
Hydrol. Earth Syst. Sci., 26, 4431–4446, 2022
https://doi.org/10.5194/hess-26-4431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Breakdown in precipitation–temperature scaling over India
predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi1,2, Subimal Ghosh3,4, and Axel Kleidon1

1Biospheric Theory and Modelling Group, Max Planck Institute for Biogeochemistry, Jena 07745, Germany
2International Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC), Jena 07745, Germany
3Department of Civil Engineering, Indian Institute of Technology Bombay 400076, Mumbai, India
4Interdisciplinary Programme in Climate Studies, Indian Institute of Technology Bombay 400076, Mumbai, India

Correspondence: Sarosh Alam Ghausi (sghausi@bgc-jena.mpg.de)

Received: 14 April 2022 – Discussion started: 2 May 2022
Revised: 13 July 2022 – Accepted: 15 August 2022 – Published: 29 August 2022

Abstract. Climate models predict an intensification of pre-
cipitation extremes as a result of a warmer and moister at-
mosphere at the rate of 7 % K−1. However, observations in
tropical regions show contrastingly negative precipitation–
temperature scaling at temperatures above 23–25 ◦C. We use
observations from India and show that this negative scaling
can be explained by the radiative effects of clouds on sur-
face temperatures. Cloud radiative cooling during precipita-
tion events make observed temperatures covary with precip-
itation, with wetter periods and heavier precipitation having
a stronger cooling effect. We remove this confounding effect
of clouds from temperatures using a surface energy balance
approach constrained by thermodynamics. We then find a di-
ametric change in precipitation scaling with rates becoming
positive and coming closer to the Clausius–Clapeyron (CC)
scaling rate (7 % K−1). Our findings imply that the intensi-
fication of precipitation extremes with warmer temperatures
expected with global warming is consistent with observations
from tropical regions when the radiative effect of clouds on
surface temperatures and the resulting covariation with pre-
cipitation is accounted for.

1 Introduction

Climate models and observed trends have shown that pre-
cipitation extremes increase on a global scale with anthro-
pogenic global warming (Fischer et al., 2013; Westra et al.,
2013; Donat et al., 2016). This increase is largely explained
by the thermodynamic Clausius–Clapeyron (CC) equation,

suggesting a ≈ 7 % K−1 increase in atmospheric moisture-
holding capacity per degree rise in temperature (“CC rate”)
(Allen and Ingram, 2002). Extreme precipitation is expected
to increase at a similar rate (Trenberth et al., 2003; Held and
Soden, 2006; O’Gorman and Schneider, 2009), as also shown
by convection-permitting climate model projections (Kendon
et al., 2014; Ban et al., 2015). Precipitation–temperature scal-
ing rates, estimated using statistical methods and observed
records, are widely used as an indicator to constrain this
response (Lenderink and Van Meijgaard, 2008; Wasko and
Sharma, 2014).

However, observed scaling rates show large heterogeneity
globally, with significant deviations from the CC rate (Westra
et al., 2014; Schroeer and Kirchengast, 2018). Deviations are
larger in the tropical regions where scaling rates are mostly
negative and precipitation extremes largely show a mono-
tonic decrease or a sudden drop (hook) in scaling at high tem-
peratures (Utsumi et al., 2011). These deviations have been
studied and attributed to a number of factors. Two primarily
argued reasons include the limitation of moisture availabil-
ity at high temperatures (Hardwick Jones et al., 2010) and
the dependence of scaling estimates on the wet event dura-
tion (Gao et al., 2018; Ghausi and Ghosh, 2020; Visser et
al., 2021). Cooling effects of rainfall events have also ques-
tioned the use of surface air temperature as a scaling variable
(Bao et al., 2017). Other scaling variables like atmospheric
air temperature (Golroudbary et al., 2019), sampling temper-
atures before the start of a storm (Visser et al., 2020), using
measures of atmospheric moisture like dew point tempera-
ture (Bui et al., 2019) and integrated water vapour (Roderick
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et al., 2019) have been suggested as alternatives to surface air
temperatures. The use of atmospheric moisture as a scaling
variable has been criticised because it provides less insight
about precipitation sensitivity to temperature and is also not
entirely immune to the cooling effects of rainfall (Bao et al.,
2018). Other factors that can cause deviations in scaling in-
clude the change in rainfall type from stratiform to convec-
tive (Berg et al., 2013; Molnar et al., 2015) and seasonality in
precipitation (Sun et al., 2020). Owing to these uncertainties,
the use of scaling relationships derived from observations to
infer future changes in extreme precipitation in these regions
remains debatable.

In this study, we show that a large part of uncertainties
in this response and negative scaling rates in the tropics are
mainly caused by the radiative effect of clouds on surface
temperatures. Precipitation events are accompanied by strong
cloud cover, which reduces the solar absorption at the sur-
face and hence lowers surface temperatures. This radiative
cooling associated with precipitation can be significant in the
tropical regions where insolation and temperatures are high.
As a result, regions and periods of more intense precipitation
cool more, affecting their position in the scaling curve. This
implies that temperature observations are not independent of
precipitation and this dependency obscures their scaling rela-
tionship. We used a thermodynamic systems approach to re-
move this cooling effect from surface temperatures. We then
show that when this effect is removed, no breakdown in the
scaling relationship is seen in observations and extreme pre-
cipitation then scales positively with temperature close to the
CC rate.

To remove the effects of clouds we used a surface energy
balance formulation in conjunction with the first and second
law of thermodynamics (Kleidon and Renner, 2013). This
approach provides us with additional thermodynamic con-
straints on the turbulent flux exchange between surface and
atmosphere. We used this thermodynamically constrained
model and force it with the “all-sky” and “clear-sky” radia-
tive fluxes. These fluxes are a standard product in NASA-
CERES radiation datasets such that all-sky fluxes are repre-
sentative of observed conditions including the cloud effects
while clear-sky fluxes are diagnosed by removing the effect
of clouds from the radiative transfer. Compounding the ther-
modynamic constraint on turbulent fluxes together with the
radiative fluxes helps us to estimate all-sky and clear-sky
temperatures that includes and excludes the radiative effects
of clouds, respectively.

We subsequently evaluate this effect and its impact on
precipitation–temperature scaling using observations from
India. India is a tropical country where the extreme pre-
cipitation and the resulting floods have intensified over the
past years (Goswami et al., 2006) and are expected to in-
crease in the future (Katzenberger et al., 2021). However, ex-
treme precipitation–temperature scaling is largely negative
over most of India (Vittal et al., 2016; Sharma and Mujum-
dar, 2019), which is in contrast to the observed trends (Roxy

et al., 2017). In this study, we attempt to resolve this inconsis-
tency in precipitation–temperature scaling by removing the
cloud-cooling effects from surface temperatures. To do this,
we use gridded precipitation–temperature datasets that were
used in previous studies (Vittal et al.,2016; Mukherjee et al.,
2018; Sharma and Mujumdar, 2019; Ghausi et al., 2020) and
supplement them with the gridded radiative flux datasets to
remove the cloud radiative effects. More details on our sur-
face energy balance model and estimation of surface tem-
peratures “with” and “without” clouds are discussed in the
Sect. 2.1 with details of the datasets being used in Sect. 2.2.
We used these reconstructed temperatures to study the effect
of clouds on precipitation–temperature scaling over India. To
estimate the precipitation–temperature scaling rates, we ap-
plied the widely adopted statistical methods. Details thereof
are provided in Sect. 2.3. Results are then presented and dis-
cussed in Sect. 3.

2 Methods and data

2.1 Thermodynamically constrained energy balance
model

To infer surface temperatures from the radiative forcing and
remove the effects of clouds, we start with a simple phys-
ical formulation of the surface energy balance. The surface
of the Earth is heated by solar absorption and downwelling
long-wave radiation. This heat is released back into the atmo-
sphere through surface emission of long-wave radiation and
exchange of turbulent fluxes of sensible and latent heat. This
balance between the incoming and outgoing energy fluxes at
the Earth’s surface is described by Eq. (1):

Rs+Rl,down = Rl,up+ J, (1)

where Rs is the surface net solar absorption, Rld is the down-
welling long-wave radiation, Rl,up is the upwelling long-
wave radiation emitted from the surface and J is turbulent
flux exchange between the surface and the atmosphere (com-
prising of sensible and latent heat). We neglect the ground
heat flux as it is generally small when averaged over a few
days or longer. While Rs and Rl,down can be obtained using
radiation datasets for different sky conditions, the partition-
ing between Rl,up and J is poorly constrained by surface en-
ergy balance alone. To have these additional constraints on
J , we used a thermodynamic systems approach to view the
Earth system. Similar approaches had also been used (Klei-
don and Renner, 2013; Kleidon et al., 2014; Dhara et al.,
2016) and were found to capture the observed surface tem-
peratures, energy partitioning and climate sensitivities very
well.

To do this, we conceptualise the surface atmosphere sys-
tem as a heat engine, with warm Earth surface as the heat
source and cooler atmosphere being the sink (Fig. 1). Heat
and mass are transported within this engine by the exchange
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Figure 1. Schematic diagram of the surface energy balance, the
fluxes of solar (red) and terrestrial (blue) radiation, as well as the
turbulent heat fluxes (black). We consider turbulent heat exchange
being driven primarily by an atmospheric heat engine that operates
at the thermodynamic limit of maximum power.

of turbulent fluxes (J ) between the surface and the atmo-
sphere. The differential radiative heating and cooling be-
tween the surface and the atmosphere maintains the tempera-
ture difference and drives the vertical convective motion. The
power (G) associated with the work done by the heat engine,
required to sustain convective motion in the form of vertical
mixing and exchange of turbulent fluxes, can be derived by
simply using the first and second law of thermodynamics and
can be represented by the well-established Carnot limit as

G= J

(
1−

Ta

Ts

)
. (2)

Detailed derivation about this can be found in Kleidon and
Renner (2013) and Kleidon et al. (2014). Here, Ta and Ts are
the representative temperatures of cold atmosphere and the
hot surface, respectively.

Both temperatures are inferred from their respective en-
ergy balances. The atmospheric temperature (Ta) is assumed
to be equal to the radiative temperature (Tr) of atmosphere
and is estimated using the outgoing long-wave radiation at
top of atmosphere (Rl,toa)

Ta =

(
Rl,toa

σ

)1/4

, (3)

where σ is the Stefan–Boltzmann constant (σ = 5.67×
10−8 Wm−2 K−4). A correction of 15 K was applied to the
radiative temperature to account for the assumption of black
atmosphere and effective height of convection (Dhara et al.,
2016). We consider the atmosphere as opaque to terrestrial
radiation and hence it is assumed that all outgoing long-wave
radiation emitted into space originates from the atmosphere.

The heat engine source temperature, i.e. surface tempera-
ture (Ts) can be expressed from the emitted long-wave radia-

tion from the surface (Rl,up) as

Ts =

(
Rl,up

σ

)1/4

. (4)

Using the surface energy balance (Eq. 1), we can then ex-
press the surface temperature in terms of net solar absorption,
downwelling long-wave radiation and turbulent fluxes (J ) as

Ts =

(
Rs+Rl,down− J

σ

)1/4

. (5)

The differential radiative heating and cooling between the
surface and the atmosphere maintains the temperature dif-
ference and drives the vertical convective motion. Thermo-
dynamics sets a limit to this conversion and thus constrains
the amount of turbulent flux exchange. Less turbulent fluxes
result in a hotter surface (Eq. 5), which will increase the tem-
perature difference between the surface and atmosphere. This
will subsequently increase the efficiency term in the gen-
eration rate, i.e. the second term on the right-hand side of
Eq. (2). On the other hand, an increase in turbulent fluxes (J )
increases the first term in the generation rate of Eq. (2), but it
will, in turn, reduce the surface temperature and temperature
difference between surface and atmosphere (Eq. 5). Thus, a
trade-off exists that sets the limit for the power to maintain
vertical energy and mass exchange between the surface and
the atmosphere. This limit is termed as the maximum power
limit and provides an additional constraint to partitioning of
the surface energy balance that we used here to infer surface
temperatures.

Using Eqs. (2), (3) and (5), the rate of work done (power)
produced by the heat engine can be expressed as a function
of turbulent fluxes (J ) as

G= J

(
1− Ta

(
Rs+Rl,down− J

σ

)−1/4
)
. (6)

Note that power G= 0 when J = 0 or when J = Rs+

Rl,down−Rl,toa. Hence, there is a maximum Gmax =

G (Jmaxpower) for a value between 0<Jmaxpower<Rs+

Rl,down−Rl,toa. The optimum J that maximises power was
calculated numerically. This flux was then used to determine
the surface temperatures:

Ts,maxpower =

(
Rs+Rl,down− Jmaxpower

σ

)1/4

. (7)

Surface temperatures were estimated using Eq. (7) for all-
sky and clear-sky radiative conditions using radiative forcing
from the NASA-CERES datasets. We then refer to these two
temperatures derived using Eq. (7) as all-sky and clear-sky
temperatures.
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2.2 Datasets used

Radiative fluxes of short- and long-wave radiation at surface
and top of atmosphere (TOA) were obtained from the NASA-
CERES (EBAF 4.1) dataset (Loeb et al., 2018; Kato et al.,
2018) and the NASA-CERES Syn1deg dataset (Doelling et
al., 2013, 2016). These datasets are available for both all-
sky and clear-sky conditions at monthly and daily scales,
respectively with a 1◦ latitude× 1◦ longitude spatial grid
resolution. They were used as a forcing in our energy bal-
ance model. We evaluated our model using observation-
derived gridded temperature data from the Indian Meteoro-
logical Department (IMD; Rajeevan et al., 2008). To estimate
the precipitation–temperature scaling, we used daily gridded
precipitation and temperature datasets with a spatial reso-
lution of 1◦ latitude× 1◦ longitude from IMD (Rajeevan et
al., 2008) and 3-hourly gridded rainfall data from NASA-
TRMM_3B42 with a spatial resolution of 0.25◦× 0.25◦.
We repeated the analysis using daily gridded precipitation
and temperature data from the Asian Precipitation Highly-
Resolved Observational Data Integration towards Evaluation
of water resources (APHRODITE) dataset, available at a spa-
tial resolution of 0.25◦× 0.25◦ (Yatagai et al., 2012). To fur-
ther ensure the robustness of our results, we also used daily
precipitation–temperature observations based on three sta-
tions in India (Mumbai Airport, Bangalore Airport and Chen-
nai Airport) from the global surface summary of the day
(GSOD) data provided by the National Oceanic and Atmo-
spheric Administration (NOAA). Daily dew point tempera-
tures were obtained from the ERA-5 reanalysis. Based on
the availability of all datasets, the period of analysis is 2003–
2015.

2.3 Estimation of precipitation–temperature scaling
rates

Extreme precipitation events were scaled with observed, all-
sky and clear-sky temperatures using two widely adopted
scaling approaches: the binning method (Lenderink and
Van Meijgaard, 2008) and quantile regression (Wasko and
Sharma, 2014). For the binning method, we defined extreme
precipitation events using a threshold of the 99th percentile
precipitation contained at each grid cell. Precipitation–
temperature pairs were then divided into the increasing order
of non-overlapping bins of 2 K width. Only those bins with
at least 150 data points have been considered for the analysis
(Utsumi et al., 2011). The median value of each bin was then
used to examine the variation of precipitation extremes with
temperature. Bins with temperatures less than 3 ◦C were dis-
carded to remove the effects of freezing, thawing and snow-
fall. To ensure that our results are not biased with the number
of data points in each bin and bin sizes (which may affect the
nature of the scaling relationship), we further used the quan-
tile regression method to estimate the scaling rates.

Quantile regression estimates the conditional quantile of
the dependent variable (in our case, precipitation) over the
given values of the independent variable (temperature). We
first fitted a quantile regression model between the logarith-
mic precipitation and temperature values at the target quan-
tile of 99 %:

Log(Pi)= β99
o +β

99
1 (Ti), (8)

where Pi denotes the mean daily precipitation intensity,
Ti is the daily mean temperature and β99

o and β99
1 are the

regression coefficients for the 99th quantile of precipitation.
The slope coefficient β99

1 is then exponentially transformed
to estimate the scaling rate (α1):

α1 = 100 ·
(
eβ

99
1 − 1

)
. (9)

The aforementioned methodology had been widely adopted
to estimate the extreme precipitation–temperature scaling in
previous studies (Lenderink and Van Meijgaard, 2008, 2010;
Utsumi et al., 2011; Wasko and Sharma, 2014; Schroeer et
al., 2018).

3 Results and discussion

We begin this section with a quick evaluation of our thermo-
dynamic approach by comparing the estimated all-sky tem-
peratures against observations. We then quantify the cloud
radiative effects on surface temperatures and check for its
spatial consistency across regions. Thereafter we estimate
precipitation–temperature scaling rates by including and ex-
cluding the effect of clouds on surface temperatures; dew
point temperature (a proxy measure for atmospheric mois-
ture) was also used as a scaling variable. Later, we discuss
our interpretation of scaling by excluding cloud effects from
temperatures, its comparison with the dew point scaling and
its implications across regions.

3.1 Evaluating the modelled temperatures

All-sky temperatures were estimated using the daily ob-
served radiative fluxes from CERES in conjunction with
surface energy partitioning constrained by maximum power
(see Eq. 7). We found an extremely good agreement be-
tween these estimated temperatures when compared to sur-
face temperature observations over India with R2> 0.9 and
RMSE< 1.5 K over most regions (Fig. 2). This signifies that
our formulation strongly captures the surface temperature
variation over India and thus validates our approach. We then
extend this for clear-sky conditions by forcing our model
with clear-sky radiative fluxes from CERES and estimating
clear-sky temperatures. It worth noting that clear-sky temper-
atures are reconstructed temperatures estimated by removing
the effect of clouds from radiative transfer.
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Figure 2. (a) Comparison of daily annual cycle of temperature for observed (Indian Meteorological Department, IMD) and estimated all-sky
surface temperatures, averaged over all grid points. (b) Regression between the two temperatures at the grid-point scale. (c) Spatial variation
of the root mean squared error (RMSE) in temperature estimates from maximum power compared to observed temperatures.

3.2 Estimating the cloud radiative cooling

We used the difference between the all-sky and clear-sky
temperatures as a measure to quantify the effect of cloud-
driven cooling during rainfall events. This cooling strongly
increases with precipitation across regions, resulting in a
stronger reduction in surface temperature with greater pre-
cipitation (Fig. 3a); it is predominantly caused by the sub-
stantial reduction in absorbed solar radiation at the sur-
face for all-sky conditions compared to clear-sky conditions
(Fig. 3b). On the other hand, changes in long-wave radia-
tion are comparatively small and remain largely insensitive
to precipitation.

To examine the spatial consistency in precipitation vari-
ability and associated cooling, we isolated extreme daily pre-
cipitation days over each grid. Figure 4a shows the mean
magnitude of daily extreme precipitation events over India.
The pattern was consistent with the cloud-cover map from
NASA-CERES (shown in Appendix C). Figure 4b shows the
cooling of clouds associated with these days. This cloud-
cooling effect and precipitation shows a clear, systematic
variation across India. The cooling effect is greater where
precipitation rates are high. In contrast, in the more arid re-
gions of northwestern India, the cooling effect almost disap-
pears with low precipitation rates. In the northernmost Hi-

malayan region, the difference in clear-sky and all-sky tem-
peratures is negative. These high-altitude regions are more
sensitive to changes in long-wave radiations. As a result,
there is a significant increase in long-wave radiation with an
increase in cloud cover that compensates for the cooling due
to reduction in short wave over those grids. Figure 4c fur-
ther shows the mean all-sky temperature during these days.
We find that the heaviest events occur at a relatively lower
temperature as a result of stronger cooling. Figure 4d shows
the mean number of rainfall days per year. More rainy days
implies more cloudy conditions and thus a stronger cloud ra-
diative cooling over that region. Having quantified this effect
of cloud radiative cooling and its systematic variation across
regions, we then estimate its impact on the precipitation–
temperature scaling.

3.3 Impact on precipitation-temperature scaling

We performed a binning analysis (Lenderink and Van Mei-
jgaard, 2008) to understand the scaling of precipitation ex-
tremes with temperature using observed temperatures as well
as our estimated clear-sky and all-sky temperatures. Precip-
itation events were isolated and binned into P–T pairs and
the resulting scaling relationships are shown in Fig. 5. The
scaling relationship using observed and all-sky temperatures
showed similar scaling behaviour (yellow and red lines in

https://doi.org/10.5194/hess-26-4431-2022 Hydrol. Earth Syst. Sci., 26, 4431–4446, 2022



4436 S. A. Ghausi et al.: Breakdown in precipitation–temperature scaling

Figure 3. (a) Cooling effect of clouds on surface temperatures calculated from the difference of all-sky to clear-sky surface temperatures
as a function of precipitation over the Indian region. (b) Difference in net short-wave and downwelling long-wave radiative fluxes (cloud
radiative effect, CRE) between all-sky and clear-sky radiative conditions at the surface as a function of precipitation. This was inferred using
the NASA-CERES (EBAF ed4.1) dataset (Loeb et al., 2018).

Figure 4. Regional variation of (a) mean daily extreme precipitation
(99th percentile), (b) the temperature difference between clear-sky
and all-sky radiative conditions averaged during extreme precipita-
tion events, (c) all-sky surface temperature during the occurrence of
the event and (d) mean number of rainfall days per year.

Fig. 5a). Extreme precipitation increases close to the CC rate
up to a threshold of around 23–24 ◦C, above which the scal-
ing becomes negative. This breakdown in scaling behaviour
with observed temperatures is consistent with the findings of
previous studies (Hardwick Jones et al., 2010; Ghausi and
Ghosh, 2020) and is commonly referred to in literature as
“hook” or “peak structure” (Wang et al., 2017; Gao et al.,

2018). However, when precipitation extremes are scaled with
clear-sky temperatures that exclude the cloud-cooling effect,
the resulting scaling relationship does not show a break-
down and increases consistently, close to the CC rate over
the whole temperature range (blue line in Fig. 5a). Similar
results were obtained when the scaling curves were repro-
duced for station-based observations (see Appendix A).

Previous studies (Hardwick Jones et al., 2010; Chan et al.,
2015; Wang et al., 2017) have attributed the breakdown in
precipitation–temperature scaling to a lack of moisture avail-
ability as relative humidity tends to decrease at high tem-
peratures. To account for this effect of moisture limitation,
some studies used dew point temperature, a measure of atmo-
spheric humidity, as an alternative scaling variable (Wasko et
al., 2018; Barbero et al., 2018). They showed that the break-
down and negative scaling disappear when scaled with dew
point temperatures (Zhang et al., 2019; Ali et al., 2021). To
evaluate this interpretation and compare it to ours, we used
the dew point temperature from the ERA-5 reanalysis. We
derived the extreme precipitation scaling using this temper-
ature (Fig. 5b) and compared it to our all-sky and clear-sky
temperatures (Fig. 5c).

At first sight, the scaling relationship using dew point
temperatures looks very similar to our clear-sky relationship
(compare Fig. 5a and b, but note the difference in tempera-
ture scale). Yet, its interpretation differs because the use of
dew point temperatures merely implies that the intensity of
extreme precipitation events scales with the moisture content
of the air, with moister air resulting in higher intensity events.
Dew point scaling thus carries less insight about the response
of extreme precipitation to global warming (Bao et al., 2018).
To infer the precipitation sensitivity with temperature from
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Figure 5. (a) Extreme precipitation–temperature scaling using observed (yellow), all-sky (red) and clear-sky (blue) temperatures over India.
(b) Same as (a), but using dew point temperatures. (c) Relationship between dew point temperatures and all-sky (red) and clear-sky (blue)
temperatures. The shaded areas represent the variance in terms of the interquartile range for each bin. Dotted grey lines indicate the Clausius–
Clapeyron (CC) scaling rate. Note the logarithmic vertical axis for panels (a) and (b).

dew point scaling, one then needs to see how dew point
temperatures change with actual temperatures (dTdew / dT )
(Fig. 5c). This is further demonstrated using Eq. (10):

dP
dT
=

dP
dTdew

×
dTdew

dT
. (10)

If relative humidity remains unchanged, we would expect the
dew point temperature to increase continuously with surface
temperature, representing a moisture increase of 7 % K−1.
However, when dew point temperatures are compared to all-
sky temperatures (red line, Fig. 5c), we note that a break-
down occurs in this scaling as well. Dew point temperatures
increase with all-sky temperatures for colder temperatures
more strongly than what would be expected from an un-
changed relative humidity when air gets warmer. However,
at temperatures above 23–25 ◦C, dew point temperatures fall,
reflecting a decrease in relative humidity that is typical for
warm, arid regions. Thus, one does not see a breakdown in
precipitation–dew point scaling because the information on
the breakdown is contained in how dew point temperatures
change with surface air temperatures (second term in Eq. 10).
Similar findings were also reported in Roderick et al. (2019).

The scaling of dew point temperatures with clear-sky tem-
peratures is much more uniform and consistent across the
whole temperature range; it does not show a breakdown or
a super CC scaling in the relationship. This is because the
clear-sky temperatures reflect the radiative conditions and
not the effects of atmospheric humidity or clouds. In con-
trast, observed temperatures and all-sky temperatures covary
with cloud effects, which in turn are linked to precipitation
and humidity, thus resulting in less clear scaling relationships
that are not as straightforward to interpret. This further im-
plies that moisture loading of the atmosphere primarily oc-
curs during the non-precipitating periods that are more rep-
resentative of clear-sky radiative conditions.

The breakdown in scaling effect can thus be explained by
the cooler temperatures associated with precipitation events.
This cooling shifts the precipitation extremes to lower-
temperature bins while the high-temperature bins correspond
to more arid regions or to the drier pre-monsoon season tem-
peratures with lower values of precipitation extremes. We re-
fer to this as a “bin-shifting” effect. The cooling effect is pro-
portional to the amount of precipitation (Fig. 3a) and hence,
the heavier the precipitation, the stronger the cooling and bin
shifting becomes. When the cloud-cooling effect is removed,
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as in the case of clear-sky temperatures, extreme precipita-
tion then shows a scaling that is consistent with the CC rate.
This bin-shifting effect arising due to the presence of clouds
also causes a decrease in relative humidity at higher tempera-
tures. This effect can be seen by the stronger increase in dew
point temperatures below 25 ◦C and the decline above this
temperature (Fig. 5c). The breakdown in scaling is thus not
directly related to changes in aridity or moisture availability,
but rather to the radiative effect of clouds on surface temper-
ature.

To demonstrate the implications of our interpretation for
precipitation scaling across regions, we estimated regression
slopes of the 99th percentile precipitation events for both
sub-daily (TRMM) and daily (IMD & APHRODITE) pre-
cipitation with the different temperatures using the quantile
regression method (Wasko and Sharma, 2014). We found that
extreme precipitation scaling was negative for both observed
and all-sky temperatures over most regions (Fig. 6), except
for the Himalayan foothills to the north of India. The scal-
ing rates for sub-daily extremes were slightly higher than
those estimated for daily extremes, yet they remain nega-
tive over most grids. When the cooling effect of clouds is
removed by using clear-sky temperatures, extreme precip-
itation scaling then shows a diametric change and scaling
estimates come close to CC rates over most of the regions.
A similar diametric change in the scaling was also obtained
with the APHRODITE precipitation dataset (Appendix B).
The highest positive sensitivities were found over the region
of central India where a widespread increase in rainfall ex-
tremes has already been reported (Roxy et al., 2017). There
seems to be a minor difference between the clear-sky scaling
in IMD and TRMM in the foothills of the Himalayas to the
north of India, which is likely because of the underestimation
of rainfall by TRMM over this region (Sharma et al., 2020;
Shukla et al., 2019).

We also note that negative scaling was found over a few
regions of south-central and south-east India with clear-sky
temperatures at both daily and sub-daily scales (Fig. 6c, f). To
our understanding, this negative scaling primarily arises for
two reasons. Firstly, these grids receive rainfall contributions
during both the summer and winter monsoon, however, a rel-
atively higher proportion of the rain occurs during the winter
monsoon (Fig. C1). The is due to the fact that this region
lies over the leeward side of the Western Ghats for the in-
coming south-west monsoon winds during the summer mon-
soon. Contrastingly, during the winter monsoon, north-east
winds blow over the Bay of Bengal leading to large mois-
ture advection and more rain over this region. As a result of
this seasonality effect, more extreme precipitation is sampled
during the winter season over this region while moisture sup-
ply may limit these extremes to increase during the summer
season. This may lead to a negative scaling when a single
quantile regression slope is fitted over the whole temperature
range. Another reason could be the development of a low-
pressure system in the Bay of Bengal during winter months

which causes cyclones over the eastern coast of India. These
cyclonic systems cause very high rainfall at very low temper-
atures which can lead to negative scaling (Traxl et al., 2021).
It remains an important area for future research and more
work is necessary to resolve these systems in conventional
scaling approaches.

The effect of seasonality on precipitation scaling was also
evaluated by producing the scaling curves for different sea-
sonal subsets (summer and winter monsoon). We find a
change in scaling during summer season after removing the
cloud effects as the drop disappears (see Appendix C). The
winter season, on the other hand, is associated with reduced
rainfall amounts (less than 20 %) and less clouds over most
regions resulting in a similar scaling for both all-sky and
clear-sky temperatures.

While some differences exist, the cloud-cooling effect
largely explains the negative scaling across most of the grid
points over India. Extreme precipitation increases monoton-
ically with temperature when the cloud-cooling effect is re-
moved. This implies that the peak structures obtained with
observed scaling will not constrain the rise in extremes with
anthropogenic warming. Moreover, the confounding effect
between precipitation and temperature on observed scaling
relationships, also termed “apparent scaling”, had been ar-
gued by some recent studies (Bao et al. 2017; Visser et al.,
2020). Our results agree with these studies in that the ob-
served scaling relationships also reflect the impact of syn-
optic conditions and cooling associated with precipitation
events on temperature. However, we suggest that this con-
founding effect is largely associated with cloud radiative ef-
fect, which is removed by our use of clear-sky temperatures
as a scaling variable. Additionally, we address the arguments
raised to resolve apparent scaling using dew point tempera-
ture (Barbero et al., 2018). Our results confirm that precip-
itation extremes scale well with dew point temperatures as
a measure for atmospheric moisture, but that the breakdown
in scaling actually originates from the scaling of dew point
temperatures with observed temperatures. This response of
dew point temperature to warming is further affected by the
presence of clouds and associated radiative cooling. Clear-
sky temperatures are independent of the covariations arising
from cloud effects and are thus a better, more independent
measure and scaling variable for understanding the precipi-
tation response to global warming.

4 Summary and conclusions

We showed that the observed negative scaling of extreme
precipitation in India arises mostly from the cloud radiative
cooling of surface temperatures. When this effect is removed,
we get a positive scaling consistent with the CC rate. Scaling
rates estimated from observed temperatures are thus likely to
misrepresent the response of extreme precipitation to global
warming, because the cooling effects of clouds make precip-
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Figure 6. Regional variation of the 99th percentile precipitation–temperature scaling rates using daily (a–c) and 3-hourly (d–f) rainfall data
with observed temperatures (a, d), all-sky temperatures (b, e) and clear-sky temperatures (c, f).

itation and temperature covary with each other. When this ef-
fect is removed by estimating surface temperatures for clear-
sky conditions, the scaling relationships with moisture con-
tent and precipitation become much clearer and confirm the
CC scaling of extreme precipitation events with warmer tem-
peratures. This explains the apparent discrepancy between
the observed negative scaling rates over India and the pro-
jected increase in precipitation extremes by climate models.

While scaling with clear-sky temperatures shows a diamet-
ric change and significant improvement over observed scal-
ing, regional variabilities in scaling rates and deviations from
CC scaling (7 % K−1) still exist. We believe that these de-
viations could be due to the following reasons: firstly, the
present scaling approach does not explicitly consider the con-
tribution from the large-scale dynamics and regional circula-
tion patterns which can cause local changes in the scaling es-
timates. Secondly, the effect of change in rainfall types – oro-
graphic, stratiform or convective – is not accounted for and it
can affect the estimates of scaling rates. Lastly, inconsisten-
cies between precipitation and radiation datasets can cause
uncertainties in estimating the cooling associated with rain-
fall events and can affect the estimates of scaling rates.

It is also important to note that the goal of our study was
not to compare the accuracy of scaling estimates from differ-
ent gridded and station-based datasets, but rather to identify
and remove the physical effects that cause uncertainties in
this response. Our methodology to remove the cooling effect

of clouds from surface temperatures significantly improves
the scaling estimate for daily precipitation scaling.

While our study was confined to the Indian region, we
would expect that cloud effects on surface temperatures can
explain the deviations in precipitation scaling from CC rates
in other tropical regions as well. Furthermore, our methodol-
ogy to remove the cloud-cooling effects on surface temper-
atures could also be extended to derive scaling relationships
of other, observed variables to obtain their response to global
warming. Our findings add a novel component to better in-
terpret precipitation scaling rates derived from observations
to support climate model projections.

Appendix A: Validation of scaling results using
station-based GSOD data

We used three station-based daily observations from GSOD
data provided by NOAA. We used the data from the airports
in Mumbai, Chennai and Bangalore to produce the scaling
curves (Appendix A). Since the three sites receive rainfall
during different periods of the year, the choice of station
was based on ensuring the robustness of results using gauge
data as well as checking the effect of seasonality. In Mum-
bai, rainfall occurs mainly during the summer monsoon sea-
son while in Chennai heavy rainfall occurs during the win-
ter months (November and December). On other hand, Ban-
galore receives rainfall during both the summer and winter
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monsoon season (Fig. A1 – row 1). Negative scaling was
found over these three stations using observed (yellow) and
all-sky (red) temperatures while with clear-sky temperatures
(blue), we find positive rates largely consistent with the CC
rate.

Figure A1. Row 1 shows the annual cycle of mean daily precipitation over GSOD sites in Mumbai airport, Bangalore airport and Chennai
airport, respectively. Extreme precipitation–temperature scaling curves for observed temperatures (yellow), all-sky temperatures (red) and
clear-sky temperatures (in blue) are presented for all the three sites. Solid yellow/red/blue lines indicate the LOESS regression lines. Dotted
grey lines indicate the Clausius–Clapeyron (CC) scaling rate. Note the logarithmic vertical axis.
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Appendix B: Validation of scaling results using
APHRODITE dataset

Figure B1 shows the spatial variation of daily precipitation–
temperature scaling rates estimated from quantile regression
(similar to Fig. 6 in the main text) using the Asian Precip-
itation Highly-Resolved Observational Data Integration to-
wards Evaluation of water resources (APHRODITE) dataset
(Yatagai et al., 2012). The results show a diametric change
in scaling from being negative for observed and all-sky tem-
peratures to coming close to the CC rate (7 % K−1) for clear-
sky temperatures. The findings were consistent with that ob-
tained using the IMD and TRMM datasets (Fig. 6).

Figure B1. Regional variation of the 99th percentile daily precipitation–temperature scaling rates using (a) observed (b) all-sky and (c) clear-
sky temperatures. Note that precipitation data are from the APHRODITE dataset.
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Appendix C: Effect of seasonality on scaling rates

To understand the role of seasonality on precipitation–
temperature scaling. We divided the precipitation period into
two seasonal subsets, i.e. summer monsoon season (April
to September) and winter monsoon (October to March).
Season-wise scaling curves (estimated using the LOESS re-
gression) are presented in Fig. C3. We find that observed
scaling is uniformly negative during summer over the Indian
region while the scaling is positive during winter (Fig. C3a,
d). This is not surprising because the “hook” or breakdown in
scaling happens at high temperatures which leads to negative
scaling in summer (Fig. 5a). Reconstructed all-sky temper-
ature showed scaling patterns consistent with observations
(Fig. C3b, e). When scaled with clear-sky temperatures, we
observed a change in scaling for summer as it turns positive
and comes close to the CC rate, while the scaling does not
change for clear-sky temperatures during winter. It is also
important to note that almost 80 % of the total rainfall over
India occurs during the summer monsoon season (Fig. C1).
As a result, the cooling effect of clouds is mainly experienced
during the summer monsoon (where we observed a change in
scaling) while the cooling effect remains less than 1 K during
the winter season (Fig. C2). Thus, one does not see a change
in scaling between all-sky and clear-sky conditions for the
winter season.

Figure C1. Maps of the mean daily precipitation (from IMD) and cloud area fraction (from NASA-CERES) during (a, c) the summer
monsoon (April–September) and during (b, d) the winter monsoon (October–March).
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Figure C2. Maps of the cooling of surface due to clouds (defined as the difference between clear-sky and all-sky temperatures) for the
(a) summer monsoon (April–September) and (b) winter monsoon (October–March).

Figure C3. Extreme precipitation–temperature scaling during the summer monsoon (a–c) and winter monsoon (d–f). Scaling curves are
shown in yellow for observed temperatures (a, d), in red for all-sky temperatures (b, e) and in blue for clear-sky temperatures (c, f). Solid
yellow/red/blue lines indicate the LOESS regression lines. Dotted grey lines indicate the Clausius–Clapeyron (CC) scaling rate. Note the
logarithmic vertical axis. Dataset used is IMD.
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Data availability. The daily gridded precipitation and temper-
ature datasets were obtained from the India Meteorological
Department (https://www.imdpune.gov.in/Clim_Pred_LRF_
New/Grided_Data_Download.html, Climate Monitoring and
Prediction Group, Indian Meteorological Department, 2020).
The APHRODITE (Asian Precipitation Highly-Resolved
Observational Data Integration towards Evaluation) dataset
is available at http://aphrodite.st.hirosaki-u.ac.jp/download/
(Yatagai et al., 2020). Sub-daily precipitation data at 3-
hourly resolution were obtained from TRMM (Tropi-
cal Rainfall measuring mission) TMPA_3B42_V7 data
(https://doi.org/10.5067/TRMM/TMPA/3H/7, TRMM, 2011).
Station-based daily precipitation–temperature data were
taken from NOAA-GSOD sites (station ID: 43295099999,
43003099999 and 43279099999) at https://www.ncei.noaa.
gov/access/search/data-search/global-summary-of-the-day
(NCEI and NOAA, 2020). Surface and TOA gridded radiative
flux datasets are obtained from NASA-CERES EBAF data
(https://doi.org/10.5067/Terra-Aqua/CERES/EBAF_L3B.004.1,
NASA Langley Research Center, Atmospheric Science
Data Center, 2020) and NASA-CERES Syn1deg data
(https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.‚004A,
NASA Langley Research Center, Atmospheric Science Data Cen-
ter, 2021). Daily dew point temperature data are obtained from the
ERA-5 reanalysis (https://doi.org/10.24381/cds.e2161bac, Muñoz
Sabater, 2019).
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