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Abstract. Modeling water flow in unsaturated soils is vital
for describing various hydrological and ecological phenom-
ena. Soil water dynamics is described by well-established
physical laws (Richardson–Richards equation – RRE). Solv-
ing the RRE is difficult due to the inherent nonlinearity of
the processes, and various numerical methods have been pro-
posed to solve the issue. However, applying the methods
to practical situations is very challenging because they re-
quire well-defined initial and boundary conditions. Recent
advances in machine learning and the growing availability
of soil moisture data provide new opportunities for address-
ing the lingering challenges. Specifically, physics-informed
machine learning allows both the known physics and data-
driven modeling to be taken advantage of. Here, we present
a physics-informed neural network (PINN) method that ap-
proximates the solution to the RRE using neural networks
while concurrently matching available soil moisture data.
Although the ability of PINNs to solve partial differential
equations, including the RRE, has been demonstrated previ-
ously, its potential applications and limitations are not fully
known. This study conducted a comprehensive analysis of
PINNs and carefully tested the accuracy of the solutions by
comparing them with analytical solutions and accepted tra-
ditional numerical solutions. We demonstrated that the solu-
tions by PINNs with adaptive activation functions are compa-
rable with those by traditional methods. Furthermore, while
a single neural network (NN) is adequate to represent a ho-
mogeneous soil, we showed that soil moisture dynamics in
layered soils with discontinuous hydraulic conductivities are
correctly simulated by PINNs with domain decomposition
(using separate NNs for each unique layer). A key advantage
of PINNs is the absence of the strict requirement for precisely

prescribed initial and boundary conditions. In addition, un-
like traditional numerical methods, PINNs provide an inverse
solution without repeatedly solving the forward problem. We
demonstrated the application of these advantages by success-
fully simulating infiltration and redistribution constrained by
sparse soil moisture measurements. As a free by-product, we
gain knowledge of the water flux over the entire flow domain,
including the unspecified upper and bottom boundary condi-
tions. Nevertheless, there remain challenges that require fur-
ther development. Chiefly, PINNs are sensitive to the initial-
ization of NNs and are significantly slower than traditional
numerical methods.

1 Introduction

Near-surface soil moisture is a critical variable for under-
standing land–atmosphere interactions. Its applications range
from hydrological modeling and agricultural water manage-
ment to the prediction of natural disasters (Robinson et al.,
2008; Vereecken et al., 2008; Babaeian et al., 2019). Near-
surface soil moisture is also a dominant factor that regulates
microbial activity and organic matter dynamics (Pries et al.,
2017).

With the technological advancement of soil moisture sen-
sors and remote sensing, the availability of soil moisture data
is proliferating (e.g., Sheng et al., 2017; Babaeian et al.,
2019). To gain knowledge and insight from such abundant
soil moisture data, machine learning (ML) is an appealing
tool as we have seen its successes in various fields, such as
image recognition, machine translation, and natural language
processing. However, soil moisture data are sparsely col-
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lected, with measurement errors in heterogeneous and com-
plex soils. Therefore, it may not be enough to solely rely
on a data-driven machine learning approach. An alternative
approach combines machine learning with physical model-
ing, mainly described as differential equations. Such a hybrid
approach has attracted attention in computational physics
and related fields and is called scientific ML or physics-
informed ML (Karniadakis et al., 2021).

Physical modeling of soil moisture is commonly con-
ducted by solving a partial differential equation (PDE)
called the Richardson–Richards equation (RRE) (Richard-
son, 1922; Richards, 1931). Water transport properties in
soils are expressed in the RRE as two relations, the water
retention curve (WRC) and the hydraulic conductivity func-
tion (HCF), which are both highly nonlinear functions (As-
souline and Or, 2013). This double nonlinearity makes it
challenging to analyze and solve the RRE, which has been
investigated by soil physicists and mathematicians for many
decades (Philip, 1969; Radu et al., 2008; Mitra and Vohralík,
2021). Indeed, the RRE is one of the most challenging PDEs
in hydrology, and the large-scale soil moisture modeling
based on the RRE has been prohibitive due to the computa-
tional demand and its unreliable solution (Paniconi and Putti,
2015; Farthing and Ogden, 2017).

Artificial neural networks (NNs) have attracted attention
as an alternative numerical solver of PDEs recently. While
there are some similarities between artificial NNs and bio-
logical NNs (i.e., our brain), in this context, artificial NNs
should be considered as mathematical functions with specific
architectures with many adjustable parameters. Thus, artifi-
cial NNs are simply referred to as NNs in this study. Cybenko
(1989) and Hornik (1991) mathematically proved that NNs
can approximate any continuous function under certain con-
ditions. The application of NNs to various fields relies on this
so-called universal approximation capability to find func-
tional relationships between available input data and target
variables. Regardless of the tremendous implication of the
universal approximation capability, it is not easy to find NNs
that can approximate such functional relationships. There-
fore, significant efforts have been devoted in the machine
learning community to investigate how to adjust NN param-
eters (or train NNs) for specific problems.

The solution to PDEs is a functional relationship be-
tween dependent and independent variables. Therefore, it is
straightforward to apply NNs to approximate the solution.
Lagaris et al. (1998) were among the first to use NNs to ap-
proximate the solution to boundary value problems for PDEs.
To train NNs, they defined a loss function so that NNs satisfy
both PDEs and the corresponding boundary conditions and
minimized the loss function to estimate the NN parameters.
The minimization of the loss function required the computa-
tion of the gradient of the loss function with respect to the
NN parameters as well as the partial derivatives of the PDEs.
At that time, such gradients and partial derivatives were com-
puted by manual derivation and programming. However, re-

cent progress in the software environment (e.g., TensorFlow,
Abadi et al., 2015, and PyTorch, Paszke et al., 2019) imple-
menting automatic differentiation (Baydin et al., 2018) en-
abled us to compute such gradients and partial derivatives in
a scalable manner with advanced processors such as graph-
ics processing units (GPUs). With the technological progress,
the NN-based methods to solve PDEs were reformulated as
physics-informed neural networks (PINNs) by Raissi et al.
(2019). PINNs have been applied to both forward and in-
verse modeling of PDEs in various fields, such as incom-
pressible flows (Jin et al., 2021), subsurface transport (He
et al., 2020; Tartakovsky et al., 2020), and water dynamics
in soils (Bandai and Ghezzehei, 2021). Karniadakis et al.
(2021) provide a comprehensive review of PINN approaches.

PINNs are particularly promising for ill-posed forward
and inverse modeling. Traditional numerical solvers, such as
finite difference methods (FDMs) and finite element meth-
ods (FEMs), require well-defined initial and boundary con-
ditions, but they are often incomplete (i.e., ill-posed). This
is usually the case for simulating near-surface soil moisture
in real-world field condition, where obtaining accurate initial
and boundary conditions is not possible without costly in-
strumentation (e.g., lysimeters or flux towers) (e.g., Dijkema
et al., 2017).

A natural question on PINNs is whether PINNs can re-
place traditional numerical solvers. According to previous
studies and our experiences, it is currently hard for PINNs
to achieve the same accuracy as traditional methods in a
competitive computational time. However, PINNs might be
a competitive numerical solver for highly nonlinear PDEs
(e.g., the RRE and the Navier–Stokes equation) in high di-
mensions, where traditional numerical solvers become com-
putationally demanding. For example, when simulating wa-
ter flow under infiltration based on the RRE using traditional
numerical methods, the spatial mesh must be very small
near the soil surface to obtain reliable solutions, which is
computationally very expensive or intractable for a three-
dimensional watershed scale. Although there is progress in
numerical methods other than PINNs, including a discon-
tinuous Galerkin method with adaptive spatial and temporal
meshes (Clément et al., 2021), it is worthwhile to seek the
potential of PINNs to solve the RRE.

In the study, we conducted a comprehensive analysis of
PINNs as a forward and inverse numerical solver of the one-
dimensional RRE for homogeneous and heterogeneous soils.
This paper is a continuation of our previous work (Bandai
and Ghezzehei, 2021), where PINNs were used to estimate
soil hydraulic properties from soil moisture measurements.
Unlike the previous work, we investigated the ability of
PINNs to solve the forward problem in addition to the in-
verse problem, and the framework was extended to heteroge-
neous soils. Because of the rapid progress in the field, it is
impossible to test all the variants of PINNs and their train-
ing methods. Accordingly, we implemented some promising
PINN methods, including layer-wise locally adaptive activa-
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Figure 1. (a) Schematic description of a soil consisting of two distinct layers with soil moisture sensors. (b) Physics-informed neural net-
works (PINNs) with domain decomposition for a two-layered soil. For each input t(i) and z(i), physics and data constraints are computed
through automatic differentiation. The neural network parameters 2U and 2L are estimated by minimizing the loss function L. (c) Compu-
tation by a single unit. The input values (x1, x2, x3) are summed with weights (w1, w2, w3) and added by a bias term b. The result is fed
into the activation function σ . (d) The tanh function as an adaptive activation function with a fixed scaling parameter s and a trainable slope
parameter a. The figure was inspired by Jagtap and Karniadakis (2020).

tion function (L-LAAF) (Jagtap et al., 2020) and domain de-
composition (Jagtap and Karniadakis, 2020), where two NNs
interact with each other through interface conditions to ac-
count for the discontinuity of hydraulic conductivity across
layers (see Fig. 1). To validate and evaluate the solutions de-
rived from PINNs, we compared them to the analytical so-
lutions given by Srivastava and Yeh (1991) and numerical
solutions by an FDM and an FEM. The effects of the archi-
tecture of NNs and various parameters on the performance
of PINNs were investigated. In addition to the forward mod-
eling, we conducted inverse modeling using synthetic data,
where a surface water flux upper-boundary condition was
estimated from near-surface soil moisture measurements by
PINNs. Finally, we discuss current challenges and future per-
spectives of PINNs for forward and inverse modeling of soil
moisture dynamics based on the RRE.

2 Methods

2.1 Richardson–Richards equation

We consider water transport in unsaturated isothermal rigid
soils. In this study, hysteresis and vapor flow are ignored, and
soil hydraulic properties are isotropic. The mass balance of
water in a control volume implies the continuity equation:

∂θ

∂t
=−∇ ·q+ S, (1)

where θ is the volumetric water content [L3 L−3], t is the
time [T], q is the water flux in three dimensions [L T−1], and
S is the source term [T−1]. The water flux q can be derived
from the Buckingham–Darcy law (Buckingham, 1907):

q=−K(θ)∇H, (2)

where K is the hydraulic conductivity [L T−1], and H is
the total water head [L], which is the sum of the water
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potential in soils ψ [L] and the elevation head z (posi-
tive upward). Equations (1) and (2) are combined to de-
rive the Richardson–Richards equation (RRE) (Richardson,
1922; Richards, 1931):
∂θ(ψ)

∂t
=∇ · [K(θ)∇(ψ + z)] + S. (3)

This form of the RRE is called the mixed-form RRE, where
both the volumetric water content θ and the water poten-
tial ψ appear in the equation. To solve the RRE, the two
relationships (i.e., θ(ψ) and K(θ)) need to be defined. The
θ(ψ) relationship is called the water retention curve (WRC),
while K(θ) is referred to as the hydraulic conductivity func-
tion (HCF). The WRC and HCF are called constitutive rela-
tionships of the RRE that characterize the movement of the
water in the pore space. WRCs and HCFs are commonly
expressed by parametric models such as the Brooks and
Corey model (Brooks and Corey, 1964), the van Genuchten–
Mualem model (van Genuchten, 1980), and the Kosugi
model (Kosugi, 1996). In this study, the one-dimensional
RRE without the source term S is studied, which is written
as
∂θ(ψ)

∂t
=
∂

∂z

[
K(θ)

(
∂ψ

∂z
+ 1

)]
. (4)

The zero source term S means the neglect of plant water up-
take, which is valid for bare soils or soil moisture dynamics
under infiltration. The one-dimensional assumption can be
reasonable because water flow in near-surface soils is pre-
dominantly vertical.

2.2 Analytical solutions

It is difficult to obtain analytical solutions to the RRE be-
cause of the nonlinearity of the WRC and the HCF. In par-
ticular, analytical solutions to the RRE for layered soils are
extremely scarce. Srivastava and Yeh (1991) provided one of
a few analytical solutions to the transient one-dimensional
RRE for both homogeneous and two-layered soils. The an-
alytical solutions are based on the linearization of the RRE
using the following relationships for WRCs and HCFs for
ψ < 0 (Gardner, 1958):

θ = θr+ (θs− θr)e
αGψ , (5)

K =Kse
αGψ , (6)

where θr is the residual water content [L3 L−3], θs is the satu-
rated water content [L3 L−3], αG is the pore-size distribution
parameter [L−1], andKs is the saturated hydraulic conductiv-
ity [L T−1]. Note that the parameter αG can be interpreted us-
ing van Genuchten parameters αVG and nVG (van Genuchten,
1980), as αG ≈ 1.3αVGnVG (Ghezzehei et al., 2007). Al-
though the parametric expressions for WRCs and HCFs as
well as the parameter values used in the study do not neces-
sarily represent hydraulic properties of real soils, the analyti-
cal solutions can serve to validate and assess the performance
of PINN solutions to the RRE.

2.2.1 Homogeneous soil

The analytical solution for a homogeneous soil requires a
set of initial and boundary conditions. The lower-boundary
condition is a Dirichlet boundary condition ψ = ψlb at z=
−Z, where Z is the vertical length of the soil [L]. The ini-
tial condition is the steady-state solution of the RRE deter-
mined by the lower-boundary condition and a constant water
flux upper-boundary condition q = qA at z= 0. The analyt-
ical solution to the time-dependent RRE with the initial and
lower-boundary condition as well as a constant water flux
upper-boundary condition q(t)= qB at z= 0 is written in
terms of K∗ :=K/Ks:

K∗ =q∗B −
(
q∗B − e

αGψlb
)
e−(z

∗
+Z∗)− 4

(
q∗B − q

∗

A

)
e−z

∗/2

e−t
∗/4
∞∑
n=1

sin(κn (z∗+Z∗))sin(κnZ∗)e−κ
2
n t
∗

1+Z∗/2+ 2κ2
nZ
∗

, (7)

where q∗A := qA/Ks, q∗B := qB/Ks, z∗ := αGz; Z∗ := αGZ,
t∗ = αGKst/(θs−θr), and κn is the positive roots of the equa-
tion tan(κZ∗)+ 2κ = 0. The analytical solution with respect
to the volumetric water content θ can be computed from K∗

through Eqs. 5 and 6. The explicit analytical solution clarifies
larger αG introduces stronger nonlinearity of the solution.

2.2.2 Heterogeneous soil

Srivastava and Yeh (1991) provided one-dimensional analyt-
ical solutions of heterogeneous soils (i.e., two-layered soil).
The analytical solution is based on the assumption that αG is
the same for both layers. Therefore, this analytical solution
is limited to analyzing layered soils that have a discontinuity
in the hydraulic conductivity K across the layers. In fact, the
volumetric water content θ is continuous across the layers as
the water potentialψ . The initial and boundary conditions are
the same as the homogeneous case. The analytical solution is
much more complicated than the homogeneous one, so we
refer to the original literature for the detail (Srivastava and
Yeh, 1991). However, we provide the computed analytical
solutions and numerical derivations on Bandai and Ghezze-
hei (2022b), which can be useful to validate other numerical
methods.

2.3 Mathematical formulation of PINNs

2.3.1 Feedforward neural networks

Feedforward NNs are used to approximate the solution of
PDEs in PINNs. In this section, the mathematical formula-
tion of feedforward NNs with L hidden layers with layer-
wise locally adaptive activation functions (L-LAAFs) (Jag-
tap et al., 2020) is introduced. NNs are mathematical func-
tions N mapping an input vector x ∈ Rnx to an output vector
ŷ ∈ Rny :

ŷ :=N (x). (8)
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The hat operator represents prediction throughout the paper.
NNs are often represented as layers of units (or neurons), as
in Fig. 1b, where two feedforward NNs consisting of four
hidden layers with six units are shown.

NNs are compositions of affine transformations (the com-
position of linear tranformation and translation) and nonlin-
ear functions. Herein, h[k] ∈ Rn[k] for an integer k such that
1≤ k ≤ L represents the vector value corresponding to the
kth hidden layer consisting of n[k] units. h[k] for each k is
computed in the following manner:

h[1] := σ
(
sa[1]

(
W[1]x+ b[1]

))
,

h[2] := σ
(
sa[2]

(
W[2]h[1]+ b[2]

))
,

...

h[L−1]
:= σ

(
sa[L−1]

(
W[L−1]h[L−2]

+ b[L−1]
))
,

h[L] := σ
(
sa[L]

(
W[L]h[L−1]

+ b[L]
))
, (9)

where W[k] and b[k] are the weight matrix and bias vector
for the kth hidden layer, s ≥ 0 is a fixed scaling factor, and
a[k] represents a trainable parameter changing the shape of
the element-wise activation function σ . The output of the
NN is computed as

ŷ := o
(

W[L+1]h[L+1]
+ b[L+1]

)
, (10)

where o is the output function, and W[L+1] and b[L+1] are the
weight matrix and bias vector for the output layer. The col-
lection of the weight matrices W := {W[1], . . . , W[L+1]}, the
bias vectors b := {b[1], . . . , b[L+1]}, and the slope parameters
a := {a[1], . . . , a[L]} are the parameters of the NN, which are
denoted by 2 := {W,b,a} in this paper.

To understand the role of the parameters s and a[k] intro-
duced in the L-LAAF (Jagtap et al., 2020), consider a case
where sa[k] = 1 for all k, and σ is the identity function.
In this case, the neural network N is nothing but an affine
transformation and cannot learn a nonlinear relationship. In
a standard NN, nonlinear activation functions, such as the
hyperbolic tangent function (tanh), are used with sa[k] = 1
for all k to learn nonlinear relationships between input and
output variables. As shown in Fig. 1d, the tanh function has
a “linear” regime near the origin and exhibits the nonlinear-
ity outside the region. By increasing the parameter sa[k], we
can increase the slope of the activation function and nar-
row the “linear” regime. Jagtap et al. (2020) reported that
larger sa[k] accelerated the training of PINNs and captured
the high-frequency components of the solution of PDEs,
while sa[k] values that were too large made the training un-
stable. Throughout the study, a[k] was initialized to 0.05, and
s was set to 20 when the L-LAAF was used.

2.3.2 Formulation of PINNs for the RRE

In this section, PINNs to solve the forward and inverse prob-
lems for the RRE are described. First, we consider the for-
ward modeling of the one-dimensional RRE defined on a do-
main �= (−Z,0), the boundary ∂�, and the time [0, T):

∂θ

∂t
=
∂

∂z

[
K

(
∂ψ

∂z
+ 1

)]
, z ∈�, t ∈ (0,T ), (11)

θ(z,0)= g(z), z ∈ (�∪ ∂�), (12)
θ(z, t)= h(z, t), z ∈ ∂�D, t ∈ (0,T ), (13)

q(z, t) := −K(z, t)

(
∂ψ(z, t)

∂z
+ 1

)
= i(z, t), z ∈ ∂�F, t ∈ (0,T ), (14)

where g(z) is the initial condition, h(z, t) is the Dirichlet
boundary condition on the Dirichlet boundary ∂�D, q(z, t) is
the water flux in the vertical direction (positive upward), and
i(z, t) is the water flux boundary condition on the flux bound-
ary ∂�F. Here, we only use the volumetric water content θ
for the initial condition and the Dirichlet boundary condition
because the measurement of θ is more reliable than the water
potential ψ in practical situations, though the modification
to the water potential ψ is straightforward (see Sect. S1.5 in
the Supplement). Although we limit ourselves to either the
Dirichlet or the water flux boundary condition, the frame-
work can be extended to other boundary conditions. In this
study, we focus on a particular situation where the soil sur-
face (z= 0) is set to ∂�F, and the bottom (z=−Z) is set to
∂�D, which corresponds to when soil moisture dynamics is
induced by the surface water flux q(0, t) (i.e., evaporation or
infiltration) while the volumetric water content at the bottom
θ(−Z,t) is kept to h(−Z,t).

PINNs aim to approximate the solution of the one-
dimensional RRE ψ(z, t) by a NN N (z, t) with the NN pa-
rameters 2= {W,b,a}. Because the water potential ψ is
negative in unsaturated soils, we used the identity function
for the output function o of the NN (Eq. 10) and transformed
the output as

ψ̂(z, t) := −exp(N (z, t;2))+β, (15)

where β is a fixed parameter, which can allow ψ̂(z, t) to be
zero or positive (saturated). To construct PINNs for the RRE,
the residual of the RRE is defined as

r̂(z, t;2) :=
∂θ̂

∂t
−
∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
. (16)

Here, θ̂ and K̂ are computed from ψ̂ with the predefined
WRC and HCF (i.e., θ(ψ) andK(θ)). The partial derivatives
in the residual are computed through the reverse-mode au-
tomatic differentiation (Baydin et al., 2018). In this method,
all the computations of PINNs are formulated as computa-
tional graphs by the software (TensorFlow in this study), and
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any derivatives related to the computations can be computed
exactly, unlike numerical differentiation. This algorithm is
highly efficient when the number of parameters is large and
thus suitable for training neural networks with tens of thou-
sands or millions of parameters. The collection of the NN pa-
rameters2 is identified by minimizing a loss function, which
is defined as

L(2) := λrLr(2)+
∑
i

λiLi(2), (17)

where λr is the weight parameter corresponding to the loss
term for the residual of the RRE Lr(2), and λi is the weight
parameter for the loss term Li(2) for i = {m,ic,D,F },
where m, ic, D, and F represent the measurement data,
the initial condition, and the Dirichlet and the water flux
boundary conditions, respectively. Lr(2) and Li(2) for i =
{m,ic,D,F } are defined as

Lr(2) :=
1
Nr

Nr∑
i=1

[
r̂
(
zir, t

i
r

)]2
, (18)

Lm(2) :=
1
Nm

Nm∑
i=1

[
θ̂
(
zim, t

i
m

)
− θ im

]2
, (19)

Lic(2) :=
1
Nic

Nic∑
i=1

[
θ̂
(
ziic, 0

)
− g

(
ziic

)]2
, (20)

LD(2) :=
1
ND

ND∑
i=1

[
θ̂
(
ziD, t

i
D

)
−h

(
ziD, t

i
D

)]2
, (21)

LF(2) :=
1
NF

NF∑
i=1

[
q̂
(
ziF, t

i
F

)
− i

(
ziF, t

i
F

)]2
, (22)

where {zir , t
i
r }
Nr
i=1 denotes the Nr residual points (also called

collocation points) at which the residual of the PDE is eval-
uated, {θ im, zim, t im}

Nm
i=1 denotes the Nm measurement data

points, {ziic}
Nic
i=1 denotes the Nic initial condition points, {ziD,

t iD}
ND
i=1 denotes the ND Dirichlet boundary condition points,

and {ziF, t iF}
NF
i=1 denotes the NF water flux boundary condi-

tion points. Here, Lr forces PINNs to satisfy the PDE, and
Lm helps PINNs to fit the measurement data, while Lic,
LD, and LF enforce the initial, the Dirichlet and the water
flux boundary conditions, respectively. Note that initial and
boundary conditions can be encoded in a hard manner so that
the approximated solution automatically satisfies these con-
ditions (Lagaris et al., 1998; Sun et al., 2020). However, we
encode these conditions in a soft manner and treat them as
data points as in Eq. (17) to leverage the flexibility of PINNs,
which is essential in practical situations where precise initial
and boundary conditions are rarely available.

In the framework, the measurement data can be provided,
which is not necessary to make the forward modeling well-
posed. PINNs can easily incorporate such additional mea-
surement data to improve accuracy and computational effi-
ciency. As for the inverse modeling, the implementation of

the PINNs is almost identical to the forward modeling. If
we invert physical parameters in PDEs from measurement
data (e.g., saturated hydraulic conductivity Ks), the param-
eters and the NN parameters are simultaneously estimated.
Also, one can drop the loss terms for the initial or boundary
conditions if they are not available, though this makes the
problem ill-posed. In the study, the forward and the inverse
modeling was conducted in Sects. 3 and 4, respectively.

2.3.3 Errors in PINN solutions

Despite the increasing popularity and successes of PINNs in
various fields, the theoretical understanding of PINNs is still
limited. Shin et al. (2020) were among the first who con-
ducted a rigorous analysis of PINNs; they formulated the
generalization error of PINNs as the sum of the approxima-
tion error, the optimization error, and the estimation error.
The approximation error is the distance between the best pos-
sible approximation by PINNs and the solution of PDEs. The
optimization error is due to the difficulty in minimizing the
nonlinear and non-convex loss function. The estimation error
is caused by the insufficiency of data to train PINNs. They
demonstrated theoretically and numerically that the sum of
the approximation and the estimation error decreased with
the increase in the training data for linear second-order ellip-
tic and parabolic PDEs.

Mishra and Molinaro (2022) provided a theoretical frame-
work to estimate the generalization error of PINNs for a
variety of PDEs, including nonlinear PDEs. They demon-
strated that the generalization error would be sufficiently low
if (1) PINNs are trained well (i.e., small optimization error),
(2) the number of residual points is large, and (3) the solution
of PDEs is sufficiently regular. In the study, we numerically
analyzed the accuracy of PINN solutions to the RRE and in-
vestigated whether their theoretical claims could be applied
to our case.

2.4 Implementation of PINNs

Training of NNs requires trial and error because the theo-
retical understanding of the mechanism is still limited. How-
ever, feedforward NNs used in PINNs have been investigated
for many years, so empirical knowledge is available (Bengio,
2012; LeCun et al., 2012). Those techniques are not new, but
we would like to reiterate some of them with the explanation
of our implementation of PINNs. The PINN algorithm for
heterogeneous soils is summarized in Fig. 2. We used Ten-
sorFlow (Abadi et al., 2015) to implement PINNs, and the
source code is available in Bandai and Ghezzehei (2022b).

2.4.1 Architecture of neural networks

Before training NNs, it is recommended to transform input
data so that the components of input variables x have zero
mean, and each variable has a similar variance. In our imple-
mentation, we did not transform or normalize input data (i.e.,
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Figure 2. The algorithm for PINNs with domain decomposition for a two-layered soil. �U and �L refer to the spatial domain for the upper
and lower layers, respectively. In Step 3, max_iteration_Adam is the maximum number of the Adam iteration (set to 100 000 in the study);
2̂ represents the update for the neural network parameter 2; L-BFGS-B stopping criteria are summarized in Sect. 2.4.3.

t ∈ [0,T ] and z ∈ [−Z,0]). However, when both input vari-
ables were positive, the training of PINNs was difficult, as
mentioned in LeCun et al. (2012). Thus, it is better to trans-
form input data for future studies. As for output variables,
it is also important to take into account their range, as in
Eq. (15).

The architecture of NNs (i.e., the number of hidden lay-
ers L and units n[k] for k = 1, . . . ,L) determines the com-
plexity of functions the NN can learn and thus depends on
PDEs of interest and the corresponding initial and bound-
ary conditions. It is known that the expressive capability of
NNs grows exponentially with the number of hidden layers
(Raghu et al., 2017). We used the same number of units for
all hidden layers, and the effects of the architecture of NNs
on PINN performance were experimentally investigated. As
for activation functions, symmetric activation functions with
respect to the origin, such as the tanh function, are preferable
to nonsymmetric functions such as the sigmoid function. Be-
cause PINNs require the second derivative of state variables
in the loss function, we used the tanh function for the activa-
tion functions σ for all hidden layers.

2.4.2 Initialization

At the beginning of the training, the collection of the weight
parameters W and the bias parameters b have to be initial-
ized. Glorot and Bengio (2010) demonstrated that simple

random initialization caused the activation functions to be
“saturated”, meaning that the slope of the activation function
becomes zero. To prevent this, they introduced the Xavier
initialization for the weight parameters W, which was used
in our implementation. The bias parameters b were initial-
ized to be 0. Because the initialization of W significantly af-
fects PINN solutions, different sets of randomization must
be tested. Therefore, we used 10 different random seeds for
the initialization of each setting of PINNs. In addition to W
and b, we can tune the parameter β in Eq. (15) to give differ-
ent initializations of ψ̂ .

2.4.3 Training

PINNs were trained to minimize the loss function (Eq. 17).
The loss term for the residual Lr was evaluated at randomly
sampled residual points in the spatial and temporal domain
(Fig. S1b in the Supplement). For each problem, the same
residual points were used. We tested the residual-based adap-
tive refinement algorithm proposed by Lu et al. (2021b),
where residual points are chosen where the residual of PDEs
is high. For our case study, the effectiveness of the algorithm
was minor, and thus the results are only shown in the Supple-
ment (see Sect. S1.1 and Fig. S1).

The weight parameters in the loss function λi (Eq. 17)
play a crucial role in minimizing the loss function. In the
original PINN framework proposed by Raissi et al. (2019),
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all λi were set to 1. However, Wang et al. (2021) demon-
strated that the loss terms corresponding to initial and bound-
ary conditions need to be penalized more, and optimal values
of those weight parameters are problem-dependent. To over-
come this challenge, they proposed the learning rate anneal-
ing algorithm (Wang et al., 2021), where the weight parame-
ters in the loss function λi are updated during training to bal-
ance the relative importance of each loss term. We tested the
algorithm, but this resulted in a modest improvement com-
pared to the L-LAAF, so the results are given in the Supple-
ment (Sect. S1.2 and Fig. S2). In the study, the effects of λi
were investigated in Sect. 3.1.5.

It is common to use a stochastic gradient descent algo-
rithm to minimize the loss function to train NNs. In this
study, we used the Adam algorithm (Kingma and Ba, 2014).
Because the Adam optimizer is not enough to achieve so-
lutions with high accuracy, previous studies on PINNs em-
ployed a two-step optimization strategy, and we followed
it. First, the loss function was minimized using 105 itera-
tions of the Adam algorithm in TensorFlow (Abadi et al.,
2015) with the exponential decay of the learning rate. The
initial learning rate was set to 0.001 with the decay rate
of 0.90, the decay step was set to 1000, and the other pa-
rameters were set to their default values. The Adam al-
gorithm used a “mini batch” of the data, where only 128
of all residual points were considered, while all the initial
and boundary data points were used for each iteration. Af-
ter the Adam algorithm, the loss function was further mini-
mized through the L-BFGS-B optimizer (Byrd et al., 1995)
from Scipy (Virtanen et al., 2020), which was terminated
once the loss function converged with prescribed thresh-
olds. The L-BFGS-B algorithm can utilize the information
on the approximated curvature of the loss function and find
a better local minimum than a stochastic gradient descent
for the case of PINNs. The following L-BFGS-B parame-
ters were used: maxcor= 50, maxls= 50, maxiter= 50 000,
maxfun= 50 000, ftol= 1.0× 10−10, gtol= 1.0× 10−8, and
the default values for the other parameters. Although it is de-
sirable to tune the parameters for each optimizer, we fixed
those parameters in the study.

2.4.4 Domain decomposition

Natural soils have distinctive layering, and the hydraulic
properties of each layer vary between the layers, which re-
sults in continuous but not a differentiable water potential
distribution in the soil profile. To deal with such spatial het-
erogeneity, Jagtap and Karniadakis (2020) proposed a do-
main decomposition method for PINNs, where a computa-
tional domain is divided into subdomains, and a NN is as-
signed to each subdomain. Then, the NNs interact with each
other during the training through interface conditions such as
the continuity of mass and flux. Such interface conditions can
be incorporated into the loss function. For simulating water
flow in a two-layered soil, two NNs NU and NL are assigned

to the upper and lower layer, and the continuities of water po-
tential, water flux, and the residual of the RRE are imposed
at the boundary:

ψ̂U (zI, t)= ψ̂L (zI, t) , (23)
q̂U (zI, t)= q̂L (zI, t) , (24)
r̂U (zI, t)= r̂L (zI, t) , (25)

where the subscripts “U” and “L” mean a value with the sub-
scripts (e.g., ψ̂U) was computed by NU and NL, respectively;
zI represents the spatial coordinate of the interface. These in-
terface conditions are incorporated into the loss function as a
loss term (Eq. 17):

LIψ (2U,2L) :=
1
NI

NI∑
i=1

[
ψ̂U

(
zI, t

i
)
− ψ̂L

(
zI, t

i
)]2

, (26)

LIq (2U,2L) :=
1
NI

NI∑
i=1

[
q̂U

(
zI, t

i
)
− q̂L

(
zI, t

i
)]2

, (27)

LIr (2U,2L) :=
1
NI

NI∑
i=1

[
r̂U

(
zI, t

i
)
− r̂L

(
zI, t

i
)]2

, (28)

where NI is the number of points on the interface, where
the loss terms are evaluated, and 2U and 2L are the neural
network parameters for NU and NL, respectively. In the im-
plementation, we found that the logarithmic transformation
of water potential ψ was helpful to balance the loss terms.
Therefore, instead of LIψ , we imposed the continuity of the
output of the neural networks, as in

LIN (2U,2L) :=
1
NI

NI∑
i=1

[
NU

(
zI, t

i
)
−NL

(
zI, t

i
)]2

. (29)

Note that in the original literature, Jagtap and Karniadakis
(2020) trained each NN separately by constructing multi-
ple loss functions for parallel computation, but we trained
the two NNs (NU and NL) simultaneously. The algorithm is
summarized in Fig. 2. Although our algorithm is for a two-
layered soil in one dimension, this method can be extended
to more layers with more complex geometries in higher di-
mensions (Jagtap and Karniadakis, 2020).

2.5 Evaluation of numerical error

Numerical errors of PINNs and the other numerical meth-
ods (i.e., FDMs and FEMs) in terms of the volumetric water
content θ and the water potential ψ were evaluated by com-
paring the analytical solutions to those numerical solutions
computed on a uniform grid with a spatial step of 0.1 cm and
temporal step of 0.1 h. Absolute error, relative absolute er-
ror, squared error, and relative squared error were computed.
Because these different types of errors exhibited strong cor-
relations, we show, in the following sections, relative squared
error in terms of the volumetric water content εθ , defined as
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εθ :=

∑
t

∑
z

(θ̂(t,z)− θ(t,z))2∑
t

∑
z

θ(t,z)2
, (30)

where θ and θ̂ represent analytical and numerical solutions,
respectively.

3 Forward modeling

In this section, we report the main results of the forward mod-
eling of water transport in homogeneous and heterogeneous
soils using PINNs. PINN solutions of the RRE with vary-
ing NN architectures and parameters were evaluated using
the one-dimensional analytical solutions by Srivastava and
Yeh (1991) for homogeneous and heterogeneous soils intro-
duced in Sect. 2.2. To assess the performance of PINNs, nu-
merical solutions obtained by an FDM and an FEM are also
presented. The implementation of the FDM for the homoge-
neous case is described in Sect. S1.3, while the FEM solution
for the heterogeneous case was obtained by HYDRUS-1D
(Šimůnek et al., 2013).

3.1 Homogeneous soil

We simulated water infiltration into a homogeneous soil us-
ing the RRE. This simple setup was used to understand the
characteristics of PINNs with different settings. We specifi-
cally investigated (1) the effects of NN architecture (the num-
ber of layers and units as well as the use of the layer-wise lo-
cally adaptive activation function (L-LAAF)), (2) the effects
of the weight parameters λi in the loss function (Eq. 17), and
(3) the effects of the number of the residual points and the
upper-boundary data points.

3.1.1 Problem setup

We considered soil moisture dynamics in a homogeneous
soil induced by a constant water flux on the surface (z=
0 cm), as introduced in Sect. 2.2.1, where Z = 10 cm, T =
10 h, qA =−0.1 cm h−1, qB =−0.9 cm h−1, ψlb = 0 cm,
θr = 0.06, θs = 0.40, αG = 1.0 cm−1, and Ks = 1.0 cm h−1.

3.1.2 Characteristics of PINN solution

The numerical solution by PINNs and the analytical solu-
tion are shown in Fig. 3a. The PINN solution was obtained
by using a NN of five hidden layers with 50 units using
the L-LAAF, which was determined after testing various
settings described in the following sections. Nic = 101 ini-
tial data points (z=−10.0, −9.9, . . . ,−0.1, 0.0 cm), Nub =

1000 upper-boundary data points (t = 0.01, 0.02, . . . , 9.99,
10.0 h), and Nlb = 100 lower-boundary data points (t = 0.1,
0.2, . . . , 9.9, 10.0 h) were used to train the NN. The number

of residual points Nr was set to 10 000. The weight param-
eters λi in the loss function were set to 10 for the initial
condition (λic), the lower-boundary condition (λlb), and the
water flux upper-boundary condition (λub), while λr was set
to 1 for the residual loss term. The difference between the
PINN and the analytical solution in the volumetric water con-
tent θ is shown in the right column of Fig. 3a. Larger errors
were observed near the initial and upper-boundary condi-
tions, where strong nonlinearity exists due to the surface wa-
ter flux. Except for this, PINNs could approximate the solu-
tion with high accuracy. Figure 3b showed the FDM solution
with a spatial mesh dz= 0.1 cm and a time step dt = 0.01 h,
which is comparable to the temporal resolution of the upper-
boundary data points given to the PINN. In comparison with
the FDM solution, the PINN solution was quite reasonable
(εθ = 4.86× 10−4 for the PINN and εθ = 9.72× 10−4 for
the FDM solutions, respectively). Note that the degrees of
freedom of the FDM solution were 101 000, while the num-
ber of parameters of the NN was 10 406, which demonstrates
the memory efficiency of PINNs. Also, the number of resid-
ual points of PINNs was much smaller than the degrees of
freedom of the FDM. However, increasing the number of
residual points did not improve the PINN solution, as dis-
cussed in Sect. 3.1.6, while the FDM solution improved by
further minimizing dz and dt (εθ = 1.03×10−5 was obtained
for dz= 0.01 cm and dt = 0.0001 h, as shown in Fig. S3).
It is important to note here that an FDM with such a very
fine mesh size requires solving a large linear system mul-
tiple times for each time step because the RRE is a non-
linear PDE, and the number of the iteration increases with
decreasing dz, which leads to significant computational de-
mand. This situation becomes worse for higher dimensions.
Although we do not test PINNs for higher dimensions, other
studies demonstrated the effectiveness of PINNs for higher
dimensions (Mishra and Molinaro, 2022). This is the main
reason we see the potential of PINNs for a large-scale simu-
lation based on the RRE.

3.1.3 Training PINNs

A typical evolution of the loss terms in the loss function dur-
ing the training (the Adam and L-BFGS-B algorithms) is
shown in Fig. 4a. In most cases, the Adam algorithm gave
a good minimum of the loss function, and the following L-
BFGS-B algorithm met its termination criteria immediately
(a spike was observed just before the termination). Among
the loss terms, the residual loss Lr remained high after the
training (Lr ≈ 10−6). Lr indicates whether the RRE was sat-
isfied in the spatial and temporal domain and determines the
performance of PINNs. The characteristics of Lr are further
explored in Sect. 3.1.7. Figure 4b shows the evolution of the
adaptive parameter sa for the L-LAAF for each hidden layer
(Eq. 9). The parameter sa changes the slope and the linear
regime of activation functions, as shown in Fig. 1d. The pa-
rameter sa varied with the iterations of the Adam algorithm
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Figure 3. Homogeneous soil. (a) Physics-informed neural network (PINN) solution in terms of volumetric water content θ [–] (left column).
The neural network consisted of five hidden layers with 50 units with the layer-wise adaptive activation function. True analytical solution
(center column) is given by Srivastava and Yeh (1991) (see Sect. 2.2.1), and the difference between the PINN and true solutions is shown in
the right column. (b) Numerical solution by a finite difference method with a spatial mesh of dz= 0.1 cm and a time step dt = 0.01 h.

and reached its limiting value for each hidden layer. sa for
the second hidden layer was the highest, and a smaller sa
value was observed for hidden layers closer to the output
layer.

Figure 5 demonstrates how PINNs learn the solution to
the RRE during the training. At the initialization (Fig. 5a),
the PINN solution greatly differed from the true solution.
However, PINNs quickly learned the lower-boundary con-
dition (see Fig. 5b). Although the initial condition was given
as data points, it took more iterations for PINNs to learn it
because of the high nonlinearity near the surface induced by
the water flux boundary condition. This corresponds to the
increase in the adaptive parameter sa for the L-LAAF (see
Fig. 4b). The limiting value of sa for the second hidden layer
was 3.4, which makes the tanh function highly nonlinear and
closer to the step function (see Fig. 1d). We concluded that
the L-LAAF helped PINNs learn the highly nonlinear solu-
tion of the RRE. Figure 5 clearly illustrated that PINNs first
learned less complex parts of the solution and then captured
the more complex parts. The tendency of feedforward NNs
to learn less complex functions is called “spectral bias”, and
Wang et al. (2022) demonstrated that this spectral bias caused
PINNs to fail to learn complex solutions of PDEs. Further
research is needed on how PINNs can learn more complex
solutions of the RRE, for example, where wetting and drying
cycles are studied.

3.1.4 Effects of neural network architecture

The effects of the number of hidden layers and units of NNs
as well as the use of the L-LAAF were investigated. The can-
didate numbers of hidden layers and units were 1, 2, 3, 4, 5,
and 6 for hidden layers and 10, 20, 30, 40, 50, and 60 for
units. The L-LAAF was turned on and off, and 10 different
random seeds were used for the NN initialization for each
NN architecture, which resulted in a total of 720 runs.

The summary of the results is shown in Fig. 6. In Fig. 6a
and b, all the 720 data points are plotted, while the averaged
data for each NN architecture are shown in Fig. 6c against
the number of the weight parameters of each NN architec-
ture. In Fig. 6a, smaller relative squared error εθ values were
observed for a larger number of hidden layers. Four hidden
layers appeared to be enough for NNs to approximate the
solution. As for the number of units, increasing the number
gave smaller εθ , though the effect seemed less relevant than
that for hidden layers. It is clear from Fig. 6c that the use
of the L-LAAF improved the performance of PINNs. From
this analysis, we determined the best NN architecture to be
five hidden layers with 50 units with the L-LAAF indicated
by the arrow in Fig. 6c, whose solution is shown in Fig. 3.
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Figure 4. Homogeneous soil. (a) The evolution of the loss terms for the initial condition Lic, the upper-boundary condition Lub, the lower-
boundary condition Llb, and the residual Lr during the Adam (100 000 iterations) and the following L-BFGS-B training. (b) The evolution
of the adaptive parameter sa for layer-wise locally adaptive activation functions (Eq. 9) for each hidden layer (Layer 1 is next to the input
layer).

Figure 5. Homogeneous soil. The evolution of physics-informed neural network (PINN) solution (points) during the training with the true
solution (solid lines). (a) Initialization of PINNs. (b–g) 1000, 2000, 5000, 10 000, 20 000, and 40 000 iterations of the Adam algorithm.
(h) The end of 100 000 iterations of the Adam algorithm and the following L-BFGS-B algorithm.
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Figure 6. Homogeneous soil. Relative squared error in terms of volumetric water content εθ for different numbers of hidden layers (a) and
units (b) with and without the use of the layer-wise locally adaptive activation function (L-LAAF). In panel (c), the averaged εθ values were
computed for each neural network architecture, and the values were plotted against the number of the weight parameters of each neural
network. The arrow indicates the lowest averaged εθ , which corresponds to neural networks with five hidden layers with 50 units used in
Fig. 3.

3.1.5 Effects of weight parameters in loss function

The effects of the weight parameters λi in the loss func-
tion (Eq. 17) were studied by varying λi for the initial and
boundary conditions, while λr was fixed to 1. We denote
λub and λlb as the weight parameters for the upper- and
lower-boundary conditions, respectively. Five different val-
ues (1, 3, 10, 30, and 100) were tested for each weight pa-
rameter with 10 different NN initializations, which resulted
in a total of 1250 simulations, where the NN architecture was
fixed to five hidden layers with 50 units with the L-LAAF.

Figure 7 shows the effects of the weight parameters λi for
i = ic,ub, lb on the loss terms Li in the loss function and
the PINN performance evaluated by the relative squared er-
ror εθ . Each panel in the figure contains all the 1250 sim-
ulations, and the effects of the initialization and the λi are
mixed. Figure 7a, e, and i demonstrated that higher-weight
parameters λi attained lower values of the corresponding loss
terms Li , which was expected. Another noticeable feature is
that the loss term for the residual Lr increased with the in-
creasing λi , while λr was fixed to 1. It was considered that
higher-weight parameters λi for the initial and boundary con-
ditions minimized the emphasis on the residual loss term Lr
(see Fig. 7k and j). The increased Lr led to less accurate so-
lutions or higher εθ , which is evident in Fig. 7m and j. These
complicated trends make the PINN approach less consistent
than traditional numerical methods. Note that automatic but
empirical tuning of λi proposed by Wang et al. (2021) did
not improve the results in our case, particularly with the L-
LAAF, which is shown in Fig. S2. Because finding the op-
timal values for λi is not our primary purpose, we use the
value of 10 for all three weight parameters λi for the follow-
ing analysis.

3.1.6 Effects of number of residual and boundary data
points

The effects of the number of residual points Nr, where the
residual of the RRE is evaluated, were investigated by vary-
ing the number Nr ∈ {1000,3000,10000,30000,100000},
which resulted in 50 runs in total. NN architecture was fixed
to five layers with 50 units with the L-LAAF. As expected,
larger error was observed when a smaller number of residual
points was used (see Fig. 8a). However, even if we increased
the number to 30 000 and 100 000, the performance of PINNs
did not improve. We concluded that this was due to the si-
multaneous but opposite effect of the number Nr on the loss
term Lr, as shown in Fig. 8b. This was because increasing
Nr is equivalent to minimizing the importance of each resid-
ual point randomly selected in the spatial and temporal do-
main. Note that we tested the residual-based adaptive refine-
ment algorithm proposed by Lu et al. (2021b), where addi-
tional residual points are added while training NNs based on
the distribution of the residual values. As shown in Fig. S1a,
the algorithm seemed to improve the performance of PINNs,
but the effectiveness was minor. These findings demonstrate
the difficulty in finding an optimal strategy to distribute resid-
ual points for PINNs to learn solutions to PDEs with high
accuracy.

Also, the effects of the number of upper-
boundary data points Nub were studied, where
Nub = {100,300,1000,3000,10000}. NN architecture
and training algorithms were set to the same as Sect. 3.1.2.
Figure 9a showed that more than 300 upper-boundary
data points Nub are necessary for PINNs to learn the
solution well. This is because PINNs required enough
upper-boundary data points to capture the surface flux in
particular near the initial condition. However, increasingNub
from 300 did not improve the performance of PINNs. At
the same time, we observed the increase in the loss term for
the upper-boundary condition Lub, as shown in Fig. 9b. This
observation is similar to the case for the residual points and
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Figure 7. Homogeneous soil. The effects of the weight parameters in the loss function (Eq. 17) for the initial condition λic, the lower-
boundary condition λlb, and the upper-boundary condition λub on the loss terms Lic, Llb, Lub, and Lr for the initial and boundary conditions
and the residual of the PDE, respectively, and the relative squared error in terms of volumetric water content εθ . λr was fixed to 1.

Figure 8. Homogeneous soil. (a) The effect of the number of residual points Nr on the relative squared error εθ . (b) The effect on the loss
term for the residual Lr.
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Figure 9. Homogeneous soil. (a) The effect of the number of upper-boundary data Nub on the relative squared error εθ . (b) The effect on the
loss term for the upper-boundary condition Lub.

makes it difficult to determine optimal Nub. The difficulty in
tuning parameters for PINNs is further explained in the next
section.

3.1.7 Toward more consistent performance of PINNs

We demonstrated that PINNs can approximate the solution
to the RRE with accuracy comparable to the FDM. However,
a significant amount of effort was needed to tune the NN ar-
chitecture and parameters, and those optimal settings depend
on problems of interest, which makes it very challenging for
PINNs to be consistent numerical solvers of PDEs. To un-
derstand why the performance of PINNs is not consistent,
we investigated the relationships between Li and εθ by com-
piling the results from the previous sections. The left column
of Fig. 10 corresponds to a fixed NN (five hidden layers with
50 units with the L-LAAF), and the center column is for NNs
with varying architecture (the number of hidden layers and
units) with the L-LAAF (from Sect. 3.1.4), while the right
column is for a fixed NN with varying weight parameters λi
in the loss function (from Sect. 3.1.5). Note that the dimen-
sion of the loss function (i.e., the number of adjustable pa-
rameters) is the same for the first and third columns because
the NN architecture is the same, while the shape or landscape
of the loss function is different because of the varying weight
parameters λi .

As for the first column, the PINN solution was consistent
regardless of the random seeds used for the NN initializa-
tion. Although there were some differences in the accuracy,
a detailed examination of the PINN solutions revealed that
the errors mainly came from near the upper boundary. Thus,
we concluded that we obtained consistent PINN solutions for
this problem once we determined the NN architecture. How-
ever, determining NN architecture is still empirical and de-
pends on problems. Based on other studies and our experi-
ences, NNs consisting of fewer than 10 hidden layers appear
to be enough to approximate the solution to PDEs. However,
the application of PINNs to PDEs with large spatial and tem-
poral domains requires more investigation.

Figure 10k and l demonstrate that the residual loss Lr is
well correlated with εθ , which coincides with the theoreti-

cal study by Mishra and Molinaro (2022). This observation
might indicate that smaller residual loss Lr is more important
than other loss terms. If this speculation is true, this implies
the possibility of transfer learning, where NNs are pretrained
with only the residual of PDEs without initial and boundary
conditions and later fine-tuned by them, which could drasti-
cally reduce the computational work and needs more investi-
gation.

3.2 Heterogeneous soil

In this section, we simulated a one-dimensional infiltration
into a two-layered soil with a length of 20 cm. Because
each layer has a distinct saturated hydraulic conductivity Ks,
the solution to the RRE is not differentiable at the bound-
ary of the layers. Thus, we implemented the domain de-
composition method (see Sect. 2.4.4) by dividing the spa-
tial domain into the upper domain�U (−10≤ z ≤ 0 cm) and
the lower domain�L (−20≤ z ≤ 10 cm). NNs NU(z, t;2U)

and NL(z, t;2L) were assigned to �U and �L, respectively.
The two NNs interact with each other through the interface
conditions described in Sect. 2.4.4 and were trained simul-
taneously, although separate training is also possible, as in
Jagtap and Karniadakis (2020).

We compared the PINN solution with an FEM solution
obtained by HYDRUS-1D (Šimůnek et al., 2013). FEMs are
similar to PINNs in that both methods use some basis func-
tions to approximate the solution of PDEs. While PINNs
use NNs as the basis function, the FEM implemented in
HYDRUS-1D uses a linear finite element as the basis func-
tion. Although HYDRUS-1D implements a variable time
step, we used a constant time for the comparison. Because
WRCs and HCFs defined by Eqs. (5) and (6) are not imple-
mented in HYDRUS-1D, we used a lookup table feature to
provide HUDRUS-1D with the WRC and HCF manually.

3.2.1 Problem setup

WRC and HCF relationships for the soils are the same for the
homogeneous case. The saturated conductivityKs is 10.0 and
1.0 cm s−1 for the upper layer (from z=−10 to z= 0 cm)
and the lower layer (from z=−20 to z=−10 cm), respec-
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Figure 10. Homogeneous soil. The relationships between loss terms Li and the relative squared error in terms of volumetric water content εθ

for a fixed neural network (NN) with different NN initializations (left column), NNs with varying architecture (center column), and a fixed NN
with varying weight parameters λi in the loss function (right column). Lic, Llb, Lub, and Lr are the loss terms for the initial condition, lower-
and upper-boundary conditions, and the residual of the PDE, respectively.

tively. Other parameters, θs, θr, and α, for the two layers as
well as the initial and boundary conditions are the same as
the homogeneous case.

3.2.2 Characteristics of PINN solution

Figure 11a shows the PINN solution with the analytical so-
lution introduced in Sect. 2.2.2. Both NNs NU and NL con-
sisted of five hidden layers with 50 units with the L-LAAF,
and β was set to 1. Randomly sampled 10 000 residual points
and equally spaced 101 initial data points were used for
both NNs. The upper- and lower-boundary conditions were
given as the case for the homogeneous soil. To connect
the two NNs, randomly sampled 1000 points were used for
the three interface continuity conditions: the water flux LIq
(Eq. 27), the residual LIr (Eq. 28), and the NN output LIN
(Eq. 29). All the weight parameters in the loss function λi

were set to 10, while λr for the lower layer was set to 1. Fig-
ure 11b showed the FEM solution obtained using HYDRUS-
1D with dz= 0.1 cm and dt = 0.01 h, which is comparable
to the temporal resolution of the upper-boundary data points
given to the PINNs. The PINN solution was superior to the
HYDRUS-1D solution (εθ = 3.99× 10−3 for the PINN and
εθ = 1.67× 10−2 for the FEM solution, respectively), while
the HYDRUS-1D solution underestimated the volumetric
water content in the upper layer near the boundary, which co-
incides with Brunone et al. (2003). This is because only the
matric potential continuity is guaranteed in HYDRUS-1D,
while both matric potential and water flux continuity condi-
tions were imposed for the PINNs. Also, HYDRUS-1D con-
sistently overestimated the volumetric water content at the
wetting front in the lower layer, while consistent errors were
not observed for the PINN solution. From this comparison,
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Figure 11. Heterogeneous soil. The saturated conductivityKs is 10.0 and 1.0 cm s−1 for the upper and lower layer, respectively. (a) Physics-
informed neural network (PINN) solution in terms of volumetric water content θ [–] obtained by two neural networks of five hidden layers
with 50 units with the layer-wise adaptive activation function (left column). True analytical solution (center column) is given by Srivastava
and Yeh (1991) (see Sect. 2.2.2), and the difference between the PINN and true solutions is shown in the right column. (b) Numerical solution
by a finite element method was obtained with a spatial mesh of dz= 0.1 cm and a time step dt = 0.01 h using HYDRUS-1D (Šimůnek et al.,
2013).

we concluded that PINNs with domain decomposition can
approximate the solution of the RRE for a two-layered soil
with discontinuous hydraulic conductivity.

3.2.3 Training PINNs

The left column of Fig. 12 shows the evolution of the loss
terms. All the loss terms for both layers remained higher
than those for the homogeneous case (see Fig. 4), which
demonstrated the difficulty in training PINNs for the lay-
ered soil case. While the Adam algorithm resulted in a well-
approximated solution for the homogeneous case, the L-
BFGS-B algorithm played an important role for the hetero-
geneous case, particularly in reducing the loss term for the
upper-boundary condition Lub and the residual Lr for the up-
per layer. Figure 12c illustrated that the three interface con-
ditions were satisfied well.

The right column of Fig. 12 shows how the adaptive pa-
rameters sa for the L-LAAF changed during the training.
We expected sa for the lower layer to be similar to the ho-
mogeneous case because the solution for the lower layer is
similar to the homogeneous case. However, Fig. 12b showed
that sa for the lower layer was much smaller than that for
the homogeneous case, while similar trends of sa for differ-

ent hidden layers were observed (i.e., Layer 2 was the high-
est). sa for all the layers of both layers reached their lim-
iting values after approximately 20 000 to 30 000 iterations
of the Adam algorithm, which coincided with the homoge-
neous case and Jagtap et al. (2020). This indicated that if we
can find a better initial guess of sa for each layer, we may
be able to speed up the training of PINNs, which requires
further research.

Figure 13 demonstrated how PINNs learned the solution.
At the initialization (Fig. 13a), there are discontinuities at the
boundary, which is evident for t = 10 h. The continuity con-
ditions and the lower-boundary condition were quickly met.
The PINNs started to capture the flow of soil moisture at the
20 000 iterations of the Adam algorithm (Fig. 13e), which
coincided with when the adaptive parameters sa for the L-
LAAF reached their limiting values (see the right column of
Fig. 12). Even at the end of the Adam algorithm, there are
large errors in the PINN solution near the surface and wet-
ting fronts in the lower layer (Fig. 13g). These errors were
further minimized by the L-BFGS-B algorithm (Fig. 13h).
This demonstrated that a second-order method such as the
L-BFGS-B algorithm is necessary to train PINNs when the
solution to PDEs is complicated.
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Figure 12. Heterogeneous soil. (a) The evolution of the loss terms in the loss function (left column) and adaptive parameters sa for the
layer-wise locally adaptive activation function (Eq. 9) for each hidden layer (right column) during the Adam algorithm (100 000 iterations)
and the following L-BFGS-B training for the neural network for the upper layer. Here, Layer 1 is next to the input layer. (b) The same for
the lower layer. (c) The evolution of the loss terms for the interface conditions.

3.2.4 Effects of number of interface points and weight
parameters in loss function

We investigated the effects of the number of interface
points NI on PINN performance. The number varied
from 100, 300, 1000, 3000, and 10 000, and 10 different ran-
dom seeds were used for each setting. Figure 14a–c showed
that the effects on the loss terms for the interface conditions
were negligible. The relative squared error εθ decreased with
the number NI from 100 to 300, but the effect was negligi-
ble for larger NI (see Fig. 14d). Thus, we concluded that the
effects NI were minor and used 1000 interface points in the
following analysis.

We also investigated the effects of the weight parame-
ters λi in the loss function. We fixed λr for the lower layer to
be 1 and λi for the initial condition and the lower-boundary

condition for the lower layer to be 10, while λi values for the
upper layer and the interface conditions were varied from 1,
10, and 100 (i.e., λi for the different loss terms in the up-
per layer are the same). A total of 10 different initializations
were conducted. Figure 15a shows PINNs were more likely
trapped by a local minimum of the loss function when λi for
the upper layer was smaller, indicated by the cloud of the data
points. However, the best PINN solution appeared not to be
affected by λi . Similar observations were made for the ef-
fects on the loss terms corresponding to the upper layer (see
Fig. S4). Figure 15b illustrated the effects of λi for the in-
terface conditions. When λi was larger, the PINNs produced
worse solutions, and it was evident that PINNs suffered from
a local minimum of the loss function. Similar conclusions
were made from the effects on the loss terms for the upper
layer (see Fig. S4). These observations led us to conclude
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Figure 13. Heterogeneous soil. The evolution of the PINN solution during the training. (a) Initialization of the PINNs. (b–f) 1000, 5000,
10 000, 20 000, and 40 000 iterations of the Adam algorithm. (g) The end of 100 000 iterations of the Adam algorithm. (h) The end of the
L-BFGS-B algorithm.

that choosing the right weight parameters λi in the loss func-
tion is very important and challenging for the heterogeneous
case to achieve accurate and consistent solutions to the RRE.

4 Inverse modeling

In this section, we demonstrate that inverse modeling can be
easily implemented using PINNs. Here, we aim to estimate
a surface water flux (i.e., upper-boundary condition) from
near-surface moisture measurements in a layered soil. Sur-
face water flux is the result of precipitation, evaporation, and
surface runoff and thus essential information for land surface
modeling and groundwater management. Although rainfall
measurements can be used as surface water flux, the mea-

surements are generally spatially scarce and noisy. There-
fore, it is important to estimate surface water flux from near-
surface soil moisture data. In this line of research, Sadeghi
et al. (2019) employed the analytical solution of the lin-
earized RRE, and N. Li et al. (2021) proposed a determin-
istic inverse algorithm to estimate surface water flux given
past surface water flux. Brocca et al. (2013) used a sim-
ple soil water balance equation to estimate rainfall. These
studies assumed soil hydraulic properties are homogeneous
(Labolle and Clausnitzer, 1999). Here, we present an in-
verse framework based on PINNs to estimate surface water
flux from near-surface soil moisture measurements in a two-
layered soil, as an extension of our previous work (Bandai
and Ghezzehei, 2021).
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Figure 14. Heterogeneous soil. The effects of the number of interface data points NI. (a) The loss term for the continuity of the residual LIr .
(b) The loss term for the continuity of the water flux LIq . (c) The loss term for the continuity of the neural network output LIN . (d) The
relative squared error with respect to the volumetric water content εθ .

Figure 15. Heterogeneous soil. The effects of weight parameters λi in the loss function on the performance of PINNs with respect to the
relative squared error of the volumetric water content εθ . (a) Upper layer. (b) Interface conditions.

4.1 Problem setup

We consider a one-dimensional soil moisture dynamics in a
layered soil. The upper layer is a 10 cm depth of loam soil
(0 to −10 cm), and the lower layer is a 10 cm depth of sandy
loam (−10 to−20 cm). The WRCs and HCFs of the soils for
ψ < 0 are represented by the van Genuchten–Mualem model
(Mualem, 1976; van Genuchten, 1980):

θ = θr+
θs− θr(

1+ (−αVGψ)
nVG
)m , (31)

K =KsS
l
e

(
1−

(
1− S1/m

e

)m)2
, (32)

where θr is the residual water content [L3 L−3], θs is the
saturated water content [L3 L−3], αVG [L−1] and nVG [–
] determine the shape of the WRC, Ks is the saturated hy-

draulic conductivity [L T−1], l is the tortuosity parameter [–],
m= 1− 1/nVG, and Se is the effective saturation, defined as

Se :=
θ − θr

θs− θr
. (33)

The parameters for the two soils were set in the following
way: θr = 0.078, θs = 0.43, nVG = 1.56, Ks = 1.04, and l =
0.5 for the loam soil (upper layer) and θr = 0.065, θs = 0.41,
nVG = 1.89, Ks = 4.42, and l = 0.5 for the sandy loam soil
(lower layer). The lower boundary is a constant pressure head
set to ψ =−1000 cm, and the upper-boundary condition is a
variable surface water fluxes as follows: −0.3 cm h−1 from
t = 0 to t = 8 h; 0.02 cm h−1 from t = 8 to t = 12 h; and
−0.2 cm h−1 from t = 12 to t = 20 h. The positive and neg-
ative values represent evaporation and infiltration, respec-
tively. The initial condition was set to ψ =−1000 cm for
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all the depths. To generate synthetic data for the abovemen-
tioned scenario, we employed HYDRUS-1D (Šimůnek et al.,
2013) to compute the numerical solution of the RRE with
dt = 0.0001 h and dz= 0.02 cm. The numerical solution by
HYDRUS-1D is not necessarily accurate because it may con-
tain undesirable numerical errors near the interface, as ob-
served in Sect. 3.2, although we confirmed the global mass
balance of the solution. We further added a Gaussian noise
with a mean of 0 and a standard deviation of 0.005 to the
numerical solution. We sampled the simulated noisy syn-
thetic data at predetermined locations to mimic soil mois-
ture measurements by in situ sensors. We tested three pat-
terns of the measurement locations zm [cm]: zm ∈ {−5,−15},
zm ∈ {−3,−7,−13,−17}, and zm ∈ {−1,−5,−9,−13,17}.
The temporal resolution of the measurements was 0.1 h.

4.2 PINNs inverse solution

To infer the surface water flux upper-boundary condition,
we constructed PINNs with domain decomposition. The two
NNs consisted of five hidden layers with 50 units, as in
Sect. 3.2, and β = 0 was used for the output of both NNs
(Eq. 15). Unlike the forward modeling, the initial and bound-
ary data points were not used, and the sampled synthetic data
points and randomly sampled collocations points were only
used to train the NNs. Therefore, the loss function is the sum
of the loss term for the measurement data Lm, the residual
of the RRE Lr, and the three interface conditions (LIr , LIq ,
and LIN ). As for the weight parameters λi for each loss term,
λi = 10 for the measurement data for both layers and the
residual loss for the upper layer, and λi = 1 for the interface
conditions, while λi = 1 for the residual loss for the lower
layer as a reference. We tested 10 different NN initializations
for each measurement scheme, and thus a total of 30 simu-
lations were conducted. Note that the surface water flux i(t)
was estimated by evaluating Eq. (14) with the solution of the
RRE by PINNs.

Figure 16 showed the best-recovered solution and esti-
mated surface upper-boundary condition for the three mea-
surement schemes. As expected, more accurate recovered
solutions were obtained from dense soil moisture measure-
ments (see also Fig. S7). However, interestingly, NNs more
likely were trapped by bad solutions when more measure-
ment data were given (see Fig. S7). This means a large
amount of data does not necessarily lead to a good perfor-
mance of PINNs because large data make the training of
PINNs more difficult. This is an important practical point and
requires further investigation. As for the two measurement
location scheme (Fig. 16a), the wetting front reached the top
measurement point (zm =−5 cm) at approximately t = 3 h,
which coincided with when the estimated surface water flux i
was reasonable. After that time, both the recovered solu-
tion and estimated surface water flux were quite reasonable.
Similar trends were observed for the other two measurement
schemes (Fig. 16b and c). This suggested that we need soil

moisture measurement data closer to the surface (z= 0 cm)
to capture the wetting front and the infiltration rate. Figure S8
in the Supplement showed the evolution of the loss terms L
corresponding to the measurement data, residual, and the in-
terface conditions. Although the direct comparison between
the forward and inverse modeling is not possible because the
problem settings are different, we observed smaller residual
loss terms Lr for the inverse modeling. This observation and
our experiences indicate that PINNs are more effective for
the inverse problem than the forward modeling because data
points inside the spatial and temporal domain are more infor-
mative than initial and boundary conditions for NNs to find
the solution to PDEs.

We note that soil hydraulic parameters are known for both
layers in this test, which is not the case for field applica-
tions. Depina et al. (2021) implemented PINNs with a global
optimization algorithm to estimate the van Genuchten pa-
rameters of a homogeneous soil (Ks, αVG, and nVG) from
soil moisture measurements, and the framework was tested
against for both synthetic and laboratory infiltration experi-
ment data. They demonstrated that PINNs with a global op-
timization algorithm could determine the van Genuchten pa-
rameters for a homogeneous soil. In fact, the current study
was motivated by the need to verify a PINN approach to esti-
mate such soil hydraulic parameters of a layered soil for field
applications. Our next research objective is to implement
PINNs that can estimate both the upper surface boundary
condition and soil hydraulic parameters (e.g., van Genuchten
parameters) for layered soils and test them with soil mois-
ture and surface water flux data measured in a lysimeter. Note
that the estimation of surface water flux was reasonable when
the value is positive (i.e., evaporation) in the example, but it
would probably not be the case for field applications because
evaporation requires coupled heat and water transport mod-
els. Applying PINNs to multi-physics in unsaturated hydrol-
ogy is also our next research step.

5 Advantages and disadvantages of PINNs

Regardless of the potential of PINNs to solve PDEs, sev-
eral studies reported their failures and limitations (Fuks and
Tchelepi, 2020; Sun et al., 2020; Wang et al., 2021). Al-
though there are some theoretical studies on the convergence
and error analysis of PINNs (e.g., Mishra and Molinaro,
2022; Shin et al., 2020), theoretical understanding of PINNs
is still in its infancy (Karniadakis et al., 2021). We summa-
rize the advantages and disadvantages of PINNs compared
to traditional numerical methods (e.g., finite difference, fi-
nite element, and finite volume methods) to potentially use
the method to solve essential questions in hydrology, includ-
ing large-scale forward and inverse modeling.

One main drawback of PINNs for forward modeling is
their computational time. For our case studies, it took ap-
proximately 30 and 90 min for the homogeneous and hetero-
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Figure 16. Inverse modeling to estimate surface water flux from soil moisture measurements in a layered soil (upper layer– loam soil and
lower layer – sandy loam soil). True solution generated by HYDRUS-1D and the recovered solution by PINNs (left column) and the true
and estimated upper surface water flux boundary condition (right column) for different measurement locations zm [cm]. (a) zm ∈ {−5,−15}.
(b) zm ∈ {−3,−7,−13,−17}. (c) zm ∈ {−1,−5,−9,−13,−17}.

geneous forward modeling using a desktop computer with
GPU (NVIDIA GeForce RTX 2060), while it took less than
1 min for HYDRUS-1D to solve the heterogeneous problem.
PINNs might be more competitive for large-scale hydrology
problems, which needs further investigation.

For forward modeling, PINNs can treat initial and bound-
ary conditions as data points. This feature is advantageous
over traditional numerical methods because the accurate ini-
tial and boundary conditions are virtually impossible to ob-
tain in practical conditions. On the other hand, traditional
methods can take into account the uncertainties of the ini-
tial and boundary conditions through the Bayesian approach,

while it requires solving the forward problem many times.
Although uncertainty quantification through PINNs is open
and challenging questions (Psaros et al., 2022), the capabil-
ity of PINNs to deal with noisy and incomplete initial and
boundary conditions is noteworthy.

Traditional numerical methods require mesh generation,
which can be tedious when the spatial domain is compli-
cated. On the other hand, PINNs can be easily modified
to accommodate such complicated geometries (Raissi et al.,
2020). However, it is challenging to correctly impose bound-
ary conditions on PINNs while they are imposed softly in
the loss function in this study. Regarding hydrology applica-
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tion, system-dependent boundary conditions such as pond-
ing and evaporation conditions are challenging to imple-
ment because PINNs solve PDEs in spatial and temporal do-
mains simultaneously, rather than sequentially, as in tradi-
tional time-stepping methods. This difficulty may be a tech-
nical issue, but the loss function would be more complicated
with such system-dependent boundary conditions, and thus
training NNs would be more difficult.

One of the main challenges of PINNs is training PINNs
for large-scale modeling. In particular, a long-term simula-
tion such as wetting and drying cycles requires PINNs to ap-
proximate very complicated functions. We may sequentially
train PINNs in time but lose the ability of PINNs to solve
PDEs simultaneously in space and time, and numerical and
optimization errors accumulate with time stepping.

The application of PINNs to multi-scale and multi-physics
problems is currently challenging, although there are some
pioneering studies in hydrology (He et al., 2020). It is known
that the solution of PINNs to a multi-scale problem is not al-
ways accurate, even for simple problems, because NNs tend
to learn “easy” or low-frequency parts of the solution (Wang
et al., 2022). Although the study was only concerned with
water flow in unsaturated soils, near-surface soil moisture
dynamics is essentially coupled heat and water transport.
Therefore, further research is needed for the application of
PINNs to multi-physics simulations in unsaturated soils.

One advantage of PINNs specific to the RRE is that there
is no need for temporal discretization, which results in mass
balance issue (Celia et al., 1990). Also, PINN solutions are
differentiable and thus can be used to derive water flux easily
without post-processing, as in Scudeler et al. (2016). Fur-
thermore, PINNs can store the solutions of PDEs efficiently
with a smaller number of degrees of freedom, particularly
for high dimensions (Karniadakis et al., 2021). These mer-
its can make PINNs a good candidate for a numerical solver
of large-scale modeling based on the RRE. Nevertheless,
these advantages depend on how accurately PINNs satisfy
the RRE.

In terms of inverse modeling, PINNs have some interest-
ing features. First, PINNs do not have to solve the forward
modeling to solve the inverse problem. On the other hand,
standard inverse methods require solving the forward mod-
eling many times to adjust parameters of interest. This fea-
ture makes the computation of PINNs efficient. However, as
shown in the study, PINNs do not precisely impose PDEs
constraints as traditional methods, where the forward model-
ing is actually solved. Further research is needed to minimize
the residual loss term so that known physics is precisely im-
posed. Second, when estimating boundary conditions as in
the study or initial condition from data, PINNs do not re-
quire the discretization of those target functions. In tradi-
tional methods, it is common to represent the target functions
as a linear combination of some basis functions (e.g., finite
elements) and estimate the coefficients of the basis functions.
In PINN framework, such discretization is not necessary, and

those target function values can be evaluated directly from
NNs. Overall, although PINNs have interesting and attractive
characteristics, fully utilizing the potential requires further
research. In the next section, future perspectives of PINNs
are mentioned.

6 Conclusions and future perspectives

We presented a numerical method based on neural
networks (NNs), called physics-informed neural net-
works (PINNs), to solve the Richardson–Richards equa-
tion (RRE) to simulate water flow in unsaturated homoge-
neous and heterogeneous soils. We tested recently proposed
PINN algorithms on our problems and found that the layer-
wise locally adaptive activation function (L-LAAF) devel-
oped by Jagtap et al. (2020) was effective. The L-LAAF
changes the slope and the linear regime of the activation
functions in NNs and helps PINNs approximate the solu-
tion of the RRE well. First, we tested the PINN approach
for the homogeneous soil case. By comparing the PINN so-
lution to the analytical solution by Srivastava and Yeh (1991)
and the numerical solution by a finite difference method, we
demonstrated that “well-trained” PINNs can be competitive
in terms of accuracy and memory efficiency. However, train-
ing PINNs requires significant efforts to tune various param-
eters of NNs, including NN architecture and weight param-
eters in the loss function. We systematically investigated the
effects of those parameters on the performance of PINNs and
demonstrated that those interrelated effects make PINN ap-
proach less consistent. Although some automatic but empiri-
cal algorithms to tune those parameters improved the perfor-
mance of PINNs to some extent, it was difficult for PINNs to
consistently obtain solutions to the PDE with high accuracy,
and the results were strongly dependent on the initialization
of NNs. Our empirical but comprehensive observations pro-
vide some suggestions on the choice of the parameters, but
we do not think they can be applied to various cases, and thus
further studies are necessary.

We tested PINN approach for a layered soil, where hy-
draulic conductivity is discontinuous across the layer bound-
ary. The analytical solution by Srivastava and Yeh (1991)
was used to verify the PINN solution. We demonstrated that
PINNs with domain decomposition proposed by Jagtap and
Karniadakis (2020) successfully approximated the solution
of the RRE for a two-layered soil. The comparison with a fi-
nite element method using popular software, HYDRUS-1D
(Šimůnek et al., 2013), was made. The PINN solution was
superior to HYDRUS-1D for the problem because the in-
terface conditions on the layer boundary were well imposed
for the PINN approach but not for HYDRUS-1D. Neverthe-
less, the study demonstrated that obtaining PINN solutions
for the problem with consistent accuracy was challenging be-
cause of the difficulty in choosing the right weight parame-
ters in the loss function, which determines the relative impor-
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tance of physical constraints for the problem (e.g., initial and
boundary conditions).

We further applied the PINNs with domain decomposi-
tion to the inverse modeling to estimate a water flux upper-
boundary condition from noisy sparse soil moisture measure-
ments. The inverse modeling was easily formulated by the
PINN approach, and the effects of the measurement schemes
were studied. The upper-boundary condition was reasonably
inverted from the noisy data, in particular when measurement
data near the soil surface were available. However, our re-
sults demonstrated that a large amount of data do not neces-
sarily lead to a good performance of PINNs because training
PINNs is more difficult with more data. Further research is
needed to make PINNs learn from a larger amount of data
and simultaneously determine both soil hydraulic properties
and surface water flux for layered soils.

The PINN algorithm presented here is focused on water
flow in unsaturated soils. However, there are many situa-
tions where we need to simulate saturated–unsaturated flow,
such as ponding conditions and interactions with groundwa-
ter. Our preliminary tests gave positive results on the exten-
sion of PINNs to saturated–unsaturated cases. Readers may
refer to the author comment in the interactive public discus-
sion (Bandai and Ghezzehei, 2022a).

PINNs have the potential to solve issues traditional nu-
merical methods cannot solve by leveraging the capability
of NNs to approximate complex functions efficiently. How-
ever, the mathematical complexities of the forward and in-
verse problems are lumped into a complicated nonlinear,
non-convex minimization problem. Whether PINNs can per-
form well depends on whether we can solve the resulting
minimization problem well. Another difficulty comes from
the fact that PINNs have an unusual regularization term in
the loss function as the form of the residual of PDEs. This
term is very different from standard regularization terms such
as L1 and L2 regularizations because it contains the deriva-
tive of the output of NNs with respect to their input. The
mathematical and exploratory investigation of the minimiza-
tion problem and the regularization term is necessary for fur-
ther improvements of PINNs. The investigation may include
a vast amount of literature on NNs and PDE constrained op-
timization. There are many methods and findings that have
not been well tested against PINNs, including transfer learn-
ing, second-order optimization methods, and the correspon-
dence with adjoint-state methods (Petra and Stadler, 2011).
We will investigate those areas to improve the understanding
of PINNs and use PINNs for large-scale modeling in hydrol-
ogy.

Aside from PINNs, the latest research trends have been
directed toward learning the “operator” of PDEs rather than
their solutions given initial and boundary conditions, as in
the study. This new research field has been led by two main
groups (Lu et al., 2021a; Z. Li et al., 2021), and they aim
to develop operator learning methods applicable to general
PDEs, of course including the ones in hydrology. Do we

wait until they develop general PDE simulators or provide
a unique perspective in soil physics and hydrology? We need
to consider how we contribute to the rapid progress of the
fields as domain scientists (Nearing et al., 2021).

Appendix A: List of abbreviations

FDMs Finite difference method
FEMs Finite element methods
GPUs Graphics processing units
HCF Hydraulic conductivity function
L-LAAF Layer-wise locally adaptive activation

function
ML Machine learning
NNs Neural networks
PDE Partial differential equation
PINNs Physics-informed neural networks
RRE Richardson–Richards equation
WRC Water retention curve

Appendix B: List of notation

Superscript
·̂ prediction except for used for 2̂
·
∗ dimensionless for the analytical solutions

Subscript
·D Dirichlet boundary condition
·F water flux boundary condition
·I interface
·IN interface condition regarding the continuity

of neural network output
·Iq interface condition regarding the continuity

of water flux
·Ir interface condition regarding the continuity

of the residual of the RRE
·Iψ interface condition regarding the continuity

of water potential
·ic initial condition
·lb lower-boundary condition
·L lower layer
·m measurement data
·r residual
·ub upper-boundary condition
·U upper layer
Alphabet
a the collection of trainable parameters for

adaptive activation functions for a neural
network

a[k] trainable parameter for the element-wise
nonlinear activation function

b the collection of bias vectors for a neural
network

b[k] bias vector for the kth hidden layer
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Alphabet
dt time step for finite difference and finite

element solutions [T]
dz spatial mesh for finite difference and finite

element solutions [L]
g(z) initial condition
h(z, t) Dirichlet boundary condition
H total water head [L]
h[k] vector for the kth hidden layer
i(z, t) water flux boundary condition
K hydraulic conductivity [L T−1]
Ks saturated hydraulic conductivity [L T−1]
l tortuosity parameter [–]
L the number of hidden layers
L loss function
Li loss term for i constraints
m van Genuchten parameter
n[k] dimension of a vector corresponding to the

kth hidden layer
nVG van Genuchten parameter [–]
nx dimension of input vector x

ny dimension of output vector ŷ

Ni the number of points for i constraints
N neural network functions
o output functions
q water flux in the vertical direction (positive

downward) [L T−1]
q water flux in three dimensions [L T−1]
qA constant water flux at the surface to determine

the initial condition of the analytical solutions
[L T−1]

qB constant water flux at the surface used in the
analytical solutions [L T−1]

r̂ the residual of the RRE
s fixed scaling factor for adaptive activation

functions
S source term [T−1]
t time [T]
T final time [T]
W the collection of the weight matrices for a

neural network
W[k] weight matrix for the kth hidden layer
x input vector
ŷ output vector
z vertical coordinate or elevation head (positive

upward) [L]
Z the vertical length of a soil [L]
Greek alphabet
αG pore-size distribution parameter [L−1]
αVG van Genuchten parameter [L−1]
β fixed parameter for the output of neural

networks
εθ relative squared error in terms of volumetric

water content
θ volumetric water content [L3 L−3]

Greek alphabet
θr residual volumetric water content [L3 L−3]
θs saturated volumetric water content [L3 L−3]
2 neural network parameters
2̂ update of neural network parameters for each

iteration of optimization algorithms
κn infinite sequence to compute the analytical

solution
λi weight parameters in the loss function
σ element-wise nonlinear activation function
ψ water potential in soils [L]
ψlb water potential at the bottom boundary [L]
� spatial domain
∂� spatial boundary
Others
:= equal by definition
∇ nabla
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