networks \mathcal{N}_U and \mathcal{N}_L to each domain. Determine the architecture of two neural networks \mathcal{N}_U and \mathcal{N}_L and weight parameters λ_i in the loss function \mathcal{L} (Eq. 17). **Step 1**: Construct the neural networks $\mathcal{N}_U(z,t;\Theta_U)$ and $\mathcal{N}_L(z,t;\Theta_L)$ with neural network parameters Θ_U and Θ_L . **Step 2**: Initialize the neural network parameters to Θ_{II}^0 and Θ_{I}^0 . Step 3: Given available data (e.g., initial and boundary conditions, measurement data), train the neural networks \mathcal{N}_U and \mathcal{N}_L by minimizing the loss function $\mathcal{L}(\Theta_U, \Theta_L)$. $i \leftarrow 0$

Step 0: Divide the spatial domain into Ω_U and Ω_L and assign two neural

Algorithm 1 PINNs with domain decomposition

end while

while
$$i < \text{max_iteration_Adam do}$$

$$\Theta_U^{i+1} \leftarrow \Theta_U^i + \hat{\Theta}_U^i$$

$$\Theta_L^{i+1} \leftarrow \Theta_L^i + \hat{\Theta}_L^i$$

$$i \leftarrow i + 1$$

end while

end while

while L-BFGS-B stopping criteria are not met do

$$\Theta^{i+1} \leftarrow \Theta^i + \hat{\Theta}^i$$

 $\Theta_{II}^{i+1} \leftarrow \Theta_{II}^i + \hat{\Theta}_{II}^i$

 $\Theta_L^{i+1} \leftarrow \Theta_L^i + \hat{\Theta}_L^i$

 $i \leftarrow i + 1$