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Abstract. Google’s operational flood forecasting system was
developed to provide accurate real-time flood warnings to
agencies and the public with a focus on riverine floods in
large, gauged rivers. It became operational in 2018 and has
since expanded geographically. This forecasting system con-
sists of four subsystems: data validation, stage forecasting,
inundation modeling, and alert distribution. Machine learn-
ing is used for two of the subsystems. Stage forecasting is
modeled with the long short-term memory (LSTM) networks
and the linear models. Flood inundation is computed with
the thresholding and the manifold models, where the former
computes inundation extent and the latter computes both in-
undation extent and depth. The manifold model, presented
here for the first time, provides a machine-learning alterna-
tive to hydraulic modeling of flood inundation. When evalu-
ated on historical data, all models achieve sufficiently high-
performance metrics for operational use. The LSTM showed
higher skills than the linear model, while the thresholding
and manifold models achieved similar performance metrics
for modeling inundation extent. During the 2021 monsoon
season, the flood warning system was operational in In-
dia and Bangladesh, covering flood-prone regions around
rivers with a total area close to 470 000 km2, home to more
than 350 000 000 people. More than 100 000 000 flood alerts
were sent to affected populations, to relevant authorities,
and to emergency organizations. Current and future work on
the system includes extending coverage to additional flood-

prone locations and improving modeling capabilities and ac-
curacy.

1 Introduction

Floods are a major natural threat to populations worldwide
causing thousands of fatalities and resulting in large eco-
nomic damages annually. Jonkman (2005) analyzed a natural
disaster database (EM-DAT, 2021) and found that over a 27-
year period, more than 175 000 people were killed and close
to 2.2 billion were affected by floods worldwide. These num-
bers are likely an underestimation due to unreported events.
Furthermore, United Nations office for disaster risk reduc-
tion (UNISDR) (2015) reported flooding to be the most fre-
quent weather-related natural disaster, affecting the largest
number of people globally and with annual economic dam-
age of more than USD 30 billion. Population growth, urban-
ization, and the changing climate have led to an increase in
these numbers in recent decades — a trend that is likely to
continue (Bloschl et al., 2019). Flooding vulnerability is es-
pecially significant in low-income and middle-income coun-
tries where adequate flood mitigation measures are often
lacking or of limited quality and floodplains are often heavily
populated (Alfieri et al., 2018). In such regions, operational
flood warning systems are key to saving lives and reducing
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risks and damages (Hallegatte, 2012; World Meteorological
Association, 2013).

Operational flood warning systems vary in their structure,
data sources, and model types depending on their specific tar-
get region, size of basins, available data and resources, and
the system development approach (e.g., Addor et al., 2011;
Emerton et al., 2016; Georgakakos, 2018; Krajewski et al.,
2017; Rotach et al., 2009; Shrestha et al., 2015; Werner et
al., 2009; Zappa et al., 2008; among many others). Many of
the systems include real-time or forecast weather forcing data
as an input into hydrological models which, in turn, compute
runoff and route flow through the river network, outputting
streamflow at locations of interest. Flood warning systems
often include an inundation modeling component (Teng et
al., 2017) that translates the forecasted streamflow into a
mapping of flood extent and depth (e.g., Bhatt et al., 2017; de
Almeida et al., 2012). Inundation patterns in large rivers are
often complex and depend on the river’s morphology (e.g.,
meandering or braided rivers) and floodplain properties such
as the topography and land cover. They are also influenced by
human actions, for example, structures that alter the natural
flow of the water over the floodplain.

While flood warning systems are deployed in operational
frameworks in different regions across the world, there is a
lack of evaluation studies of such systems, presumably re-
sulting from the difficulty in accessing ground truth data and
the lower priority of the evaluation task in an operational en-
vironment (exceptions can be found in Addor et al., 2011;
Rotach et al., 2009; Welles and Sorooshian, 2009; Zalenski
et al., 2017). It is important, however, to encourage agencies
and companies responsible for flood warning operations to
invest effort in evaluating and reporting performances, not
only for assessing the forecast and warning reliability but
also for benchmarking and developing the common scien-
tific knowledge that can lead to further improvement and in-
novation. In the current study, we hope to contribute to this
scientific effort.

Two main modeling components are important for flood
warning systems; these are (i) a streamflow forecast model
and (ii) an inundation model. Recent advances in the accu-
racy of data-driven and machine learning (ML) methods have
affected a large variety of real-life applications (e.g., He et
al., 2016; Devlin et al., 2019) and encourage the use of such
methodologies as core drivers for those two modeling com-
ponents. Earlier studies showed the potential of such models
(e.g., Hsu et al., 1995; Tiwari and Chatterjee, 2010). More
recent studies have found ML, and especially deep learning
methods, to be a promising approach for streamflow mod-
eling, providing improvements over prominent conceptual
models in prediction accuracy, scalability, and regional gen-
eralization (e.g., Mosavi et al., 2018). Kratzert et al. (2019b)
showed improved predictions relative to conceptual models
by using Long short-term memory (LSTM) deep neural net-
works in more than 500 basins in the US. In this case, region-
ally calibrated ML models outperformed not only region-
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ally calibrated conceptual models but also conceptual mod-
els that were calibrated for each basin separately. Kratzert
et al. (2019a) found that even in basins that contributed no
training data (i.e., effectively ungauged basins), the LSTM
models performed better than conceptual models that were
calibrated to long data records in every basin (i.e., in gauged
basins). Xiang and Demir (2020) demonstrated high skill in
streamflow forecasting using a deep recurrent neural network
for 125 stream gauges in lowa, US.

ML methods have been shown to be promising for flood
inundation modeling as well, providing a plausible alterna-
tive to physically based hydraulic models that are both highly
computationally demanding and challenging to use in opera-
tional flood forecasting systems (Kabir et al., 2020). For ex-
ample, artificial neural networks were utilized by Chang et
al. (2018) and Chu et al. (2020) to provide forecasts of flood
inundation maps for rivers in Malaysia and Australia, respec-
tively, and Kabir et al. (2020) utilized convolutional neural
networks to predict with high accuracy spatially distributed
water depths for large flood events in an urban area in the
UK.

The previous studies encourage the use of ML models
for flood forecasting. Yet, it is rare to find operational sys-
tems whose core components are ML models and are capable
of computing timely and accurate flood warnings. In 2017,
Google launched the Flood Forecasting Initiative, which
aims to utilize Google’s data, computational resources, and
ML expertise to reduce flood-related fatalities and harm.
Since then, these efforts have been progressing in scale and
in accuracy with the aim of eventually providing highly ac-
curate flood forecasts globally. The first version of Google’s
flood warning system was operational from 2018, initially at
a limited scale in India. Following further development of
ML modeling components and a substantial improvement in
coverage and performance, the system provided forecasts for
the majority of India and Bangladesh in the monsoon seasons
of 2021.

This paper is aimed at three goals: (i) to present Google’s
end-to-end operational flood warning system and its current
deployment in India and Bangladesh for the monsoon season
2021 (Sect. 2), (ii) to evaluate ML models for river stage fore-
casting and for inundation used in this system (Sect. 3), and
(iii) to present a new ML methodology for modeling flood
inundation extent and depth (the manifold model, Sect. 2.3).
Since the results describe an operational deployment, we
hope to contribute to reducing the aforementioned scarcity
of information on operational performance by assessing the
utility of the different ML models presented here in an oper-
ational framework.
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2 End-to-end real time operational flood warning
system

Google’s end-to-end flood warning system is designed to
obtain real-time data from different sources and to forecast
future river stages and high-resolution flood inundation at
locations along the river network. These forecasts are dis-
seminated in the form of flood alerts to relevant agencies as
well as being sent out directly to the public. In its present
form, the system is designed for deployment in large gauged
rivers, implying stream gauge data availability, relatively
slow response, and potentially complex inundation areas dur-
ing floods.

Stream gauges in locations of interest are defined as target
gauges. Each target gauge has a pre-defined warning stage
threshold, above which, an alert should be issued and a pre-
defined maximal lead time, which is the maximal time in the
future the forecast can be given for. In addition, an area of
interest (AOI) is defined for each target gauge, representing
the surrounding region around the river and the gauge where
the inundation model is applied.

This system is currently based on river stage data rather
than discharge, which is more commonly used in physics-
based and conceptual hydrological models. This is due to
the wide abundance of stage data (historical and real time),
while discharge data are more scarcely available and suffer
from inaccuracies related to uncertainties in stage—discharge
relationships (Ocio et al., 2017; McMillan and Westerberg,
2015). While it is difficult to use stage data to calibrate con-
ceptual hydrology models (Jian et al., 2017), deep learning
models do not have this problem and can be trained directly
on stage data.

The general structure of the real-time flood warning sys-
tem is outlined in Fig. 1. Since Google’s system is designed
to be implemented in many countries and eventually globally,
it is described first in general terms in Sect. 2.1-2.4, followed
by Sect. 2.5 that describes the details of the deployment in the
2021 monsoon season.

2.1 Data management

In the first step, the following real-time data are ingested,
quality controlled, corrected, and pre-processed.

— Stream gauge measurements of water stage (obtained
from the data provider, e.g., national water authorities):
stage data are acquired in near-real-time for the target
gauges and their upstream gauges if available. In some
countries, the stage is measured manually and prone to
many kinds of human mistakes; even automated teleme-
try gauges frequently produce erroneous data. There-
fore, all near-real-time stage data go through a series of
automatic validation and correction procedures as fol-
lows: (i) typical manual errors are identified (e.g., a dec-
imal point in the wrong place) and corrected; (ii) stage
record statistics are used to identify unreasonable stage
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data or stage differences from the previous readings (the
suspicious data are either removed or retained based on
a set of ad-hoc criteria); and (iii) short periods of miss-
ing data are filled by linear interpolation. The temporal
resolution of near-real-time stage data may vary among
providers. The currently deployed systems in India and
Bangladesh both use hourly stage data.

— Satellite-derived precipitation data from the Integrated
Multi-satellitE  Retrievals for GPM (IMERG, Early
Run) (Huffman et al., 2014): IMERG Early Run data
are available with a latency of 12h, quasi-global cov-
erage, and a resolution of 0.1° in space and 30 min in
time. Data are quality controlled and corrected by re-
moving negative and missing data values and by apply-
ing an upper rain intensity threshold (set as 200 mmh~!
for the current deployment). The data are spatially av-
eraged over the drainage area of each target gauge and
integrated in time to match the temporal resolution of
near-real-time stage data (hourly in the current deploy-
ment).

2.2 Stage forecast modeling

The stage forecast models are responsible for computing
forecasted river stage data at target gauges. The primary in-
put to the stage forecast models is past river stages (alongside
complementary information such as weather forcing) and the
output is the future river stage. It should be noted that in this
aspect, they differ from many standard hydrological models
where the input does not include river stages but mainly forc-
ing data and watershed properties.

The system includes two types of models: (1) a model
based on multiple linear regression and (2) a model based
on a Long short-term memory (LSTM) network, a type of re-
current neural network which is structured to learn long-term
input—output dependencies. Linear models have been used
in operational systems to simulate relationships between up-
stream and downstream river stages (in India for example,
World Bank, 2015), whereas the LSTM has been shown in
recent years to improve hydrological simulations relative to
conceptual and physically based models (e.g., Kratzert et al.,
2018, 2019a, b; Hu et al., 2019; Feng et al., 2020; Xiang et
al., 2020).

a. Linear model (Fig. 2a): the model input includes past
river stages from the target gauge and its upstream
gauges (typically 2-5 gauges) for each time step. The
output is a future river stage at the target gauge for
a given lead time. A multiple linear regression model
is trained with historical records of the above inputs
and outputs. The model is optimized using the mean
square error (MSE) loss function with L2 regularization
(i.e., a squared sum of coefficients is added as a penalty
term). Linear models are trained separately for each tar-
get gauge with a separate linear model trained for all
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Figure 1. The operational flood warning system scheme. The first step is the ingestion, quality control and correction of stream stage
measurements, precipitation measurements, and precipitation forecast data. The validated data serve as an input to the stage forecast models
(linear and LSTM models) in the second step. An inundation model (thresholding or manifold) is applied in the third step for forecasted
stages that pass the warning threshold. The final step is the dissemination of alerts to relevant agencies, including emergency forces, and to

the public.

lead times up to the gauge’s maximal lead time (for ex-
ample, a target gauge with a selected maximal lead time
of 24 h and hourly resolution implies 24 trained Linear
models for this gauge).

b. Long short-term memory network (LSTM) (Fig. 2b): the
LSTM model consists of two LSTMs, a sequence-to-
one hindcast model and a sequence-to-sequence fore-
cast model where the output of the hindcast model is
used as the initial state of the forecast model. The hind-
cast model processes data from past days sequentially,
taking the following variables as inputs at each time
step: (i) IMERG precipitation, (ii) near-real-time stage,
and (iii) a linear combination of stage measurements
from upstream gauges over some upstream ‘“lookback”
period (typically a few days). The linear combination
of stage measurements is produced by a separate linear
layer with gauge-specific weights that combines a (vari-
able) number of upstream inputs per gauge into five fea-
tures that are fed as inputs into the hindcast LSTM. The
hindcast LSTM runs until the current time (defined to
be the time of the last available measurement). The final
cell state and hidden state (c(¢) and A (¢) in Fig. 2b) of
the hindcast LSTM are passed through a fully connected
layer and the output of this “state handoff” layer is used
as the initial cell state and hidden state (co(#) and hq(¢)
in Fig. 2b) of the forecast LSTM. The forecast LSTM
advances one step for every lead time, producing the rel-
evant forecasts for all lead times up to the maximal one.
The basic principle of using a state handoff between two
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LSTMs was adopted from Gauch et al. (2021). In the
original use, the state handoff allowed modeling at mul-
tiple timescales, while here, we use this structure to dif-
ferentiate between the different inputs that are available
in real time during hindcast and forecast (specifically,
the availability of precipitation measurements).

All weights of the LSTMs (hindcast and forecast) are
shared between all target gauges (i.e., they are regionally cal-
ibrated). The only gauge-specific weights are those of the lin-
ear upstream combiner layer which allows the architecture to
accommodate varying numbers of upstream gauges, travel
times, sizes of tributaries, etc. Table S2 in the Supplement
presents more details on hyperparameters and settings.

The system estimates the uncertainty of the water stage
following the approach detailed in Klotz et al. (2022). The
time-dependent distribution over the predicted stage is mod-
eled using a (countable) mixture of asymmetric Laplacians
(CMAL, Klotz et al., 2022). The parameters of this distribu-
tion are generated by feeding the hidden state of the forecast
LSTM into a dedicated head layer for each forecasted time
step. At each time step, the loss is calculated as the negative
log-likelihood of the observed stages given the forecasted
distribution parameters, thus maximizing the probability of
the training data-given model output. It is important to note
that the CMAL head is applied only to the outputs of the
forecast LSTM and the likelihood-based loss function is cal-
culated only over these CMAL head outputs. The hindcast
LSTM does not supply outputs to the loss function directly —
it only affects the loss value by supplying an initial cell state

https://doi.org/10.5194/hess-26-4013-2022
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Figure 2. Schemes of the linear (a) and LSTM (b) stage forecast models.
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to the forecast LSTM. Since training is shared for all target
gauges, the maximal lead time in the training phase is taken
as the maximum of the gauge-specific maximal lead times.
The predicted parameters are used to calculate the distribu-
tion quantiles in each time point. We output the confidence
interval between the 20 % and 80 % quantiles as the stage un-
certainty (Fig. S1) and present this range to users (see exam-
ples in Fig. 4). Furthermore, when the estimated uncertainty
range exceeds a given threshold (typically 50 cm), a shorter
lead time is selected for the gauge. The selected lead time
is the maximal lead time such that the uncertainty range is
smaller than the threshold.

— Training and validation: the training and validation data
sets are composed of samples where the features are
past river stages at the target and upstream gauges
and past spatially averaged precipitation (for the LSTM
model). The labels for training are future river stages at
the target gauge for a given lead time. The stage forecast
models are trained and validated with historical data us-
ing a cross-validation scheme in which each fold uses
one year’s worth of data for validation and the rest for
training (i.e., 1-year leave-out). For operational use, the
models were retrained on the full data set to produce the
best real time forecasts possible.

— Exceedance of warning threshold and output to the in-
undation model: for each target gauge, if the maximal
forecasted river stage between the forecast’s “current
time” and the gauge’s maximal lead time is above the
predefined gauge-specific warning threshold, an alert is
issued and this maximal stage is used for inundation
mapping (Sect. 2.3).

— External forecasts: in addition to stage forecasts derived
by the models described above, the flood warning sys-
tem allows for using forecasts from external sources
such as models operated by the relevant national hydrol-
ogy or hydrometeorology authorities. External forecasts
are also compared with gauge-specific warning thresh-
olds and, if exceeded, are used for inundation mapping

(Fig. 1).
2.3 Inundation modeling

The inundation models are responsible for translating fore-
casted river stages into flood extent maps that delineate the
projected flooded regions in areas of interest around gauges
(i.e., AOIs). An additional potential output is the inundation
depth at each flooded pixel in the AOL. In large rivers, the wa-
ter stage varies relatively slowly with time due to the large
volumes involved; therefore, the flood extent is computed
based on the forecasted stage for a given time, ignoring the
river stages at previous time points (i.e., assuming the river
flow is in a quasi steady state).

Two ML models are currently utilized: (1) the thresholding
model and (2) the manifold model. The thresholding model
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computes a flood inundation map; it does not require a dig-
ital elevation model (DEM) and is easier to implement and
deploy at scale, but it forecasts only flood extent (and not
depth). The manifold model can be implemented where a
DEM is available and it computes both a flood inundation
map and an inundation depth map. A third, physically based
hydraulic model, which also requires a DEM, is presented
here for reference; it was used in the operational framework
in previous seasons, but it is currently not in use since in
the present conditions, it was found to be both less accurate
and less scalable than the ML models (see Sect. 3.2) while
its computational cost was considerably higher (Ben-Haim
et al., 2019).

a. Thresholding model (modified from Ben-Haim et al.,
2019) (Fig. 3a, a standalone code can be found in
Google-research flood_forecasting, 2022): the model
includes pixel-specific thresholds for each pixel in the
AOL Pixels where the water stage in the target gauge
exceeds their thresholds are assumed to be inundated
(i.e., wet) while the others are dry.These thresholds are
learned from the series of historic stage data at the target
gauge and the corresponding state of the pixel (dry/wet)
during these events (Fig. 3a). Each pixel in the inun-
dation map is treated as a separate classification task,
predicting whether the pixel will be inundated or not.
We refer to the “wet” class as the positive class.

The algorithm described below identifies pixel-specific
thresholds and is aimed at maximizing an Fg-score us-
ing an optimized global parameter called minimal ra-

1 - 1 2\ . precision-recall
tio. Fg-score is defined as (14 B?) Frorectionsreeall

(Sokolova et al., 2006), where precision represents here
the fraction of all wet pixels that are predicted as be-
ing wet and recall is the fraction of all pixels that are
predicted to be wet and are really wet (see two exam-
ples for Fi-score in Fig. S2). An iterative process is ap-
plied to each pixel. In each iteration, we find the thresh-
old that maximizes the ratio of true wet events (where
the water stage at the gauge is above the threshold and
the pixel was wet) to false wet events (where the water
stage at the gauge is above the threshold and the pixel is
dry). The threshold that maximizes this ratio is the most
cost-effective threshold in the sense that it provides the
most true wet pixels per false wet instance. At the first
iteration, all training events are considered; then, after
each selection of a threshold and its respective true—
false ratio, events with stage measurements above the
threshold are discarded and a new iteration starts with
the remaining events. If the new true—false ratio calcu-
lated is lower than the minimal ratio parameter value,
the process stops and the final threshold for the pixel is
the one found in the previous iteration. It can be shown
that for every minimal ratio parameter value, no other
set of pixel-specific thresholds achieves simultaneously
better precision and recall; implying it is Pareto opti-
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mal. Therefore, for any f, there exists some value of ing. This makes it appealing for large-scale deployment
the minimal ratio parameter which finds the thresholds across many AOIs in a short amount of time.

that optimize this respective Fg-score. After repeating

the algorithms for different values of the minimal ratio b. Manifold model (Fig. 3b, a standalone code can be
parameter, the one that maximizes a specific target met- found in Google-research flood forecasting, 2022): the
ric is selected and the respective pixel thresholds for this manifold inundation model, presented here for the first
parameter value are used. time, provides a machine-learning alternative to hy-

draulic models by computing physically reasonable
flood inundation. Its inputs are a DEM for the AOI and
a target water stage. It outputs both the flood inundation
extent and the inundation depth at each AOI pixel. The
model is divided into two major parts, as can be seen
below.

The thresholding algorithm is applied to compute cate-
gories of certainty that a given pixel is wet (see an ex-
ample in Fig. 4c). This is done by computing the re-
spective thresholds for two 8 values of 0.3 and 3 where
lower B values imply higher thresholds. When a given
water stage in the target gauge is considered, the two
thresholds are examined for each pixel. If the thresh-
old of B8 =0.3 is exceeded (implying the threshold of
B =31isalso exceeded), it is classified as wet with a high
probability. If only the threshold of g =3 is exceeded,
it is classified as wet with a low probability. The pixel is
classified as dry if no threshold is exceeded.

bl. Flood extent to water height algorithm

The flood extent to water height algorithm converts
a DEM and an inundation extent map (i.e., wet/dry
state for each pixel) into a water height map, which
is a per-pixel water height in meters above sea level.

In cases where the river stage input is higher than all The algorithm tries to find a physically reasonable
past stage data, the thresholding model’s output inun- water height map that best matches the input in-
dation map is initialized from the most severe inunda- undation map, where the physically reasonable re-
tion extent seen in the historical events and expanded in quirement is defined as (1) the water height surface
all directions. The expansion distance is a linear func- must be smooth, i.e., we aim to find a water height
tion of the difference between the forecasted stage and map that does not change significantly between
the stage of the highest historical event. This thresh- neighboring pixels, and (2) the water height surface
olding model requires no DEM data, but only histori- should not have a minimum or a maximum at the
cal flood inundation maps and gauge stages for train- interior of flooded regions. This optimization prob-
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lem is not differentiable and, thus, cannot be eas-
ily solved directly. Instead, the following heuristic
can be shown to produce an optimal solution to the
above optimization problem. The algorithm identi-
fies the boundaries of the inundated areas of the in-
put inundation map (OpenCV findContours, 2021).
The water height at these boundaries is extracted
from the corresponding DEM. In between these
boundaries, the algorithm uses the Laplace differ-
ential equation to interpolate the water heights. The
water height map is defined as a low-resolution im-
age where every pixel is set to be of 32x32 DEM
pixels. This assures that the output map is smooth
and does not contain high frequency changes while
also reducing the computational complexity of the
process. In addition, outlier DEM pixels, which are
pixels that cause high Laplace tension, are removed
to assure that the overall function is smooth.

b2. Gauge stage to flood depth algorithm

When inferring inundation depth for a real-time
gauge water stage forecast, we do not have access
to the full current flood extent (as the extent—to—
height algorithm above assumes). To be able to pro-
vide depth in this more challenging setting, we first
perform some precomputation. We first apply the
thresholding model described above (with F-score
optimization) to all past events in our training data,
producing an inundation extent map for each gauge
stage measurement. We then apply the flood extent
to water height algorithm described above to pro-
duce a water height map for each past event. In real
time, when we receive an input water stage at the
target gauge, the model simply performs per-pixel
piecewise—linear interpolation between the water
height maps of the training dataset to generate a
new water height map corresponding to this in-
put stage. The resulting water height map and the
DEM are then used to generate an updated inun-
dation extent map. In this map, a pixel is assigned
with a wet state if: (1) its water height is above the
DEM and (2) it is connected to an inundated area
in the output of the thresholding model; otherwise,
the pixel is assigned with a dry state. The inunda-
tion depth map is then computed as the difference
between the water height and the DEM height for
pixels with a wet state (see for example Fig. 4d).
The use of the thresholding model (as opposed to
directly using satellite-based imagery of actual his-
torical flood extent) as the input inundation maps
ensures that higher gauge stages always yield larger
inundation extents and, thus, removes unnecessary
noise. When the model infers an inundation depth
map for a gauge’s water stage higher than all the
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events in the training set, it extrapolates the water
height map by adding the gauge level difference to
every pixel in the highest water height map com-
puted from observed gauge stages and uses the ex-
trapolated water height and DEM to compute the
water depth map.

c. Hydraulic model (Ben-Haim et al., 2019) (Fig. 3c):
the hydraulic model is a physics-based model based
on numerical solutions of the St. Venant equations (de
Almeida et al., 2012). In this implementation, we as-
sume that the river stage changes slowly so that the
flood extent at any given moment is approximated by
a steady-state simulation. This is a good approximation
for large rivers, which are the current focus of the flood
warning system, where water stage changes relatively
slowly due to the large amounts of water involved.

Such physics-based models are commonly used with incom-
ing discharge data as one of the boundary conditions. How-
ever, in our systems, the data available in real time are the
water stage. To support this, the model is simulated offline
with numerous discharge values at the upstream boundaries.
Other model parameters (e.g., roughness per AOI’s pixel)
and downstream slope boundary conditions are fixed to phys-
ical constants. Each run of the model yields a simulated inun-
dation map for the AOI and a water stage at the target gauge.
These results are saved in a hash table for quick retrieval.
Upon receiving a real-time gauge stage forecast, the simu-
lation with the closest gauge water stage is found and the
corresponding inundation map is used as the model output.

The hydraulic model requires a DEM for the entire AOI,
including the river bathymetry that is often not included in
DEMs based on optical imagery (and other sources that can-
not penetrate water). It is therefore estimated by fitting three
equal-side trapezoids to the river cross sections with slopes
that are computed from the river banks.

— Training and validation: the training and validation data
sets for the inundation models are composed of sam-
ples representing historical flood events where the fea-
tures are gauge water stage measurements and the la-
bels are the corresponding flood inundation extent maps
from satellite data. Similar to the stage forecast models,
a l-year leave-out cross-validation scheme is used for
training and validation. For operational use, the mod-
els are retrained with all historical data. It should be
noted that contrary to flood inundation extent, there are
no ground truth data for flood inundation depth. The
manifold model is, therefore, trained and validated only
on the inundation extent. However, since the manifold
model is constrained to only produce physically reason-
able water height maps, accurate inundation extent met-
rics on the test dataset imply reasonably reliable inunda-
tion depth results. More work on validating inundation
depth accuracy at scale is needed.
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— Satellite-based flood inundation maps: the synthetic
aperture radar ground range detected (SAR GRD) data
from the Sentinel-1 satellite constellation are used to de-
termine flood inundation maps at known time points and
locations (Schumann and Moller, 2015). At any AOI a
SAR image is available once every several days, from
which an inundation map was inferred using a binary
classifier (Torres et al. 2012). Every pixel within a SAR
image is classified as wet/dry via a Gaussian mixture-
based classification algorithm. In order to calibrate and
evaluate the classification algorithm, we have collected
a dataset of Sentinel 2 multispectral images of flood
events that coincide with the SAR image dates and lo-
cations. Reference Sentinel-2 flood maps were created
by calculating per-pixel Normalized Difference Water
Index (NDWI= (B3 — B8)/(B3+ BS8), B3 and B8 are
green and near infrared bands, respectively) and applied
a threshold of 0 (McFeeters, 2013).

— DEMs for target gauge AOIs: the publicly available
global DEMs (e.g., NASA SRTM and MERIT) lack
the required spatial accuracy and resolution for de-
tailed flood inundation simulation. Furthermore, they
are based on data from over a decade ago, thus, failing
to capture the frequent topography changes caused by
past floods. Consequently, higher-resolution (1 x 1 m?),
up-to-date DEMs are constructed for each AOI from
high resolution satellite optical imagery data in a pro-
cess that is based on stereographic imaging (Ben-Haim
et al., 2019). To keep the DEM up to date, the model is
retrained annually based on fresh imagery in locations
where flooding causes frequent topography changes.

— Model selection for target gauges: the selection of
which model to use for each target gauge is based on
DEM availability for the AOI and on the performance
when trained and tested with historical data. When pos-
sible, the manifold model is preferred as it provides
forecasts of inundated water depths in addition to the
inundation map.

2.4 Alerts

Alerts are distributed to government authorities, emergency
response agencies, and the affected population. The alerts in-
clude information about the forecasted water stage at the tar-
get gauge, the inundation map, and inundation depth if avail-
able. Flood information is disseminated to the public (af-
fected population) over three channels (Fig. 4): (1) Google
Search (for example, when searching for a flood at a specific
location, or “flood near me” when located near a flood re-
gion), (2) smartphones within the forecasted flood inundated
area receive a push notification on their phone when a fore-
cast is issued, and (3) icons presented in Google maps when
viewing an area with an active flood alert. In all cases, the
alert leads to a page with additional warning information, in-
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cluding the forecasted stage change at the target gauge with
its uncertainty range and a map view of the inundation prob-
ability and depth if available. In addition, relevant organiza-
tions (government agencies and NGOs) receive flood alerts
via email and specialized dashboards for their use; these like-
wise contain the forecasted stage and inundation map. Spe-
cial care is taken to provide the alerts in the local language
and to make it informative and actionable.

2.5 Deployment in India and Bangladesh for the 2021
monsoon season

India and Bangladesh host the large river systems of the In-
dus, the Ganga, and the Brahmaputra that provide livelihoods
for hundreds of millions of people; but, at the same time,
they frequently flow over their banks, leading to loss of lives
and substantial damage during the summer monsoon season
(World Bank, 2015). In fact, it was shown that Asian river
floods are the most devastating in terms of number of people
killed and affected (Jonkman, 2005).

The Indian Central Water Commission (CWC) and
Bangladesh Water Development Board (BWDB) provide
flood forecasts and warnings in the two countries. The
CWC bases operational forecasts primarily on a mathemati-
cal model that utilizes water stage data (World Bank, 2015).
Flood forecasts by BWDB are based on predicted river
discharges at upstream boundary locations and a hydraulic
model (World Bank, 2015).

Google’s river flood warning system has been operational
in India since 2018 and in Bangladesh since 2020. These sys-
tems were expanded and modified for the 2021 monsoon sea-
son. During 2021, the flood warning system handled 376 tar-
get gauges covering watershed sizes of 350 to 1 500 000 km?
(Table S1). Of these, stage forecast models were applied to
167 target gauges while the others were based on external
forecasts. AOIs for the target gauges were defined as poly-
gons around the river at the gauge location. They were com-
puted, by both manual and automatic procedures, by observ-
ing the flood patterns in the area around the gauge from his-
torical flood inundation maps. Inundation models were ap-
plied to 233 target gauges. Additional 143 target gauges,
where a well-performed inundation model could not be ap-
plied typically due to very limited ground truth data or highly
irregular flood pattern, were managed by the system but
alerts were sent without inundation maps. In total, Google’s
flood warning system covered a flood-prone area close to
470 000 km? with a population of more than 354 000 000 (Ta-
ble S1). Figure 5 and Table S1 provide details on the target
gauges and AOIs geographical distributions, stage forecast
and inundation model type, maximal lead time, watershed
area, AOI area, and estimated population size.

Stream gauge stage data for the monsoon season, i.e.,
1 June to 31 October, were obtained at hourly resolution from
CWC and BWDB. IMERG (Early Run) precipitation data
were obtained from NASA and averaged in space and time to
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Table 1. Stage forecast operational model configuration during 2021 monsoon season in India and Bangladesh.

Stage Number Input Output Maximal Comments
forecast  of target lead-time
model gauges
Linear 2 Hourly water stages for the past ~ Forecast stage at the target 18h Model is optimized for each
72 h for the target and upstream  gauge for a given hourly (Table S1)  hourly lead time up to the max-
gauges (typically 2-5 gauges) lead time between the forecast imal lead time and for each tar-
time and forecast time + max- get gauge separately
imal lead time
LSTM 165 — Hourly water stages for the Forecast stage at the target 8-48h — There are 128 cell states in the
past 168 h for the target gauge  gauge for all hourly lead times ~ (Table S1)  hindcast and forecast LSTM

and the past 240 h for upstream
gauges (typically 2-5 gauges)
— Hourly mean areal precipita-

between the forecast time and
forecast time + maximal lead
time

— model is optimized for all
hourly lead times up to the
maximal, which is 48 h for all
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tion for the past 168 h
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Figure 5. Target gauges (circles) and AOIs (polygons) for which
the system was deployed in 2021 in India and Bangladesh.

produce watershed-averaged hourly data. Historical records
for 2014-2020 were used to train the stage forecast model
which was then used operationally in 2021 to provide fore-
casts using real-time data. As the LSTM models resulted in
improved forecast skills compared to the linear models (see
Sect. 3.1 below), they were used for stage forecasting for all
target gauges except two where LSTM performances were
low. The specific configurations of the operational models
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are presented in Table 1 (see Table S2 for more details on
hyperparameters and setting of the LSTM model).

The stage forecast models provide in real time, at each
hour, forecasts of hourly water stages between the current
timestamp and a future time which is the gauge’s maximal
lead time. In addition, external forecasts for all 376 target
gauges from the operational models of CWC and BWDB
were fed to the system each time they were available (typ-
ically, once or twice per day with lead time between 12 and
120 h). The forecasted stages were compared with the warn-
ing thresholds to determine whether an alert should be issued.
If so, the forecasts were propagated to the inundation com-
ponent to generate inundation maps.

The thresholding and manifold inundation models were
applied to 174 and 59 target gauges, respectively, covering
AOIs ranging from 20 to 5295 km? (Fig. 5, Table S1). The
two models computed inundation maps (with the manifold
model also computing inundation depth) at a 16 x 16 m? spa-
tial resolution, which were evaluated at a 64 x 64 m? spa-
tial resolution. The models were trained based on historical
flood events for 2016-2020 (a mean of 29 and a median of
15 events per AOI) and utilized in real time for 2021.

Alerts containing the forecasted change in water stage at
the target gauge, the expected inundation map, and water
depth maps, if available, were sent to several agencies in-
cluding CWC, BWDB, and the Federation of the Red Cross
and Red Crescent Societies. In cases where flooding was
sufficiently severe (i.e., the forecasted water stage at the
gauge exceeded a pre-defined threshold provided by CWC
and BWDB), alerts were also sent as push notifications to
smartphones situated in locations that were forecasted to be
flooded. In total, about 115000000 notifications were sent
and have reached about 22 000 000 people (Fig. 6). The noti-
fications were sent in the local language where nine different
languages were used for India and Bangladesh, specifically,
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English, Hindi, Bengali, Gujarati, Marathi, Tamil, Telugu,
Kannada, and Malayalam.

As a demonstration of one flooding case, we present in
Fig. 7 the system outputs for the flood event in mid-August
in Bihar. On August 11, close to midnight, a few gauges in
Bihar presented danger level alerts (Fig. 7a). Specifically,
the Hathidah target gauge had a forecast indicating that on
12 August 22:00LT (UTC + 5.5), the gauge level would
reach the highest recorded stage of this gauge (Fig. 7b).
The inundation water depth map (Fig. 7c) covers an area of
533 km? (compared to 163 km? at low river stages during the
non-monsoon season). Also shown are photos from the af-
fected areas (Fig. 7d, e) and an example of the alert as pub-
lished by CWC for this event (Fig. 7f).

3 Machine learning model evaluation

3.1 Stage forecast models evaluation

The stage forecast models presented in Sect. 2.2 are analyzed
to assess their performances and to gain insights about the
importance of their inputs. Accordingly, four models are ex-
amined:

linear model with past water stage input;

linear model with past water stage and past precipitation
input;

LSTM model with past water stage input;

LSTM model with past water stage and past precipita-
tion input.

The Nash—Sutcliffe efficiency (NSE) and the persistent-NSE

metrics are used to represent the level of fit, defined as 1 —
n(yo—y©)? n(yo—y0)?

M and 1 — Z’:L’OV;)Z respectively, where n is

i (30-00) i 09 -y7)

the series length, y? is the ith observed stage data, y; is the
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ith computed stage data, and ylP is the last observed stage
data at the time of forecast. NSE compares the model’s sum
of squared error to the sum of squared error when the mean
observation is used as the forecast value. Persistent-NSE on
the other hand, uses the last observed data as the forecast
value being compared against.

A 1-year cross-validation scheme was applied based on
2014-2020 data. Figure 8 presents the distributions of NSE
and Persistent-NSE for the 167 target gauges with an opera-
tional stage forecast model (Table S1), and Table 2 provides
their statistics.

NSE metric values are very high for all target gauges and
models, indicating in general very good predictive skill. It
should be noted that these high skills are not surprising given
that we are modeling large rivers with a typically slow re-
sponse and that we use historic water stages and upstream
water stages as model inputs. The Persistent-NSE metric val-
ues are lower than NSE, implying that forecasting with the
last observed value achieves a significant improvement over
forecasting with the mean observation and, consequently, re-
sults in a baseline that yields lower scores of our models.

The metrics show an advantage of the LSTM model over
the linear model and of including precipitation as a model
input (Table 2), and according to the Wilcoxon signed-rank
test for the paired samples, all these comparisons are statis-
tically significant. For 95 % of the target gauges, the LSTM
model achieves a better Persistent-NSE score than the linear
model. Including precipitation data as input improved both
the LSTM (89 % of the gauges) and the linear (65 % of the
gauges) models.

Metric values of all models are positively correlated with
watershed area, as can be seen in Fig. 9, presenting the me-
dian Persistent-NSE for three bins of drainage area sizes.
The variance within the bin of the smallest watersheds
(< 10000 km?) is the largest and the medians in this bin do
not significantly differ from the medians of the middle-size
bin (p value > 0.1 based on Mood’s median test); the two
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Figure 7. (a) Gauge alert map captured on 11 August 23:45, forecast for 12 August 22:00. Gauge colors represent below warning level
(green), above warning level (orange), and above danger level (red) (map data from © Google Maps 2021). (b) 42 h forecast (LSTM model)
and observed river water stage for the Hathidah target gauge around the flood event. (¢) The inundation depth map (manifold model) fore-
casted for the Hathidah gauge at 11 August 23:45, referring to 12 August 22:00 (these two times are marked as vertical dashed black
lines in b). (d) A photo taken during the flood on the way from Begusara to Patna (given to the authors by the Yuganter organization,
http://www.yuganter.org.in, last access: 21 July 2022). (e) A photo taken during the flood, Hetanpur, Madhopur Panchayat in the Patna dis-
trict (given to the authors by the Yuganter organization, http://www.yuganter.org.in). (f) Alert sent for the flood event and published by CWC
(Central Water Commission Official Flood Forecast, 2021). Time represents Bihar local time (UTC + 5.5).

other median comparisons (largest watershed bin relative to
the middle-size bin and the smallest size bin) are significant
(p value <« 0.01).

3.2 Inundation model evaluation

The evaluation of the ML inundation models is done in two
steps. First, we present a comparison of the hydraulic model
and the thresholding model. This step was important for
benchmarking the ML models against more classical solu-
tions. The Fj score, which is the harmonic mean of the pre-
cision and recall (Sokolova et al., 2006, see a definition in
Sect. 2.3 and examples in Fig. S2), is used for evaluation
where the dry/wet classification of each pixel in the AOI is
examined and the wet pixels are taken as positive. Since the
hydraulic model requires substantial manual work and heavy
computation, the comparison was limited to 11 AOIs.

The two models (Sect. 2.3) were trained with flood events
from 2016-2019 and validated with different events from
2020. Table 3 shows the validation F; score achieved on the
AOIs for each model with the best score for each AOI in bold.
The thresholding model outperforms the hydraulic model on
9 of the 11 AOIs. In addition, the thresholding model requires
significantly less computation and manual calibration effort
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than the hydraulic model. Therefore, it was decided not to
include the hydraulic model in the operational system.

In the second step, we evaluate the thresholding and man-
ifold models for all 126 AOIs with DEM (i.e., both models
can be applied), based on flood events from 2016-2020; in
these years, there are a total of 4815 flood events across all
the AOIs (on average, 34 events were used for training and 10
for validation per AOI). The median F; (across years) is com-
puted for each AOI using a 1-year cross-validation scheme
(Fig. 10a). In addition, we applied a “leave—extreme—out”
validation procedure to estimate the model’s skill at accu-
rately computing the inundation map for large unprecedented
flood events that exceed water levels in the training sample.
In this procedure, the training data set includes all events ex-
cept the one with the highest recorded stage as well as all
flood events whose stage differs from the highest recorded
stage by less than 30 cm. The trained model is then validated
on the highest flood event (Fig. 10b). Table 2 provides the
statistics of the F; metric for the two inundation models and
their comparison.

The F; metric has a narrower range for the cross-
validation scheme compared to the leave—extreme—out (Ta-
ble 2). The thresholding model achieves better metric values
than the manifold model in a majority of AOIs (70 % and
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Table 2. Median and range of metric values for the stage forecast and inundation models and median and range of metric differences for

compared models.

NSE \ Persistent-NSE
Stage forecast model Median Range ‘ Median Range
Linear without precipitation 0.9839 0.8368-0.9988 0.5851 0.0830-0.9050
Linear with precipitation 0.9847 0.8368-0.9989 0.5991 0.1842-0.9076
LSTM without precipitation 0.9862 0.8444-0.9992 | 0.6608 —0.8824-0.9124
LSTM with precipitation 0.9870 0.8508-0.9992 | 0.6708 —0.6079-0.9171
Linear with — without precipitation™ 0.0001 —0.0033-0.0173 0.0033 —0.0328-0.1611
LSTM with — without precipitation® 0.0005 —0.0048-0.0170 | 0.0153 —0.0710-0.5403
LSTM - linear with precipitation™ 0.0017 —0.0175-0.0216 | 0.0635 —1.0971-0.2504

F1 1-year cross-validation

| Fj leave—extreme—out

Inundation model Median Range ‘ Median Range
Thresholding 69.01 41.67-92.49 76.74 2.48-96.68
Manifold 69.12 36.91-91.36 76.27 10.36-95.46
Manifold — thresholding* —1.31 —6.09-13.66 —-1.79 —40.42-21.87
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* Statistically significant (p value < 0.05) according to the Wilcoxon signed-rank test for the paired samples.
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Figure 9. Persistent-NSE medians for three bins of watershed
drainage area sizes. Number of gauges in the bins are 49, 54, and
42. Error bars are shown as the range of 10 %—90 % quantiles in
each bin. For a better visuality, they are only shown for the LSTM
with precipitation model. For all four models, the median of the
largest bin is significantly different than the median of the middle
bin and the smallest bin (p value < 0.001 based on Mood’s median
test), while the difference between medians of the two smaller bins
is insignificant (p value > 0.1).

Table 3. F| score for selected AOIs.

AOI Hydraulic = Thresholding

model model
Guwahati 83.60 % 85.20 %
Gandhighat 72.00 % 78.90 %
Goalpara 72.20 % 81.20%
Ayodhya 73.00 % 75.10 %
Tezpur 82.70 % 87.00 %
Neamatighat 68.40 % 76.90 %
Kahalgaon 65.00 % 76.70 %
Basua 52.90 % 56.80 %
Turtipar 70.60 % 67.90 %
Gangpur Siswan 68.90 % 66.60 %
Balia 65.90 % 73.60 %
Average 70.47 % 75.08 %

57 % for the 1-year cross-validation and leave—extreme—out
analyses, respectively) and the median of the F| metric dif-
ferences (thresholding—manifold) for both cases are statisti-
cally significant according to the Wilcoxon signed-rank test
for the paired samples (Table 2).

4 Discussion

This paper presents Google’s operational flood warning sys-
tem already deployed in India and Bangladesh and planned
to be further extended to other countries across the globe.
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It also presents ML models that are used in this operational
framework for stage forecasting and for inundation mapping.

The benefit provided by the flood warning system to the re-
gion during the 2021 monsoon season was the relatively high
temporal (hourly) and spatial (16 m) resolution of the flood
alerts for lead times ranging over 8—48 h and over a large spa-
tial extent (287 000 km? AOI area, Fig. 5, Table S1). Approx-
imately 115000000 flood alerts were sent to affected popu-
lations (Fig. 6) and reached about 22 000000 people. The
accuracy metrics for both river stage and flood inundation
area indicate good performance metrics (NSE and Persistent-
NSE medians for the LSTM with precipitation stage fore-
cast model are 0.99 and 0.69, respectively; F| for cross-
validation and extreme—leave—out are 69 % and 76 %, respec-
tively; Figs. 8 and 10).

The ability to compare performance to other benchmarks
is limited as we can only do so with the few published oper-
ational framework metrics. One of these studies by Zalenski
etal. (2017) evaluates the US National Weather Service stage
forecast models for 51 stream gauges in Iowa, US. They re-
port root mean square error of water stage with medians of
0.3 and 0.5m (for below and above flood stage classes, re-
spectively) for a lead time of 24 h; increasing lead time to
48 h increased these medians by 0.1 m. The median of the
root mean square error of the stage forecast models used in
the present system are 0.1 and 0.2m for lead times of 24
and 48 h, respectively. Although the errors are not fully com-
parable since these watersheds differ from those analyzed
in Zalenski et al. (2017), they provide a good indication on
their level of accuracy. The current paper presents accuracy
metrics for operational stage forecast and inundation mod-
els for 167 and 126, respectively, stream gauges in India and
Bangladesh and thus contributes to reducing the lack of in-
formation on operational models’ performance and can be
further used for evaluating other operational systems.

One of the challenges in operational flood forecasts is turn-
ing forecasts into effective warnings (Kuller et al., 2021).
Pagano et al. (2014) discussed this challenge and presented
the following concerns: “Is the intended audience receiving
the forecasts? Is the information being understood? Is the
information being used to make the right decisions?”. Re-
garding the second point, experience gained from Google’s
system demonstrates the importance of using the local lan-
guage for the alerts, in accordance with Perera et al. (2020)
who suggest community-specific warning messages com-
posed by their recipients. Perera et al. (2020) also emphasize
the importance of targeted warnings, as opposed to warn-
ings that are communicated to the entire population, which
is the approach taken here. Substantial efforts are put into
finding effective ways to communicate flood alerts, for ex-
ample, by providing alerts at the local languages, accom-
panying the alerts with visual explanations, and investigat-
ing what text the alerts should include to make them eas-
ier to understand. A few studies examined the effectiveness
of flood alerts in operational frameworks. For example, Ro-
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Figure 10. Comparison of the F score metric between the thresholding and manifold inundation models for (a) 1-year cross-validation and
(b) leave—extreme—out based on data from 2016-2020 for 126 AOIs India and Bangladesh.

tach et al. (2009), as a part of an end-to-end operational
flood warning system in the Alpine region, collected feed-
back from end-users through questionnaires, interviews, and
workshops, and some initial insights are given on the utility
of the system for the decision-makers and how well the infor-
mation was perceived. It should be noted, however, that the
current knowledge about effective flood warnings in coun-
tries like India and Bangladesh is very limited. For exam-
ple, a literature review by Kuller et al. (2021) shows that
the large majority of the published literature about this topic
focused on industrial countries while less than 6 % focused
on Asia and none on South America or Africa; they empha-
size that little is known about the transferability of findings
from industrial to non-industrial countries. An important in-
put to these investigations is feedback from the population
and from local aid organizations on whether alerts were re-
ceived, how accurate they were (in terms of flood inunda-
tion and flood depth), how useful they were, and what actions
have been taken. Our research efforts are ongoing in this di-
rection and preliminary analysis indicates flood alerts being
effective. The full details of this research would be reported
separately and are expected to help both in validating and
in improving the flood warning system. Two more directions
are being explored for the presented system with respect to
alert efficacy. The first will allow individuals to define spe-
cific locations they are interested in (such as their village)
and receive more detailed information about those locations.
The second concerns forecasting river stages at longer lead
times, even at the cost of increased uncertainty, which can be
used to drive longer-term decisions; however, communicat-
ing such information is an ongoing challenge.

ML methods are an integral and critical part of the river
stage forecasting and flood inundation models. For stage
forecasts, it has already been shown that LSTMs outperform
standard hydrological models, not just for gauged basins but
also for ungauged basins (Kratzert et al., 2019a, b) and even
for extreme out-of-training events (Frame et al., 2022). For
inundation modeling, a comparison of the two ML-based
inundation models with the physics-based hydraulic model
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found the ML models exhibited higher accuracy (Table 1).
Another advantage of ML models is that they require less
manual per-gauge work, thus enabling expansion to a larger
coverage area. Indeed, it is generally easier to apply ML
models to a new basin compared to a process-based model;
for example, Nevo et al. (2020) compared the hydraulic
model and an ML inundation model and showed that on av-
erage, the hydraulic model requires about eight times more
manual work; this is a result of the need for gauge-specific
parameter calibration in almost all process-based models (see
Nearing et al., 2020 for some discussion).

On the other hand, there are potential drawbacks in ML
models that need to be considered. These models rely solely
on the data and thus require large, representative records to
reach a sufficient performance. Though one might expect that
process-based models would be more resilient to data limita-
tions compared to ML models, due to the explicit process
representation and the physical meaning of some of their
parameters (e.g., saturated hydraulic conductivity), in prac-
tice, there is no indication for such advantage. In fact, many
of the process-based parameters are scale-dependent (Beven,
1995); their use in the model is not straightforward and gen-
erally needs to be calibrated for reliable model performance.
Furthermore, Moshe et al. (2020) presents an ML hydro-
logical model that can be trained with short records. In the
present study, we show that good performance of the ML
models is achieved for the analyzed basins with six to seven
years of training data, a historical record length that can be
expected to be available in many other locations.

The presented system has some limitations that need to
be emphasized. First, Google’s flood warning system in its
present form is designed for flood forecasting in gauged
river locations. Specifically, this requires, at a minimum,
river gauges providing their stage data in real time that have
records of historical stage data and a few cases of flood events
to be used for training and validation of inundation models
(here, records of 6-7 years were used). Second, the stage
forecasting and inundation models would work best in slow-
responding, large rivers. Apparently, even with these restric-
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tions, such flood warning systems can be useful for a large
population worldwide. We are currently working on address-
ing these limitations by extending the system to accomplish
two additional goals.

— Ungauged basins. Prediction in ungauged basins is one
of the main challenges in hydrological sciences (Siva-
palan et al., 2003) and despite significant research ac-
tivity and advances in this direction, robust and reliable
flood predictions in ungauged basins are still lacking
(Hrachowitz et al., 2013). The flood warning system
presented here focuses on gauged basins and relies on
past measurements from the target stream gauges, both
for training and for real-time model input. Extending
the system to ungauged locations implies that precipi-
tation becomes the most dominant input. Moreover, in
this case, the models cannot be optimized to the target
basins. Although these are major obstacles, encouraging
results from recent studies with a similar LSTM model
(Kratzert et al., 2019a) have shown that relatively good
prediction can be achieved in ungauged basins when the
model is trained on gauges from other locations in the
region.

— Flash floods and small-to-medium-sized basins. The
system described in this paper was developed for floods
in large rivers. We aim to expand the technique to small-
to-medium basins (< 1000km?) and to handle flash
floods which appear only a few hours following an in-
tense storm (Borga et al., 2011). This extension implies
a much faster response which, in turn, implies less infor-
mation in the past stage data and more weight to be put
on forcing input data, most importantly, precipitation.
Furthermore, uncertainties in precipitation data might
significantly affect the flood forecasts and must be taken
into account (Borga et al., 2011).

5 Conclusions

Operational flood warning systems can save lives and re-
duce risks and damages. Google’s system was developed to
provide accurate and effective warnings for floods in large
gauged rivers where a dense population is located. After op-
erational deployment in India and Bangladesh, the following
conclusions can be drawn:

— During monsoon 2021, the system provided over
100 million flood alerts directly to individuals who were
located in the flooded areas and to relevant agencies.

— Two ML models are used for river water stage forecast,
linear and LSTM. The LSTM model was significantly
better than the linear model (0.67 vs. 0.60 medians of
Persistent-NSE) and therefore was the one used opera-
tionally in 2021 for 165 out of 167 target gauges.
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— The input to the stage forecast models was the past ob-
served water stage at the target gauge (168 h for the
LSTM model) and a few upstream gauges (240 h for the
LSTM model). Adding past precipitation data (hourly
mean areal precipitation for the past 168 h from IMERG
Early Run) slightly improved model performance and,
therefore, was used operationally.

— Two ML models (thresholding and manifold) were de-
veloped for inundation mapping. Furthermore, the man-
ifold model, using DEM data, additionally provides
forecasts of water depth in inundation areas, which is
considered crucial information for the affected indi-
viduals. The thresholding model was found to outper-
form the physics-based hydraulic model and requires
significantly less manual effort and computational re-
sources which allow its application on a large scale.
The thresholding model also has a higher skill com-
pared to the manifold model, although the distribution
of their F;| metric is close (F; medians of 69 % and
76 % in leave-1-year cross-validation leave—extreme—
out schemes). Both models were applied operationally
during 2021.

— Continually improving the effectiveness of flood alerts
is an important and ongoing challenge. Feedback from
people in the flooded regions has helped increase alert
effectiveness. For example, we found that it was impor-
tant to provide the alerts in the local language and to no-
tify of the expected change in water stage (and whether
it is expected to rise or fall) rather than the absolute
stage.

— The literature lacks performance results from opera-
tional flood warning systems. Such results could con-
tribute to developing common scientific knowledge and
improving flood warning systems. We hope that the re-
sults presented in this study will be helpful for future
studies assessing operational systems.

Code availability. Software was developed at Google and the
code is proprietary. The linear and LSTM stage forecast models
are based on extensively published algorithms (see Kratzert et al.,
2022) for LSTM Python library) and the details of the specific
settings and hyperparameters used here are given in Table S2. A
standalone python code for the thresholding and manifold inun-
dation models, which is practically equivalent to the model runs
in the operational system, is available in Google research GitHub
(https://github.com/google-research/google-research/tree/master/
flood_forecasting, Google-research flood_forecasting, 2022).

Data availability. Hourly stage data were received from the Cen-
tral Water Commission (CWC), India, and the Bangladesh Water
Development Board (BWDB). These data are government prop-
erty and cannot be distributed. Precipitation data were obtained

Hydrol. Earth Syst. Sci., 26, 4013—4032, 2022


https://github.com/google-research/google-research/tree/master/flood_forecasting
https://github.com/google-research/google-research/tree/master/flood_forecasting

4030

from the National Aeronautics and Space Administration (NASA)
at https://gpm.nasa.gov/data/imerg (Huffman et al., 2019) (prod-
uct: GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree
x 0.1 degree V06, GPM_3IMERGHHL 06). Historical flood ex-
tent data were derived from Sentinel-1 SAR GRD data, which are
publicly available on https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S1_GRD from Google Earth En-
gine (Gorelick et al., 2017).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-4013-2022-supplement.
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