Algorithm 1 PINNs with domain decomposition

Step 0: Divide the spatial domain into Ω_U and Ω_L and assign two neural networks \mathcal{N}_U and \mathcal{N}_L to each domain. Determine the architecture of two neural networks \mathcal{N}_U and \mathcal{N}_L and weight parameters λ_i in the loss function L (Eq. 17).

Step 1: Construct the neural networks $\mathcal{N}_U(z, t; \Theta_U)$ and $\mathcal{N}_L(z, t; \Theta_L)$ with neural network parameters Θ_U and Θ_L.

Step 2: Initialize the neural network parameters to Θ^0_U and Θ^0_L.

Step 3: Given available data (e.g., initial and boundary conditions, measurement data), train the neural networks \mathcal{N}_U and \mathcal{N}_L by minimizing the loss function $L(\Theta_U, \Theta_L)$.

\[i \leftarrow 0 \]

\[\text{while } i < \text{max_iteration_Adam do } \]

\[\Theta^{i+1}_U \leftarrow \Theta^i_U + \hat{\Theta}^i_U \]

\[\Theta^{i+1}_L \leftarrow \Theta^i_L + \hat{\Theta}^i_L \]

\[i \leftarrow i + 1 \]

\[\text{end while} \]

\[\text{while L-BFGS-B stopping criteria are not met do } \]

\[\Theta^{i+1}_U \leftarrow \Theta^i_U + \hat{\Theta}^i_U \]

\[\Theta^{i+1}_L \leftarrow \Theta^i_L + \hat{\Theta}^i_L \]

\[i \leftarrow i + 1 \]

\[\text{end while} \]