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Abstract. While El Niño–Southern Oscillation (ENSO) tele-
connection has long been used in statistical precipitation
forecasting, global climate models (GCMs) provide increas-
ingly available dynamical precipitation forecasts for hydro-
logical modeling and water resources management. It is not
yet known to what extent dynamical GCM forecasts provide
new information compared to statistical teleconnection. This
paper develops a novel set operations of coefficients of deter-
mination (SOCD) method to explicitly quantify the overlap-
ping and differing information for GCM forecasts and ENSO
teleconnection. Specifically, the intersection operation of the
coefficient of determination derives the overlapping infor-
mation for GCM forecasts and the Niño3.4 index, and then
the difference operation determines the differing informa-
tion in GCM forecasts (Niño3.4 index) from the Niño3.4 in-
dex (GCM forecasts). A case study is devised for the Cli-
mate Forecast System version 2 (CFSv2) seasonal forecasts
of global precipitation in December–January–February. The
results show that the overlapping information for GCM fore-
casts and the Niño3.4 index is significant for 34.94 % of the
global land grid cells, that the differing information in GCM
forecasts from the Niño3.4 index is significant for 31.18 % of
the grid cells and that the differing information in the Niño3.4
index from GCM forecasts is significant for 11.37 % of the
grid cells. These results confirm the effectiveness of GCMs
in capturing the ENSO-related variability of global precipi-
tation and illustrate where there is room for improvement of

GCM forecasts. Furthermore, the bootstrapping significance
tests of the three types of information facilitate in total eight
patterns to disentangle the close but divergent associations of
GCM forecast correlation skill with ENSO teleconnection.

1 Introduction

Seasonal precipitation forecasts are important for agricul-
tural scheduling, water management and drought mitigation
(Sheffield et al., 2014; Anghileri et al., 2016; Peng et al.,
2018; He et al., 2019; Zhao et al., 2019). Performing hydro-
logical forecasting into the future, the uncertainty generally
arises from catchment initial conditions and future climate
forcings (Wood and Lettenmaier, 2006; Yuan et al., 2014;
Huang et al., 2020). In a short lead time up to about 1 month,
initial conditions tend to outweigh climate forcings; at longer
lead times, climate forcings become a more important con-
tributor (Li et al., 2009; Yossef et al., 2013). Therefore, be-
sides remote sensing-based estimations of initial conditions
of snow cover, soil moisture and groundwater storage (Mei
et al., 2020; W. Xu et al., 2020; Sheffield et al., 2014), ef-
forts have been devoted to developing sub-seasonal to sea-
sonal forecasts of temperature and precipitation (Schepen et
al., 2020; Strazzo et al., 2019; Bennett et al., 2016; Cash et
al., 2019; Li et al., 2017). While temperature forecasts have
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been improved substantially in the past decades, skillful pre-
cipitation forecasts remain challenging (Becker et al., 2022).

Climate indices, in particular El Niño–Southern Oscilla-
tion (ENSO) (Mason and Goddard, 2001), have been con-
ventionally used in precipitation forecasting (Hamlet and
Lettenmaier, 1999; Hidalgo and Dracup, 2003; Peel et al.,
2004). Teleconnections with climate indices generally re-
flect slowly varying and recurrent components, such as
sea surface temperature (SST), of atmospheric circulations
that associate with climate anomalies over large distances
in both the tropics and extratropics (Webster and Yang,
1992; Mason and Goddard, 2001; Lim et al., 2021). As one
of the most remarkable teleconnections, ENSO affects the
global climate through eastward-propagating Kelvin waves,
westward-propagating Rossby waves and Walker circula-
tions that span the tropical Pacific, Indian and Atlantic oceans
(Yang et al., 2018; Webster and Yang, 1992). For regions ex-
hibiting teleconnection patterns, various forecasting models
have been developed, including historical resampling meth-
ods (Hamlet and Lettenmaier, 1999; Wood and Lettenmaier,
2006; Lim et al., 2021), statistical and Bayesian methods (Hi-
dalgo and Dracup, 2003; Strazzo et al., 2019; Emerton et al.,
2017) and machine-learning methods (L. Xu et al., 2020; Li
et al., 2021).

Major climate centers develop global climate models
(GCMs) to generate operational forecasts of global climate
(Bauer et al., 2015; Saha et al., 2014; Khan et al., 2017;
Johnson et al., 2019; Kirtman et al., 2014). For example, the
United States National Centers for Environmental Prediction
(NCEP) runs the Climate Forecast System version 2 (CFSv2)
(Saha et al., 2014), and the European Centre for Medium-
Range Weather Forecasts operates the fifth-generation sea-
sonal forecast system (SEAS5) (Johnson et al., 2019). In con-
trast to teleconnections that are generally “statistical”, GCM
forecasts are “dynamical” in that GCMs assimilate observa-
tional information to reduce initial state uncertainty and cou-
ple atmosphere, land, ocean and sea ice modules to formu-
late complex interactions among different components of the
earth system (Bauer et al., 2015; Corti et al., 2015; Becker et
al., 2022). Previous studies found that GCM forecasts tend to
be skillful in regions subject to prominent ENSO teleconnec-
tion and also highlighted that GCM forecasts can be skillful
in some extratropical regions where there is limited ENSO
teleconnection (Johnson et al., 2019; Kirtman et al., 2014;
Delworth et al., 2020).

Conventional ENSO-based statistical forecasts and emerg-
ing GCM dynamical forecasts generally represent two dif-
ferent sources of information (Wood and Lettenmaier, 2006;
Bauer et al., 2015; Emerton et al., 2017; Delworth et al.,
2020; He et al., 2021). Despite the facts that both of them
are valuable and that they can be combined to generate im-
proved forecasts (Madadgar et al., 2016; Wanders et al.,
2017; Strazzo et al., 2019), it is not yet known to what ex-
tent their information overlaps or differs. Small overlap and
large difference highlight that GCM forecasts do offer new

information compared to ENSO teleconnection, while large
overlap and small difference imply that GCM forecasts might
provide little additional information. Zhao et al. (2021) inves-
tigated the overlapping information to attribute GCM fore-
cast correlation skill to ENSO teleconnection. In this paper,
we build a set operations of coefficients of determination
(SOCD) method upon Zhao et al. (2021) to furthermore ac-
count for the differing information. As will be demonstrated
through the methods and results, besides the overlapping in-
formation, there exist two types of differing information, i.e.,
the differing information in GCM forecasts from ENSO and
the differing information in ENSO from GCM forecasts. The
three types of information facilitate eight patterns to disen-
tangle the close but divergent association of GCM correlation
skill with ENSO teleconnection.

2 Data description

GCM precipitation forecasts are generally five-dimensional
(Kirtman et al., 2014; Saha et al., 2014; Delworth et al.,
2020; Zhao et al., 2021; Becker et al., 2022). Taking the
NCEP-CFSv2 forecasts as an example, the five dimensions
are (1) forecast initial time s, which represents the time at
which forecasts are generated, measured by the number of
months since January 1960, (2) lead time l, which represents
the months ahead of the initial time, ranging from 0 to 9, (3)
ensemble member n, which is meant to explicitly account for
forecast uncertainty, ranging from 1 to 24, i.e., 24 ensemble
members in total, (4) latitude y, and (5) longitude x. GCM
forecasts are therefore formulated as

F = [fs,l,n,y,x] , (1)

where f represents the individual forecast value under the
five dimensions and all the forecast values form a dataset F .

The observed precipitation corresponding to the forecasts
has three dimensions,

O = [ot,y,x] (t = s+ l) , (2)

in which o represents the individual observation value andO
the dataset of observations. The three dimensions are target
time t , latitude y and longitude x. It is important to note that
target time t is mathematically the sum of initial time s and
lead time l in aligning observations with forecasts.

The Niño3.4 index that indicates the SST of the eastern
central tropical Pacific (5◦ N–5◦ S, 170–120◦W) is one of the
most popular indicators of the status of ENSO (Hamlet and
Lettenmaier, 1999; Emerton et al., 2017; Lin et al., 2020),

Niño3.4= [Niño3.4t ] , (3)

in which there is only one dimension, i.e., time t , for Niño3.4.
F , O and Niño3.4 shown in Eqs. (1) to (3) lay the ba-

sis for the analysis of overlapping and differing information
in this paper. In the North American Multi-Model Ensemble
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(NMME) experiment (Kirtman et al., 2014), CFSv2 retro-
spective forecasts that range from 1982 to 2010 have been
temporally aggregated to the monthly timescale and spa-
tially regridded to a 1.0◦× 1.0◦ resolution. In the meantime,
the daily Unified Rain-gauge Database (Chen et al., 2008)
of the Climate Prediction Center (CPC-URD) precipitation
observations over land have also been aggregated and re-
gridded by the NMME. In the analysis, both CFSv2 fore-
casts and CPC-URD observations are obtained from the In-
ternational Research Institute of Columbia University (https:
//iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/, last
access: 6 August 2022). The monthly Niño3.4 index is ob-
tained from the CPC (https://www.cpc.ncep.noaa.gov/data/
indices/, last access: 6 August 2022).

3 Methods

3.1 Consideration of seasonality

Precipitation worldwide exhibits seasonality, e.g., wet and
dry seasons of monsoonal precipitation (Webster and Yang,
1992; Zhao et al., 2017; Liu et al., 2022). As a result, the pre-
dictive performance of GCM forecasts varies across different
seasons (Kirtman et al., 2014; Bauer et al., 2015; Strazzo et
al., 2019) and ENSO teleconnection also exhibits seasonal
variabilities (Mason and Goddard, 2001; Peel et al., 2004;
Emerton et al., 2017). By fixing the target season, lead time
l would be determined by initial time s. Taking December–
January–February (DJF) as an example, forecasts generated
at the start of December are at 0-month lead time, forecasts
at the start of November are at 1-month lead time, and so on.

Considering seasonality, the initial time s in Eq. (1) is re-
formulated by month m and year k, e.g., December 1982,
December 1983, . . ., December 2010. By fixing the target
season and specifying the start month, GCM forecasts are
then extracted from F :

FDec→DJF,y,x =
[
f k
]
. (4)

The five dimensions of F (Eq. 1) are handled as follows. (1)
Initial time s and lead time l are replaced by Dec→ DJF
and then represented by k, i.e., aggregating monthly forecasts
into seasonal and pooling forecasts across different years. (2)
Ensemble member n is eliminated by taking the mean value
(f ), i.e., the ensemble mean, of all ensemble members (Saha
et al., 2014; Yuan et al., 2016; Khan et al., 2017). (3) Lati-
tude y and longitude x are pre-specified for the extraction of
forecasts.

The observations corresponding to the forecasts (Eq. 4) are
extracted from O:

ODJF,y,x = [ok] . (5)

In Eq. (5), precipitation in the target season (DJF) is observed
across multiple years at the selected grid cell (y, x). Simi-
larly to forecasts, monthly observations are aggregated into
seasonal ones.

Furthermore, the Niño3.4 index in the same season as ob-
served precipitation is obtained:

Niño3.4DJF = [Niño3.4k] . (6)

In Eq. (6) is the concurrent Niño3.4 of the target season (DJF)
across multiple years.

3.2 Quantification of information in forecasts and
Niño3.4

The coefficient of determination (R2) is effective in quanti-
fying the proportion of the variance of dependent variables
explained by a regression model that is built upon some in-
dependent variable(s) (Pham, 2006). In this paper, the depen-
dent variable is the observed seasonal precipitation (Eq. 5).
The candidate independent variables are GCM precipitation
forecasts (Eq. 4) and the Niño3.4 index (Eq. 6). Three classic
simple linear regression models are set up to account for the
information of observations in the forecast ensemble mean
and the Niño3.4 index.

The first model regresses observed seasonal precipitation
o against ensemble mean f of GCM precipitation forecasts:

ok = α1+β1f k + ε1,k

⇒ R2(o∼ f )= 1−

∑
kε

2
1,k∑

k(ok − o)
2 , (7)

in which α1 and β1 are, respectively, the intercept and slope
parameters. The unexplained variance indicated by the sum
of squared residuals, i.e.,

∑
kε

2
1,k , is compared to the vari-

ance of observed precipitation
∑
k(ok − o)

2. In this way, the
proportion of variance explained by the ensemble mean is
quantified.

The second model regresses observed seasonal precipita-
tion o against Niño3.4:

ok = α2+β2Niño3.4k + ε2,k

⇒ R2(o∼ Niño3.4)= 1−

∑
kε

2
2,k∑

k(ok − o)
2 , (8)

in which α2, β2 and ε2,k are, respectively, the intercept pa-
rameter, slope parameter and residual of regression. This re-
gression quantifies the proportion of variance of observed
precipitation explained by the Niño3.4 index.

The third model regresses observed seasonal precipitation
o against both ensemble mean f and Niño3.4:

ok = α3+β3,1f k +β3,2Niño3.4k + ε3,k

⇒ R2(o∼ f ∪Niño3.4)= 1−

∑
kε

2
3,k∑

k(ok − o)
2 , (9)

in which α3, β3,1, β3,2 and ε3,k are, respectively, the inter-
cept parameter, slope parameter of the ensemble mean, slope

https://doi.org/10.5194/hess-26-4233-2022 Hydrol. Earth Syst. Sci., 26, 4233–4249, 2022

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://www.cpc.ncep.noaa.gov/data/indices/
https://www.cpc.ncep.noaa.gov/data/indices/


4236 T. Zhao et al.: Quantifying overlapping and differing information of global precipitation

Figure 1. Venn diagram representation of the set operations of
union, intersection and difference to quantify the overlapping in-
formation and the two types of differing information. The different
terms of information are measured by the classic coefficient of de-
termination.

parameter of Niño3.4 and residual of regression. The propor-
tion of the variance of observed precipitation explained by
the union of ensemble mean and Niño3.4 is therefore mea-
sured by this bivariate regression.

3.3 Quantification of overlapping and differing
information

As shown by the Venn diagrams in Fig. 1, the information
of observed precipitation contained in the forecast ensem-
ble mean, Niño3.4 index and their union is, respectively,
quantified by R2(o∼ f ), R2(o∼ Niño3.4) and R2(o∼ f ∪

Niño3.4).
Following the classic set theory, the SOCD method per-

forms the set operations of intersection and difference to
quantify the overlapping and differing information.

1. The proportion of variance explained by the ensemble
mean but not by the Niño3.4 index is derived by the
difference operation:

R2(o∼ f /Niño3.4)

= R2(o∼ f ∪Niño3.4)−R2(o∼ Niño3.4) . (10)

In Eq. (10), R2(o∼ f /Niño3.4) measures the differing
information of GCM forecasts on observed precipitation
from the Niño3.4 index.

2. The intersection operation derives the proportion of
variance of seasonal precipitation explained by both the
ensemble mean and the Niño3.4 index:

R2(o∼ f ∩Niño3.4)

= R2(o∼ f )+R2(o∼ Niño3.4)

−R2(o∼ f ∪Niño3.4) . (11)

In Eq. (11), R2(o∼ f ∩Niño3.4) represents the over-
lapping information.

3. The proportion of variance explained by the Niño3.4 in-
dex but not by the ensemble mean is derived by the dif-
ference operation:

R2(o∼ Niño3.4/f )

= R2(o∼ f ∪Niño3.4)−R2(o∼ f ) . (12)

In Eq. (12), R2(o∼ Niño3.4/f ) represents the differing in-
formation of the Niño3.4 index from GCM forecasts.

3.4 Eight patterns for overlapping and differing
information

The significance of overlapping and differing information is
tested by bootstrapping (Efron and Tibshirani, 1986). The
null hypothesis is that the three variables under investigation,
i.e., o, f and Niño3.4, were fully independent of one another.
Under the null hypothesis, the samples in Eqs. (4), (5) and (6)
are randomly selected with replacement to calculate the over-
lapping and differing information; 1000 such recalculations
formulate the respective reference distributions for these R2

values. Comparing the R2 values for the original samples,
respectively, to their reference distributions, the p values are
obtained to tell how extreme the R2 values for the original
samples are. In this way, the significance is tested (Efron and
Tibshirani, 1986; Pham, 2006). As the null hypothesis is full
independence, the R2 values, which indicate the amount of
information of the dependent variable contained in indepen-
dent variable(s), are expected to be rather small. From this
perspective, the larger the R2 values for the original samples
are, the more extreme they are and the less likely the null hy-
pothesis holds. Therefore, the one-tailed test is implemented
for the significance of the R2 values (Pham, 2006). Specifi-
cally, under the significance level of 0.10, the SOCD method
pays attention to whether the R2 value falls into the top 10 %
of the corresponding bootstrapping-derived reference distri-
bution.

The one type of overlapping information and the two
types of differing information each have two cases of signif-
icance, i.e., significant or non-significant. Therefore, in Ta-
ble 1, a three-digit number is devised to represent the results
of significance tests. The first digit indicates the significance
of R2(o∼ f /Niño3.4), the second digit the significance of
R2(o∼ f ∩Niño3.4) and the third digit the significance of
R2(o∼ Niño3.4/f ). As shown in Table 1, there are in total
8 (2 ·2 ·2) patterns, with 1 representing a significant case and
0 indicating a non-significant case. The meanings of the eight
patterns are illustrated in the last column of Table 1.
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Table 1. Three-digit representations of the eight patterns of overlapping and differing information.

R2(o∼ f /Niño3.4) R2(o∼ f ∩Niño3.4) R2(o∼ Niño3.4/f ) Meaning

0 0 0 Neither overlapping information nor differing information is sig-
nificant.

0 0 1 Only the differing information in the Niño3.4 index from GCM
forecasts is significant.

0 1 0 Only the overlapping information is significant.
0 1 1 Both overlapping information and differing information in the

Niño3.4 index from GCM forecasts are significant.
1 0 0 Only the differing information in GCM forecasts from the

Niño3.4 index is significant.
1 0 1 Both differing information in GCM forecasts from the Niño3.4

index and differing information in the Niño3.4 index from GCM
forecasts are significant, but the overlapping information is not
significant.

1 1 0 Both differing information in GCM forecasts from the Niño3.4
index and overlapping information are significant.

1 1 1 Differing information in GCM forecasts from the Niño3.4 in-
dex, overlapping information and differing information in the
Niño3.4 index from GCM forecasts are all significant.

Figure 2. Spatial plots of correlation skill (a) and ENSO teleconnection (b) for global precipitation in DJF, and Venn diagrams (c) of
overlapping and differing information for eight selected grid cells under the eight patterns.

https://doi.org/10.5194/hess-26-4233-2022 Hydrol. Earth Syst. Sci., 26, 4233–4249, 2022
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4 Results

4.1 Spatial plots of correlation skill and ENSO
teleconnection

GCM forecast correlation skill and ENSO teleconnection for
DJF are shown on the left-hand side of Fig. 2. The correla-
tion skill is mathematically Pearson’s correlation coefficient
between the GCM forecast ensemble mean and observed pre-
cipitation. In the upper left part of Fig. 2, it is observed that
the correlation skill is higher than 0.3 in a substantial number
of grid cells around the world. This result indicates that the
ensemble mean is generally indicative of observed precipi-
tation; i.e., high values of the ensemble mean coincide with
high values of observed precipitation and vice versa (Saha et
al., 2014; Yuan et al., 2014; Cash et al., 2019). In the lower
left part is ENSO teleconnection that mathematically repre-
sents Pearson’s correlation coefficient between the Niño3.4
index and observed precipitation. Both positive and nega-
tive ENSO teleconnections are observed. For example, the
teleconnection tends to be positive in southern North Amer-
ica, southeastern South America, southern China and east-
ern Africa, implying above-average precipitation in El Niño
years but below-average precipitation in La Niña years, and
it turns out to be negative in the northern part of South Amer-
ica, southern Africa as well as Southeast Asia; i.e., there can
be below-average precipitation in El Niño years and above-
average precipitation in La Niña years (Mason and Goddard,
2001; Emerton et al., 2017; Yang et al., 2018).

The SOCD method facilitates in total eight patterns to
characterize the overlapping and differing information for the
GCM forecast ensemble mean and the Niño3.4 index. As the
Venn diagram in Fig. 1 is presented for the purpose of con-
ceptual illustration, the right-hand side of Fig. 2 showcases
the Venn diagrams generated from real-world data. The eight
patterns in Table 1 are illustrated for eight grid cells selected
from the left-hand side of Fig. 2. Grid cell A (36◦ N, 115◦ E)
is under pattern 000: the areas of the circles that indicate the
ratios of explained variance are rather small, implying little
information on observed precipitation in GCM forecasts and
the Niño3.4 index. By contrast, the areas of the circles are
larger for the other seven selected grid cells, suggesting the
existence of significant overlapping or differing information.
For example, the significant overlapping information is high-
lighted in grid cell C (20◦ N, 106◦W), the significant differ-
ing information in GCM forecasts from the Niño3.4 index is
shown in grid cell E (46◦ N, 0◦) and the significant differ-
ing information in the Niño3.4 index from GCM forecasts is
highlighted in grid cell B (35◦ S, 117◦ E).

The spatial distribution of the eight patterns is shown in
Fig. 3 by applying the SOCD method and the bootstrapping
significance test to all the land grid cells. Grid cells under
pattern 000, which indicates poor GCM correlation skill and
limited ENSO teleconnection, are in grey. On the other hand,
it is noted that a considerable number of grid cells around

the world are colored. That is, for the overlapping informa-
tion and the two types of differing information, at least one of
them is significant. From the left-hand side of Fig. 2, it can be
found that positive correlation skill corresponds to positive
ENSO teleconnection in southern North America and eastern
Africa and that positive correlation skill corresponds to nega-
tive teleconnection over the northern part of South America,
southern Africa and Southeast Asia. In the meantime, from
Fig. 3 it can be observed that in these regions a considerable
number of grid cells fall under patterns 010, 110 and 011, in-
dicating the existence of significant overlapping information.

4.2 Patterns of overlapping and differing information

The eight patterns serve as a link between correlation skill
and ENSO teleconnection. Pattern 010 that is concentrated
on the overlapping information is shown in Fig. 4. On the
left-hand side of the figure are the results for grid cells
under pattern 010 (the results for the other grid cells are
masked). The overlapping information is significant in south-
ern North America, where positive correlation skill (upper
left part of Fig. 4) coincides with positive ENSO teleconnec-
tion (lower left part of Fig. 4). It is also significant in south-
ern Africa and northern South America, where positive cor-
relation skill and negative ENSO teleconnection coexist. As
both correlation skill and ENSO teleconnection are mathe-
matically Pearson’s correlation coefficient, they can each be
classified into three cases, i.e., significantly positive (P), non-
significant (ns) and significantly negative (N) (Kirtman et
al., 2014; Emerton et al., 2017; Huang and Zhao, 2022). On
the right-hand side of Fig. 4, the Sankey diagram shows that
18.95 % of the global land grid cells exhibit pattern 010. For
this pattern, 8.98 % of grid cells exhibit significantly positive
correlation skill, 9.85 % non-significant correlation skill and
0.12 % significantly negative correlation skill. In the mean-
time, 3.77 % exhibit significantly positive ENSO telecon-
nection, 10.92 % non-significant ENSO teleconnection and
4.25 % significantly negative ENSO teleconnection.

Pattern 100 that focuses on the significant differing infor-
mation of global precipitation in GCM forecasts from the
Niño3.4 index is shown in Fig. 5. From the left-hand side
of the figure, it can be observed that this pattern (middle
left part) tends to cover grid cells where correlation skill
is around or above 0.3 (upper left part) but ENSO telecon-
nection is nearly zero (lower left part). This observation is
confirmed by the right-hand side of Fig. 5. As can be seen,
while the percentage of grid cells falling into pattern 100 is
17.71 %, most of them have significantly positive correlation
skill (15.78 % in 17.71 %), and by contrast all of them exhibit
non-significant ENSO teleconnection (17.71 % in 17.71 %).
That is, the correlation skill is largely significantly positive
but the ENSO teleconnection is generally neutral. These grid
cells tend to be located in Europe and northern Asia, where
the influence of ENSO is limited and skillful GCM forecasts

Hydrol. Earth Syst. Sci., 26, 4233–4249, 2022 https://doi.org/10.5194/hess-26-4233-2022



T. Zhao et al.: Quantifying overlapping and differing information of global precipitation 4239

Figure 3. Spatial distribution of the eight patterns of overlapping and differing information.

Figure 4. Illustrations of correlation skill (a) and ENSO teleconnection (c) under pattern 010 (b) and the Sankey diagram showing the
percentages of grid cells under pattern 010 and the percentages of grid cells exhibiting significantly positive (P), non-significant (ns) and
significantly negative (N) correlation skill/ENSO teleconnection (d). Grid cells under the other patterns are masked and therefore not shown
in the spatial plots and the Sankey diagram.

can relate to other teleconnections such as the Arctic Oscil-
lation and North Atlantic Oscillation (Hamouda et al., 2021).

Pattern 110 indicates that the overlapping information is
significant and that the differing information in GCM fore-
casts from the Niño3.4 index is also significant. The impli-
cation is that, regarding global seasonal precipitation in DJF,
GCM forecasts not only contain information that is contained
in the Niño3.4 index, but also provide a considerable amount

of additional information. On the left-hand side of Fig. 6,
some grid cells under pattern 110 are observed in southeast-
ern Australia, eastern Africa and northeastern Asia. Compar-
ing Fig. 6 to Fig. 4, it is observed that some grid cells in
southern North America, northern South America and south-
ern Africa are under pattern 110, although many of them tend
to be under pattern 100. Around the world, the percentage of
grid cells falling into pattern 110 is 11.35 %. For these grid

https://doi.org/10.5194/hess-26-4233-2022 Hydrol. Earth Syst. Sci., 26, 4233–4249, 2022
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Figure 5. As for Fig. 4 but for pattern 100.

Figure 6. As for Fig. 4 but for pattern 110.
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Figure 7. As for Fig. 4 but for pattern 001.

Figure 8. As for Fig. 4 but for pattern 011.
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Figure 9. As for Fig. 4 but for pattern 101.

Figure 10. As for Fig. 4 but for pattern 111.
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Figure 11. As for Fig. 4 but for pattern 000.

cells, correlation skill is predominantly significantly positive
(11.25 % in 11.35 %) and, by contrast, ENSO teleconnection
tends to be non-significant (7.09 % in 11.35 %).

Pattern 001 pays attention to the differing information in
the Niño3.4 index from GCM forecasts. As shown in Fig. 7,
this pattern covers 4.87 % of grid cells around the world.
On the left-hand side of Fig. 7, it is worthwhile noting that
a number of grid cells in western Australia exhibit signif-
icantly negative ENSO teleconnection but non-significant
correlation skill. The implication is that therein GCM fore-
casts might fail to account for the information of ENSO tele-
connection. On the right-hand side of Fig. 7, it is observed
that most grid cells under pattern 001 have neutral corre-
lation skill (4.86 % in 4.87 %) and that their corresponding
ENSO teleconnection can be significantly negative (2.21 %
in 4.87 %) or significantly positive (1.73 % in 4.87 %).

Pattern 011, shown in Fig. 8, indicates that both the over-
lapping information and the differing information in the
Niño3.4 index from GCM forecasts are significant. Grid cells
exhibiting this pattern tend to be scattered in parts of south-
ern North America, northern South America, Southeast Asia
and southern Africa. They account for 4.38 % of grid cells
around the world. Among them, 1.72 % exhibit significantly
positive ENSO teleconnection and 2.66 % significantly neg-
ative ENSO teleconnection. For these areas, the significant
overlap suggests that a substantial amount of information in
seasonal precipitation can be explained by both GCM fore-

casts and Niño3.4, while the significant differing information
indicates the part that can only be explained by the Niño3.4
index.

Pattern 101 is shown in Fig. 9. It suggests that, at some
grid cells, the overlapping information is not significant but
that the two types of differing information are significant for
both GCM forecasts and the Niño3.4 index. About 1.86 % of
grid cells fall into this pattern.

Pattern 111 is shown in Fig. 10. It implies that, at some
other grid cells, the overlapping information and the two
types of differing information can all be significant. It is
noted that only 0.26 % of grid cells around the world exhibit
pattern 111.

Among the eight patterns, pattern 000 covers the most grid
cells. The left-hand side of Fig. 11 shows that grid cells un-
der pattern 000 generally exhibit non-significant correlation
skill and non-significant ENSO teleconnection. This result is
in sharp contrast to pattern 010, which indicates reasonable
correspondence between correlation skill and ENSO telecon-
nection (Fig. 4), and to patterns 100 and 110, which suggest
significantly positive correlation skill (Figs. 5 and 6). Over-
all, the percentage of grid cells under pattern 000 is 40.62 %.
These grid cells predominantly exhibit neutral correlation
skill (40.30 % in 40.62 %) and also neutral ENSO telecon-
nection (40.47 % in 40.62 %).
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Figure 12. Spatial plots of correlation skill (a) and ENSO teleconnection (c) under the eight patterns (b) at the global scale and the Sankey
diagram showing the percentages of grid cells exhibiting P, ns and N correlation skill/ENSO teleconnection (d).

4.3 Association of correlation skill with ENSO
teleconnection

The results under the eight patterns are furthermore pooled
in the analysis. From Fig. 12, it can be observed that the
eight patterns serve as an effective link between correlation
skill and ENSO teleconnection at the global scale. For the
patterns that indicate significant information, the Sankey di-
agram on the right-hand side suggests that the percentage
from highest to lowest is, respectively, 18.95 % for pattern
010, 17.71 % for pattern 100, 11.35 % for pattern 110, 4.87 %
for pattern 001, 4.38 % for pattern 011, 1.86 % for pattern
101 and 0.26 % for pattern 111. More than half of the grid
cells that exhibit significant correlation skill have significant
overlapping information with Niño3.4, indicating consider-
able impacts of ENSO teleconnection on CFSv2 correlation
skill.

GCM forecasts and the Niño3.4 index generally represent
two different sources of information on global precipitation.
In Fig. 13, GCM forecast correlation skill is plotted against
ENSO teleconnection by using scatter plots. Figure 13a pools
global land grid cells and employs the viridis heatmap to in-
dicate point density. It can be observed that the correlation
skill is largely positive and falls above the horizontal line. In
addition, the heatmap suggests that the correlation skill tends

to increase with the increase in positive ENSO teleconnec-
tion and also with the decrease in negative ENSO telecon-
nection. These results suggest that the skill of GCM forecasts
benefits from the prominence of ENSO teleconnection since
GCMs tend to capture the influences of ENSO on the vari-
ability of global precipitation (Saha et al., 2014; Khan et al.,
2017; Delworth et al., 2020; Johnson et al., 2019; Becker et
al., 2022).

The subplots in Figs. 13b–i are arranged in descending or-
der of the percentage of grid cells. Overall, close but diver-
gent associations of correlation skill with ENSO teleconnec-
tion can be observed.

1. There exists significant overlapping information in
GCM forecasts and the Niño3.4 index under patterns
010 (Fig. 13c), 110 (Fig. 13e), 011 (Fig. 13g) and
111 (Fig. 13i). It covers 34.94 % of land grid cells,
i.e., 18.95 % (010) + 11.35 % (110) + 4.38 % (011) +
0.26 % (111), around the world. From the correspond-
ing scatter plots, it can be observed that both correlation
skill and ENSO teleconnection ought to be reasonably
high to facilitate significant overlapping information.

2. There is significant differing information in GCM
forecasts from the Niño3.4 index under patterns 100
(Fig. 13d), 110 (Fig. 13e), 101 (Fig. 13h) and 111
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Figure 13. Scatter plots of the association of GCM forecast correlation skill with ENSO teleconnection at the global scale with the heatmap
indicating the density of scatter points (a) and of the association of correlation skill with ENSO teleconnection under the eight patterns (b–i).

(Fig. 13i). It covers 31.18 % of global land grid cells,
i.e., 17.71 % (100) + 11.35 % (110) + 1.86 % (101) +
0.26 % (111). Under these patterns, it is highlighted that
the correlation skill tends to be higher than ENSO tele-
connection. In particular, significantly positive correla-
tion skill coincides with overall non-significant ENSO
teleconnection under pattern 100 in Fig. 13d. Overall,
these results imply that, apart from ENSO, GCMs ac-
count for other hydroclimatic teleconnections to pro-
duce skillful precipitation forecasts (Saha et al., 2014;
Delworth et al., 2020; Lin et al., 2020).

3. There is significant differing information in the
Niño3.4 index from GCM forecasts under patterns 001
(Fig. 13f), 011 (Fig. 13g), 101 (Fig. 13h) and 111
(Fig. 13i). It covers 11.37 % of global land grid cells,
i.e., 4.87 % (001) + 4.38 % (011) + 1.86 % (101) +
0.26 % (111). Under these patterns, ENSO telecon-
nection is generally higher than correlation skill. Re-
markable ENSO teleconnection coincides with overall
non-significant correlation skill under pattern 001 in
Fig. 13f. These results suggest that some ENSO tele-

connection is still to be exploited by GCMs to improve
precipitation forecast skill.

4. Neither the overlapping information nor the two types
of differing information are significant under pattern
000. It covers 40.62 % of the grid cells. From Fig. 13b,
it can be observed that either correlation skill or ENSO
teleconnection is limited and that the corresponding
scatter plot tends to cluster around the origin point. This
result suggests that, despite limited ENSO teleconnec-
tion, GCM forecasts still have plenty of room for im-
provement.

5 Discussion

The SOCD method is furthermore applied to investigate the
eight patterns considering the effects of seasonality, lead
time, lag time and significance level. The additional results
are presented in the Supplement. (1) The effect of seasonal-
ity is shown in Figs. S1 to S6 in the Supplement. It can be
observed that regions exhibiting significant ENSO telecon-
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nections vary by season (Figs. S1 to S3) and that the eight
patterns remain effective in characterizing the overlapping
and differing information (Figs. S4 to S6). (2) The effect of
lead time is illustrated in Figs. S7 to S10 in the Supplement.
At the lead times of 1 and 2 months, the percentage of pattern
010 remains the highest among the seven patterns other than
000. This result highlights the existence of significant over-
lapping information in DJF, particularly over southern North
America, northern South America and southern Africa. (3)
The effect of the lag time of the Niño3.4 index is illustrated
in Figs. S11 to S14 in the Supplement. Compared to the con-
current teleconnection, the spatial distribution of the eight
patterns tends to be similar for the monthly Niño3.4 index at
the lag times of 1 and 2 months, with a slight increase in the
percentage of pattern 000. This result confirms the tempo-
ral persistency in the Niño3.4 index (Yang et al., 2018). (4)
The effect of the significance level is shown in Figs. S15 to
S18 in the Supplement. As the significance level is reduced
from 0.10 to 0.05 and furthermore to 0.01, the percentage of
pattern 000 evidently increases, but the seven patterns that
highlight significant overlapping and differing information
remain.

The SOCD method is also extended to evaluate the over-
lapping and differing information under other GCM fore-
casts and hydroclimatic teleconnections. In the Supplement,
Figs. S19 and S20 show the results for the CanCM4 forecasts
generated at the Canadian Meteorological Center (CMC)
(Merryfield et al., 2013). The CanCM4 forecasts seem to be
less skillful in Europe but more skillful in the western part of
Australia. Overall, the percentage of pattern 000 is slightly
higher than that for CFSv2 forecasts. These results suggest
that different GCM forecasts can be complementary to each
other in different regions and that they can be combined to
generate more skillful forecasts (Kirtman et al., 2014; Slater
et al., 2019; Schepen et al., 2020). Figures S21 and S22
in the Supplement present the eight patterns for the Indian
Ocean Dipole (IOD) (Cai et al., 2021). It can be observed
that the percentage of pattern 010 is reduced from 18.95 % to
9.41 %, while the percentage of pattern 100 is increased from
17.71 % to 22.83 %. The indications are that CFSv2 forecasts
exhibit less overlapping information with IOD and that there
exists considerable differing information in CFSv2 forecasts
from IOD teleconnection.

The correlation skill is one of the most popular measures
of forecast skill owing to its simplicity in calculation and ro-
bustness to zero and missing values (Barnston et al., 2012;
Yuan et al., 2014; Ma et al., 2016; Slater et al., 2019; Huang
and Zhao, 2022). From spatial plots of correlation skill at
regional and global scales, it can be observed where GCM
forecasts are skillful and where GCM forecasts are not sat-
isfactory (Ma et al., 2016; Slater et al., 2019; Delworth et
al., 2020). Previously, it was observed that GCM forecasts
tend to be skillful in regions subject to prominent influences
of ENSO; accordingly, forecast skill is attributed to the ef-
fectiveness of GCMs in capturing ENSO-related climate dy-

namics (Kirtman et al., 2014; Slater et al., 2019; Lin et al.,
2020). In this paper, the developed SOCD method not only
confirms the significant overlapping information, but also
highlights that there exists significant differing information
in GCM forecasts from ENSO teleconnection for 31.18 % of
global land grid cells and that there is significant differing in-
formation in ENSO teleconnection from GCM forecasts for
11.37 % of the grid cells. It is noted that the simple linear re-
gression accounts for linear relationships. Nonlinear relation-
ships between forecasts and observations are possible, and in
the future nonlinear models can be adopted in the analysis
of the overlapping and differing information (Strazzo et al.,
2019; Schepen et al., 2020; Li et al., 2021).

6 Conclusions

While ENSO teleconnection has been conventionally used
in the forecasting of regional precipitation and streamflow,
GCM forecasts are increasingly available for hydrological
applications. It is important to investigate to what extent
emerging GCM forecasts provide “new” information com-
pared to conventional ENSO teleconnection. The SOCD
method developed in this paper addresses this issue through
the mathematical formulations and numerical implementa-
tions of set operations. Specifically, the union operation
quantifies the information of global seasonal precipitation
contained in both GCM forecasts and the Niño3.4 index, the
intersection operation derives the overlapping information of
global precipitation in GCM forecasts and the Niño3.4 in-
dex and, furthermore, the difference operations illustrate two
types of differing information, i.e., the differing information
in GCM forecasts from the Niño3.4 index and the differing
information in the Niño3.4 index from GCM forecasts. The
significance tests of the three types of information facilitate
in total eight patterns to disentangle the close but divergent
associations of GCM forecast correlation skill with ENSO
teleconnection. GCM forecasts and the Niño3.4 index gen-
erally provide two different sources of data for precipitation
forecasting. While the existence of significant overlapping
information suggests that they can provide some similar in-
formation, the existence of significant differing information
highlights that the two data sources can also be complemen-
tary to each other. In the future, more efforts can be de-
voted to investigating more datasets of GCM forecasts and
more hydroclimatic teleconnections to yield insights into the
forecast skill of GCM forecasts and to facilitate applications
of GCM forecasts to hydrological modeling and water re-
sources management.

Data availability. The forecast and observation datasets are down-
loaded from https://iridl.ldeo.columbia.edu/SOURCES/.Models/
.NMME/ (IRI Data Library, 2022). The Niño3.4 index is down-

Hydrol. Earth Syst. Sci., 26, 4233–4249, 2022 https://doi.org/10.5194/hess-26-4233-2022

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/


T. Zhao et al.: Quantifying overlapping and differing information of global precipitation 4247

loaded from https://www.cpc.ncep.noaa.gov/data/indices/ (Climate
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