.962
SM −0.019∗ 0.1124 0.019 −0.283 0.245

SM C 0.731∗ 0.1072 0.000 0.479 0.982
S 0.019∗ 0.1124 0.019 −0.245 0.283

Based on observed means. The error term is mean square (error)= 1.840

Testing data set (2018–2020)

C S −0.505∗ 0.0993 0.000 −0.738 −0.272
SM −0.716∗ 0.1001 0.000 −0.951 −0.481

S C 0.505∗ 0.0993 0.000 0.272 0.738
SM −0.211∗ 0.0990 0.045 −0.443 0.022

SM C 0.716∗ 0.1001 0.000 0.481 0.951
S 0.211∗ 0.0990 0.045 −0.022 0.443

∗ The mean difference is significant at the 0.05 level. The bold mark indicates the significant difference.

A colour was assigned to a node in accordance with the
relative value of the respective component in that node (Li
et al., 2018). On the maps, the warm colours (red, orange)
show positive correlation, and the cool colours (blue) show
negative correlation between the study variables. The darker
the colour on the map (both warm and cool colours), the
stronger the correlation. Lighter colours indicate lower cor-
relation. When one variable is red while the other one is blue
on the same place of the heat map, the correlation between
them will be negative. Thus, the correlation between the K–
SOM modelled values of Ep, Ta, Tmin, Tmax, Rs, RH, and u
becomes clearly visible. The colour gradient of Ep was simi-
lar to those for variables related to available energy (Ta, Tmin,
Tmax, and Rs), indicating that these contribute most to the in-
crease ofEp. The component planes also visually confirm the

negative correlation between RH and Ep, with high values of
the RH resulting in low values of the Ep.

3.3 FAO56–PM, MLR, and K–SOM models

Figure 6 depicts the time variation and X–Y scatter plots of
the observed and estimated daily Ep values obtained by C, S,
and SM during the testing period (2018–2020).

From Fig. 7, it can be observed that most of the estimated
daily Ep values (for MLR and K–SOM) are close to the ob-
served dailyEp values for all three pan treatments. The possi-
ble reason for low R2 values in FAO56–PM might be the role
of the variable that is the estimate in crop potential evapotran-
spiration and not evaporation in water bodies. The regres-
sion line is above the 1 : 1 line up to 4 mm, which means that
the FAO56–PM and MLR models slightly overestimated the
magnitude of the daily Ep values in different pan treatments.
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Table 2. Statistics of meteorological variables (Ta – mean air temperature, Tmax – maximum air temperature, Tmin – minimum air temper-
ature, RH – relative humidity, Rs – solar radiation, u – wind speed) and their correlation with evaporation (Ep) of C, S, and SM in the full
time series (2015–2020), training (2015–2017), and testing phases (2018–2020). C, S, and SM are control class A pan, A pan with sediment
cover–bottom, and A pan with planted freshwater submerged macrophyte, respectively.

Data set Statistics Ta Tmax Tmin RH u Rs Ep of C Ep of S Ep of SM
(◦C) (◦C) (◦C) (%) (m s−1) (MJ m−2 d−1) (mm d−1) (mm d−1) (mm d−1)

Full Average±SD 21.1± 3.2 27.5± 4.0 14.8± 3.2 72.7± 8.0 1.3± 0.9 22.4± 6.0 3.4± 1.2 3.9± 1.4 4.3± 1.5
(2015–2020) Correlation with Ep of C 0.59∗∗ 0.53∗∗ 0.42∗∗ −0.43∗∗ 0.01 0.50∗∗ 1.00 – –

Correlation with Ep of S 0.57∗∗ 0.51∗∗ 0.40∗∗ −0.42∗∗ 0.03 0.53∗∗ 0.92∗∗ 1.00 –
Correlation with Ep of SM 0.56∗∗ 0.50∗∗ 0.37∗∗ −0.44∗∗ 0.01 0.52∗∗ 0.90∗∗ 0.93∗∗ 1.00

Training Average±SD 20.9± 3.4 27.5± 4.4 14.4± 3.3 71.0± 7.5 1.4± 0.9 23.1± 6.1 3.4± 1.2 4.0± 1.4 4.4± 1.6
(2015–2017) Correlation with Ep of C 0.65∗∗ 0.59∗∗ 0.49∗∗ −0.48∗∗ 0.05 0.51∗∗ 1.00 – –

Correlation with Ep of S 0.63∗∗ 0.58∗∗ 0.45∗∗ −0.47∗∗ 0.00 0.56∗∗ 0.91∗∗ 1.00 –
Correlation with Ep of SM 0.63∗∗ 0.57∗∗ 0.44∗∗ −0.50∗∗ 0.04 0.54∗∗ 0.89∗∗ 0.93∗∗ 1.00

Testing Average±SD 21.2± 2.9 27.4± 3.5 15.3± 3.0 74.2± 8.2 1.2± 0.9 21.8± 5.7 3.4± 1.2 3.9± 1.4 4.1± 1.4
(2018–2020) Correlation with Ep of C 0.53∗∗ 0.46∗∗ 0.35∗∗ −0.41∗∗ 0.06 0.51∗∗ 1.00 – –

Correlation with Ep of S 0.51∗∗ 0.44∗∗ 0.35∗∗ −0.39∗∗ 0.06 0.50∗∗ 0.92∗∗ 1.00 –
Correlation with Ep of SM 0.49∗∗ 0.41∗∗ 0.33∗∗ −0.38∗∗ 0.05 0.49∗∗ 0.92∗∗ 0.95∗∗ 1.00

∗∗ Correlation is significant at the 0.01 level (two-tailed).

Figure 5. Water temperature of different pan treatments (C – class A pan/control; S – class A pan with sediment covered bottom; SM – class
A pan with submerged macrophyte) in clear-sky and cloudy sample days. The layers represent the distance from the pan bottom. The lowest
sensors’ height was 5 cm.

However, above 4 mm daily Ep, the FAO56–PM and MLR
models already underestimated the observed Ep values. The
daily Ep values of C, S, and SM of the K–SOM model fol-
low the 1 : 1 line most accurately. For all three models, R2

values were highest for SM treatment (FAO56–PM: 0.1393,
MLR: 0.6242, K–SOM: 9864). In the case of K–SOM, it can
also be observed that low Ep values are overestimated, while
higher Ep values are underestimated, although the estimated
“middle” Ep values (which occur most frequently in a grow-
ing season) were close to the observed Ep values regardless

of pan treatment. A greater degree of underestimation is ob-
served for SM treatment for K–SOM.

In this study, we developed Ep models based on three dif-
ferent approaches (FAO56–PM, MLR, and K–SOM) with
daily meteorological variables, and tested the performance
of the models by four commonly used statistical indicators
(MAE (Ideal= 0, (0,+∞)), RMSE (Ideal= 0, (0,+∞)),
NSE (Ideal= 1, (−∞,1)), and SI (Ideal= 0, (0,+∞))). Fig-
ure 8 shows the overall performance of the three predicted
methods at the three pan treatments.
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Figure 6. Kohonen self-organising map (K–SOM) visualisation of pan evaporation and meteorological variables assessment (Ta – daily
mean temperature (◦C), Tmax – daily maximum temperature (◦C), Tmin – daily minimum temperature (◦C), RH – relative humidity (%),
Rs – global radiation (MJ m−2 d−1), u – wind speed (m s−1), and Ep – daily evaporation (mm d−1)). The bars indicate the intensity of the
variables: the red colour is high importance and the blue colour is low importance.

Table 3. Characteristics of trained Kohonen self-organising map
(K–SOM) model.

Characteristics Values

Normalisation method x′ = (x− x)/σx variance
Codebook 312× 3
Map size 24× 13
Neighbourhood function Gaussian
Shape Sheet
Lattice Hexagonal
Final topographic error (TE) 0.820
Final quantisation error (QE) 0.016

The K–SOM models (RMSE= 0.222–0.253;
NSE= 0.761–0.951; SI= 0.065–0.074) performed the
best in the testing period, their RMSE and MAE were
lower, and their NSE was higher than those of FAO56–PM
and MLR models regardless of pan treatment (C: 0.951;
S: 0.906; SM: 0.761). Additionally, the MAE value for
treatments C and S was the lowest in the K–SOM models
(MAE= 0.164 and MAE= 0.338, respectively); in contrast,
the FAO56-PM had the best MAE value for SM treatment
(MAE= 0.601).

Overall, the MLR (RMSE= 0.834; MAE= 0.660;
S= 0.217) was slightly superior to FAO56–PM
(RMSE= 0.877; MAE= 0.675; SI= 0.220) in the S,
and there was only a small difference in the value of NSE
between the two models (MLR: 0.572; FAO56-PM: 0.580).
In the C treatment, RMSE (0.796) and SI (0.200) were lower
for FAO56–PM, while MAE (0.648) and NSE (0.531) values
were more favourable for the MLR model. Nevertheless,
both the K–SOM model and MLR model were better

than the FAO56–PM model during the testing period for
“non-empty” treatments (S and SM).

4 Discussion

To date, there is little information about the impact of sub-
merged aquatic macrophytes on Ep rate. According to a pre-
vious study in India (Kota, Rajasthan), water hyacinth evap-
otranspirated 26 % more water than free water surface in a
9-month experiment (Brezny et al., 1973). In the same place
as this study, Anda et al. (2016, 2018) have shown that the
presence of sediment increases the evaporation of the class
A pans by an average of 12.7 %, and the submerged aquatic
macrophytes by an average of 21.3 %, between 2014 and
2016. Jiménez-Rodríguez et al. (2019) reported that the ob-
served Ep were higher for aquatic plants than the open wa-
ter cover in Palo Verde National Park, Costa Rica, between
December 2012 and January 2013 (45 d). Concerning the re-
lationship between pan treatments and meteorological vari-
ables, it can be concluded that positive correlation was ob-
served with most meteorological variables, while a negative
correlation was observed with RH. This result was supported
by other studies in the literature (Sheffield et al., 2017).
In this study, u hardly affected the Ep rates of each treat-
ment. This does not confirm the conclusions made by earlier
studies (McVicar et al., 2012). This may be due to the fact
that Keszthely is sheltered by surrounding mountains caus-
ing lower wind speeds (Anda et al., 2016).

Daily mean Tw increases were 5.4 and 4.5 ◦C in S and SM,
respectively, compared to C during clear-sky conditions. De-
spite the less intense stratification on overcast days, Tw of
seeded pans was 5.4 ◦C higher than that of daily mean Tw of
C.
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Figure 7. Time series and X–Y scatter plot of observed and predicted daily pan evaporation (Ep) in different pan treatment (C – control, S –
pan with sediment cover bottom, SM – pan with submerged macrophytes) by daily multiple stepwise regression (MLR), FAO-56 Penman–
Monteith (FAO56–PM), and Kohonen self-organisation map (K–SOM) models during testing period (2018–2020 growing seasons). All
probability levels were equal to p < 0.001.

In accordance with shallow lake stratification results of Ja-
cobs et al. (1998), increased stratification was evident in day-
time, but the number of layers strongly depended on macro-
phyte presence. More moderate Tw layer differences were
also present at night. The stratification was the most intense
with three significantly different layers (p < 0.001) in seeded
pans, during clear-sky daytime. At the same time, the num-
ber of layers with varied Tw was only two (p < 0.001−p =
0.012) in classic A and sediment covered pans. Results in
the study were confirmed by Andersen et al. (2017) conclud-
ing that shallow lakes colonised by submerged macrophytes
strongly stratify the water body, mainly during the daytime.
The reason for this stratification is the dissipating turbulent
kinetic energy and absorbing heat (Vilas et al., 2018). The
plants may act as a barrier to seeded pans water mixing, at-

tenuating underwater light, thereby enhancing the thermal
stratification inside the pan’s water column.

The strength of stratification, the daily mean Tw differ-
ences between the surface and bottom water were 2.5 (p =
0.005), 3.0 (p < 0.001), and 6.5 ◦C (p < 0.001) in C, S, and
SM, respectively, on cloudless days. At night-time cooling,
variation in Tw between different layers was less pronounced,
remaining below 1 ◦C (p < 0.001–p = 0.005).

In addition to stratification, the macrophytes have
strengthened the daily variation of Tw in different depth. A
0.3 ◦C increase in daily mean surface Tw of seeded pans
related to C was obtained during daytime, with a varia-
tion (Tmax–Tmin) of 18.4 and 19.3 ◦C in C and SM, respec-
tively. On the bottom, an opposite trend in daytime mean
Tw was detected; the seeded pans Tw in 0.05 m depth was
3.1 ◦C (p = 0.040) cooler than that of the Tw of C. Probably
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the macrophyte presence resulted in insufficient downward
heat transport, maintaining the more stratified water body of
seeded pans. Herb and Stefan (2004) also found reduced tur-
bulent mixing in shallow Otter Lake, Minnesota, with rooted
macrophytes. The authors observed that Tw fluctuations at
20 cm depth were 3 ◦C in open water and 4.5 ◦C in lake wa-
ter with macrophyte cover. Evapotranspiration functions of
SM fitted to surface Tw evolution; the higher the surface Tw,
the more intense the Ep rate was measured in SM related to
Ep of classic A pan.

Many researchers have conducted research with neural
networks aimed at the estimation of Ep as a function of
meteorological variables (Keskin and Terzi, 2006). Several
of these researchers found better results in Ep estimation
with neural network approach than those obtained from the
Priestley–Taylor and the Penman methods (Rahimikhoob,
2009; Malik et al., 2020b). Consistent with other studies, this
study demonstrated that modelling of Ep is possible through
the use of K–SOM technique in addition to the FAO56–PM
and MLR methods. The comparison results indicated that,
in general, the K–SOM model was superior to the FAO56–
PM and MLR methods. Chang et al. (2010) used different
methods to estimate pan evaporation, including also the K–
SOM and the FAO56–PM. According to the results of Chang
et al. (2010), K–SOM was the best of the studied methods,
and it was found that the Penman–Monteith method is also
likely to underestimate evaporation. Malik et al. (2017) used
four heuristic approaches and two climate-based models to
approximate monthly pan evaporation, where the K–SOM
model performed better than the climate-based models. The
regression line in scatter plots has R2 as 0.937 for K–SOM
model at Pantnagar and Ranichauri (India). In the study of
Malik et al. (2017), RMSE values were 0.685 and 1.126 for
K–SOM, when 50 % of the total available data was used in
the testing of models in two stations.

5 Conclusions

The Ep of a class A pan with submerged aquatic macro-
phytes and with a sediment-covered bottom was observed at
Keszthely, over six consecutive (2015–2020) growing sea-
sons. In this study, it was attempted to model Ep by employ-
ing models consisting of FAO56–PM, MLR, and K–SOM,
using daily pan evaporation values in different class A pan
treatments (C, S, SM). The Ep rate of SM and S was always
significantly higher than that of the “empty” class A pan each
growing season. The presence of submerged macrophyte re-
sulted in a higher Ep than in the sediment-covered class A
pan.

Macrophyte-induced thermal stratification in water bodies
(lakes/evaporation pans) emerges only in the vegetation pe-
riod, during macrophyte development. One less layer in clas-
sic A pan compared to macrophyte seeded pans was probably
due to modified Tw stratification causing changed water col-

umn stability. Wider Tw values-induced dynamics presented
in the macrophyte seeded pans demonstrated the possibility
of developing a more heterogenous environment for aquatic
ecosystems. Macrophyte-induced modified thermal stratifi-
cation with higher surface Tw could explain the increased Ep
in seeded pans. Modified Ep of seeded pans made those val-
ues closer to the Ep of natural lakes with submerged macro-
phytes. While the Tw stratification trend in SM was similar to
that of natural shallow lakes, it may also provide a new con-
sideration for routine hydrometeorological management. Tw
distribution in macrophyte-covered lakes impacts other phys-
ical properties such as nutrient cycling, dissolved oxygen,
etc. When treating Ep from a pan to that from a vegetated
surface including lakes or other aquatic habitats, to improve
evaporation estimation, multidimensional approximation is
necessary, offering simple methods for end-users including
hydrologists, meteorologists, or any other specialists.

Daily Ep rates for all pan treatments were related to sea-
sonal Ta variations. Correlation analysis revealed that Ta,
Tmax, Tmin, and Rs had a positive correlation with pan evap-
oration, whereas RH had a negative correlation (−0.42 to
−0.44) with Ep of C, S, and SM in the full dataset. Among
all, the R (correlation coefficient) of Ta (ranging from 0.56–
0.59) had a stronger positive correlation followed by R of
Tmax (ranging from 0.50–0.53) and R of Rs (ranging from
0.50–0.53). The relationship with u was low for the Ep of
the three treatments, which can be explained by the low u

of Keszthely in the growing seasons. Using the visualisation
capability of the K–SOM, it was clearly confirmed that the
Ep was more closely correlated with the variables related to
available energy than the RH.

The performance accuracy of the different applied models
was evaluated with RMSE, MAE, NSE, and SI statistics. Re-
sults showed that the K–SOM model has accuracy in predic-
tion precision over the FAO56–PM and MLR models. Com-
paring the FAO56–PM and MLR models, MLR performed
better in this study in S and SM treatments.

Since the Ep of one sample place was included in the
study, the “generic” impact of submerged macrophytes onEp
was not fully discussed; maybe for different reasons, our re-
sults in other sites became variable. More surveys are needed
to reveal the applicability of planted standard A pan Ep for
different geographical and climatic conditions.

A possible application value of the study is in validating
the presence of littoral sediments and macrophytes in evapo-
ration estimation; the amount of lost water by wetlands that
can easily be accounted in the prediction of their perfor-
mance. Results from the study may also contribute to the
protection of aquatic plants and to environmental manage-
ment of wetlands also in other regions of the world. Man-
agement strategies aiming to estimate accurate water budget
terms including evaporation can be a realistic aim for pre-
venting further inaccurate water loss projections.
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Figure 8. Error statistics (root mean square error – RMSE, mean absolute error – MAE, scatter index – SI and Nash–Sutcliffe efficiency –
NSE) for the multiple stepwise regression (MLR), FAO-56 Penman–Monteith reference crop evapotranspiration (FAO56–PM), and Kohonen
self-organisation map (K–SOM) models during the testing period for different pan treatments (C is standard class A pan with clean water, S
is class A pan with sediment cover bottom, and SM is class A pan containing submerged macrophyte).

Data availability. The meteorological datasets are downloaded
from https://odp.met.hu/climate/station_data_series/daily/ (last ac-
cess: 12 February 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-4741-2022-supplement.

Author contributions. BSG and AA designed the experiments.
BSG and SG carried them out. BSG produced all figures and ta-
bles and formatted the article. BSG and AA prepared the article.
BSG, SG, and AA reviewed, revised, and supervised the progress
of the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This research has been supported by the Min-
istry for Innovation and Technology from the National Research,
Development and Innovation Fund (grant no. PD 138660).

Review statement. This paper was edited by Daniel Green and re-
viewed by Meine van Noordwijk and four anonymous referees.

References

Adeloye, A. J., Rustum, R., and Kariyama, I. D.: Koho-
nen self-organizing map estimator for the reference crop
evapotranspiration, Water Resour. Res., 47, W08523,
https://doi.org/10.1029/2011WR010690, 2005.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evap-
otranspiration: Guidelines for Computing Crop Water Require-

ments, Irrigation and Drainage Paper 56, Food and Agriculture
Organization of the United Nations: Rome, Italy, http://www.fao.
org/3/x0490e/x0490e00.htm (last access: 14 March 2021), 1998.

Allen, R. G., Walter, I. A., Elliott, R., Howell, T., Itenfisu,
D., Jensen, M., and Synder, R. L.: The ASCE Standardized
Reference Evapotranspiration Equation, Final Report (ASCE–
EWRI), Task Committee on Standardization of Reference Evap-
otranspiration, Environmental and Water Resources Institute of
the American Society of Civil Engineers: Reston, VA, USA,
https://doi.org/10.1061/9780784408056, 2005.

Almedeij, J.: Modeling pan evaporation for Kuwait by
multiple linear regression, Sci. World J., 2012, 574742,
https://doi.org/10.1100/2012/574742, 2012.

Alsumaiei, A. A.: Utility of Artificial Neural Networks in Model-
ing Pan Evaporation in Hyper-Arid Climates, Water, 12, 1508,
https://doi.org/10.3390/w12051508, 2020.

An, N., Wang, K., Zhou, C., and Pinker, R. T.: Observed variability
of cloud frequency and cloud-based height within 3600 m above
the surface over the contiguous United States, J. Climate, 30,
3725–3742, https://doi.org/10.1175/JCLI-D-16-0559.1, 2017.

Anda, A., Simon, B., Soós, G., Menyhárt, L., Teixeira da Silva,
J. A., and Kucserka, T.: Extending Class A pan evaporation
for a shallow lake to simulate the impact of littoral sediment
and submerged macrophytes: a case study for Keszthely Bay
(Lake Balaton, Hungary), Agr. Forest Meteorol., 250, 277–289,
https://doi.org/10.1016/j.agrformet.2018.01.001, 2018

Anda, A., Simon, B., Soos, G., Teixeira da Silva, J. A.,
and Kucserka, T.: Effect of submerged, freshwater aquatic
macrohytes and littoral sediments on pan evaporation in the
Lake Balaton region, Hungary, J. Hydrol., 542, 615–626,
https://doi.org/10.1016/j.jhydrol.2016.09.034, 2016.

Anda, A., Soos, G., Teixeira da Silva, J. A., and Kozma-
Bognár, V.: Regional evapotranspiration from a wet-
land in Central Europe, in a 16-year period without
human intervention, Agric. Forest Meteor., 205, 60–72,
https://doi.org/10.1016/j.agrformet.2015.02.010, 2015.

Andersen, M. R., Sand-Jensen, K., Iestyn Woolway, R., and Jones,
I. D.: Profound daily vertical stratification and mixing in a
small, shallow, wind-exposed lake with submerged macrophytes,
Aquat. Sci., 79, 395–406, https://doi.org/10.1007/s00027-016-
0505-0, 2017.

https://doi.org/10.5194/hess-26-4741-2022 Hydrol. Earth Syst. Sci., 26, 4741–4756, 2022

https://odp.met.hu/climate/station_data_series/daily/
https://doi.org/10.5194/hess-26-4741-2022-supplement
https://doi.org/10.1029/2011WR010690
http://www.fao.org/3/x0490e/x0490e00.htm
http://www.fao.org/3/x0490e/x0490e00.htm
https://doi.org/10.1061/9780784408056
https://doi.org/10.1100/2012/574742
https://doi.org/10.3390/w12051508
https://doi.org/10.1175/JCLI-D-16-0559.1
https://doi.org/10.1016/j.agrformet.2018.01.001
https://doi.org/10.1016/j.jhydrol.2016.09.034
https://doi.org/10.1016/j.agrformet.2015.02.010
https://doi.org/10.1007/s00027-016-0505-0
https://doi.org/10.1007/s00027-016-0505-0


4754 B. Simon-Gáspár et al.: Pan evaporation

Arunkumar, R. and Jothiprakash, V.: Reservoir evaporation predic-
tion using data driven techniques, J. Hydrol. Eng., 18, 40–49,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000597, 2013.

Barko, J. W., Hardin, D. G., and Matthews, M. S.: Growth
and morphology of submersed freshwater macrophytes in re-
lation to light and temperature, Can. J. Botany, 60, 877–887,
https://doi.org/10.1139/b82-113, 1982

Barreto, S. M. A. and Pérez-Uribe, A.: Improving the Correla-
tion Hunting in a Large Quantity of SOM Component Planes,
in: Artificial Neural Networks – ICANN 2007, edited by: de
Sá, J. M., Alexandre, L. A., Duch, W., and Mandic, D., Lect.
Notes Comput. Sc., 4669, Springer, Berlin, Heidelberg, 379–388,
https://doi.org/10.1007/978-3-540-74695-9_39, 2007.

Bedoya, D., Novotny, V., and Manolakos, E. S.: Instream
and off stream environmental conditions and stream bi-
otic integrity importance of scale and site similarities for
learning and prediction, Ecol. Model., 220, 2393–2406,
https://doi.org/10.1016/j.ecolmodel.2009.06.017, 2009.

Berkovic, S., Mendelsohn, O. Y., Ilotoviz, E., and Raveh-
Rubin, S.: Self-organizing map classification of the bound-
ary layer profile: A refinement of Eastern Mediterranean
wintersynoptic regimes, Int. J. Climatol., 41, 3317–3338,
https://doi.org/10.1002/joc.7021, 2021.

Brezny, O., Mehta, I., and Sharmas, R. K.: Studies of evapo-
transpiration of some aquatic weeds, Weed Sci., 21, 197–204,
https://doi.org/10.1017/S0043174500032112, 1973.

Brutsaert, W. H.: Evaporation into the Atmosphere, Springer, 12–
36, https://doi.org/10.1007/978-94-017-1497-6, 1982.

Burman, R. D.: Intercontinental comparison of evapora-
tion estimates, J. Irr. Drain. Div.-ASCE, 102, 109–118,
https://doi.org/10.1061/JRCEA4.0001076, 1976.

Chang, F. J., Chang, L. C., Kao, H. S., and Wu, G. R.: Assessing the
effort of meteorological variables for evaporation estimation by
self-organizing map neural network, J. Hydrol., 384, 118–129,
https://doi.org/10.1016/j.jhydrol.2010.01.016, 2010.

Doan, Q.-V., Kusaka, H., Sato, T., and Chen, F.: S-SOM
v1.0: a structural self-organizing map algorithm for
weather typing, Geosci. Model Dev., 14, 2097–2111,
https://doi.org/10.5194/gmd-14-2097-2021, 2021.

Dong, L., Zeng, W., Wu, L., Lei, G., Chen, H., Srivastava, A.
K., and Gaiser, T.: Estimating the pan evaporation in Northwest
China by coupling CatBoost with Bat algorithm, Water, 13, 256,
https://doi.org/10.3390/w13030256, 2021.

Duan, W. Y., Han, Y., Huang, L. M., Zhao, B. B., and Wang,
M. H.: A hybrid EMD-SVR model for the short-term pre-
diction of significant wave height, Ocean Eng., 124, 54–73,
https://doi.org/10.1016/j.oceaneng.2016.05.049, 2016.

Fournier, J., Thiboult, A., Nadeau, D. F., Vercauteren, N., Anctil,
F., Parent, A.-C., Strachan, I. B., and Tremblay A.: Evaporation
from boreal reservoirs: Acomparison between eddy covariance
observations andestimates relying on limited data, Hydrol. Pro-
cess., 35, e14335, https://doi.org/10.1002/hyp.14335, 2021.

Fritz, C., Schneider, T., and Geist, J.: Seasonal Variation in
Spectral Response of Submerged Aquatic Macrophytes: A
Case Study at Lake Starnberg (Germany), Water, 9, 527,
https://doi.org/10.1016/10.3390/w9070527, 2017.

Fuentes, van Ogtrop, F., and Vervoot, R. W.: Long term surface wa-
ter trends and relationship with open water evaporation losses

in the Namoi catchment, Australia, J. Hydrol., 584, 124714,
https://doi.org/10.1016/j.jhydrol.2020.124714, 2020.

Gholami, V., Sahour, H., and Hadian, M. A.: Mapping soil erosion
rates using self-organizing map (SOM) and geographic informa-
tion system (GIS) on hillslopes, Earth Sci. Inform., 13, 1175–
1185, https://doi.org/10.1007/s12145-020-00499-w, 2020.

Gu, Q., Hu, H., Ma., L., Sheng, L., Yang, S., Zhang, X., Zhang, M.,
Zheng, K., and Chen, L.: Characterizing the spatial variations of
the relationship between land use and surface water quality us-
ing self-organizing map approach, Ecol. Indicat., 102, 633–643,
https://doi.org/10.1016/j.ecolind.2019.03.017, 2019.

Guntu, R. K., Maheswaran, R., Agarwal, A., and Singh, V.
P.: Accounting for temporal variability for improved pre-
cipitation regionalization based on self-organizing map cou-
pled with information theory, J. Hydrol., 590, 125236,
https://doi.org/10.1016/j.jhydrol.2020.125236, 2020.

Hadjisolomou, E., Stefanidis, K., Papatheodorou, G., and Papaster-
giadou, E.: Assessment of the eutrophication-related environ-
mental parameters in two mediterranean lakes by integrating sta-
tistical techniques and self-organizing maps, Int. J. Env. Res.
Pub. He., 15, 547, https://doi.org/10.3390/ijerph15030547, 2018.

Himberg, J.: A SOM Based Cluster Visualization and Its Appli-
cation for False Coloring, Proceedings of International Joint
Conference on Neural Networks (IJCNN2000), 3, 587–592,
https://doi.org/10.1109/IJCNN.2000.861379, 2000.

Jacobs, A. F. G., Heusinkveld, B. G., and Nieveen, J. P.: Tem-
perature Behavior of a Natural Shallow Water Body dur-
ing a Summer Period, Theor. Appl. Climatol., 59, 121–127,
https://doi.org/10.1007/s007040050017, 1998.

Jensen, M. E., Burman, R. D., and Allen, R. G.: Evap-
otranspiration and irrigation water requirements, Ameri-
can Society of Civil Engineers 70, New York, 332 pp.,
https://doi.org/10.1061/9780784414057, 1990.

Jiménez-Rodríguez, C. D., Esquivel-Vargas, C., Coenders-Gerrits,
M., and Sasa-Marín, M.: Quantification of the Evaporation Rates
from Six Types of Wetland Cover in Palo Verde National Park,
Costa Rica, Water, 11, 674, https://doi.org/10.3390/w11040674,
2019.

Kalteh, A. M., Hjorth, P., and Berndtsson, R.: Review of the self-
organizing map (SOM) approach in water resources: analysis,
modelling and application, Environ. Model. Softw., 23, 835–845,
https://doi.org/10.1016/j.envsoft.2007.10.001, 2008.

Keskin, M. E. and Terzi, O.: Artificial neural network models
of daily pan evaporation, J. Irrig. Drain. Eng., 11, 65–70,
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65),
2006.

Khatibi, R., Ghorbani, M. A., Naghshara, S., Aydin, H., and
Karimi, V.: Introducing a framework for “inclusive multi-
ple modelling” with critical views on modelling practices-
Applications to modelling water levels of Caspian Sea
and Lakes Urmia and Van, J. Hydrol., 587, 124923,
https://doi.org/10.1016/j.jhydrol.2020.124923, 2020.

Kim, J. Y. and Nishihiro, J.: Responses of lake macro-
phyte species and functional traits to climate and
land use changes, Sci. Total Environ., 736, 139628,
https://doi.org/10.1016/j.scitotenv.2020.139628, 2020.

Kim, S., Shiri, J., Singh, V. P., Kisi, O., and Landeras, G.:
Predicting daily pan evaporation by soft computing models

Hydrol. Earth Syst. Sci., 26, 4741–4756, 2022 https://doi.org/10.5194/hess-26-4741-2022

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000597
https://doi.org/10.1139/b82-113
https://doi.org/10.1007/978-3-540-74695-9_39
https://doi.org/10.1016/j.ecolmodel.2009.06.017
https://doi.org/10.1002/joc.7021
https://doi.org/10.1017/S0043174500032112
https://doi.org/10.1007/978-94-017-1497-6
https://doi.org/10.1061/JRCEA4.0001076
https://doi.org/10.1016/j.jhydrol.2010.01.016
https://doi.org/10.5194/gmd-14-2097-2021
https://doi.org/10.3390/w13030256
https://doi.org/10.1016/j.oceaneng.2016.05.049
https://doi.org/10.1002/hyp.14335
https://doi.org/10.1016/10.3390/w9070527
https://doi.org/10.1016/j.jhydrol.2020.124714
https://doi.org/10.1007/s12145-020-00499-w
https://doi.org/10.1016/j.ecolind.2019.03.017
https://doi.org/10.1016/j.jhydrol.2020.125236
https://doi.org/10.3390/ijerph15030547
https://doi.org/10.1109/IJCNN.2000.861379
https://doi.org/10.1007/s007040050017
https://doi.org/10.1061/9780784414057
https://doi.org/10.3390/w11040674
https://doi.org/10.1016/j.envsoft.2007.10.001
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
https://doi.org/10.1016/j.jhydrol.2020.124923
https://doi.org/10.1016/j.scitotenv.2020.139628


B. Simon-Gáspár et al.: Pan evaporation 4755

with limited climatic data, Hydrolog. Sci. J., 60, 1120–1136,
https://doi.org/10.1080/02626667.2014.945937, 2015.

Kimmel, B. L. and Groeger, A. W.: Factors controlling primary pro-
duction in lakes and reservoirs: a perspective, Lake Reserv. Man-
age., 1, 277–281, https://doi.org/10.1080/07438148409354524,
1984.

Kisi, O., Genc, O., Dinc, S., and Zounemat-Kermani, M.:
Daily pan evaporation modeling using chi-squared auto-
matic interactiondetector, neural networks, classification and
regression tree, Comput. Electron. Agr., 122, 112–117,
https://doi.org/10.1016/j.compag.2016.01.026, 2016.

Kisi, O.: Pan evaporation modeling using least square sup-
port vector machine, multivariate adaptive regression
splines and M5 model tree, J. Hydrol., 528, 312–320,
https://doi.org/10.1016/j.jhydrol.2015.06.052, 2015.

Kiviluoto, K.: Topology preservation in self-organizing maps, Pro-
ceedings of International Conference on Neural Networks, 294–
299, https://doi.org/10.1109/ICNN.1996.548907, 1996.

Kohonen, T.: Self-organizing formation of topologi-
cally correct feature maps, Biol. Cybern., 43, 59–69,
https://doi.org/10.1007/BF00337288, 1982.

Kohonen, T.: The self-organizing map. Proceedings of the IEEE,
78, 1464–1480, https://doi.org/10.1109/5.58325, 1990.

Kohonen, T.: Self-Organizing Maps, 3rd edition, Berlin, Heildel-
berg: Springer-Verlag, p. 501, 2001.

Kohonen, T. and Somervuo, P.: How to make large self-organizing
maps for nonvectorial data. Neural Netw., 15, 945–952,
https://doi.org/10.1016/S0893-6080(02)00069-2, 2002.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
WorldMap of the Köppen-Geiger climate classification up-
dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W.,
and Pruitt, W. O.: Estimating evapotranspiration using ar-
tificial neural network, J. Irrig. Drai. Eng., 128, 224–233,
https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224),
2002.

Kumar, N., Rustum, R., Shankar, V., and Adeloye, A.
J.: Self-organizing map estimator for the crop wa-
ter stress index, Comput. Electron. Agr., 187, 106232,
https://doi.org/10.1016/j.compag.2021.106232, 2021a.

Kumar, N., Shankar, V., Rustum, R., and Adeloye, A. J.: Eval-
uating the Performance of Self-Organizing Maps to Estimate
Well-Watered Canopy Temperature for Calculating Crop Water
Stress Index in Indian Mustard (Brassica juncea), J. Irrig. Drain.
Eng., 147, 04020040, https://doi.org/10.1061/(ASCE)IR.1943-
4774.0001526, 2021b.

Lee, E. and Kim, S.: Characterization of soil moisture response
patterns and hillslope hydrological processes through a self-
organizing map, Hydrol. Earth Syst. Sci., 25, 5733–5748,
https://doi.org/10.5194/hess-25-5733-2021, 2021.

Lee, C.-M., Choi, H., Kim, Y., Kim, M, Kim, H., and
Hamm, S.-Y.: Characterizing land use effect on shal-
low groundwater contamination by using self-organizing
map and buffer zone, Sci. Total Environ., 800, 149632,
https://doi.org/10.1016/j.scitotenv.2021.149632, 2021.

Li, M. and Liu, K.: Probabilistic prediction of significant wave
height using dynamic bayesian network and information flow,
Water, 12, 2075, https://doi.org/10.3390/w12082075, 2020.

Li, Y., Wright, A., Liu, H., Wang, J., Wang, G., Wu, Y., and Dai, L.:
Land use pattern, irrigation, and fertilization effects of rice-wheat
rotation on water quality of ponds by using self-organizing map
in agricultural watersheds, Agr. Ecosyst. Environ., 272, 155–164,
https://doi.org/10.1016/j.agee.2018.11.021, 2019.

Lin, G. F., Lin, H. Y., and Wu, M. C.: Development
of a support-vector-machine-based model for daily pan
evaporation estimation. Hydrol. Process., 27, 3115–3127,
https://doi.org/10.1002/hyp.9428, 2013.

Madsen, T. V. and Cedergreen, N.: Sources of nutrients to rooted
submerged macrophytes growing in a nutrient-rich stream,
Freshwater Biol., 47, 283–291, https://doi.org/10.1046/j.1365-
2427.2002.00802.x, 2002.

Malik, A., Kumar, A., and Kisi, O.: Monthly pan-evaporation esti-
mation in Indian central Himalayas using different heuristic ap-
proaches and climate based models, Comput. Electron. Agr., 143,
302–313, https://doi.org/10.1016/j.compag.2017.11.008, 2017.

Malik, A., Rai, P., Heddam, S., Kisi, O., Sharafati, A., Salih, S.
Q., Al-Ansari, N., and Yaseen, Z. M.: Pan evaporation estima-
tion in Uttarakhand and Uttar Pradesh States, India: validity
of an integrative data intelligence model, Atmosphere, 11, 553,
https://doi.org/10.3390/atmos11060553, 2020a.

Malik, A., Kumar, A., Kim, S., Kashani, M. H., Karimi, V.,
Sharafati, A., Ghorbani, M. A., Al-Ansari, N., Salih, S.
Q., Yaseen, Z. M., and Chau, K.-W.: Modeling monthly
pan evaporation process over the Indian central Hi-
malayas: application of multiple learning artificial intel-
ligence model, Eng. Appl. Comp. Fluid., 14, 323–338,
https://doi.org/10.1080/19942060.2020.1715845, 2020b.

Mbangiwa, N. C., Savage, M. J., and Mabhaudhi, T.: Modelling
and measurement of water productivity and total evaporation
in a dryland soybean crop, Agric. For. Meteorol., 266, 65–72,
https://doi.org/10.1016/j.agrformet.2018.12.005, 2019.

McVicar ,T. R., Roderick, M. L., Donohue, R. J., Li, L.
T., van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D.,
Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger,
A. C., Rehman, S., and Dinpashohl, Y.: Global review and
synthesis of trends in observed terrestrial near-surface wind
speeds: implications for evaporation, J. Hydrol., 416, 182–205,
https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012.

Monteith, J. L. and Unsworth, M. H.: Principles of Environmen-
tal Physics, Third Ed. AP, Amsterdam, ISBN: 9780080924793,
2008.

Nada, T., Sahoo, B., and Chatterjee, C.: Enhancing the applicabil-
ity of Kohonen Self-Organizing Map (KSOM) estimator for gap-
filling in hydrometeorological timeseries data, J. Hydrol., 549,
133–147, https://doi.org/10.1016/j.jhydrol.2017.03.072, 2017.

Nakagawa, K., Amano, H., Kawamura, A., and Berndtsson,
R.: Classification of groundwater chemistry in Shimabara,
using self-organizing maps, Hydrol. Res., 48, 840–850,
https://doi.org/10.2166/nh.2016.072, 2017.

Nakagawa, K., Yu, Z.-Q., Berndtsson, R., and Hosono, R.: Tempo-
ral characteristics of groundwater chemistry affected by the 2016
Kumamoto earthquake using self-organizing maps, J. Hydrol.,
582, 124519, https://doi.org/10.1016/j.jhydrol.2019.124519,
2020.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – a discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

https://doi.org/10.5194/hess-26-4741-2022 Hydrol. Earth Syst. Sci., 26, 4741–4756, 2022

https://doi.org/10.1080/02626667.2014.945937
https://doi.org/10.1080/07438148409354524
https://doi.org/10.1016/j.compag.2016.01.026
https://doi.org/10.1016/j.jhydrol.2015.06.052
https://doi.org/10.1109/ICNN.1996.548907
https://doi.org/10.1007/BF00337288
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/S0893-6080(02)00069-2
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224)
https://doi.org/10.1016/j.compag.2021.106232
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001526
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001526
https://doi.org/10.5194/hess-25-5733-2021
https://doi.org/10.1016/j.scitotenv.2021.149632
https://doi.org/10.3390/w12082075
https://doi.org/10.1016/j.agee.2018.11.021
https://doi.org/10.1002/hyp.9428
https://doi.org/10.1046/j.1365-2427.2002.00802.x
https://doi.org/10.1046/j.1365-2427.2002.00802.x
https://doi.org/10.1016/j.compag.2017.11.008
https://doi.org/10.3390/atmos11060553
https://doi.org/10.1080/19942060.2020.1715845
https://doi.org/10.1016/j.agrformet.2018.12.005
https://doi.org/10.1016/j.jhydrol.2011.10.024
https://doi.org/10.1016/j.jhydrol.2017.03.072
https://doi.org/10.2166/nh.2016.072
https://doi.org/10.1016/j.jhydrol.2019.124519
https://doi.org/10.1016/0022-1694(70)90255-6


4756 B. Simon-Gáspár et al.: Pan evaporation

Park, Y. S., Lek, S., Scardi, M., Verdonschot, P., and Jorgensen,
S. E.: Patterning exergy of benthic macroinvertebrate commu-
nities using self-organizing maps, Ecol. Model., 195, 105–113,
https://doi.org/10.1016/j.ecolmodel.2005.11.027, 2006.

Patle, G. T., Chettri, M., and Jhajharia, D.: Monthly pan evap-
oration modelling using multiple linear regression and artifi-
cial neural network techniques, Water Supply, 20, 800–808,
https://doi.org/10.2166/ws.2019.189, 2020.

Pearce, A. R., Rizzo, D. M., and Mouser, P. J.: Subsurface char-
acterization of groundwater contaminated by landfill leachate
using microbial community profile data and a nonparamet-
ric decision-making process, Water Resour. Res., 47, W06511,
https://doi.org/10.1029/2010WR009992, 2011.

Peeters, L., Bação, F., Lobo, V., and Dassargues, A.: Exploratory
data analysis and clustering of multivariate spatial hydrogeo-
logical data by means of GEO3DSOM, a variant of Kohonen’s
Self-Organizing Map, Hydrol. Earth Syst. Sci., 11, 1309–1321,
https://doi.org/10.5194/hess-11-1309-2007, 2007.

Poikane, S., Birk, S., Böhmer, J., Carvalho, L., de Hoyos, C.,
Gassner, H., Hellsten, S., Kelly, M., Lyche Solheim, A., Olin,
M., Pall, K., Phillips, G., Portielje, P., Ritterbusch, B., Sandin,
L., Schartau, A. K., Solimini, A. G., van den Berg, M., Wolfram,
G., and van de Bund, W.: A hitchhiker’s guide to european lake
ecological assessment and intercalibration, Ecol. Indic., 52, 533–
544, https://doi.org/10.1016/j.ecolind.2015.01.005, 2015.

Rahimikhoob, A.: Estimating daily pan evaporation using artificial
neural network in a semi-arid environment, Theor. Appl. Cli-
matol., 98, 101–105, https://doi.org/10.1007/s00704-008-0096-
3, 2009.

Razi, M. A. and Athappilly, K.: A comparative predictive analysis
of neural networks (NNs), nonlinear regression and classification
and regression tree (CART) models, Expert Syst. Appl., 29, 65–
74, https://doi.org/10.1016/j.eswa.2005.01.006, 2005.
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