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Abstract. Altitudinal precipitation gradient plays an impor-
tant role in the interpolation of precipitation in the Third Pole
(TP) region, where the topography is very complex but in
situ data are very sparse. This study proves that the altitude
dependence of precipitation in the TP can be reasonably re-
produced by a high-resolution atmospheric simulation-based
dataset called ERA5_CNN. The precipitation gradients, in-
cluding both absolute (APGs) and relative gradients (RPGs),
for 388 sub-basins of the TP above 2500 m a.s.l. are cal-
culated based on the ERA5_CNN. Results show that most
sub-basins have positive precipitation gradients, and nega-
tive gradients are mainly found along the Himalayas, the
Hengduan Mountains and the western Kunlun. The annual
APG and RPG averaged across all sub-basins of the TP
are 0.05 mm d−1

× 100 m−1 and 4.25 %× 100 m−1, respec-
tively. The values of the APG are large in wet seasons but
small in dry seasons, while the RPG shows opposite varia-
tions. Further analyses demonstrate that the RPGs have neg-
ative correlations with relative humidity but positive correla-
tions with wind speed, likely because dry air tends to reach
saturation at high altitudes, while stronger wind can bring
more humid air to high altitudes. In addition, we find that
precipitation gradients tend to be positive at small spatial
scales compared to those at large scales, mainly because lo-
cal topography plays a vital role in determining precipitation
distribution at small scales. These findings on the spatiotem-

poral variations of precipitation gradients provide useful in-
formation for interpolating precipitation in the TP region.

1 Introduction

Gridded precipitation is a key input for many hydrological
and ecological models when applied to regional studies. Typ-
ically, the spatial distribution of precipitation in a region can
be obtained by interpolating the in situ data. In regions with
flat terrain and dense rain gauge networks, different inter-
polation methods (e.g. Thiessen polygons, inverse distance
weighting, kriging) can result in similar distributions of pre-
cipitation. In mountainous regions, precipitation has great
spatial heterogeneity, and sparse rain gauges with limited
spatial representativeness make the interpolation of precip-
itation challenging in these regions. Relations between pre-
cipitation and other environmental factors (e.g. topography
and vegetation) play an important role in the interpolation of
precipitation, especially in mountainous regions. Among the
many environmental factors, altitude has a significant impact
on the distribution of precipitation. Several widely used in-
terpolation models have taken altitude as a covariant, such
as PRISM (Daly et al., 1997) and ANUSPLIN (Hutchinson,
1991). Therefore, quantifying the precipitation gradient is
greatly important in mountainous regions.
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As the main source of many large rivers in Asia, the Third
Pole (TP) is a typical mountainous region in the world char-
acterized by complex terrain and high altitude. Rain gauges
in the TP are sparse and usually located in lowland areas,
where the weather conditions are much different from those
at high altitudes (Chen et al., 2012; Daly et al., 2002). There-
fore, interpolating in situ data to data-sparse high altitudes
is essential for hydrometeorological studies in this region,
as reported in many previous studies that take the precipita-
tion gradient into account in hydrological modelling results
in better simulations (Immerzeel et al., 2014; Wang et al.,
2018b; Zhang et al., 2015). Currently, studies on the alti-
tude dependence of precipitation are mostly in the eastern
TP (Cuo and Zhang, 2017; Guo et al., 2016) and some sub-
regions, such as the Himalayas (Ouyang et al., 2020; Salerno
et al., 2015; Yang et al., 2018), the Qilian Mountains (Chen
et al., 2018; Wang et al., 2018a), the Yarlung Tsangpo River
basin (Sun and Su, 2020) and the Hengduan Mountains (Yu
et al., 2018). Moreover, the altitudinal precipitation gradi-
ents obtained in these studies are usually based on rain gauge
data, which may misrepresent the precipitation gradient due
to the poor representativeness of rain gauges. For most parts
of the TP, particularly the central and western TP, the precip-
itation gradient remains unknown. In addition, the precipita-
tion gradient may vary with different seasons and years due
to the changes in weather and meteorological conditions, and
the temporal variability of the precipitation gradient in the TP
has not been investigated yet.

In previous studies, satellite precipitation products have
also been used to calculate the precipitation gradient in the
TP (Liu et al., 2011). However, satellite products tend to
contain large uncertainties and are less accurate in complex-
terrain regions (Derin and Yilmaz, 2014; Henn et al., 2018;
Shen et al., 2014; Xu et al., 2017). In the western TP, where
solid precipitation dominates, the satellite products cannot
reproduce the actual spatial variability of precipitation (Li
et al., 2020). Therefore, obtaining the precipitation gradient
based on satellite products seems to be undesirable in these
regions.

Recently, high-resolution atmospheric simulations have
made great progress in the TP and its surroundings, and
many atmospheric simulation-based precipitation datasets
have been arising (Maussion et al., 2014; Pan et al., 2012;
Y. Wang et al., 2020; Zhou et al., 2021). The atmospheric
simulations are constrained by a set of physical processes
and thus can well represent the influence of topography on
precipitation distribution when integrated with high resolu-
tion (Lundquist et al., 2019; Y. Wang et al., 2018). Previous
studies have demonstrated the potential of atmospheric simu-
lations (especially convective-permitting simulations) in cap-
turing the spatial variability of precipitation in the TP. For ex-
ample, Zhou et al. (2021) found that the dynamically down-
scaled precipitation of ∼ 3 km horizontal resolution has high
correlations with observations in the TP. Gao et al. (2020)
found that a convective-permitting simulation could better

reproduce the precipitation distribution and further result in
better snow cover simulation than satellite-based products
in the southeastern TP. Similar results were also reported in
the Himalayas (Collier and Immerzeel, 2015; Ouyang et al.,
2021) and western TP (Pritchard et al., 2019). These stud-
ies indicate that high-resolution atmospheric simulations can
be alternative sources for obtaining the precipitation gradi-
ent in the TP, particularly in regions like the western TP with
almost no rain gauges located.

Therefore, the main objective of this study is to obtain the
altitudinal precipitation gradient for different sub-basins of
the TP based on a high-resolution atmospheric simulation-
based dataset, which can be used for assisting interpolation
of in situ data, especially in regions where rain gauges are
sparse. In addition, some studies observed remarkable sea-
sonal variations in precipitation gradient (Li and Fu, 1984;
Putkonen, 2004; Wulf et al., 2010; Zhao et al., 2011), which
implies that precipitation gradient can be related to weather
conditions. However, very limited work has been done to in-
vestigate their relationships. Therefore, this study also inves-
tigates the relations between precipitation gradients and two
meteorological factors (i.e. humidity and wind speed) to ex-
plore whether these factors can provide potential auxiliary
information for adjusting the precipitation gradient in a re-
gion.

2 Description of datasets

2.1 Precipitation datasets

The dataset used to quantify the precipitation gradients is
produced by Jiang et al. (2021). It covers the whole TP and
is generated by combining the ERA5 reanalysis (Hersbach
et al., 2020) with the high-resolution simulated precipita-
tion produced by Zhou et al. (2021). Three main steps are
involved in producing this dataset. First, a short-term high-
resolution WRF (Weather Research and Forecasting Model;
Skamarock et al., 2008) simulation with a horizontal res-
olution of 1/30◦ is conducted, and the short-term simula-
tion covers 2 representative years (2013 and 2018). Sec-
ond, the precipitation from ERA5 is corrected with the high-
resolution simulated precipitation using a CDF (cumula-
tive distribution function) matching method. Third, the high-
resolution simulation is resampled to the spatial resolution
of ERA5, and a convolutional neural-network-based model
is trained using the resampled precipitation as the input and
the original high-resolution simulated precipitation as the tar-
get, and then the corrected ERA5 precipitation is downscaled
to a resolution of 1/30◦ using the trained model. This down-
scaled precipitation shows similar performance in describing
the spatial variability of precipitation in the WRF simulations
produced by Zhou et al. (2021), while it has a wide tempo-
ral coverage spanning 39 years from 1980 to 2018, which
allows us to investigate the interannual variations of precipi-
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tation gradients in the TP. For convenience, this downscaled
precipitation is called ERA5_CNN hereafter. Previous eval-
uation of this dataset showed that it is skilful in reflecting
spatial variability of precipitation, and its bias has been much
reduced compared to other analysis data. Nevertheless, it still
overestimates the precipitation amount in the TP (Jiang et al.,
2021).

This study also investigates the performance of IMERG
(Integrated Multi-satellite Retrievals for Global Precipitation
Measurement; Huffman et al., 2019) and HAR V2 (High
Asia Refined Analysis version 2; X. Wang et al., 2020) in
reflecting the altitude dependence of precipitation and com-
pares it to that from ERA5_CNN. IMERG is the latest gen-
eration of global satellite-based precipitation products. The
final run version of IMERG V06 with a horizontal resolution
of 0.1◦ is used in this study, which has applied gauge obser-
vations to correct the satellite estimates. HAR V2 is produced
by dynamically downscaling the ERA5 reanalysis using the
WRF model. It also covers the whole TP but has a coarser
horizontal resolution (10 km) than ERA5_CNN.

Observations from six rain gauge networks are used in this
study. Five rain gauge networks with relatively high density
but covering small sub-regions of the TP are used to vali-
date the altitude dependence of precipitation in these gridded
datasets at small spatial scales. Details about the five rain
gauge networks are given in Table 1 and their distributions
are shown in Fig. 1. In addition, the network from the CMA
(China Meteorological Administration) is also used in this
study, which covers a large area of the TP but has scarce
gauge density. Therefore, this network is used for quantify-
ing the bias in ERA5_CNN in the TP.

2.2 Other datasets

The elevation data used in this study are from the NASA
Shuttle Radar Topographic Mission (SRTM), which provides
global digital elevation model (DEM) data at a resolution of
90 m. The 90 m DEM is resampled to 1/30◦ by averaging the
elevations of all 90 m grids within a 1/30◦ grid to match the
horizontal resolution of the precipitation data.

The ERA5 reanalysis data of near-surface humidity and
wind speed are also used to explore the relations between
precipitation gradients and meteorological factors.

3 Method

The precipitation gradients are calculated based on a linear
regression between precipitation and altitudes, which can be
expressed as follows:

P = a×H + b, (1)

where P is average precipitation (mm d−1) for a specific
period, H is altitude (100 m), a is the absolute precipita-
tion gradient (APG; mm d−1

× 100 m−1) within a specific

region, and b is the intercept of the regression equation. In
this study, the regression equation is fitted in 388 sub-basins
of the TP above the 2500 m a.s.l. contour. The geometries of
the 388 sub-basins (shown in Fig. 1b) are obtained from the
HydroATLAS database (Linke et al., 2019), which provides
12 nested levels of sub-basins for the global one. The level-
6 sub-basins are applied in this study and these sub-basins
have areas ranging from 2.91 km2 to 120 135.00 km2. The
relatively small sizes of these sub-basins can ensure that the
grids used to fit the equations are dominated by similar pre-
vailing winds. Moreover, the basin-scale precipitation gradi-
ent is easier to be applied for hydrological applications than
the gridded precipitation gradient. The value of the precipita-
tion gradient for a sub-basin is given only when the following
three principles are met.

1. The number of grids within the sub-basin should not be
less than 10.

2. The standard deviation of altitude within the sub-basin
should not be less than 50 m.

3. The p value of the Student’s t test for the regression
equation should be less than 0.05.

Although the ERA5_CNN shows good performance in
representing the spatial variability of precipitation, it has a
systematic bias in the TP (Jiang et al., 2021). Therefore, the
relative precipitation gradient (RPG, %× 100 m−1) is also
presented in this study. The RPG is calculated as follows:

RPG=
a

P
× 100%, (2)

where a is the absolute precipitation gradient from Eq. (1)
and P is the basin-average precipitation. To calculate the
RPG, P should be greater than 0.1 mm d−1.

To quantify the bias of ERA5_CNN, both absolute bias
(Abias) and relative bias (Rbias) are used in this study, calcu-
lated as follows.

Abias =
1
n

∑n

i=1
(Mi −Oi), (3)

Rbias =

∑n
i=1(Mi −Oi)∑n

i=1Mi

, (4)

whereMi andOi are the precipitation from ERA5_CNN and
in situ data, respectively, and n is the number of samples.

In addition, the coefficient of variation (CV) is used to
quantify the spatiotemporal variability of variables, which is
defined as follows in this study:

CV=
σ

|µ|
, (5)

where σ and |µ| are the standard deviation and absolute mean
of a series of samples, respectively. The CV is dimensionless.
The closer the CV value is to zero, the smaller the dispersion
is.
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Table 1. Basic information about the six rain gauge networks used in this study.

Rain gauge network Temporal coverage Number of Source
(yyyy/mm) gauges

Yarkant River basin 2014/01–2015/12 28 Kan et al. (2018)

Bayi basin 2018/07–2018/09 4 Han et al. (2020)

Minjiang River basin 2017/01–2017/12 375 The Hydrological Bureau of the Ministry of Water Resources (MWR)
in China

Yadong valley 2018/07–2018/09 9 Yang (2020)

Nepal 2014/01–2016/12 283 The Department of Hydrology and Meteorology (DHM) in Nepal

Whole TP 1980/01–2018/12 95 The China Meteorological Administration (CMA)

Figure 1. (a) Topography of the Third Pole (TP) region and the boundaries of five sub-regions of the TP, along with the distribution of the
five rain gauge networks. The black points represent the rain gauges. (b) The boundaries of the 388 sub-basins in the TP. Fig. 1b shows the
area above 2500 m a.s.l. The boundaries of the TP and the five sub-regions are derived from Zhang (2019).

4 Results

4.1 Validation of the altitude dependence of
precipitation

The altitude dependence of precipitation from ERA5_CNN
is compared to that from rain gauge data in the five networks
mentioned in Sect. 2.1. For comparison, the altitude depen-

dences of precipitation from two widely used precipitation
datasets, i.e. IMERG and HAR V2, are also investigated.

In the Yarkant River basin (Fig. 2a), all datasets re-
produce the observed local precipitation maxima at 2400–
2800 m a.s.l. Nevertheless, remarkable differences exist in
these datasets. HAR V2 has the highest spatial correlation
(0.93) with rain gauge data but presents a sharp precipi-
tation gradient above 4000 m a.s.l. ERA5_CNN also shows
a similar altitude dependence of precipitation to gauge
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data but yields another local precipitation maximum at
1600–2000 m a.s.l., leading to a smaller correlation of 0.67.
IMERG slowly changes with altitude with the lowest corre-
lation of 0.22.

In the Bayi basin (Fig. 2b), ERA5_CNN shows the most
consistent pattern with rain gauge data with a correlation
of 0.95, although it generally overestimates precipitation. In
terms of the other two datasets, precipitation from IMERG
decreases with altitude above 4600 m a.s.l., while precipita-
tion from HAR V2 has a similar magnitude at all altitudes.

In the Minjiang River basin, Fig. 2c shows that pre-
cipitation from rain gauge data increases with altitude be-
low 1200 m a.s.l., then decreases with altitude between 1200
and 3200 m a.s.l., and then rises again above 3200 m a.s.l.
ERA5_CNN overestimates precipitation in this basin, but it
shows the most similar altitude dependence to rain gauge
data and has the highest correlation of 0.74. HAR V2 also
generally reproduces the observed pattern but changes slowly
with altitude above 1600 m a.s.l, yielding a smaller correla-
tion of 0.53. However, precipitation from IMERG changes
little with altitudes in the Minjiang River basin.

In the Yadong valley (Fig. 2d), ERA5_CNN firstly in-
creases slowly and then decreases sharply with altitude and
has a spatial correlation of 0.85 with gauge data, although
it has a higher altitude of precipitation maximum than rain
gauge data. Precipitation from HAR V2 also shows a simi-
lar pattern to that of rain gauge data above 3600 m a.s.l. but a
different pattern below 3600 m a.s.l. In contrast, the altitude
dependence of precipitation from IMERG is opposite to the
observed one in the Yadong valley.

In Nepal (Fig. 2e), the precipitation amount from rain
gauge data shows large fluctuations among different al-
titude bands. Generally, it increases with altitude below
2000 m a.s.l. and then decreases beyond this altitude level.
It can be found that ERA5_CNN can better represent the al-
titude dependence of observed precipitation than the other
two products (the spatial correlations with gauge data for
ERA5_CNN, HAR V2 and IMERG are 0.88, 0.41 and 0.81,
respectively), particularly in reproducing the great fluctua-
tion of precipitation.

Overall, the high-resolution atmospheric simulation-based
ERA5_CNN can reasonably represent the altitude depen-
dence of precipitation in the TP and generally shows bet-
ter performance than the widely used IMERG and HAR V2.
Therefore, it is used to quantify the spatial and temporal vari-
ability of RPGs in the TP.

4.2 Spatial patterns of precipitation gradients

Figure 3a shows the spatial distribution of the correlations
between annual average precipitation from 1980 to 2018
and altitudes in each sub-basin. As shown in Fig. 3a, there
are strong correlations between precipitation and altitude in
many sub-basins, with absolute correlations larger than 0.50
in about 55 % of the sub-basins, and the correlations are

Table 2. The APG and RPG averaged across the sub-basins within
the five sub-regions and the whole TP with respect to different sea-
sons. ETP: eastern TP; YTR: Yarlung Tsangpo River basin; ITP:
inner TP; QDM: Qaidam basin; UID: upper Indus.

ETP YTR ITP QDM UID TP

APG (mm d−1
× 100 m−1)

Winter 0.01 0.01 0.01 0.01 0.04 0.02
Spring 0.04 0.02 0.04 0.04 0.04 0.04
Summer 0.16 0.13 0.19 0.10 0.05 0.11
Autumn 0.05 0.03 0.05 0.03 0.02 0.04
Annual 0.06 0.05 0.07 0.05 0.04 0.05

RPG (%× 100 m−1)

Winter 4.01 6.04 13.20 7.53 3.65 5.06
Spring 2.76 6.04 8.99 11.69 3.90 5.11
Summer 3.21 2.87 6.67 10.47 2.81 4.20
Autumn 2.42 3.51 7.39 11.37 3.02 4.33
Annual 2.90 3.00 7.08 11.26 3.17 4.25

significant at the 95 % confidence level in most sub-basins.
Therefore, it is feasible to interpolate precipitation based on
precipitation gradients in the TP.

Generally, at the annual scale, most sub-basins (about
81 % of the total) in the TP have a positive APG, and
the sub-basins with negative APGs are mainly distributed
in the Himalayas, the Hengduan Mountains on the east-
ern edge of the TP and the western Kunlun in the north-
western TP, resulting in an average APG across all the sub-
basins of 0.05 mm d−1

× 100 m−1. As shown in Fig. 3b and
Table 2, a large positive APG mainly occurs in the inner
TP, with an average value of 0.07 mm d−1

× 100 m−1, fol-
lowed by the eastern TP (covering the Yellow, Yangtze,
Lancang and Nu River basins) (0.06 mm d−1

× 100 m−1),
the Yarlung Tsangpo River basin and the Qaidam basin
(0.05 mm d−1

× 100 m−1), and the upper Indus has the
smallest APG of 0.04 mm d−1

× 100 m−1. In some specific
regions, such as the Qilian Mountains (Wang et al., 2009;
Han et al., 2020) and some small basins in the southern TP
(Wang et al., 2018b; Zeng et al., 2021; Zhang et al., 2015),
where the observed precipitation generally increases with
altitude, our study reports consistent results. Notably, most
sub-basins along the Himalayas show large negative APGs.
This is also consistent with previous studies (Andermann et
al., 2011; Bookhagen and Burbank, 2006; Chen et al., 2020;
Salerno et al., 2015; Tang et al., 2018), which have demon-
strated that there is a shape decrease in precipitation above
2500 m a.s.l. in this region.

As shown in Fig. 3c, the annual RPG generally has a sim-
ilar spatial pattern to APG but shows large values in the
Qaidam basin. The average RPG across all the sub-basins of
the TP is 4.25 %× 100 m−1. However, the RPGs show great
spatial variability, ranging from−5.23 %× 100 m−1 to more
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Figure 2. Comparison between the altitude dependence of precipitation from ERA5_CNN, IMERG and HAR V2 and that from rain gauge
data in five networks. The lines show the average precipitation amount in each altitude zone and the bars denote the number of rain gauges in
each zone. The numbers in the figures give the spatial correlations of the precipitation amount between the rain gauge data and precipitation
products. The “∗” represents the correlation that is significant at the 95 % confidence level.

than 20.00 %× 100 m−1. Quantitatively, the average RPGs
within five sub-regions of the TP are shown in Table 2. The
Qaidam basin has the largest value of 11.26 %× 100 m−1,
followed by the inner TP with a value of 7.08 %× 100 m−1

and then the upper Indus with a value of 3.17 %× 100 m−1.
The Yarlung Tsangpo River basin and the eastern TP have
RPGs of 3.00 %× 100 m−1 and 2.90 %× 100 m−1, respec-
tively. Generally, the spatial pattern of RPG shown in our
study is in agreement with the result of Guo et al. (2016),
which pointed out that large precipitation gradients are
mainly in the Qaidam basin but small in the Hengduan
Mountains in the south-eastern TP.

4.3 Temporal variation of precipitation gradients

4.3.1 Seasonal patterns

The APG and RPG at each basin are also calculated based
on the seasonal average precipitation and presented in Figs. 4
and 5 to explore the seasonality of the precipitation gradient.

As shown in Fig. 4 and Table 2, the absolute val-
ues of APG in summer are remarkably larger than
those in other seasons, with an averaged value across
all sub-basins in the TP of 0.11 mm d−1

× 100 m−1,
while they are 0.02 mm d−1

× 100 m−1 in winter and
0.04 mm d−1

× 100 m−1 in spring and autumn. Such a sea-
sonal pattern is not surprising because a large precipitation
amount tends to result in a large value of APG and vice versa.
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Figure 3. Spatial distribution of (a) correlations between the annual
average precipitation and altitude for all grids within each basin,
(b) absolute precipitation gradients (APGs, precipitation change per
100 m altitude difference) and (c) relative precipitation gradients
(RPGs, APGs divided by basin-average precipitation). The APGs
and RPGs are calculated based on annual precipitation averaged
from 1980 to 2018. The dots in Fig. 3a represent the correlations
significant at the 95 % confidence level. In Fig. 3b and c, the sub-
basins with weak relationships between precipitation and altitude or
no data value of RPG are filled with white.

Figure 5 shows the spatial distribution of RPG in the four
seasons. In winter, precipitation in some sub-basins is very
small; therefore, the RPG is not calculated in these basins
and is masked with white. Unlike APGs, RPGs in spring and
autumn are larger than those in summer, which is especially
true in the central TP. In winter, although many sub-basins
are masked as no data, most of the remaining sub-basins
have the largest RPG among the four seasons. Table 2 shows
that the values of RPG averaged across all the sub-basins in
the TP are 5.06 %× 100 m−1 in winter, 5.11 %× 100 m−1 in

spring, 4.20 %× 100 m−1 in summer and 4.33 %× 100 m−1

in autumn.
In particular, remarkable seasonal variation in the precip-

itation gradient (both APG and RPG) can be found in the
Himalayas. In winter, most of the sub-basins in this region
have a positive precipitation gradient; however, it can be seen
from Figs. 4c and 5c that this region is dominated by negative
gradients in summer. In spring (Figs. 4b and 5b) and autumn
(Figs. 4d and 5d), the western Himalayas have a positive gra-
dient and the eastern Himalayas have a negative gradient.
This phenomenon was also observed by Wulf et al. (2010),
who found that in the north-western Himalayas the precipi-
tation gradients are reversed between winter and summer, as
well as by Putkonen (2004), who reported that in the Nepal
Himalayas monsoon precipitation maximum occurs at an al-
titude of about 3000 m a.s.l., while precipitation continuously
increases with altitude in dry seasons.

In summary, the precipitation gradient (including both
APG and RPG) in the TP shows great seasonal variation, and
it may be desirable to interpolate seasonal or monthly pre-
cipitation with precipitation gradients calculated at the cor-
responding season or month, especially in the Himalayas.

4.3.2 Interannual variations

The CV and trend for annual APG and RPG during 1980–
2018 are calculated for each sub-basin of the TP. As shown
in Fig. 6a and b, the CV values for both APG and RPG in
most sub-basins are less than 0.2, implying low interannual
variability of the precipitation gradient. Figure 6c shows that
APG has a positive trend in most sub-basins, especially in
the inner TP, which was also reported by Guo et al. (2016),
who used in situ data to characterize the precipitation gradi-
ents in the TP. Such a pattern of precipitation gradient trend
is mainly because the TP has overall become wetter in re-
cent decades, especially in the central and northern TP (Sun
et al., 2020; X. Wang et al., 2018; Yang et al., 2014). In con-
trast, RPG does not show a positive trend at most sub-basins,
and its trend in fewer basins is significant at the 95 % con-
fidence level. The average value of the RPG trend across all
sub-basins is−0.0042 %× 100 m−1 yr−1. Therefore, RPG is
less sensitive to the climatic change in precipitation amount,
and the RPG obtained in a certain period is expected to be
more representative than APG when applying for precipita-
tion interpolation under climate change.

5 Discussions

5.1 Uncertainties in APGs and RPGs

This study uses the atmospheric simulation-based
ERA5_CNN to characterize the precipitation gradients
in the TP. However, the ERA5_CNN has biases in the TP,
leading to uncertainties in the calculated APGs and RPGs.
Figure 7 shows the Abias and Rbias of annual precipitation
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Figure 4. Spatial distribution of APGs in (a) winter (December to February), (b) spring (March to May), (c) summer (June to August) and
(d) autumn (September to November). The APGs are calculated based on seasonal precipitation averaged from 1980 to 2018. The sub-basins
with weak relationships between precipitation and altitude are filled with white.

Figure 5. Same as Fig. 4 but for RPGs. The sub-basins with weak relationships between precipitation and altitude or no data value of RPG
are filled with white.
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Figure 6. Spatial distribution of (a) and (b) the coefficient of variation (CV) and (c) and (d) the trend for annual APGs and RPGs during
1980–2018. The dots in panels (c) and (d) represent a trend significant at the 95 % confidence level. The CV and trend are calculated only
for sub-basins without missing APG or RPG during 1980–2018.

from ERA5_CNN during 1980–2018 at the locations of
CMA stations. It can be found that ERA5_CNN generally
overestimates precipitation in the TP, with Abias ranging
from −365.99 mm yr−1 to more than 1500.00 mm yr−1 and
Rbias ranging from about −30.00 % to more than 150.00 %.
This result is similar to previous works that demonstrated
an overall wet bias in atmospheric simulation in the TP
(Gao et al., 2015; Y. Wang et al., 2020; Zhou et al., 2021).
According to the definition of APG and RPG, if Abias is
spatially homogeneous (i.e. the ERA5_CNN has the same
absolute value of overestimation or underestimation at all
locations in a region), the slopes of the regression line
derived from ERA5_CNN and rain gauge data are the same
because these two lines are parallel (as shown in Fig. S1a);
if Rbias is uniform in space (i.e. the ERA5_CNN has the
same percentage of overestimation or underestimation),
the calculated RPG is consistent with that from rain gauge
data because both APG and the basin-average precipitation
in Eq. (2) have the same percentage of bias, which is also
illustrated in Fig. S1b. By comparing Fig. 7a and b, we can
find that Rbias is more homogeneous than Abias (the CV
value for all CMA stations is 1.24 for Rbias, while it is 1.59
for Abias). In this case, it is expected that RPG derived from
the ERA5_CNN will be closer to the observed one than APG
and will be more appropriate for interpolating rain gauge
data.

Nevertheless, the Rbias still has great spatial variability.
Given the complexity of biases in ERA5_CNN, we recom-
mend comparing the APG and the RPG and selecting the
better one for specific applications.

5.2 Relations between precipitation gradients and
relative humidity and wind speed

Previous works mainly focused on the influence of static to-
pographic parameters (e.g. altitude, slope, aspect and expo-
sure) on precipitation gradient (Basist et al., 1994; Diodato,
2005; Sevruk, 1997; Singh et al., 1995). However, Sect. 4
shows that precipitation gradients are likely related to me-
teorological conditions. Therefore, this section discusses the
possible factors that may influence the spatiotemporal varia-
tions of the precipitation gradient. The near-surface relative
humidity and wind speed are selected as the potential fac-
tors because they should be the indicators of mass and dy-
namic conditions for the formation of precipitation, respec-
tively. Given that the magnitude of APG is likely to be influ-
enced by precipitation amount (as shown in Fig. 4) and the
RPG is more informative, this section only discusses the re-
lations between the RPG and the two meteorological factors.

Our results show that large RPG mainly occurs in the
Qaidam basin and inner TP characterized by dry air con-
ditions. In addition, RPG has larger values in winter and
spring than in summer. Similar results have been reported in
the Himalayas (Putkonen, 2004), the Xinjiang region (Zhao
et al., 2011) and the Qinling Mountains (Li and Fu, 1984),
which found that the altitude with precipitation maximum
in dry seasons is higher than that in wet seasons. These
results indicate that there may be a close relationship be-
tween RPG and the humidity of air mass. Therefore, the rela-
tionships between annual average relative humidity and an-
nual RPG are investigated in the whole TP and its five sub-
regions. As shown in Fig. 8, there is a good linear relation-
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Figure 7. Spatial distribution of (a) absolute bias (Abias) and (b) relative bias (Rbias) for annual precipitation from ERA5_CNN during
1980–2018 at stations of the China Meteorological Administration.

ship (R =−0.68) between relative humidity and RPG when
considering all the sub-basins in the TP (Fig. 8a). In terms
of each sub-region, the negative correlation between relative
humidity and RPG is relatively small in the Yarlung Tsangpo
River basin (Fig. 8c) and the inner TP (Fig. 8d), while it is
larger than 0.5 in the other three sub-regions (Figs. 8b, e and
f). Overall, the RPG generally decreases with increasing rel-
ative humidity in all sub-regions, indicating that precipitation
tends to occur at lower altitudes when the relative humidity
is larger, which is easy to understand because air masses with
lower humidity tend to be saturated after a higher uplift.

The relations between near-surface wind speed and RPG
were also tested (Fig. 8g–l). It can be found that three sub-
regions have high positive correlations (R>0.45) between
RPG and wind speed, and the Yarlung Tsangpo River basin
and the inner TP have lower positive correlations (R = 0.20
and 0.17, respectively). The correlation coefficient for the
whole TP is as high as 0.59, indicating RPG increases with
increasing wind speed. The positive correlations between
precipitation gradient and wind speed reported in this study
have also been demonstrated in previous studies. For exam-
ple, Johansson and Chen (2003) found that precipitation in
Sweden increases with increasing wind speed on the upwind
side of mountains. Hill (1983) also confirmed that wind di-
rection and wind speed could have great impacts on the dis-
tribution of precipitation enhancement in mountainous re-
gions. Moist air blocked by upwind barriers usually leads to
enhanced precipitation on the windward slopes, which is one
of the main mechanisms of orographic precipitation in moun-
tainous regions (Houze, 2012; Roe, 2005). Thus, the strong
wind tends to bring more moisture to high altitudes and fur-
ther results in precipitation enhancement at high altitudes.
That is why strong wind tends to result in larger positive pre-
cipitation gradients.

5.3 Impact of spatial scale on the estimation of
precipitation gradients

In this study, the precipitation gradient is fitted using all grids
with a specific sub-basin; therefore, the estimated precipita-
tion gradient is likely to be spatial-scale-dependent. Accord-
ingly, we investigate and compare precipitation gradients at
different spatial scales by calculating the precipitation gradi-
ents based on four sub-basin levels provided by the HydroAT-
LAS database. Figure 9 shows the spatial distribution of the
annual RPG calculated at different sub-basin levels (a lower
sub-basin level has a larger spatial scale). The results of APG
are similar to those of RPG and are thus not shown. It can
be seen that RPGs calculated at different spatial scales dif-
fer greatly, especially in the southern and eastern TP, where
the topography is complex. For example, the RPGs are nega-
tive in the southern TP when calculated for large river basins
(Fig. 9a), while they tend to be positive in sub-basins of these
large river basins. This is similar to the results of Sun and
Su (2020), who reported that precipitation overall decreases
with increasing altitude in the Yarlung Tsangpo River basin
but shows the opposite variation in some small sub-basins.
Taking the TP as a whole, we can find that the values of RPG
increase from L4 to L6 and remain relatively stable after L6
(Fig. 10a). In addition, the correlations between precipita-
tion and altitude tend to be larger at smaller spatial scales
(Fig. 10b). This indicates that precipitation variations at large
scales are more controlled by large-scale atmospheric circu-
lations but at small scales are more dependent on local to-
pography.

6 Conclusions

In this study, the altitudinal precipitation gradient in the TP is
investigated at the basin scale using a high-resolution atmo-
spheric simulation-based precipitation dataset, and its spa-
tiotemporal variability is analysed.
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Figure 8. Relationships between annual RPGs and (a–f) basin-average relative humidity (RH) and (g–l) wind speed (Va) in different sub-
regions of the TP. ETP: eastern TP; YTR: Yarlung Tsangpo River basin; ITP: inner TP; QDM: Qaidam basin; UID: upper Indus.

Figure 9. Spatial distribution of annual RPGs calculated at four sub-basin levels. The spatial scales of sub-basins (i.e. the sub-basin area)
generally decrease from L4 to L7.

The performance of the high-resolution atmospheric
simulation-based dataset in describing the altitude depen-
dence of precipitation is firstly validated using observations
from five rain gauge networks. The results show that this
dataset can reasonably reproduce the observed altitude de-
pendence of precipitation and generally performs better than
the widely used IMERG and HAR V2 in the TP.

Both absolute precipitation gradient (APG) and rel-
ative precipitation gradient (RPG) for annual and sea-
sonal average precipitation are calculated for 388 sub-
basins of the TP. Most sub-basins of the TP have pos-
itive precipitation gradients, and negative gradients are
mainly distributed in the Himalayas, the Hengduan Moun-
tains and the western Kunlun. The APGs are less than
−0.05 mm d−1

× 100 m−1 in the central and eastern Hi-
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Figure 10. Comparison of (a) RPGs and (b) the correlations between precipitation and altitude calculated at different sub-basin levels. Each
box represents the distribution of RPGs or correlations of all the sub-basins over the TP. The red line shows the median value of RPGs. The
bottom and top edges of the box represent the 25th and 75th percentiles, respectively. The whiskers represent the extreme value. The red sign
“+” shows the RPGs beyond the extreme value.

malayas but greater than 0.06 mm d−1
× 100 m−1 in most

sub-basins of the central TP. Meanwhile, the annual RPGs
range from about −5.00 %× 100 m−1 in the Himalayas to
more than 20.00 %× 100 m−1 in the Qaidam basin. In par-
ticular, both APG and RPG show large values in the inner
TP. The seasonal variations of APG correspond to the sea-
sonal variability of precipitation amount, with APG larger in
wet seasons but smaller in dry seasons. However, the RPG
has opposite seasonal variations.

The variations in precipitation gradient are related to mete-
orological conditions. Analyses show that the RPGs decrease
with increasing relative humidity but increase with increas-
ing wind speed. The relationships between RPGs and the
two factors are strong, with absolute correlations greater than
0.50 for both factors when taking all sub-basins in the TP into
account. The strong correlations suggest that relative humid-
ity and wind speed can be potential indicators to adjust RPG
regionally.

In addition, our results show that the precipitation gradi-
ent in the TP is spatial-scale-dependent. The precipitation
gradients are positive in the northern TP but negative in the
southern TP at larger spatial scales; however, they tend to be
positive at smaller spatial scales, even in the southern TP. As
the spatial scale decreases, the precipitation gradient first in-
creases and then remains relatively stable. This is because
the impact of large-scale atmospheric circulations on pre-
cipitation distribution is reduced and topography is the key
determinant at a small scale, highlighting the importance of
calculating precipitation gradient at a relatively small spatial
scale.

In summary, our study presents the spatiotemporal vari-
ability of the precipitation gradient in the TP, which can be
used as a reference for assisting precipitation interpolation.
Nevertheless, uncertainties still exist (as shown in Sect. 5.1).
Further works are expected to evaluate the accuracy of the

obtained precipitation gradients in the TP, which requires re-
liable observations, e.g. high-quality radar observations or
high-density rain gauge networks.
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