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Abstract. Despite the importance of a link between hydrom-
eteorological drought hazards and their socioeconomic im-
pact, the link at a subnational level has yet to be evaluated
due to the lack of precise subnational information on dis-
aster locations. Using the newly developed Geocoded Dis-
asters (GDIS) dataset, we examined whether the subnational
socioeconomic drought impact information in GDIS could be
represented by hydrometeorological hazards quantified from
soil moisture in ERA5-Land during 1964–2018. We found
that the socioeconomic drought impacts shown in GDIS were
generally represented by drought hazards quantified from
ERA5-Land soil moisture. Our comparison between GDIS
and ERA5-Land could benefit the quantification of vulnera-
bility to drought, and we found that sub-Saharan Africa and
South Asia were vulnerable to drought, while North Amer-
ica and Europe were less vulnerable to drought. Both GDIS
and ERA5-Land indicated that the Horn of Africa, northern
China, and western India were drought-prone areas. Since
it is difficult for national-level analyses to accurately iden-
tify the locations of drought-prone areas, especially in large
countries such as China and India, our analysis clarifies the
importance of the use of subnational disaster information.

1 Introduction

Drought is one of the costliest natural disasters, with cas-
cading impacts on multiple socioeconomic sectors (Mishra
and Singh, 2010). Wilhite and Glantz (1985) proposed a
conceptual model of drought propagation from natural hy-
drometeorological hazards defined by physical characteris-
tics (e.g. precipitation, soil moisture, or streamflow) to so-
cioeconomic drought impacts (e.g. crop yield loss, water

shortages, or health problems). The propagation from the
natural hydrometeorological hazards to the socioeconomic
impact can be affected by many regional vulnerability fac-
tors, such as infrastructure and economic, social, or cultural
assets (e.g. Fuchs et al., 2019; Lavell et al., 2012; UNDP,
2004; Wilhite and Glantz, 1985). To understand this drought
propagation, a subnational-level disaster analysis is neces-
sary, rather than aggregated national-level disaster analyses
(Rosvold and Buhaug, 2021a). How historical drought events
evolved from natural hydrometeorological hazards to socioe-
conomic drought impacts at a subnational level needs to be
analysed to improve regional drought mitigation measures.

Several studies have analysed the link between natural hy-
drometeorological hazards and socioeconomic drought im-
pacts to quantify the regional characteristics of historical
drought events. Disaster databases such as the Emergency
Events Database (EM-DAT; Guha-Sapir et al., 2022), the Eu-
ropean Drought Impact Report Inventory (EDII; Stahl et al.,
2016), and the U.S. Drought Impact Reporter (US DIR; Wil-
hite et al., 2007), as well as newspaper information (de Brito
et al., 2020), have been used as reference data for historical
socioeconomic impacts. Bachmair et al. (2016) used EDII to
estimate the thresholds of hydrometeorological drought in-
dices at which socioeconomic droughts occur in Germany
and UK at a subnational level. Noel et al. (2020) compared
the U.S. Drought Monitor (USDM; Svoboda et al. 2002), a
weekly map depicting severity and spatial extent of drought,
with US DIR at the state level. Although EDII and US DIR
contain detailed disaster impact information at a subnational
level and are useful for quantifying the link between hydrom-
eteorological hazards and socioeconomic impacts, they do
not cover the entire globe. EM-DAT is a global database and
has been extensively used for the international comparison of
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disaster risks and vulnerability (e.g. Jägermeyr and Frieler,
2018; Shen and Hwang, 2019; Tschumi and Zscheischler,
2020). Although some studies used text-based disaster loca-
tions (i.e. names of affected provinces, districts, and towns)
in EM-DAT to perform the subnational-scale analyses, they
simply evaluated the applicability of a drought index for the
specific regional events (e.g. Bayissa et al., 2018; Lu et al.,
2019) and for global events in a short period of time (2010–
2015; Sánchez et al., 2018). The subnational impact informa-
tion of the disaster database has not been fully used to quan-
tify the link between hydrometeorological drought hazards
and socioeconomic impacts on a global scale. In addition,
regional vulnerability against drought events has not been
quantified by using such databases on a global scale.

Instead of the disaster databases, agricultural production
or remotely sensed vegetation dynamics have also been
used to assess the impact of drought on society. Udmale
et al. (2020) compared cereal production with drought in-
dices such as Standardized Precipitation Index (SPI; McKee
et al., 1993) and Standardized Precipitation Evaporation In-
dex (SPEI; Vicente-Serrano et al., 2010) in India. Kim et al.
(2019) examined the vulnerability of cereal production to
drought on a country scale using a global crop model. Chen
et al. (2020) quantified the impact of droughts on vegeta-
tion growth for different biome types and climate regimes
by comparing SPEI and a vegetation index. Although agri-
cultural production and vegetation dynamics are available
globally and easy to quantify, there are some problems with
using them as the reference data of socioeconomic drought
impacts. Agricultural production can be affected by factors
other than drought, and it can capture aggregated informa-
tion on large events (Bachmair et al., 2016). It is unclear
whether socioeconomic drought impacts are associated with
a decline in vegetation growth. It is ideal to base the socioe-
conomic drought impact on a disaster database since it di-
rectly shows events in which the society has actually suffered
from drought.

The link between natural hydrometeorological hazards and
socioeconomic drought impact at a subnational level has yet
to be globally evaluated. The major obstacle is a lack of ac-
curate information of socioeconomic drought impacts at sub-
national scales (Bachmair et al., 2016). Recently, a global
dataset of geocoded disaster locations, the Geocoded Dis-
asters (GDIS), has been developed (Rosvold and Buhaug,
2021a). Although EM-DAT contains information about the
location of disasters, the data are in the form of text-based
information, and some events have incomplete information
about their locations, which is not suitable for comprehensive
geospatial analyses. GDIS is the geocoded database based on
the EM-DAT location information, with some manual val-
idations, and provides geographic information system (GIS)
polygons of affected administrative units. GDIS can be a use-
ful tool to globally assess the link between natural hydrome-
teorological hazards and socioeconomic drought impact with
precise locations at a subnational level.

This study aims to examine the link between natural hy-
drometeorological hazards and the subnational socioeco-
nomic drought impact shown in GDIS. As a natural hy-
drometeorological hazard, we used drought indices gener-
ated from soil moisture simulated by land reanalysis, i.e.
ERA5-Land (Muñoz Sabater, 2019, 2021). First, we exam-
ined whether the GDIS drought events were generally repre-
sented by the drought indices quantified from ERA5-Land.
Then, we quantified the levels of drought indices associ-
ated with GDIS drought events in different geographical re-
gions which could benefit the quantification of vulnerability
to drought. Finally, we compared the global spatial distribu-
tion of drought-prone areas in GDIS with those quantified
from ERA5-Land.

2 Data

2.1 ERA5-Land

To calculate drought indices, ERA5-Land soil moisture data
were used. Wilhite and Glantz (1985) mentioned that soil
moisture plays an important role in the drought propagation
since it affects both agricultural and hydrological aspects of
drought (see also Sawada, 2018). Many drought monitoring
systems have also used soil moisture as one of the most im-
portant variables (e.g. USDM, Svoboda et al., 2002; the Ger-
man drought monitor, Zink et al., 2016; InterSucho in Czech
Republic and Slovakia, Trnka et al., 2020).

We used monthly averaged data from 1950 to 2020. The
original spatial resolution of 0.1◦ was upscaled to 0.25◦ to
reduce the data volume by using a remapping function of
the Climate Data Operator (CDO) software version 2.0.0
(Schulzweida, 2021). This spatial resolution is relatively
high compared to previous global-scale drought studies (e.g.
Hanel et al., 2018; Herrera-Estrada et al., 2017; Mocko et al.,
2021; Sawada, 2018).

We used the first (0–7 cm), second (7–28 cm), and third
(28–100 cm) layers of soil moisture in ERA5-Land to gener-
ate drought indices. Since previous works used soil moisture
from the top 1 m to 1–2 m soil depths as root zone soil mois-
ture (e.g. Almendra-Martín et al., 2021; Hanel et al., 2018;
Herrera-Estrada et al., 2017; Mocko et al., 2021), we also
used the top 1 m (0–100 cm) soil moisture data. For the top
1 m soil moisture, we calculated the weighting average of
soil moisture in the first, second, and third layers according
to their thicknesses.

2.2 GDIS

GDIS (Rosvold and Buhaug, 2021b) can be downloaded
from https://doi.org/10.7927/zz3b-8y61. GDIS is generated
based on EM-DAT. A natural disaster is recorded into EM-
DAT if at least one of the following criteria is fulfilled:
10 or more people are dead, 100 or more people are affected,

Hydrol. Earth Syst. Sci., 26, 4707–4720, 2022 https://doi.org/10.5194/hess-26-4707-2022

https://doi.org/10.7927/zz3b-8y61


Y. Kageyama and Y. Sawada: Assessment of drought impact based on GDIS and land reanalysis 4709

and there is a declaration of a state of emergency and a call
for international assistance (Guha-Sapir et al., 2022).

In total, 282 drought events from 1964 to 2018 were anal-
ysed. Each drought event is distinguished based on the EM-
DAT database’s event identifier (disasterno). In EM-DAT,
disaster events are uniquely distinguished by the combination
of an eight-digit disaster code and a three-digit country code.
In contrast, GDIS uses only the eight-digit disaster code,
which it has in common with EM-DAT, and assigns the same
identifier to a disaster event even if it spreads over multiple
countries. In the case of extensive drought events, such as
ones induced by El Niño–Southern Oscillation (ENSO), it is
not reasonable to treat distant countries with the same event
identifier. In this study, the event classification of the original
EM-DAT was adopted so that events with the same disaster
code that spread over multiple countries in GDIS were anal-
ysed as a separate event for each country. Originally there
were 433 drought events in GDIS, and 282 events that met
the following criteria were used in this study: (1) the drought
period is longer than or equal to 2 months, and (2) the GDIS
event area is larger than or equal to 50 grid cells in the up-
scaled ERA5-Land. We did not analyse flash droughts which
occurred in periods shorter than 2 months. The effective reso-
lution of the phenomena that can be represented by a numer-
ical simulation model is several times larger than the origi-
nal size of computational grids (Skamarock, 2004), so that
events with a small extent relative to the grid spacing were
neglected in this study. GDIS itself does not have drought
period information, namely when the event starts and ends.
The drought period information was added to GDIS via EM-
DAT database’s event identifiers. EM-DAT shows only the
event year and provides no information on the start and/or
end month for some drought events. In such cases, we ap-
plied January as the start and December as the end of the
event. GDIS provides affected spatial geometry in the form
of GIS polygons of administrative units. Administrative units
with the same event identifier (disasterno) were treated as one
GDIS event area (see Fig. 2 for an example). Sánchez et al.
(2018) treated one drought event per one administrative unit.
However, this event classification depends on the fineness
of the division of administrative units (e.g. Thailand, where
administrative units are very finely divided, has more than
50 events during 2010–2015 in Sánchez et al., 2018), which
affects the results of drought detection skill. Therefore, we
treated administrative units with the same event identifier as
one drought event, following the EM-DAT classification.

2.3 Other supporting data

To show the levels of drought indices associated with GDIS
drought events by geographical regions, we used the classifi-
cation of the World Bank geographical regions.

As a proxy of exposure data, we used the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) Land Cover Cli-
mate Modeling Grid (CMG; MCD12C1) version 6 data prod-

uct (Friedl and Sulla-Menashe, 2015). This land cover prod-
uct has 17 classes. The temporal resolution is yearly, and
we used the latest, 2020, data. The original spatial resolu-
tion is 0.05◦, and we resampled it to 0.25◦ with the nearest-
neighbour approach.

3 Methodology

3.1 Drought indices

We used two drought indices, the Drought Area Percentage
(DAP) and the Standardized Deficit Index (SDI), to evalu-
ate the severity of the hydrometeorological drought hazard
in ERA5-Land. For the soil moisture data in each grid cell,
percentiles were first calculated for each calendar month sep-
arately during 1950–2020. After the percentiles were calcu-
lated, only data during the period with the GDIS drought
events (1964–2018) were used in all subsequent steps of
this study. We used the longer period of original ERA5-
Land data (1950–2020) to calculate percentiles than the study
period (1964–2018) to yield more robust percentile values.
The 20th percentile was taken as a threshold for defining a
drought at each grid cell (Sheffield and Wood, 2011; Hanel
et al., 2018). DAP is the maximum percentage of the area
where soil moisture is below the 20th percentile threshold
within the GDIS event area during the GDIS drought period.
The higher percentage, the more severe the hydrometeoro-
logical hazard. DAP has been used as a drought index in
many studies (e.g. Sánchez et al. 2018; Udmale et al. 2020).

DAP is a snapshot of the long-lasting drought phe-
nomenon and does not include the cumulative effects of the
long-lasting drought. The other limitation of DAP is that it
could be affected by the size of the GDIS event area be-
cause DAP tends to be small in large-event areas. In addition
to DAP, we developed a new drought indicator, called SDI,
which accounts for the cumulative effects of drought and is
less influenced by the size of the GDIS event area. First, a
deficit volume, a cumulative deviation below the 20th per-
centile threshold, was calculated for each grid cell. Then, we
summed up the maximum annual deficit volume per grid cell
in each GDIS event area, which is defined as the annual max-
imum deficit volume in the GDIS event area. The cumulative
effect of the movement of drought areas can be considered by
calculating the annual maximum value for each grid before
averaging the values within the GDIS event area. Finally, the
annual maximum deficit volume in the GDIS event area was
standardized, dividing each year’s annual maximum deficit
volume by the mean of the annual maximum deficit volume
over the period (1964–2018). The higher the SDI, the more
severe the hydrometeorological hazard, and the value of 1
is the standard annual maximum drought event. The stan-
dardization makes it possible to compare the different events
across space and time, even if the size of the GDIS event
area is quite different. Hanel et al. (2018) calculated SDI for
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each grid cell. We extended this methodology to evaluate the
drought index representative in the GDIS event area.

3.2 Evaluation of the drought indices by GDIS

To evaluate whether the GDIS drought events are generally
represented by the drought indices quantified from ERA5-
Land, we tested whether the drought indices during the GDIS
drought period were distinguishable from those during the
whole period (1964–2018). We applied a bootstrap random
resampling method to show the distributions of drought in-
dices for the whole period. For DAP, we set a 12-month
moving window, which is approximately the mean of the
drought duration in GDIS, and extracted the maximum per-
centage in each window for each GDIS event. From these
assemblies, we extracted DAP randomly with 1000 replica-
tions. For SDI, we extracted SDI randomly with 1000 repli-
cations from the whole study period. We used a two-sample
Kolmogorov–Smirnov (K–S) test (Massey, 1951) to quan-
tify the difference of the distributions of drought indices dur-
ing the GDIS drought period and the whole period. If the
p value of K–S test is smaller than 0.01, then the hypothe-
sis that two distributions follow the same distribution is re-
jected at 1 % significance level. Due to the difference in the
sample size (i.e. the drought period is 282, and the whole
period by a bootstrap random resampling method is 1000),
the distributions were normalized, namely that the densi-
ties sum to 1, prior to the comparison. We recognized that
the GDIS drought events are generally represented by the
drought indices quantified from ERA5-Land if the median of
the drought index during the GDIS drought periods is higher
than that of the whole period and the two distributions of the
drought index are not statistically the same.

3.3 Regional levels of drought indices associated with
GDIS drought events

The levels of hydrometeorological drought indices associ-
ated with drought events shown in GDIS are different in dif-
ferent regions. Vulnerability could explain these differences
(Delbiso et al. 2017; Gasparrini et al. 2015; Tschumi and
Zscheischler, 2020). Note that vulnerability is not the only
explanation for these differences; exposure is another factor
that influences the link between hazards and impact (Visser
et al., 2014; see also Sect. 5). Since we did not directly
include exposure, we recognized these differences as the
proxy of vulnerability. Following Bachmair et al. (2016) and
Tschumi and Zscheischler (2020), the levels of SDI which
are associated with drought events in GDIS were quantified
and analysed. The levels of SDI were stratified by geograph-
ical regions in order to understand the distribution of the
proxy of vulnerability in each region.

3.4 Global drought frequency analysis by drought
clustering

We analysed whether drought-prone areas identified by
drought indices are globally consistent with those found in
GDIS. We applied the drought clustering method (Andreadis
et al., 2005) to search for the spatially contiguous areas (or
clusters) under drought at each time step. In this drought
clustering, we assume that drought occurs over a reason-
ably large spatial area driven by a large-scale climate process
(Sheffield and Wood, 2011). We used the processing code
developed by Herrera-Estrada and Diffenbaugh (2020).

After the percentiles are calculated in each grid cell, a 2D
median filter is applied to each sample of monthly global
data to smooth out small-scale noise. Contiguous areas un-
der drought (soil moisture below the 20th percentile in this
study) are aggregated into clusters at each time step. Follow-
ing Herrera-Estrada and Diffenbaugh (2020), we analysed
clusters that reach a maximum area of at least 100 000 km2

(approximately 120 grid cells in the upscaled ERA5-Land)
to focus on large-scale droughts. For a sensitivity analysis
of this size of drought clusters, see Sect. S1 and Fig. S1
in the Supplement. The location of the cluster centroid is
detected at each time step using the weighting average of
the cluster’s location with the intensity values of the cluster
grid cells. Droughts whose centroids fell within the barren or
sparsely vegetated areas, based on MODIS land cover, were
masked out of the cluster analysis due to the little or no ex-
posure (i.e. population and assets; e.g. Carrão et al., 2016;
Herrera-Estrada et al., 2017). We confirmed that there were
no drought events in GDIS which were fully included within
the barren or sparsely vegetated areas. Figure 1 demonstrates
this drought clustering. The cluster centroid shows the area
that experiences higher drought displacement, and we made
an upscaled map of cluster centroids from the original spa-
tial resolution of 0.25 to 2.5◦. For a sensitivity analysis of
this upscaled resolution, see Sect. S2 and Fig. S2 and also
see Andreadis et al. (2005) for details about the clustering
method.

We visualized the socioeconomic drought-prone areas by
overlaying all the polygons of the GDIS. We compared
the regional drought frequencies in GDIS with the number
of drought cluster centroids by ERA5-Land. We examined
whether hydrometeorological drought-prone areas are con-
sistent with those found in GDIS.

4 Results

4.1 The performance of drought indices for detecting
the drought

Figure 2 demonstrates DAP and SDI for the drought events
in Ethiopia and Argentina in 2009. For both drought indices,
higher values indicate a more severe drought. Figure 2a and e
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Figure 1. Demonstration of drought clustering. (a) Global map of soil moisture percentile for the root zone layer’s soil moisture in January
1964. (b) Drought clusters, spatially contiguous areas under drought (below the 20th percentile), are extracted from panel (a). A 2D median
filter is applied prior to drought clustering, which causes slight differences when compared with (a).

show that DAPs in the first and second soil layers respond
to the rainfall deficit more quickly than the deep soil layers.
During the GDIS drought period, all layers show high DAPs,
and the third layer has been experiencing a high DAP for a
long time. DAPs in the first and second layer are sometimes
high outside of the GDIS drought period. The root zone (0–
100 cm) layer generally follows the third layer’s fluctuations,
though the root zone is positioned between the second and
third layers during the GDIS drought period in the Ethiopia
case. Figure 2c and g show that SDIs fluctuate less when
compared with DAPs. This is because the SDI considers the
cumulative effect. During the GDIS drought period, all lay-
ers show high SDIs, and the differences between the GDIS
drought period and the non-drought period stand out more
prominently compared with DAP. The third layer shows the
highest SDI during the GDIS drought period, especially in
Argentina case, reflecting the consistently high DAP during
the GDIS drought period. The root zone (0–100 cm) layer
generally follows the third layer’s fluctuations.

Figures 3 and 4 reveal that ERA5-Land-based drought
indices can distinguish the GDIS drought period from the
whole period. The value above the violin plot shows the dif-
ference of the median values in the GDIS drought period and
the whole period. In Fig. 3, DAP during the GDIS drought
periods is significantly higher (p < 0.01) than that of the
whole period in all soil layers. Note that the samples in the
whole period shown in Fig. 3 include those during the GDIS
drought period. In addition, severe drought events unreported
in GDIS may also be included. The difference in the median
values of DAP in the GDIS drought period and the whole pe-
riod is largest in the third layer (28–100 cm) case. In Fig. 4,
SDI during the GDIS drought period is significantly higher
than that of the whole period in all soil layers, as we also
found in DAP. Although the second, third, and root zone
soil layers show the similar distributions, the difference of
the median values of SDI in the GDIS drought period and
the whole period is largest in the root zone (0–100 cm) case.
Both of the drought indices based on ERA5-Land can gen-

erally represent the GDIS drought events. Note that although
we confirmed a general link between drought hazards and
the GDIS drought events, some GDIS events could not be
explained by our indices based on the anomaly of soil mois-
ture. We will use SDI for the regional comparison shown be-
low because SDI is a standardized indicator which allows
the comparison between the different events across space and
time, even if the size of the GDIS event area is substantially
different.

4.2 Regional levels of drought indices associated with
GDIS drought events

Figure 5 shows the distribution of the root zone layer’s soil-
moisture-based SDI stratified by geographical regions. The
colour of the figure shows the average soil moisture over
the study period. Sub-Saharan Africa and South Asia have
many small SDI events associated with the GDIS-identified
drought, while North America and Europe have a large num-
ber of large SDI events. Having many small SDI events in-
dicates that less severe hydrometeorological droughts have
caused serious socioeconomic impacts, meaning that the re-
gions are vulnerable to drought. On the other hand, the re-
gions with many large SDI events can be recognized as re-
gions less vulnerable to drought. Thus, sub-Saharan Africa
and South Asia are vulnerable to drought, while North Amer-
ica and Europe are less vulnerable to drought. Sub-Saharan
Africa, which is vulnerable to drought, shows lower water
availability. This regional characteristic of the proxy of vul-
nerability to drought can be found when SDI is generated by
soil moisture in different soil layers (not shown). Note that
the Middle East and North Africa were excluded from the
analysis because the sample size was too small (n= 4).
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Figure 2. Demonstration of drought indices in different soil layers for the drought events in Ethiopia in 2009 (a–d) and Argentina in 2009 (e–
h). (a, e) DAP, where the red band shows the GDIS drought period and each coloured line shows the values in each soil layer (first – blue,
second – green, third – orange, and root zone – black). (b, f) The enlarged view of DAP around the GDIS drought period. (c, g) SDI, where
the legends are the same as DAP (a, e), and the grey dotted line shows the value of 1 (the mean of SDI over the study period). (d, h) The
GDIS drought area of this event, where the black line shows the country border, and the light blue line shows the affected administrative units
shown in GDIS. GDIS provides GIS polygons of the administrative units, and administrative units with the same event identifier (disasterno)
were treated as one GDIS event area, i.e. the assembly of each light blue administrative unit. The soil moisture percentile is generated from
the root zone layer’s soil moisture, as an example.

4.3 Global drought frequency analysis by drought
clustering

Figure 6 shows the number of drought events at a subnational
level during 1964–2018 based on GDIS. It shows that the
Horn of Africa, Mozambique, northern China, and western
India are socioeconomic drought-prone areas. Each region
is magnified in Fig. 6b to e. Figure 7 shows the number of
drought events on the aggregated national level during the
same period based on EM-DAT. Although we can see that
the number of drought events is high in China, there is little

information about the regional differences in drought-prone
areas.

This distribution of drought-prone areas in GDIS can be
reproduced by ERA5-Land. Figure 8 shows the number of
the drought cluster centroids upscaled to 2.5◦, based on
drought clusters from ERA5-Land third layer’s soil moisture.
Drought-prone areas quantified from ERA5-Land soil mois-
ture (Fig. 8) are consistent with those listed in GDIS (Fig. 6).
The Horn of Africa, northern China, and western India can
also be recognized as drought-prone areas by ERA5-Land-
based drought clusters. Mozambique cannot be identified as
a drought-prone area in ERA5-Land. Note that the number
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Figure 3. Comparison of DAP between the GDIS drought period
and the whole period. The red line shows the median value, and
grey dotted lines show the 25th and 75th percentile values of each
distribution. The value above the violin plot shows the difference in
the median values in the GDIS drought period and the whole period.

Figure 4. Comparison of SDI between the GDIS drought period
and the whole period. The red line shows the median value, and
grey dotted lines show the 25th and 75th percentile values of each
distribution. The value above the violin plot shows the difference in
the median values in the GDIS drought period and the whole period.

of the drought cluster centroids (Fig. 8) would be larger than
the number of drought events in GDIS (Fig. 6). The number
of drought events in GDIS is counted as one event even if a
GDIS event lasts several months. On the other hand, the num-
ber of drought cluster centroids is counted in every monthly
time step. Several clusters may be contained simultaneously
in a large GDIS drought area. ERA5-Land identifies some
drought-prone areas which are not included in GDIS, such as
Namibia, Indonesia, and Spain. Also see the Supplement for
a sensitivity analysis with the different thresholds of the size
of drought clusters (Fig. S1) which show that drought-prone
areas found in GDIS cannot be reproduced by ERA5-based
drought-prone areas when we use drought clusters that have
too small or large thresholds. The locations of drought-prone

Figure 5. Comparison of the root zone SDI by geographical regions.
The red line shows the median value, and grey dotted lines show
the 25th and 75th percentile values of each distribution. The colour
shows the average soil moisture over the study period (1964–2018).

areas are almost the same when drought clusters are gener-
ated by soil moisture in different soil layers (Fig. S3). The
drought-prone areas are most distinguishable from their sur-
roundings in the third layer case.

5 Discussion

In previous studies, the verification of subnational drought
events by hydrometeorological data has been insufficient.
There are some works only on the specific regions (e.g.
Bayissa et al., 2018; Lu et al., 2019) or for a short period of
time (Sánchez et al., 2018) due to the lack of precise subna-
tional information on disaster locations. Using the latest sub-
national disaster database, GDIS, this study was able to cover
a large number of drought events compared to previous stud-
ies. In Sánchez et al. (2018), the criterion for the detection
of drought events was that more than one-third of the area
was under drought. However, the size of the drought event
area could affect the criterion, and the threshold of one-third
is rather subjective. By defining the standardized drought in-
dex, this study uniformly and objectively showed the repre-
sentation of subnational drought information by ERA5-Land
soil moisture, even if the size of the event differs.

The comparison of SDI associated with GDIS drought
events across regions benefits the quantification of vulner-
ability to drought in each region. We confirmed that sub-
Saharan Africa and South Asia were vulnerable to drought,
while North America and Europe were less vulnerable to
drought. Tschumi and Zscheischler (2020) also showed
smaller climate anomalies in less developed countries as-
sociated with EM-DAT disasters, meaning that less devel-
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Figure 6. The number of drought events based on GDIS. (a) Global map, with a magnified view of (b) the Horn of Africa, (c) Mozambique,
(d) China, and (e) India.

Figure 7. The number of drought events based on EM-DAT.

oped countries were vulnerable to natural hazards, as shown
in Fig. 5. Previous studies have shown that a higher gross
domestic product (GDP) per capita is associated with a
lower vulnerability to natural hazards (e.g. Kim et al., 2019;
Tanoue et al., 2016). North America and Europe are high-
income countries, and these previous works support our
findings. There are global vulnerability indices such as the
WorldRiskIndex (Welle and Birkmann, 2015), INFORM in-
dex (Marin-Ferrer et al., 2017), and ND-GAIN (Chen et al.
2015), which combine socioeconomic factors such as eco-
nomic level, infrastructure level, and education level. These
indices have also indicated that sub-Saharan Africa and
South Asia are vulnerable, while North America, Europe,
Australia, and Japan are less vulnerable to natural hazards
(Birkmann et al., 2021, 2022; Garschagen et al., 2021).
The reason why the low-income countries are vulnerable
to drought could be the lack of drought mitigation mea-
sures (dams, irrigation systems, early warning systems, etc.),
as pointed out in previous studies (e.g. Lavell et al., 2012;
Stringer et al., 2020; UNEP, 2018). As shown in Fig. 5,
sub-Saharan Africa, which is vulnerable to drought, showed
lower water availability. It may be another reason for the

difficulty in managing the drought hazards in sub-Saharan
Africa.

GDIS, a subnational-level disaster locations dataset, has
enabled us to understand drought-prone areas on a finer scale
than the previous global-scale analyses. EM-DAT is gener-
ally a national-level database with limited subnational disas-
ter information. Shen and Hwang (2019) compared the fre-
quency of disaster occurrence in EM-DAT at the national
level and pointed out that frequent areas of disasters were
large or populated countries. GDIS provides more detailed
information about drought-prone areas, especially in large
countries such as China and India. We successfully clari-
fied that there was considerable heterogeneity in the drought-
prone areas within the country.

There were some inconsistencies between hydrometeoro-
logical drought-prone areas in ERA5-Land and socioeco-
nomic drought-prone areas in GDIS. Mozambique is a so-
cioeconomic drought-prone area in GDIS, which cannot be
identified as a drought-prone area in ERA5-Land. Mada-
gascar, which is geographically closer to Mozambique, is
a drought-prone area in ERA5-Land. The performance of
ERA5-Land in simulating soil moisture might affect these
inconsistencies. In contrast, there were some hydrometeo-
rological drought-prone areas in ERA5-Land which were
not included in the socioeconomic drought-prone areas in
GDIS (e.g. Spain, Namibia, and Indonesia). Spain, a Eu-
ropean country, is less vulnerable to drought, as shown in
Fig. 5 (two events were observed in Spain, and their aver-
age SDI was 4.3). In Namibia, a lack of exposure makes
socioeconomic droughts less likely to occur. When assess-
ing the socioeconomic impact, the presence of the exposure
should also be considered (Visser et al., 2014). Namibia has
an extremely low population density throughout the coun-
try (less than 1 person per km2 in 2020; Gridded Population
of the World (GPW) version 4.11; Doxsey-Whitfield et al.,
2015). Similarly, the region in the west of Australia and cen-
tral and eastern Russia do not have socioeconomic droughts

Hydrol. Earth Syst. Sci., 26, 4707–4720, 2022 https://doi.org/10.5194/hess-26-4707-2022



Y. Kageyama and Y. Sawada: Assessment of drought impact based on GDIS and land reanalysis 4715

Figure 8. The number of drought cluster centroids based on ERA5-Land. (a) Global map, with a magnified view of (b) the Horn of Africa,
(c) Mozambique, (d) China, and (e) India.

in GDIS due to their low population density. In Indonesia,
the absolute amount of rainfall is so high that the relatively
low soil moisture may not cause socioeconomic drought.
Kim et al. (2019) reported that there was no clear correla-
tion between drought severity and yields reduction in areas
where the average annual precipitation is more than 900 mm.
Indonesia is one of the rainiest regions on the globe, with
more than 2700 mm annual precipitation (FAO, 2022). De-
spite these individual circumstances, our results showed that
socioeconomic drought-prone areas in GDIS were generally
consistent with hydrometeorological drought-prone areas in
ERA5-Land (the Horn of Africa, northern China, and west-
ern India), indicating that the reanalysis product can be uti-
lized to show the potential of socioeconomic drought impact.

The consistency between hydrometeorological drought-
prone areas in ERA5-Land and socioeconomic drought-
prone areas in GDIS shows that spatially large hydrom-
eteorological droughts (we analysed at least 100 000 km2)
typically lead to impacts as shown in GDIS. Although the
drought frequency defined by simulated soil moisture is the
same everywhere at the grid level (we set the 20th per-
centile as a drought threshold), there was considerable het-
erogeneity in the spatially large drought-prone areas (Fig. 8).
There are some factors that contribute to the emergence of
drought-prone areas, such as the El Niño Southern Oscil-
lation (ENSO), La Niña, Intertropical Convergence Zone
(ITCZ), monsoon, land–atmosphere coupling, and anticy-
clones (Christian et al., 2021). La Niña affects the Horn of
Africa, northern China, and western India and has caused se-
vere drought impacts (Funk, 2011; Jain et al., 2021). Um-
menhofer et al. (2011) clarified the effect of the El Niño–
Indian monsoon relationship on drought in western India.
Spatiotemporally large events such as La Niña might cause a
drought to persist, which leads to drought impacts as shown
in GDIS. However, the drought factors are complex, and
much future work is needed to reveal the mechanism of the
emergence of drought-prone areas.

Although various reanalysis products have been devel-
oped, and their validations have been conducted by compar-
ing them with Earth observation data (e.g. Muñoz-Sabater
et al., 2021; Reichle et al., 2017; Rodell et al., 2004), few
studies have examined the validation in terms of the disaster
occurrence. Sawada (2018) compared the areas identified as
drought from a reanalysis product with the disaster records
from EM-DAT but only at a country-scale. As seen in Fig. 7,
national-level information does not provide accurate views
of disaster locations, so that it is insufficient for validation
data. The use of subnational disaster databases such as GDIS
opens the door to validate reanalysis products in terms of the
disaster occurrence.

Although there are many variables for quantifying hy-
drometeorological droughts, we showed that soil moisture
could represent the GDIS drought events in time and space.
In the comparison of the soil layers, deep layers (i.e. the third
layer, 28–100 cm, and root zone layer, 0–100 cm) were af-
fected for a longer period, which made SDI tend to be higher
than that of the first (0–7 cm) and second (7–28 cm) layers
during drought. In drought clustering, the drought-prone ar-
eas were most distinguishable from their surroundings in the
third-layer case. Sawada and Koike (2016) used land reanaly-
sis products to confirm that drought propagates from surface
to root zone (5–100 cm) soil moisture and then to vegetation
and showed that root zone soil moisture and vegetation were
good indices to represent the prolonged drought impact in
the case of the Horn of Africa drought (2010–2011). In this
study, we confirmed that many of the serious drought events
such as those listed in GDIS were the events that were asso-
ciated with the soil moisture deficit not only at the surface
layer but also down to the root. Many drought studies have
used root zone soil moisture, and our study has reinforced
its validity. Hao and Singh (2015) suggested that a single
drought index is insufficient to capture different impact types
of droughts (water shortage, famine, wildfire, etc.). Several
studies have tried to develop a new combined drought index
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based on several hydrometeorological variables (e.g. precip-
itation and soil moisture) to express socioeconomic drought
impact by using random forest models (e.g. Bachmair et al.,
2016; Hobeichi et al., 2022). We used the percentile soil
moisture, the deviation from the normal condition, to quan-
tify drought following many previous studies (e.g. Sheffield
and Wood, 2011; Hanel et al., 2018). However, the inconsis-
tency for Indonesia between hydrometeorological drought-
prone areas and drought-prone areas found in GDIS implies
that the drought in extremely wet regions might not be well
represented. It means that our drought quantification method
based on relative values of soil moisture cannot accurately
consider the amount of regularly available water resources.
An alternative way to quantify drought is to use an absolute
soil moisture value, but it is not straightforward to quantify
drought events by absolute soil moisture values. The thresh-
olds of drought impact occurrences in absolute values are dif-
ferent in different regions because ecosystems/societies have
adapted to the water availability in their region. This means
that a unified drought analysis across multiple regions is dif-
ficult to develop based on absolute values of soil moisture.
The other limitation is the biases of absolute values of soil
moisture in reanalysis products. Many climate studies have
used relative values rather than absolute values because bi-
ases in climate models are less important in relative values
(Liu and Key, 2016). Further studies are needed for the vari-
able selection and drought indices according to the type of
drought, which will lead to more accurate representation of
socioeconomic drought impact by hydrometeorological vari-
ables.

The relationship between hazards and impact is much
more complex than addressed in this study. Many stud-
ies have revealed the nonlinear relationships between the
drought severity and the reduction in vegetation growth (e.g.
Chen et al. 2020; Meyer et al., 2014), where damage in-
creases suddenly when the drought severity exceeds a cer-
tain critical threshold. On the other hand, de Brito et al.
(2020) reported that there was a linear relationship between
the drought severity and the number of drought articles
as a proxy of socioeconomic drought impacts. In addition,
drought is a long-lasting disaster, and there is a time lag be-
tween hazards and impact, so that the period of hydrome-
teorological drought is not necessarily consistent with the
period considered as a disaster in EM-DAT. Some studies
have revealed that the impacts of drought last even after the
hydrometeorological drought ends (e.g. Shahbazbegian and
Bagheri, 2010). Yokomatsu et al. (2020) analysed the impact
of the drought in terms of the economic development after
the drought. In any case, further analyses are needed to focus
on the chronological correspondence to drought hazards.

The limitation of the quantification of the proxy of vulner-
ability in this study is that we only captured the static con-
ditions over time. We do not reveal which factors (e.g. in-
frastructure, economic, social, or cultural assets) contribute
to the vulnerability. Vulnerability to disasters is complex and

dynamic. For example, people’s water demand could dynam-
ically change after experiencing drought events (Gonzales
and Ajami, 2017). Improved irrigation scheduling (Cao et al.,
2019) and dam operation (Wu et al., 2018) based on fore-
casts could reduce the drought damage. Exposure is another
important factor that influences the link between hazards and
impact (Visser et al., 2014). The inconsistency between hy-
drometeorological drought-prone areas in ERA5-Land and
drought-prone areas found in GDIS in Namibia implies that
the quantification of exposure is necessary to strengthen the
analysis in our study. It is necessary to identify what has
been damaged (people, crops, forests, etc.) to quantify ex-
posure. However, EM-DAT provides no information about
impact types (water shortage, famine, wildfire, etc.) in many
drought events, which inhibits the identification of what has
been damaged. Like vulnerability, exposure is complex and
dynamic. For example, the level of exposure is affected by
changes in crop growing with the seasons (Bodner et al.,
2015). To improve our analysis on vulnerability shown in
Sect. 4.2, detailed analyses on the complex and dynamic na-
ture of both vulnerability and exposure are necessary.

The major limitation of this study is the incompleteness of
the drought impact data. Although GDIS enables subnational
drought analysis, GDIS only covers about 60 % of droughts
in EM-DAT due to vague or unknown location names in
EM-DAT (Rosvold and Buhaug, 2021a). Note that even EM-
DAT does not cover all disasters. Moreover, EM-DAT and
GDIS have insufficient quantitative impact information. EM-
DAT provides no information about the amount of damage
in multiple drought events. There is a lot of uncertainty in
the amount of damage because it is difficult to quantify in-
direct damages of drought (e.g. Yokomatsu et al., 2020).
Although we excluded GDIS drought events shorter than 2
months from our analysis, some of the analysed events might
be shorter than 2 months. This is because we applied January
as the start and December as the end of the event if the start
and/or end months of events shown in EM-DAT were un-
clear. Although GDIS is a pioneering work to achieve the de-
tailed analysis of the relationship between hydrometeorolog-
ical drought hazards and socioeconomic impact of drought
in a global scale, which we performed in this paper, there
is much room for the improvement of the global disaster
database, such as including detailed and quantifiable dam-
age information by following the approaches of EDII and
US DIR.

6 Conclusions

We evaluated how the subnational socioeconomic drought
impact information shown in GDIS could be reproduced by
the natural hydrological drought indices generated by the
reanalysis product, ERA5-Land. We confirmed that the re-
analysis product represented the socioeconomic drought im-
pacts in GDIS at a statistically significant level. Our com-
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parison between GDIS and ERA5-Land could benefit the
quantification of vulnerability to drought, and we showed
that sub-Saharan Africa and South Asia were vulnerable to
drought, while North America and Europe were less vul-
nerable to drought. We analysed the global spatial distri-
bution of drought frequency, and we found that socioeco-
nomic drought-prone areas in GDIS were generally con-
sistent with hydrometeorological drought-prone areas ex-
pressed by ERA5-Land-based soil moisture deficit (the Horn
of Africa, northern China, and western India). The use of
subnational disaster information, such as GDIS, makes it
possible to identify socioeconomic drought-prone areas on
a finer scale and can contribute to the validation of reanalysis
products.

Code and data availability. The drought clustering Python code
can be downloaded at https://github.com/julherest/drought_clusters
(Herrera-Estrada, 2020). The ERA5-Land dataset can
be downloaded at https://doi.org/10.24381/cds.68d2bb30
(Muñoz Sabater, 2019, 2021). The GDIS dataset can be
downloaded at https://doi.org/10.7927/zz3b-8y61 (Rosvold
and Buhaug, 2021b). The EM-DAT database can be viewed
at https://www.emdat.be/ (Guha-Sapir et al., 2022). The
World Bank’s geographical regions can be viewed at
https://datatopics.worldbank.org/world-development-indicators/
the-world-by-income-and-region.html (World Bank, 2022).
The MODIS land cover data can be downloaded at
https://doi.org/10.5067/MODIS/MCD12C1.006 (Friedl and
Sulla-Menashe, 2015). The gridded population of the world
can be downloaded at https://doi.org/10.7927/H49C6VHW
(CIESIN, 2018). The global map of FAO’s annual aver-
age precipitation can be viewed at the World Bank website
https://data.worldbank.org/indicator/ag.lnd.prcp.mm?msclkid=
215b9959b08711ec944832810373c8aa&view=map (FAO, 2022).
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P., Balek, J., Bartošová, L., Zahradníček, P., Bláhová, M.,
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