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Abstract. Accurate predictions of seasonal low flows are
critical for a number of water management tasks that require
inferences about water quality and the ecological status of
water bodies. This paper proposes an extreme gradient tree
boosting model (XGBoost) for predicting monthly low flow
in ungauged catchments. Particular emphasis is placed on the
lowest values (in the magnitude of annual low flows and be-
low) by implementing the expectile loss function to the XG-
Boost model. For this purpose, we test expectile loss func-
tions based on decreasing expectiles (from τ = 0.5 to 0.01)
that give increasing weight to lower values. These are com-
pared to common loss functions such as mean and median ab-
solute loss. Model optimization and evaluation are conducted
using a nested cross-validation (CV) approach that includes
recursive feature elimination (RFE) to promote parsimonious
models. The methods are tested on a comprehensive dataset
of 260 stream gauges in Austria, covering a wide range of
low-flow regimes. Our results demonstrate that the expectile
loss function can yield high prediction accuracy, but the per-
formance drops sharply for low expectile models. With a me-
dian R2 of 0.67, the 0.5 expectile yields the best-performing
model. The 0.3 and 0.2 perform slightly worse, but still out-
perform the common median and mean absolute loss func-
tions. All expectile models include some stations with mod-
erate and poor performance that can be attributed to some
systematic error, while the seasonal and annual variability
is well covered by the models. Results for the prediction of
low extremes show an increasing performance in terms of R2

for smaller expectiles (0.01, 0.025, 0.05), though leading to
the disadvantage of classifying too many extremes for each
station. We found that the application of different expectiles

leads to a trade-off between overall performance, prediction
performance for extremes, and misclassification of extreme
low-flow events. Our results show that the 0.1 or 0.2 expec-
tiles perform best with respect to all three criteria. The result-
ing extreme gradient tree boosting model covers seasonal and
annual variability nicely and provides a viable approach for
spatiotemporal modeling of a range of hydrological variables
representing average conditions and extreme events.

1 Introduction

Prediction of low flow in ungauged basins is a basic require-
ment for many water management tasks (Smakhtin, 2001).
Current estimation procedures aim to estimate some long-
term average low-flow characteristics, such as the low-flow
quantileQ95 or the 7 d minimum flow, often calculated for a
return period of 10 years (Q7,10) (Salinas et al., 2013). These
signatures are either predicted by physically based models
(Euser et al., 2013) or statistical methods, such as geosta-
tistical methods (e.g., Castiglioni et al., 2009, 2011; Laaha
et al., 2014) and regression-based models (e.g., Laaha and
Blöschl, 2006, 2007; Tyralis et al., 2021b; Worland et al.,
2018; Ferreira et al., 2021; Laimighofer et al., 2022). Re-
cently, the prediction of seasonal low-flow characteristics
has gained increasing interest. Knowing the seasonal (e.g.,
monthly) distribution of low flows is necessary, e.g., when
assessing the water quality or ecological status of water bod-
ies, since low discharges combined with temperature can
yield a cascade of hydrochemical processes that vary with
the season. Such temporal low-flow characteristics require a
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new class of models that take temporal signals of predictors
into account. Assessment of low flow on a temporal scale is
mostly based on empirical characteristics of the modeled hy-
drograph (e.g., Shrestha et al., 2014; Huang et al., 2017; Lees
et al., 2021), with some exceptions where the accuracy of
observations below a specific threshold are considered (e.g.,
Onyutha, 2016). All these approaches show a much higher
bias for low flows than for high flows. This is often a conse-
quence of a loss function that emphasizes high flows while
giving too little weight to the low-flow events (Staudinger
and Seibert, 2014; Staudinger et al., 2011). Although sev-
eral approaches for modeling monthly or annual streamflow
records exist (e.g., Vandewiele and Elias, 1995; Steinschnei-
der et al., 2015; Yang et al., 2017; Ossandón et al., 2022;
Pumo et al., 2016; Vicente-Guillén et al., 2012; Cutore et al.,
2007; Lima and Lall, 2010; Roksvåg et al., 2020), we no-
ticed a significant research gap in modeling monthly low
flow, which to our knowledge has not been investigated to
date.

Recently, data-driven models have gained interest for pre-
diction of daily discharge in ungauged basins because of their
fast implementation and good prediction performance. These
approaches consider a wide range of models, e.g., long short-
term memories (LSTMs; Kratzert et al., 2019a, b; Lees et al.,
2021) or artificial neural networks (ANNs; Solomatine and
Ostfeld, 2008; Dawson and Wilby, 2001; Abrahart et al.,
2012). Similar methods are applied to lower temporal reso-
lutions (monthly or annual) of streamflow data, where either
parameters of hydrological models are interpolated in space
(Yang et al., 2017; Vandewiele and Elias, 1995; Steinschnei-
der et al., 2015), or different statistical methods are applied.
Considering the data-driven models, a common approach is
to fit independent models to each station (e.g., Shortridge
et al., 2016; Parisouj et al., 2020; Chang and Chen, 2018).
Such an approach does not seem efficient because spatial
correlations of time series at neighboring stations are not
considered in parameter estimation. This may lead to spa-
tially inconsistent predictions that also have lower accuracy.
Few approaches have been proposed that treat spatiotemporal
flow indices in a single, spatiotemporal framework (e.g., Os-
sandón et al., 2022; Vicente-Guillén et al., 2012; Lima and
Lall, 2010; Roksvåg et al., 2020; Pumo et al., 2016; Cu-
tore et al., 2007). These studies either used a combination
of deterministic models with kriging (Vicente-Guillén et al.,
2012), time-series models (Pumo et al., 2016), or Bayesian
hierarchical models (Ossandón et al., 2022; Lima and Lall,
2010; Roksvåg et al., 2020). Surprisingly, little efforts have
been made to use statistical learning models for spatiotempo-
ral flow patterns. One exception is Cutore et al. (2007), who
tested an ANN model for mean monthly flow and compared
it against various regression approaches. They found that a
single ANN outperforms methods where regression parame-
ters are interpolated in space, or single multivariable regres-
sion.

In this study, we propose to use the extreme gradient
boosting model (XGBoost; Chen and He, 2015; Chen and
Guestrin, 2016) for modeling spatiotemporal patterns of
monthly low flows. The XGBoost model is an ensemble of
boosted regression trees and a common model in hydrology
(Zounemat-Kermani et al., 2021). Applications range from
e.g., modeling water quality (e.g., Lu and Ma, 2020) to esti-
mating groundwater salinity (Sahour et al., 2020). Addition-
ally, XGBoost has shown to be a suitable model for stream-
flow forecasting (e.g., Yu et al., 2020; Tyralis et al., 2021a; Ni
et al., 2020) and its fast implementation is beneficial in our
spatiotemporal context. We further explore the use of the ex-
pectile loss function as a fitting criterion to give more weights
on more extreme flows. Expectile regression (Aigner et al.,
1976; Newey and Powell, 1987; Kneib, 2013; Kneib et al.,
2021) has rarely been applied in hydrology (Tyralis et al.,
2022), but the use of asymmetric weights appear well-suited
for estimating flow quantiles beyond the mean (e.g., Toth,
2016). Our model shall also incorporate a variable selection
procedure to obtain models that are more parsimonious and
easier to interpret.

The objective of our study is to develop such a spatiotem-
poral low-flow model and to evaluate its performance when
predicting at ungauged sites. The following research ques-
tions will be addressed: (i) To what extent can spatiotem-
poral monthly low flow be modeled by one single gradi-
ent boosting model? (ii) How does expectile regression per-
form compared to traditional loss functions (mean absolute
error, median absolute error)? (iii) How accurate are low ex-
tremes modeled by different expectiles? (iv) Which spatial
and spatiotemporal variables are used for different expec-
tiles? Our analysis will be performed on a comprehensive
Austrian streamflow dataset representing a range of seasonal
low-flow regimes.

2 Data and methods

2.1 Data

2.1.1 Hydrological data

Our study area covers 260 gauging stations in Austria
with different low-flow seasonality. The dataset was already
used in a wide range of studies (e.g., Laaha and Blöschl,
2006, 2007; Laaha et al., 2014; Laimighofer et al., 2022).
Some stations included in previous studies had to be dis-
carded as the gauging stations were removed, relocated, or
the data included too many missing values. The hydrologi-
cal data are available from the Hydrographic Service of Aus-
tria (HZB) and all stations have a continuous daily stream-
flow record from 1982 to 2018. From these data, we calcu-
lated the monthly low-flow index series for each station, us-
ing the monthly Q95 (P (Q >Q95)= 0.95) to characterize
the low-flow regime (Fig. 1). The index is very similar to the

Hydrol. Earth Syst. Sci., 26, 4553–4574, 2022 https://doi.org/10.5194/hess-26-4553-2022



J. Laimighofer et al.: Spatiotemporal low-flow estimation 4555

monthly 7 d minimum flow MM(7), which has been used in
an earlier study to assess the timing of low-flow events on a
pan-European scale (Laaha et al., 2017). For one station, a
monthly value had to be inserted using smoothed empirical
orthogonal functions (Lindström et al., 2014) to preserve the
station despite single missing values in the daily discharge
record. The monthly Q95 was standardized by the catch-
ment area, resulting in the monthly specific low-flow (q95)
time series (l s−1 km−2) for each station, which constitutes
the target variable of our study. The monthly q95 series were
further transformed by the square root to give less weight to
the high low flows, according to preliminary evaluations. Fi-
nally, model evaluation was performed using the predictions
after transforming back to the original scale.

Additionally, we used specific discharge quantiles with
0.95, 0.98, and 0.99 exceedance probability from the daily
discharge series (q95d, q98d, q99d) to identify extreme
events in our monthly series. This threshold selection pro-
cedure classifies about 11 % (q95d), 5 % (q98d), and 3 %
(q99d) of observations at each station as extreme low-flow
events.

2.1.2 Predictor variables

Spatiotemporal modeling requires predictor variables, of
which two types can be distinguished. The first type con-
sists of climate and catchment characteristics representing
the long-term average hydrological conditions. This type cor-
responds to typical predictors in low-flow regionalization
models such as regional regression approaches (Laaha et al.,
2013). The second type of predictors consists of spatiotem-
poral covariates that capture the climate drivers of low-flow
generation. These dynamic predictors are needed to extend
the regional model with a temporal dimension so that spa-
tiotemporal patterns of low flow can be represented. The for-
mer type will be referred to as static predictors, the latter as
spatiotemporal covariates throughout the paper.

For the static predictors, we used a set of climate and
catchment characteristics of precedent rationalization stud-
ies in Austria (e.g., Laaha and Blöschl, 2006; Laimighofer
et al., 2022). They consist of topological and land-use vari-
ables, geological classes, and long-term average meteorolog-
ical characteristics such as precipitation (P ), mean climatic
water balance (MCWB), and others (Table 1). All these vari-
ables are aggregated on an annual basis (no subscript: e.g., P ,
MCWB), for the summer half-year from April to September
(e.g., Psum, MCWBsum), and for the winter half-year from
October to March (e.g., Pwin, MCWPwin). For more details
about their calculation, see Laimighofer et al. (2022) and
Laaha and Blöschl (2006).

For spatiotemporal covariates, the initial choice of the
variables is also important, as it can affect model perfor-
mance and interpretability of results. In a preliminary as-
sessment (not shown in this paper), we tested several com-
binations of spatiotemporal covariates, including monthly

precipitation, climatic water balance (CWB), temperature,
snowmelt, solid precipitation, or soil moisture characteris-
tics. All these combinations were tested by a nested 10-fold
cross validation (CV; see Sect. 2.2.3 for more detail) and
compared to a range of error metrics (Sect. 2.2.4). The re-
sults showed that the monthly CWB calculated as the dif-
ference between monthly precipitation and potential evapo-
transpiration performs equivalently to the combination of its
components provided as individual model terms. Since our
study focuses more on a methodological assessment, we de-
cided to only include the CWB as a spatiotemporal predic-
tor for the sake of simplicity. Note that the CWB enters the
model as a static variable (MCWB) and as a spatiotemporal
covariate on a monthly basis (CWB). The former serves as
an intercept in the model, the latter as a temporal signal that
determines the monthly low-flow series.

The monthly CWB series are further coded as time lags
(l) from 1 to 12 months (CWBl) before each value in the
target series. These lags are assumed to represent antecedent
conditions in low-flow generation. In addition to using “raw”
CWB values, the CWB was additionally transformed in or-
der to test whether standardization has an effect on the per-
formance of the predictor. First, each spatiotemporal variable
(CWB, CWBl) is centered by month (m) and station (s) via
CWBcenter,s,m = CWBs,m−CWBs,m, where CWBs,m is the
monthly climatic water balance at a station, and CWBs,m
its monthly mean. Second, we transform the climatic wa-
ter balance (CWB, CWBl) to a non-parametric standardized
drought index (SDI), similar to the SPEI (Beguería et al.,
2014). Instead of fitting a parametric distribution, we esti-
mate the empirical probability of the CWBs,m. The empirical
probabilities are then transformed to quantiles of a standard
normal distribution. A visualization of these two transforma-
tions is given in Fig. 2 and a short overview of the variables
in Table 2. These two transformations are highly correlated
to the initial CWB, but can provide additional information
for our model. All these lags and transformations are used
simultaneously as input variables for our model, resulting in
39 spatiotemporal predictor variables.

Apart from the static predictions and the spatiotemporal
covariates, some variables were added to capture the tem-
poral periodicity. The numeric variable of the month (m=
1,2, . . .,12), was converted to a categorical variable and ad-
ditionally transformed to a sine and cosine curve so that their
two-dimensional overlay gives a representation of the annual
circle. In addition, the year was added as a numeric variable,
and finally a cumulative sum of months (mcum = 1,2, . . .444)
was added in order to represent long-term trends of low
flows. In total, this results in an initial set of 116 predictor
variables that are used for the variable selection procedure.
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Figure 1. Example of the calculation of the monthly q95 time series for the gauging station Hollenstein in lower Austria. Panel (a) shows the
daily discharge in July 2015, (b) represents the monthly q95 and daily discharge for the full year of 2015, and (c) displays the full monthly
q95 time series for the station.

Figure 2. Example of the transformations of the climate water balance (CWB) with no lag at station Hollenstein. Panel (a) shows the absolute
values of the CWB. Panel (b) represents the CWB centered for each month and (c) is a computation of a non-parametric standardized drought
index (SDI) for each month.

2.2 Methods

2.2.1 Extreme gradient tree boosting

Extreme gradient tree boosting (Chen and He, 2015; Chen
and Guestrin, 2016) is a fast implementation of gradient tree

boosting (Friedman, 2001) and based on the general boost-
ing algorithm (Friedman et al., 2000). The method is robust
to overfitting and beneficial when predictors are collinear.
Gradient tree boosting consists of an ensemble of additive
trees that are each fitted by a greedy algorithm to minimize
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Table 1. Descriptions of static predictors used in the study, structured in topological, land-use, geological, and meteorological characteristics.
Abbreviations are further used in plots. Precipitation, climatic water balance, potential evapotranspiration, aridity index, snowmelt, and
temperature variables are used on an annual and a summer/winter half-year basis. These different accumulation periods are indicated in the
subscript: no subscript for annual characteristics (e.g., P ), win for winter (e.g., Pwin), sum for summer (e.g., Psum).

Variable Description Unit

A Catchment area km2

Lat, Long Latitude and longitude of gauging station Decimal degrees
H+, H0, HM, HR Maximum, minimum, mean, and range of catchment altitude m
E Altitude of gauging station m
SM Mean catchment slope %
SSL, SMO, SST Fraction of slight (< 5 %), moderate (5 % to 20 %), and steep slope

(> 20 %) in the catchment
%

MS Major class of fraction of slope (slight, moderate, or steep) –

LU, LA, LC, LF, LG,
LR, LW, LWA, LGL

Fraction of urban areas, agricultural areas, permanent crop, forest,
grassland, wasteland, wetlands, water surfaces, glacier in catchment

%

ML Major land-use class in the catchment –

GB, GG, GT, GF, GL,
GC, GGS, GGD, GSO

Fraction of Bohemian Massif, quaternary sediments, tertiary sediments,
flysch, limestone, crystalline rock, shallow and deep groundwater table,
source region in catchment

%

MG Major geological class in the catchment –
D Stream network density 102 m km−2

P Precipitation mm
ETP Potential evapotranspiration mm
AI Aridity index –
AImin Half year with lower AI –
MCWB Mean climatic water balance mm
S Snowmelt mm
T+, T0, TM, TR Maximum, minimum, mean, and range of temperature ◦C
P0 Average number of days without precipitation (< 1 mm) days
PH Average number of days with precipitation > 5 times the mean days

Table 2. Description of the different lags and transformations for the CWB. Center means centering per station and month and the standard-
ized drought index (SDI) is transforming the CWB to an SDI per station and month.

Variable Description Unit

CWB Monthly climatic water balance mm
CWBl Monthly climatic water balance at time lag l mm
CWBl,center Centered CWBl with respect to station and month mm
CWBl,SDI Standardized drought index of the CWBl with respect to station and month –

a predefined loss function. Let y be a vector of our response
variable (monthly specific low flow q95) of length n= s · t ,
where s is the number of stations and t the length of each
individual time series per station, and index i referring to its
ith element. Further, let X be our predictor matrix with n×p
elements, wherein p is the number of predictor variables. We
can then write the regression equation as

ŷi =

K∑
k=1

fk(Xi),fk ∈ F, (1)

where fk (k = 1, . . .,K) is the ensemble of regression trees,
and K the number of trees used. The regression trees are fit-

ted in an additive manner, where an objective function Lk is
minimized:

Lk =

n∑
i=1

L
(
yi, ŷ

k−1
i + ηfk(xi)

)
+�(fk). (2)

The kth iteration loss is denoted as Lk , ŷk−1
i is the prediction

of the regression tree in the previous iteration, fk is the tree
that most improves our model considering the predefined loss
function, �(fk) is an additional penalization parameter for
the complexity of the model and η is a shrinkage parameter.
The shrinkage parameter η is set to 0.1, where a small value
of η minimizes the risk of overfitting and the possibility of
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finding only local minima. To reduce the computational bur-
den, we tuned only the following hyperparameters for the fi-
nal predictions: the maximum depth (the final XGBoost was
optimized for a sequence from 6–8) of each additive tree,
subsampling of predictor columns (0.25–1), which only uses
a fraction of all predictors to search for the optimal split and
subsampling of the observations (0.5–1), equivalent to ran-
dom forests. Subsampling of the observations and the predic-
tor variables is used to decorrelate the trees. The maximum
depth can be described as the order of interaction used in the
model. Finally, we introduced an early stopping rule for the
boosting iterations, where the algorithm stops when the error
does not decrease for K = 50 iterations. The range of hyper-
parameters was set based on experience with the XGBoost
model and our individual dataset. The final XGBoost model
was optimized in a 10-fold CV by using all parameter combi-
nations and tuning the number of boosting iterations (number
of trees). A detailed description of our validation scheme is
given in Sect. 2.2.3).

2.2.2 Loss function

One crucial point in our study is the application of a suit-
able loss function. The loss function has to be a twice dif-
ferentiable convex function. Since our main aim is to model
the low flows in the range of annual minima corresponding
to the lower tail of the monthly q95 series, we propose us-
ing the expectile loss (LτEL) for model fitting. Expectile re-
gression (Aigner et al., 1976; Newey and Powell, 1987) is a
squared variant of quantile regression (Koenker and Bassett,
1978), where the absolute deviations are substituted by the
squared deviations (Kneib, 2013). Expectile regression was
already implemented in a boosting framework (Sobotka and
Kneib, 2012) and the resulting expectile loss can be defined
as follows:

LτEL,i =

{
τ ·
(
yi − ŷi

)2
,

(
yi − ŷi

)
≥ 0

(1− τ) ·
(
yi − ŷi

)2
,
(
yi − ŷi

)
< 0,

(3)

where LτEL,i is summed up to LτEL (LτEL =
∑n
i=1L

τ
EL,i) for

minimizing the error over all observations. If τ = 0.5, the
expectile loss is a scaled variant of a squared loss function
(Lsquared =

∑n
i=1(yi − ŷi)

2) resulting in a least squares re-
gression. Figure 3 shows that altering τ leads to an asym-
metric weighting of the squared loss, where smaller τ give
more emphasis on negative residuals. Expectiles cannot di-
rectly be interpreted as a flow quantile, as this would be
possible for quantile regression, but studies show that using
transfer functions can do this very accurately (Waltrup et al.,
2015) and differences mainly arise in the tail of the distribu-
tion. Estimating a full distribution of τ values is not a very
practical approach for our large dataset. Therefore, we will
assess a sequence of τ values (τ = 0.01, 0.025, 0.05, 0.1,
0.2, 0.3) and the special case of a least squares regression
(τ = 0.5). Within this sequence, the τ values of 0.1,0.05,

and 0.025 give good approximations of our three thresholds:
q95d, q98d, and q99d. Finally, we will compare the expectile
loss function to the absolute loss (Fig. 3):

Labs,i = |yi − ŷi |. (4)

In case of the absolute loss, the mean absolute error will
be minimized by the mean

(
MAE=

∑n
i=1Labs,i
n

)
, and in

case of the median absolute loss by the median (MDAE=
median(Labs,i)). In both cases, the second derivative is ap-
proximated by a vector of 1 s.

2.2.3 Variable selection and validation scheme

Model evaluation is performed by a nested 10-fold CV (Var-
muza and Filzmoser, 2016). A nested CV contains two loops:
an inner loop which is used for tuning of hyperparameters
and variable selection and an outer loop for evaluating the
predictive performance of the models (Laimighofer et al.,
2022). In each inner loop, we include a variable selection
by recursive feature elimination (RFE; Granitto et al., 2006).
The RFE algorithm consists of an initial variable ranking
and a backward variable selection. The initial variable rank-
ing is computed by using the XGBoost algorithm with 500
boosting iterations and default hyperparameters (maximum
depth= 8, subsample= 1, fraction of p= 0.5). The variables
are ranked after their additive gain in minimizing the loss
function over the 500 boosting steps. For a more robust ap-
proach, the initial variable ranking is averaged over 25 boot-
strap samples. The gain of each variable for the final vari-
able ranking is the ratio of the individual additive gain to
the total gain over all variables. In a next step, we are fitting
an XGBoost model to a sequence from 5 to the maximum
number of variables (p), but only with a step length of 5 to
reduce the computational burden. For each number of vari-
able, the error is calculated and averaged over all 10-fold CV
runs of the inner loop. The number of variables are then de-
termined by using a threshold of 1.05 times the minimum
error to produce parsimonious models. This approach yields
models with fewer variables at only a small loss in predic-
tive accuracy. Our method ensures that predictors are only
selected when they increase the predictive performance of
the model. In addition, the outer loop evaluates the predic-
tive performance at ungauged sites independently of model
fitting. The applied method is fully described in Laimighofer
et al. (2022) and to increase clarity we added a visual expla-
nation of the full CV procedure (Fig. 4).

2.2.4 Model evaluation

Model evaluation is performed by several error metrics. First,
we quantify the overall performance of the model by means
of four error metrics, the median absolute error (MDAE),
the mean absolute error (MAE), the root mean squared er-
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Figure 3. Comparison of different loss functions. Expectile loss functions are shown for various τ parameters and the absolute loss function.

Figure 4. The nested cross-validation (CV) procedure as adapted from the double CV-scheme of Varmuza and Filzmoser (2016).
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ror (RMSE):

RMSE=

√√√√1/N
N∑
i=1

(
yi − ŷi

)2
, (5)

and the coefficient of determination R2, which – by our def-
inition – is the same as the Nash–Sutcliffe efficiency (NSE)
(Blöschl et al., 2013):

R2
= 1−

∑N
i=1
(
yi − ŷ

)2∑N
i=1(yi − y)

2
. (6)

All measures are based on CV and therefore are indicators
of the predictive performance when estimating at ungauged
sites.

Second, we assess the predictive performance for indi-
vidual stations by calculating the R2 for each station sepa-
rately. The station-by-station performance is summarized by
the distribution and the median R2 over all stations, which
will be referred to as R2

med throughout the paper.
For a more comprehensive evaluation of the performance,

we perform a decomposition of the station-wise prediction
errors on different time scales. The purpose is to assess the
extent to which the model errors occur at the annual, sea-
sonal, and monthly level, and which part of the error is due
to a systematic error (i.e., bias). This will allow us to get in-
sight into structural strength and weaknesses of the models.
This decomposition is done by a three-way ANOVA, which
was applied by e.g., Parajka et al. (2016) for assessing uncer-
tainty contributions of climate projections. The basic linear
model for our ANOVA can be defined as follows:

ym,yr− ŷm,yr = µ+αm+βyr+ εm,yr, (7)

where the left-hand side (predictand) are the prediction er-
rors of a model at a single station. These are decomposed
into the terms µ representing the mean error (i.e., bias), αm
the seasonal effects (m= 1,2, . . .,12), βyr the mean annual
effects (yr = 1,2, . . .,37), and the residual term εm,yr corre-
sponding to the model errors at the monthly level. Note that
µ is not a classical intercept but enters as a constant factor
(coded as a vector of 1 s) which allows the bias to be con-
sidered as a separate effect in the error decomposition. In the
ANOVA framework, the total variance of the prediction er-
rors is characterized by the total sum of squares SST, and is
decomposed into additive variance components of individual
effects:

SST = SSbias+SSseason+SSyear+SSE. (8)

The variance contributions of each term are estimated by the
measure ω2, which is an analogue to the coefficient of de-
termination. The measure ω2 of, e.g., the seasonal effect is
defined as:

ω2
season =

SSseason− dfseason ·MSE

SST−MSE
, (9)

where dfseason are the degrees of freedom (i.e., number of
factor levels −1), and MSE = SSE/dfE the residual mean
squared error, which can be seen from the ANOVA table. The
contribution of the mean annual effect (ω2

year) and the fraction
of the bias (ω2

bias) can be determined analogously and a more
detailed description can be found in Parajka et al. (2016). Fi-
nally, the residual term ω2

E can be calculated as follows:

ω2
E = 1−ω2

season−ω
2
year−ω

2
bias. (10)

The last part of our model evaluation specifically empha-
sizes the extreme low flows. This is assessed by three perfor-
mance metrics. First, we filter the observations at each station
by a specific quantile and calculate the overall R2 based on
the residuals of the filtered cases. Second, we calculate the
relative expectile error (ELτ ) at each station:

ELτ = 1−
LτEL

(
yi, ŷi

)
LτEL (yi,q(y,τ ))

. (11)

The error metric is defined in analogy to the expectile loss
function to give more weight to the fraction of τ lowest val-
ues. The denominator (LτEL) is the naive estimate for each
station. For this purpose, we are using the τ -quantile of the
observations (q(y,τ )) as a simple prediction at the specific
station, assuming that quantiles and expectiles give similar
estimates. The numerator, on the other hand, is the expec-
tile error (LτEL) for the predictions of our model. Similar to
the R2, the ELτ is bounded at a maximum of 1, represent-
ing perfect model fit. Values below 0 indicate that the naive
prediction of the τ -quantile would result in a better predic-
tion than our model. One advantage of this metric is that it
is based on the full data, but gives more weight to the values
below our selected τ .

Finally, we want to capture the model ability of classifying
extreme low-flow events. For this purpose, the specific low-
flow quantiles q95d, q98d, and q99d are calculated from the
daily discharge records and used as thresholds for identify-
ing drought events in the monthly low-flow series. Based on
these thresholds, the drought/no drought cases of observed
and predicted monthly time series are binary coded, and we
calculate the hit score (HS) and the precision (Prec) for eval-
uating the performance at each station. The hit score (also
termed recall, sensitivity, or true positive rate) is calculated
by

HS = ETpred/Eobs, (12)

where Eobs is the number of low-flow events in the original
data and ETpred is the number of low-flow events correctly
classified by the predictions. The precision is computed as
follows:

Prec =
ETpred

ETpred+EFpred
, (13)

where EFpred is the number of low flows falsely predicted by
each monthly time series.
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Table 3. Overview of the error metrics for all loss functions. Shown
are the MDAE, MAE, RMSE, and R2, all representing the overall
predictive performance of the model for the study area.

Loss function MDAE MAE RMSE R2

Absolute 2.01 3.95 8.28 0.74
Median absolute 1.99 3.95 8.42 0.73
Expectile 0.5 1.81 3.50 6.98 0.81
Expectile 0.3 1.85 3.58 7.20 0.80
Expectile 0.2 1.90 3.80 7.72 0.77
Expectile 0.1 2.09 4.26 8.77 0.70
Expectile 0.05 2.72 5.61 11.21 0.52
Expectile 0.025 3.36 6.63 12.87 0.36
Expectile 0.01 4.21 7.79 14.45 0.20

The data analysis was performed in R (R Core Team,
2021) and we want to acknowledge the use of the follow-
ing packages: XGBoost (Chen et al., 2021), dplyr (Wickham
et al., 2021), purrr (Henry and Wickham, 2020), tidyr (Wick-
ham, 2021), ggplot2 (Wickham, 2016), caret (Kuhn, 2021),
glmnet (Friedman et al., 2010), tidyselect (Henry and Wick-
ham, 2021), tibble (Müller and Wickham, 2021), receipes
(Kuhn and Wickham, 2021), ggthemes (Arnold, 2021), lubri-
date (Grolemund and Wickham, 2011), wesanderson (Ram
and Wickham, 2018).

3 Results

3.1 Global model performance

Table 3 presents the results for the overall performance of our
spatiotemporal model. Generally, most loss functions show a
good overall performance. The 0.5 expectile yields the best
R2 of 0.81, which is substantially higher than 0.73 for the
median absolute loss and 0.74 for the mean absolute loss.
Regarding the MDAE, which gives more focus on low val-
ues, there is no change in the overall ranking of methods,
with a MDAE of 1.81 for the 0.5 expectile, 1.99 for the me-
dian absolute loss, and 2.01 for the mean absolute loss. Re-
garding the results of the expectiles with τ smaller than 0.5,
we can identify a decreasing performance towards smaller
expectiles over all performance metrics. The R2 is stable un-
til the 0.3 expectile and then suddenly drops from 0.8 (0.3
expectile) to 0.2 for the 0.01 expectile. A similar loss in per-
formance can also be observed with the MDAE, MAE, or
RMSE. Expectiles below 0.05 show an insufficient perfor-
mance on these global error metrics. For example, the RMSE
of the 0.01 expectile is twice as high as the RMSE of the 0.5
expectile. Nevertheless, expectiles such as 0.2 and 0.3 show
better overall metrics than the median absolute loss and the
absolute loss, and even the 0.1 expectile demonstrates only a
somewhat lower R2 of 0.7.

Table 4. Performance per station summarized by the median R2

over all stations (R2
med) and the fractions of stations with an R2

below 0.5.

Loss function R2
med R2 < 0.5

Absolute 0.58 0.39
Median absolute 0.57 0.40
Expectile 0.5 0.67 0.26
Expectile 0.3 0.65 0.32
Expectile 0.2 0.60 0.36
Expectile 0.1 0.48 0.54
Expectile 0.05 0.14 0.89
Expectile 0.025 −0.13 0.98
Expectile 0.01 −0.50 1.00

3.2 Station-by-station performance

A more detailed examination of our results is realized by ana-
lyzing the performance per station. Table 4 gives an overview
of the results and Fig. 5 shows the empirical cumulative dis-
tribution of the station-specific R2. From the graphs, the 0.5,
0.3, and 0.2 expectiles outperform the other models across
all stations. The 0.5 expectile has the highest R2

med (0.67)
and shows a far better performance than the median absolute
loss (0.57) and the mean absolute loss (0.58). This gener-
ally good performance is further underlined by the finding
that only 26 % of the stations have a R2 below 0.5 for the
0.5 expectile. In contrast, for the mean and median absolute
losses, about 40 % of the stations yield a R2 below 0.5. For
the expectiles lower than 0.5, we can identify a decrease of
the R2

med, from 0.65 for the 0.3 expectile to 0.14 for the 0.05
expectile. Generally, low expectiles (0.01, 0.025, 0.05) yield
a high number of inadequate models, where almost 90 % of
the stations obtain a R2 below 0.5 for the 0.05 expectile. In
case of the 0.01 expectile, no station has a R2 greater than
0.5. However, the 0.2 and 0.3 expectiles still yield a higher
R2

med of 0.65 and 0.6, compared to the mean absolute loss
(0.58) and median absolute loss (0.57). Further, the fraction
of stations with a weak performance (R2 < 0.5) is also lower
for the 0.2 and 0.3 expectiles as shown in Table 4. These find-
ings suggest, in response to our first research question, that a
single model can provide very accurate results for most sta-
tions (0.5, 0.3, 0.2 expectiles), but 26 % to 36 % of the sta-
tions have inadequate performance. The origin of these errors
will be analyzed in more depth in the subsequent section. As
the results of the mean and the median absolute loss could
not compete with the performance of the 0.2, 0.3, and 0.5 ex-
pectiles, we will not further include these two loss functions
in our analysis.

3.2.1 Error decomposition

For a better understanding of the error at the individual sta-
tions, we decompose the model error at each station into
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Figure 5. Empirical cumulative distribution function of station-wise R2 by loss function across all stations. For improving visual clarity, the
x axis is bounded at −1.

monthly, seasonal, annual fractions and a component repre-
senting the average error (prediction bias). Figure 6a gives an
overview of the error components. For all expectiles, ω2

bias
and ω2

E are the most important components. For the expec-
tiles from 0.1 to 0.5, the ω2

E is the main error contribution
with median values between 52 % (0.1 expectile) and 59 %
(0.2 expectile). The median values of ω2

bias increases with
decreasing τ , from 15 % to 19 % for the 0.5 to 0.2 expectiles,
and 28 % for the 0.1 expectile. This trend continues for the
smaller expectiles where the fraction of the mean error rises
up to 56 % for the 0.01 expectile. At the same time, ω2

E de-
creases for smaller expectiles, showing that expectiles with
small τ are better fitted to the monthly values but predictions
are generally less accurate. With median values around 10 %
and between 3 % and 6 %, respectively, the seasonal and an-
nual errors are much smaller than the mean error component
and show a good performance of the models in predicting
annual and seasonal low-flow variability.

An additional perspective comes from analyzing the share
of stations showing only moderate or weak performance, as
indicated by an R2 of less than 0.5. As an example, Fig. 6b

shows such ill-performing stations for the case of the 0.5 ex-
pectile model, with 67 stations (or 26 %) having an R2 be-
low 0.5. The main error contribution for these stations is the
ω2

bias with a median value of 56 %, which is much higher
than the ω2

bias of the well-performing stations (median value
of 11 %). This again re-emphasizes the earlier finding that
the main shortcoming of our modeling approach is an error
in the mean, which reduces the predictive accuracy of the
models. Seasonal and monthly variability, though, are well
covered by the models, which is a strength of our spatiotem-
poral modeling approach.

3.3 Prediction of extremes

One objective of this study was the application of different
expectiles for improving predictions at low extremes. This
section will consequently focus on their evaluation. In a first
step, we will filter our observations by only considering the
observations at each station below a specific quantile. The
filtered observations are then used to calculate an overall R2,
which is shown in Fig. 7. We can identify a huge performance
advantage for low expectiles for predicting low extremes. For
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Figure 6. Error components of various expectile models. Panel (a) shows the relative error contributions for the season, year, month, and the
bias part across all stations. The median (point) together with the 25 % quantile and the 75 % quantile (whiskers) of relative errors for each
expectile loss function are shown. Panel (b) displays the error components for the 0.5 expectile in greater detail. The points are the stations
which have a R2 lower than 0.5.

example, if we assess the accuracy of our models for cases
below the 1 % quantile, the 0.01 expectile is yielding at least
a R2 of 0.42, where larger expectiles (0.05–0.5) show inef-
ficient models with R2 values below 0.1. What becomes ap-
parent is that the performance is dropping at some point for
the low expectiles (0.01, 0.025, 0.05), but is monotonically
increasing for all other expectiles. Considering the results at
the 25 % quantile, the R2 of the 0.01 expectile decreased to
0.28, so that the best performance is at the 0.1 (0.53) and
0.05 expectiles (0.51). Further, we found that the 0.5 expec-
tile has a lower performance than the 0.1, 0.2, and 0.3 expec-
tiles, even for estimating the lower 50 % of the data.

As a second assessment of the predictive performance for
low extremes, we compute the relative expectile error (ELτ ),
a weighted error metric that distributes weights by expec-
tile functions that have the greatest weight around τ . We
choose τ values of 0.1, 0.05, and 0.025, as these approxi-
mately correspond to the q95d, q98d, and q99d thresholds
used for drought identification. Figure 8 shows the expectile
errors ELτ calculated for every station. Generally, the 0.1 ex-
pectile demonstrates a good performance by all ELτ metrics.
Smaller expectiles (0.01, 0.025, 0.05) perform as good or bet-
ter than the 0.1 expectile for the ELτ=0.025 (which gives most
weight to most extreme events), but not for the other ELτ
metrics. Interestingly, the expectiles used for optimizing our
loss functions do not perform best considering the respective

ELτ metric. For example, we would assume that the best-
performing expectile for the ELτ=0.025 would be the 0.025
expectile, but on median, this expectile yields a ELτ=0.025 of
0.39, which is somewhat lower than the 0.1 expectile (0.4) or
the 0.025 expectile (0.44). Furthermore, the smallest expec-
tile (0.01) only obtains a median ELτ=0.025 of 0.29, which is
only slightly higher than the 0.2 expectile (0.28). Higher ex-
pectiles (0.2, 0.3, 0.5) show an increasing performance with
higher τ , but their performance varies more across all sta-
tions. This suggests that one should choose an expectile func-
tion that gives most weight to somewhat higher values than
the drought threshold of interest, and τ values around 0.1 ap-
pear most accurate for q95d and q98d drought events.

In a final assessment of the model performance, we ana-
lyze the skill of the models to classify extreme events. For
this purpose, we focus on the hit score (HS) and the preci-
sion (Prec) at each station. Table 5 shows the median of these
two metrics over all stations and for all expectiles. Both skill
scores decrease from less extreme (q95d) to more extreme
(q99d) low flows for all expectiles. Concerning the effect
of expectiles on Prec and HS, we see an opposite behavior,
with HS increasing towards the lower expectiles, and Prec
decreasing. For the lowest expectile (0.01), the HS reaches
0.98, 0.94, and 0.9 for the three low-flow thresholds, respec-
tively, showing that almost every observed drought event is
identified. On the other hand, the Prec is 0.2 for the q95d and
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Figure 7. Global R2 conditional to observations below low-flow thresholds. The thresholds are (station-wise) quantiles of the monthly time
series with 1 % to 100 % non-exceedance probability.

Figure 8. ELτ for τ = 0.025, 0.05, 0.1 presented for all expectiles. The median, 25 % quantile, and 75 % quantile over all stations and each
expectile are displayed.

only 0.07 on median for the q99d, which means that only 7 %
of the predicted extreme events per station were actually ex-
treme events. This points to an underestimation of extreme
low flows when using low expectiles for model fitting. In
contrast, using the 0.5 expectile would lead to an increase in

the precision rate, but to a very low hit score. Figure 9 shows
the contrasting properties of a high and low expectile model
on low-flow predictions. The low expectile shifts the predic-
tions to match the most extreme events but underestimates
the moderate events. Clearly, such low expectiles result in
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Figure 9. The predictions for the 0.01 and 0.5 expectiles are shown for station Au/Bregenzerach. The y axis is on a log scale for better
visualization of the low extremes. Error metrics for the 0.5 expectile: R2

= 0.95, HS = 0.51, Prec = 0.79; 0.01 expectile: R2
=−0.07,

HS = 0.94, Prec = 0.25.

Table 5. The precision Prec and hit rateHS are computed per station
and the median is shown in the table for q95d, q98d, and q99d.

q95d q98d q99d

Loss function Prec HS Prec HS Prec HS

Expectile 0.5 0.61 0.50 0.37 0.33 0.21 0.18
Expectile 0.3 0.59 0.54 0.41 0.37 0.21 0.24
Expectile 0.2 0.53 0.59 0.35 0.44 0.21 0.29
Expectile 0.1 0.49 0.72 0.30 0.52 0.16 0.36
Expectile 0.05 0.32 0.84 0.19 0.65 0.10 0.45
Expectile 0.025 0.26 0.93 0.15 0.82 0.10 0.64
Expectile 0.01 0.20 0.98 0.11 0.94 0.07 0.90

strongly biased models with little practical relevance. These
findings suggest a trade-off between accurate prediction of
extremes, overall prediction accuracy and correct classifica-
tion of extreme events, where the user needs to find some
optimum.

3.4 Variable selection

The implemented RFE algorithm leads to a substantial re-
duction of variables. On median, the different expectiles re-
quire between 20 and 30 variables, except the 0.5 expec-
tile that has a median of 35 variables. A closer examina-
tion of the static predictors (an overview of the selection of
the static variables is given in Appendix A) shows that ge-
ological variables are never selected for any expectiles, and
also from the land-use variables only the fraction of forest
is selected frequently. However, a larger number of meteo-
rological variables were selected over all expectiles: aridity
index (AI, AIsum), annual climatic water balance (MCWB),

annual precipitation (P ), and days with zero precipitation in
the summer months (P0,sum). Despite their frequent appear-
ance in models, the performance gain of using meteorolog-
ical variables for predictions is low, with a typical variable
importance of less than 2 % for all models. In contrast, topo-
logical variables emerge as the dominant predictors in the
model. The three topological variables yielding the largest
performance gain in the models are the mean and maximum
catchment altitude (HM,H+) and the mean catchment slope
SM. The variable importance for HM is on average between
3.8 % and 4.4 % for all expectiles. A slightly increasing trend
towards larger expectiles can be observed for SM, with a vari-
able importance of 10 % for the 0.01 expectile and on aver-
age 11.6 % for the 0.5 expectile. An opposed effect can be
observed for H+, where the variable importance decreases
from 7.2 % for the 0.01 expectile to 4.3 % for the 0.5 expec-
tile. Other topological predictors whose inclusion only had
a minor influence on model performance are catchment area,
latitude, longitude, and altitude of the gauging station, stream
network density, and the fractions of flat, moderate, and steep
slopes in the catchment.

Figure 10 shows an overview of the variable importance
for the most relevant spatiotemporal predictors. The CWB
is the most important variable with more than 2 % perfor-
mance gain over all expectiles. The CWBcenter, CWB1, and
CWB1,center are also included in all models, but their variable
importance is only 1 % to 1.5 %. Higher lags of the CWB
are mainly included by the lower expectiles, but their per-
formance gain is somewhat smaller and decreases with the
lag of the variable. Comparing raw and standardized climate
variables, the transformation of the absolute values to cen-
tered values seem to be beneficial in the case of the CWB,
but this is not the case for the standardized drought indices,
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Figure 10. Selection of spatiotemporal variables that are used for different expectiles. For each expectile it is shown whether the variable is
used for the final prediction of the fold or not.

which were rarely selected and exhibited a low importance
score in all cases.

4 Discussion

4.1 Value of expectile regression tree models for
low-flow estimation

In this paper, we extended the extreme gradient boosting
model XGBoost with the expectile loss function to develop
a spatiotemporal model for low-flow predictions. We applied
different τ values from 0.01 to 0.5 and evaluated their predic-
tive quality in terms of overall performance, accuracy at ex-
tremes, and potential to classify extreme events in a time se-
ries. Our findings showed two contrasting behaviors. Larger
expectiles such as 0.2, 0.3, and 0.5 showed better perfor-
mance in respect to R2 and R2

med, whereas low expectiles
(τ = 0.01, 0.025, 0.05) led to a sharp decline in R2

med but
increasing prediction accuracy at extreme low flows. How-
ever, optimization of the model cannot be reduced to these

two criteria, as was shown in the further assessments. Low
expectiles lead to a reduced precision at extreme low-flow
events as a result of too many events being predicted. This
suggests an overfitting of the lower tail of the low-flow dis-
tribution by low expectiles that reduces the predictive per-
formance at the entire distribution. In contrast, the hit score
drops sharply for higher expectiles, resulting in a low de-
tection rate of extreme events. Therefore, the application of
the expectile loss has to be considered carefully and adjusted
to the specific research question. Figure 11 gives a synop-
sis of key performance metrics with respect to predicting
q95d, q98d, and q99d low-flow events. The synoptic repre-
sentation nicely shows the trade-off between different perfor-
mance metrics and puts the conclusions from their individual
assessment into context. Depending on the low-flow event, a
different optimum can be observed. When the focus of the
study is on annual low flows in the order of q95d, we see that
the 0.2 expectile yields the optimal model fit, indicated by
the crossing performance lines of the various metrics. How-
ever, when the purpose of the study is on predicting more
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extreme events (q98d and q99d), the 0.1 expectile is the op-
timal choice. These optima take into account the overall pre-
dictive performance (R2

med) and emphasize the performance
at the considered extreme, by the expectile loss, the hit rate,
and precision at the event of interest. The optimized model
shows a good performance in all metrics and appears well
suited for spatiotemporal predictions of low-flow events.

4.2 Performance compared to literature

Performance evaluation in light of the existing literature is
not straightforward, as we are not aware of any studies eval-
uating monthly low-flow models. Nevertheless, some studies
did model the mean monthly streamflow, which we will use
for comparison. Comparisons will be made on the NSE re-
ported in these studies, which is an analogue measure to the
R2 in our study (Blöschl et al., 2013; Parajka et al., 2013).
To put our monthly q95 models into context, we run an XG-
Boost model on monthly mean flow using the mean expectile
regression (0.5) for our dataset. This leads to a median per-
formance R2

med of 0.77 with only 15 % of the stations having
an R2 below 0.5. As expected, modeling monthly low flow
shows weaker performance than modeling the mean monthly
streamflow. Nevertheless, our results for q95 are still in
the range of published studies on mean monthly streamflow
models. For example, Cutore et al. (2007) found NSE values
ranging from 0.57 to 0.78 by modeling 9 basins in Italy using
ANNs. A similar performance has been reported by Pumo
et al. (2016) for 59 stations in Sicily, Italy. They modeled
monthly streamflow by interpolating regression parameters
to ungauged basins and their NSE values ranged from 0.7 to
0.8 for 6 selected validation stations. A comparative assess-
ment of regionalization approaches for hydrological mod-
els at 22 stations in the USA (Steinschneider et al., 2015)
showed NSE values ranging from 0.6 to 0.85. Note that
these results were obtained for relatively small datasets un-
der quite homogeneous hydrological conditions. In our study,
low-flow predictions were evaluated on a larger, diverse hy-
drological dataset and we found similar performance metrics
to those in the aforementioned studies.

A more qualitative embedding to the scientific literature
can be made by integrating our findings into the compara-
tive evaluation of regionalization procedures of Parajka et al.
(2013). Parajka et al. (2013) evaluated the performance of
runoff-hydrograph studies, mostly performed on a daily time
step, as a function of aridity, elevation, and catchment area
to assess the extent to which performance depends on main
climate and catchment characteristics. Figure 12 shows our
finding in context of these three catchment characteristics.
Parajka et al. (2013) found a decreasing performance with
higher aridity. In our study, the aridity index is below 0.6 for
all our catchments, but shows a similar decrease in perfor-
mance. In our study, the performance increases with catch-
ment elevation, with catchments below 450 m a.s.l. having
the lowest performance (R2

med of 0.5) and catchments above

1350 m a.s.l. the highest performance (R2
med of 0.8). The

increase in performance with elevation points to a higher
performance for catchments with dominant winter low-flow
seasonality, which can be explained by their more regular
and thus better predictable regime. We can indeed observe
a lower performance for stations with a summer low-flow
regime (R2

med = 0.63) than for stations with a winter low-
flow regime (R2

med = 0.73). However, in a stratified assess-
ment of summer and winter months, we could not find any
difference in performance, neither in the entire study area,
nor for summer- and winter-dominated catchments sepa-
rately. This is in contrast to Staudinger et al. (2011), who
found a reduction in model performance for summer months
compared to winter months for a Norwegian study area with
conditions comparable to the mountainous catchments in our
study. Finally, we also found more accurate model predic-
tions for larger basins. These are not due to a simple size
effect of catchment area on discharges, since we use specific
low flows as target variable to make catchments of different
size more comparable. Many of our small catchments are lo-
cated in a karstic environment or moors, which exhibit highly
irregular regimes that are particularly hard to regionalize.
Larger catchments, in contrast, have a more regular regime
and show a high prediction performance.

5 Conclusions

In this paper, we analyzed the performance of a single spa-
tiotemporal XGBoost model on the prediction of monthly
low flow for a comprehensive dataset of 260 gauging sta-
tions in Austria. We paid particular attention to the estima-
tion of low extremes, by applying the expectile loss func-
tion as a fitting criterion. Our results show that the expectile
loss yields a high prediction accuracy, but the performance
decreases strongly for small expectiles. The best-performing
model is the 0.5 expectile with a R2

med of 0.67, but also the
0.2 and 0.3 expectile reach a higher R2

med than the mean and
median absolute loss. Small expectiles such as 0.01 or 0.025
already yield a negative R2

med, resulting in a high number of
poor-performing stations.

Weak-performing stations can also be found for the 0.5
expectile, where 26 % of the stations have anR2 below 0.5. A
decomposition of the model error revealed that the monthly
error is the main error component for large expectiles, while
the seasonal and annual components are negligible for most
stations. Considering the weak-performing stations of the 0.5
expectile, the dominant error component is a systematic error
or bias. With a median value of 56 %, the bias is much larger
at these stations compared to well-performing stations with a
median value of only 11 %. This underlines the finding that
the main shortcoming of our approach is a systematic error,
which impairs the predictive accuracy. However, the strength
of our spatiotemporal model is the good approximation of
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Figure 11. Overview of the error metrics ELτ , Prec,HS, and R2
med, plotted against every expectile. In each panel,HS and Prec are computed

for the thresholds q95d, q98d, and q99d. The ELτ is calculated for the τ values of 0.025 (q95d), 0.05 (q98d), and 0.1 (q99d).

Figure 12. Panels (a), (b), and (c) show R2 per station of the 0.5 expectile plotted against the aridity index, elevation and the area. In all
plots, outliers are not included for a better visualization.

the seasonal and annual variability of monthly low flows, as
shown by the low seasonal and annual error component.

Despite the low global performance of small expectiles
(τ = 0.05, 0.025, 0.01), they demonstrate an increasing ac-
curacy when focusing on low extremes. This improvement
in predictive performance has the simultaneous disadvantage
that extreme low flows are increasingly misclassified. We
found that the application of the expectile loss results in a
trade-off between global performance, prediction accuracy of
extremes, and misclassification rate of extreme events. The
implementation of the 0.1 or 0.2 expectiles, depending on
whether we want to optimize predictions for annual or more
extreme low flow, appears to be optimal with respect to all
criteria. The resulting extreme gradient tree boosting model

covers seasonal and annual variability nicely and provides a
viable approach for spatiotemporal modeling of a range of
hydrological variables that represent average conditions and
extreme events.

We demonstrate that the expectile loss is a suitable alter-
native to common loss functions in spatiotemporal low-flow
models. However, its application is not limited to statistical
learning models such as XGBoost, but can also be considered
for hydrological models when their focus is on predicting hy-
drological extremes. As with all models, there is a trade-off
between overall predictive performance, accuracy on the tails
of the distribution, and identification of extreme events that
should be considered in model applications.
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Appendix A

Figure A1. Predictive power of static topological predictors obtained by the backward variable selection procedure (Sect. 2.2.3). The per-
formance gains of the 10 prediction folds per expectile model are shown, with colors indicating whether the variable is used for the final
prediction of the fold or not. Variables that were never selected by our model are not shown.
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Figure A2. Predictive power of static meteorological predictors obtained by the backward variable selection procedure (Sect. 2.2.3). The
performance gains of the 10 prediction folds per expectile model are shown, with colors indicating whether the variable is used for the final
prediction of the fold or not. Variables that were never selected by our model are not shown.
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Figure A3. Predictive power of static land-use predictors obtained by the backward variable selection procedure (Sect. 2.2.3). The per-
formance gains of the 10 prediction folds per expectile model are shown, with colors indicating whether the variable is used for the final
prediction of the fold or not. Variables that were never selected by our model are not shown.
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