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Abstract. The evaporation demands upon a rock or soil sur-
face can exceed the ability of the profile to bring a suffi-
cient amount of liquid water. A dry surface layer arises in
the porous medium that enables just water vapor flow to the
surface. The interface between the dry and wet parts of the
profile is known as the evaporation front.

The paper gives the exact definition of the evaporation
front and studies its motion. A set of differential equations
governing the front motion in space is formulated. Making
use of a set of measured and chosen values, a problem is
formulated that illustrates the obtained theory. The problem
is solved numerically, and the results are presented and dis-
cussed.

1 Introduction

Under arid or semiarid conditions, evaporation demands usu-
ally exceed the ability of an exposed porous medium to pro-
vide liquid-phase water. The water content of subsurface
zones of coarse-grained rocks or sandy soils is usually far be-
low its residual value, and consequently only the gas-phase
water can flow through. These, mostly up to a few centime-
ters thick, zones are referred to as vapor zones, dry surface
layers or evaporation zones (e.g., Yamanaka and Yonetani,
1999; Saravanapavan and Salvucci, 2000; Shokri et al., 2009;
Deol et al., 2014).

The extent and development of the dry surface layer signif-
icantly affect the material’s decay: directly by changes in its
wetness, by frost and particularly by salt weathering, since
dissolved salts are transported by the capillary water and
form crystals at places of evaporation (e.g., Rijniers et al.,
2005; Mol and Viles, 2013; Kurtzman et al., 2016).

The phenomenon is preconditioned by the fact that the
porous medium becomes impervious to the liquid-phase wa-

ter if the water content becomes sufficiently small. A limit
arises inside the porous medium behind which the transport
of water is only possible in the form of vapor. Such a soil pro-
file can be divided into two parts that can be referred to as the
zone of water flow and the zone of vapor diffusion. This for-
mulation, however, is too vague and leaves the intermediate
zone, its extent and its nature unclear.

Several studies were published, giving a detailed descrip-
tion of the evaporation process and the development of the
transition zone (e.g., Lehmann et al., 2008; Shokri et al.,
2010; Sakai et al., 2011; Or et al., 2013; Assouline et al.,
2013; Rothfuss et al., 2015). These papers are mostly focused
on special problems, unlike the present paper, which studies
the three-dimensional problem under general transport con-
ditions.

Sakai et al. (2011) studied the problem, considering both
hydraulic and thermal processes, and detected a narrow tran-
sition layer at the bottom of the dry surface layer. Another ap-
proach (Konukcu et al., 2004) connects the interface between
the region of water flow and the region of vapor flow, denoted
as the evaporation front, with a critical value of the water
content that can be determined directly from such porous-
medium characteristics as hydraulic conductivity and vapor
diffusivity.

Hadley (1982) studied the problem of water vapor trans-
port through a region of dry material from a receding evap-
oration front. In the paper, the heat balance equation was in-
volved in the final system of equations, the evaporation front
was considered to be a sharp interface between the saturated
zone and the dry (without liquid water) zone, the front was
fixed and given a priori, and the liquid water was unmovable.

Kulikovskii (2002) studied the time–space development of
discontinuities in a one-dimensional porous medium. Liquid
water, vapor and mixture of liquid water and vapor were as-
sumed in the void space, and two governing equations, water
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and heat flow, were considered. No particular interfaces were
defined, and discontinuities, in general, were studied in time–
space. Il’ichev and Shargatov (2013) started their study with
similar assumptions concerning the governing laws and in-
vestigated the resulting transition surfaces and conditions of
loss of their stability.

Unlike these studies, the present paper aims to define the
evaporation front by means of porous-medium characteris-
tics and to formulate the law of its motion generally not
involving any particular law governing the water transport.
This approach makes it possible to use any set of flow and
transport laws when formulating a problem of the evapora-
tion front motion.

Several methods using dyes were developed to visualize
the dry and wet regions within soil or rock profiles (e.g.,
Shokri et al., 2009; Bruthans et al., 2018; Kumar and Arakeri,
2018; Weiss et al., 2018). These methods proved their effi-
ciency in laboratory conditions when utilized to visualize the
dry surface layers and, in particular, the evaporation front po-
sitions. The applied water–dye solutions increase their con-
centration at places of evaporation and indicate these places
by changing their color.

A special method was developed (Weiss et al., 2020) that
minimizes the medium destruction and is usable under the
field conditions. A very thin rod covered by a layer of color
is inserted into a narrow hole drilled to the investigated mate-
rial where there is the sought evaporation front. The present
liquid-phase water colors the corresponding part of the rod
showing its extent.

A number of experiments aiming at seeking and visualiz-
ing the evaporation front, see Weiss et al. (2018) and Weiss
et al. (2020), show that its position can be detected as a sharp
line. The present paper tries to respect this experimental re-
sult in the definition presented below.

The goal of this paper is to give an exact definition of the
evaporation front and to formulate the law of its motion.

2 Basic assumptions and theory

We study such processes of water transport in porous media,
where both the fluid phases, gaseous and liquid, are present
and evaporation is taken into account. A porous-medium do-
main is considered that is in contact with a wet neighborhood
at a part of its boundary, while at the other part of the bound-
ary, it is in contact with a dry neighborhood. Here wet and
dry are understood as containing liquid water and without
liquid water, respectively. Such a part of the domain’s bound-
ary which is open to the atmosphere is considered to be the
dry contact.

Under these conditions, there necessarily exists a set
of points inside the studied domain or upon its boundary
that makes an interface between the wet medium (porous
medium) and the dry medium (porous medium or air). In

view of the above-introduced terms, these points can be con-
sidered to be points of the evaporation front.

Generally, the porous-medium profile can be divided into
three parts: (a) the dry zone, where just two phases, solid and
gaseous (air), are present and water exists in the form of va-
por as a component of the gaseous phase, (b) the wet zone,
where the movable liquid water exists, and (c) the intermedi-
ate zone, where the liquid water is present but only in such a
contact with the solid phase that makes it unmovable. Here,
such liquid-phase water is understood as movable that moves
due to the hydraulic head gradient.

The evaporation front does not exist in itself; it is a matter
of definition. It seems natural to place the evaporation front
in the intermediate zone or in an interface between the in-
termediate zone and one of the neighboring zones. It can be
expected that during the process of evaporation, the depth of
the intermediate zone will become small. The present water
evaporates quickly due to its immobility, its small amount
and contact with the solid phase. In view of this and the fact
that experimentally the evaporation front can be indicated as
a sharp interface between two neighboring zones, we assume
that the extent of zone (c) can be neglected, and the evapo-
ration front is defined as the common boundary of the zone
without liquid water and the zone with movable liquid water.
The concept evidently enables existence of a jump in water
content values.

We do not consider the temperature distribution and heat
flow and balance, since, by virtue of its definition, the evap-
oration front results from the water transport data. Though
unknown, the heat flow within the profile provides the latent
heat of vaporization that is necessary for the evaporation re-
sulting from the actual process of water transport.

The evaporation front changes its position with time ac-
cording to the outer conditions. Its shape and motion result
from mutual relations (water transfer) between the wet zone
and the dry zone. The front moves towards the wet region if
the evaporation exceeds the flow of the liquid water towards
the interface through the wet zone and vice versa. Since the
evaporation front inside porous media, e.g., in a rock mas-
sif, is difficult to detect, mathematical modeling becomes an
important tool always if the knowledge of its position and
motion is required.

In what follows, all the introduced characteristics are
macroscale porous-medium characteristics; e.g., a domain is
a macroscale domain, a surface is a macroscale surface, etc.

Denote by �, �⊂ R3 the domain in space and by (0,T )
the time interval in which we study the transport process
and suppose that the movable liquid-phase water occupies
an open part Gw of the time–space domain G (i.e., the water
content is positive and sufficient to enable the water flow in
Gw), where

G= (0,T )×�. (1)
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We further define

Gd
=G\Gw; (2)

by virtue of our assumptions, θ = 0 in Gd and θ > 0 in Gw,
where θ denotes the water content.

For any time t ∈ (0,T ) we define the wet zone�w
t and the

dry zone �d
t by putting

�w
t = {x ∈ R

3
; (t,x) ∈Gw

}

and �d
t = {x ∈ R

3
; (t,x) ∈Gd

}. (3)

It holds that

�w
t ∩�

d
t =∅,�w

t ∪�
d
t =� for t ∈ (0,T ). (4)

We define the evaporation front γt at time t ∈ (0,T ) as

γt =�
w
t ∩�

d
t . (5)

This definition covers the wet–dry interfaces inside �. In
order to enable the location of the evaporation front in the
domain’s surface, we define the wet and dry contacts from
outside of �. The sets �w

t and �d
t divide the boundary ∂�

into wet and dry parts with respect to wet–dry conditions in-
side � at t ∈ (0,T ). Denote by Bw

t and Bd
t such two parts of

∂� that are at time t in contact with wet and dry conditions
outside �, respectively, and define a boundary point x ∈ ∂�
as belonging to the evaporation front at time t if it satisfies

x ∈�w
t ∩B

d
t or x ∈�d

t ∩B
w
t . (6)

The complete evaporation front γt at time t ∈ (0,T ) is then

γt =
(
�

w
t ∩�

d
t

)
∪

(
�

w
t ∩B

d
t

)
∪

(
�

d
t ∩B

w
t

)
. (7)

The image of the evaporation front in time–space is

0 = {(t,x) ∈ R4
; x ∈ γt , t ∈ (0,T )}. (8)

We assume that 0 is a smooth hypersurface in R4 and denote
by ν0 ∈ R4 the unit vector normal to 0 that points out of the
wet part or into the dry part of G. Since we defined the wet
and dry boundaries Bw

t and Bd
t of � at time t with respect

to the outer conditions, this orientation has sense everywhere
on 0.

Suppose that (t,ξ) ∈ 0 and

ν0t (t,ξ) 6= 0, (9)

where ν0 = (ν0t ,ν
0
1 ,ν

0
2 ,ν

0
3 ). Then the hypersurface 0 can

be in a certain neighborhood of (t,ξ) expressed by a function
τ in the form of the equation

t = τ(x1,x2,x3). (10)

Then ν0t < 0 implies the existence of a positive value ε such
that (t +ϑ,ξ) ∈Gw for ϑ ∈ (0,ε). Consequently, the evapo-
ration front γt moves at its point ξ towards the dry zone if ν0t
is negative at (t,ξ) and vice versa.

The position of the evaporation front results from the mu-
tual relations between the water transport in the wet zone and
in the dry zone. Denote by n the porosity, by w the volumetric
flux density of liquid water in the wet zone, by vd and vw the
volumetric flux density of the gaseous phase in the dry zone
and in the wet zone, and by bd and bw the water vapor flux
density by diffusion in the gaseous phase within the dry zone
and the wet zone. Let furthermore cd and cw denote the water
vapor concentration in the gaseous phase within the dry zone
and the wet zone. We suppose that functions bd,cd,vd are
continuous inGd and functions bw,cw,vw,w are continuous
in Gw.

The evaporation front is not connected with a fixed set of
mass points, and the problem of its motion is not a prob-
lem of the particle tracking. The evaporation front moves in
such a direction and with such a velocity that are given by
the balance of mass of water. Since the tangential motion of
the evaporation front at its point does not change, the front’s
position and the evaporation front move at each point in the
direction of its normal.

Let ξ = ξ(t) be a point upon the evaporation front at
time t : ξ ∈ γt . Let δt be an elementary time step and δS
an elementary surface surrounding the point ξ , δS ⊂ γt . De-
note by ν(t,ξ) the unit normal vector to γt at point ξ , ori-
ented out of the wet zone, and by δs the distance between
the positions γt and γt+δt at ξ . Then the flow and trans-
port of water coming to the elementary surface δS from
the wet zone, ρw+bw

+ cw vv , push the front towards the
dry zone, and the transport of water out of δS into the dry
zone, bd

+ cd vd, pushes the front towards the wet zone. The
excess of water coming to δS during the time interval δt ,
δt δS(ρw+bw

+ cw vw
−bd
− cd vd,ν), is compensated for

by the mass of water δs δS(ρ θ+cw(n−θ)−ncd) shifting the
surface δS to its new position distant by δs in the direction
ν. Here and in the sequel, (u,v), where u,v are two vectors,
denotes the scalar product. This account gives the balance
equation

δS δt (ρw(t,ξ)+bw(t,ξ)+ cw(t,ξ)vw(t,ξ)−bd(t,ξ)

− cd(t,ξ)vd(t,ξ),ν(t,ξ))= δS δs(θ(t,ξ)ρ

+ (n− θ(t,ξ))cw(t,ξ)− ncd(t,ξ), ) (11)

where values of higher orders of δt and δs are neglected. The
idea of this calculation can be seen in Fig. 1. It shows two
positions of the front, at times t and t + δt , and two possi-
ble vectors, W and B, where, for the sake of simplicity, B
denotes the vector sum of fluxes by diffusion,

B = bd(t,ξ)−bw(t,ξ), (12)

and W denotes the sum fluxes due to water flow and advec-
tion by the gaseous phase,

W = ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)− cd(t,ξ)vd(t,ξ). (13)

The depicted directions of these vectors suggest simultane-
ous flooding of the dry zone and drying of the wet zone.
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Figure 1. Evaporation front motion;W is the liquid water flux den-
sity and vapor advection in the gaseous phase, B is the water vapor
flux density by diffusion in the gaseous phase, γt is the evaporation
front position at time t , ν is the unit normal to the front pointing out
of the wet zone, and ξ(t) is the position of a chosen point upon the
front at time t .

These two processes act against each other; the figure shows
that the vapor transport predominates and the front moves
towards the wet zone.

The limit form of Eq. (11) for δt approaching zero gives

∂s

∂t
(t,ξ)

=

(ρw(t,ξ)+bw(t,ξ)+ cw(t,ξ)vw(t,ξ)−bd(t,ξ)

−cd(t,ξ)vd(t,ξ),ν(t,ξ))

cw(t,ξ)(n− θ(t,ξ))− ncd(t,ξ)+ ρ θ(t,ξ)
. (14)

By this equation and by the assumption of the direction of
the front motion, we obtain the following ordinary first-order
differential equation

dξ
dt
(t)

=

(ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+bw(t,ξ)−bd(t,ξ)
−cd(t,ξ)vd(t,ξ),ν(t,ξ))

cw(t,ξ)(n− θ(t,ξ))− ncd(t,ξ)
+ρ θ(t,ξ)

ν(t,ξ). (15)

Equation (15) is the governing equation of the evaporation
front motion in the interval (0,T ). The water density and
porosity are presented as constants in Eqs. (11) and (15).
Such an assumption is evidently not necessary, and the equa-
tions remain unchanged for n= n(t,ξ) and ρ = ρ(t,ξ).

In the cases we commonly meet in connection with prob-
lems of evaporation, the flow of the gaseous phase is re-
stricted to balancing the changing volume of liquid water,
i.e.,

‖w‖ ≈ ‖vd
‖ ≈ ‖vw

‖, (16)

and since

ρ ‖w‖� cd
‖vd
‖ and ρ ‖w‖� cw

‖vw
‖, (17)

the advective transport of water vapor can be neglected. The
governing equation becomes

dξ
dt
(t)

=

(
ρw(t,ξ)+bw(t,ξ)−bd(t,ξ),ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))− ncd(t,ξ)+ ρ θ(t,ξ)

ν(t,ξ). (18)

3 Problem formulation

The front’s motion reflects the proportions between the wa-
ter flow and transport out of the front and towards the front
which are given by the laws of flow and transport in the wet
zone and in the dry zone. In order to evaluate flow and trans-
port in porous media, Darcy’s law and Fick’s law can be uti-
lized:

w=−k(h)grad (x3+h),bd
=−Dd gradcd,

and bw
=−Dw(θ)gradcw, (19)

where the third coordinate x3 is oriented vertically upwards,
h is the pressure head, k is the hydraulic conductivity, andDd

and Dw are the coefficients of water diffusion in air within
the porous medium.

In the dry zone, water is present in the form of water vapor,
and its motion is governed by the continuity equation with
the use of Fick’s law:

∂

∂t
(ncd)−

∂

∂xi

(
Dd ∂c

d

∂xi

)
+

∂

∂xi
(cd vd

i )= 0. (20)

The vapor motion in the wet zone is governed by the same
laws,

∂

∂t

(
(n− θ)cw)

−
∂

∂xi

(
Dw(θ)

∂cw

∂xi

)
+

∂

∂xi
(cw vw

i )= 0,

(21)

and the motion of liquid-phase water in the wet zone is gov-
erned by Richards’ equation:

∂θ

∂t
−

∂

∂xi

(
k(h)

(
∂x3

∂xi
+
∂h

∂xi

))
= 0. (22)

By virtue of the introduced theory, the evaporation front
motion is governed by Eqs. (20), (21), (22) and (15) or (18).
The unknown functions are θ and h, connected by the reten-
tion curve, cw, cd and ξ defined in Gw, and Gd and [0,T ).
The functions n,k,D,v and ρ are supposed to be known or
given by additional equations.

In this way, Eqs. (21) and (22) in Gw and Eq. (20) in Gd

stand for a coupled moving boundary problem, and Eq. (15)
is a condition imposed upon the movable common part of the
boundaries of the domains. The unknown function ξ defined
in [0,T ) is then given as the position of the moving boundary.
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Another possible formulation of the problem is to solve
the ordinary differential Eq. (15) in the interval [0,T ), where
the right-hand side of the equation is given as the solution of
the Eqs. (21), (22) and (20) defined in Gw and Gd.

The latter approach was utilized when solving the problem
presented in Sect. 5.

4 One-dimensional problem

Let now the studied domain be an interval �⊂ R1:

�= (0,L),�w
t = (0,ξ(t)), �d

t = (ξ(t),L), (23)

where the function ξ(t) that denotes the position of the evap-
oration front at time t is a scalar function defined in (0,T ).
The sets Gw and Gd are

Gw
= {(t,x) ∈ R2

; t ∈ (0,T ), x ∈ (0,ξ(t))}

and Gd
= {(t,x) ∈ R2

; t ∈ (0,T ), x ∈ (ξ(t),L)}. (24)

The image of the evaporation front in time–space is

0 = {(t,x) ∈ R2
; ξ(t)− x = 0, t ∈ (0,T )}, (25)

and ν0 ∈ R2, the unit normal to 0, is

ν0(t,ξ(t))=

(
−

dξ
dt
(t),1

)
/

√(
dξ
dt
(t)

)2

+ 1. (26)

The above-presented assertion concerning the direction of
the evaporation front motion with respect to sgn (ν0t ) is now
evident.

By virtue of the introduced theory, the law of the evapora-
tion front motion is given by Eq. (15). In one space dimen-
sion, since ν(t,ξ) is either 1 or −1, the equation reads as

dξ
dt
(t)=

ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)

−bd(t,ξ)− cd(t,ξ)vd(t,ξ)

cw(t,ξ)(n− θ(t,ξ))− ncd(t,ξ)+ ρ θ(t,ξ)
(27)

and its simplified form (18) is

dξ
dt
(t)=

ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ)

cw(t,ξ)(n− θ(t,ξ))− ncd(t,ξ)+ ρ θ(t,ξ)
. (28)

In order to complete the problem formulation, to deter-
mine the right-hand-side function, the one-dimensional form
of Eqs. (18) to (22) can be utilized.

5 A solved problem

In the framework of wider research that concerns evaporation
from rock surfaces and the time dependence of evaporation
front positions, an experiment was carried out. It was an un-
published auxiliary experiment performed by several of the

Figure 2. The x = 0 boundary condition – the pressure head at the
boundary. The squares show the measured values, and the smooth
function is their approximation h0(t) that was used in the solved
example.

author’s colleagues, and since it was not sufficiently docu-
mented from the point of view of this study, it cannot be sim-
ulated. Nevertheless, part of its results can be utilized here in
order to present an example of possible use of the achieved
theoretical results. The missing data were simply chosen, not
optimized. The following description should be understood
as a problem formulation, not as a documentation of mea-
surements.

A cylinder-shaped sample of the studied rock was put into
position with the horizontal axis. The jacket of the cylinder
was insulated so that no water (of any phase) could pene-
trate, and the motion of water through the sample was possi-
ble only in the horizontal direction along the cylinder’s axis.

The length of the sample was L= 49 mm, and the length
of the time interval was T = 63 d. One open end of the sam-
ple, say x = 0, was equipped so that it was possible to mea-
sure the pressure head and the rate of water inflow into the
sample at this point. The obtained discrete data were approx-
imated by smooth functions h0(t) and w0(t) (pressure head
and volumetric flux density), h0, w0 ∈ C

1(0,T ), that were
utilized as the imposed boundary conditions.

Figure 2 shows the pressure head values; the squares are
the measured data, and the solid curve is their approximation
h0.

The volumetric flux density was measured indirectly in the
form of discrete values of the cumulative flux to the sample.
In Fig. 3, the step function represents the measured data and
the smooth function is the boundary condition w0. The in-
tegral values over (0,T ) (the total inflow to the sample per
unit surface) of both functions are equal. The other end of
the sample, x = L, was left open to the outer (atmospheric)
conditions which were not measured.

Soil moisture retention data and the hydraulic conductiv-
ity (at saturation) Ks were obtained elsewhere using sam-
ples of similar material. Making use of these characteristics,
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Figure 3. The x = 0 boundary condition – the volumetric flux den-
sity at the boundary. The step function shows the measured values,
and the smooth function is its approximation used in the solved ex-
ample.

the Mualem and van Genuchten parameters θr,θs,α,m and n
were determined and, hence, the hydraulic conductivity and
the soil moisture retention curve as functions of either pres-
sure head or water content were defined.

Similarly, the value of the diffusion coefficient of water
in the gaseous phase within the porous medium, Dd, was
obtained measured on samples of the utilized material. The
characteristic surface layer ε was added from outside to the
domain �, and its value was taken from the paper of Slavík
et al. (2020), where the layer is referred to as “calibrated L”
and also as “boundary layer”.

The fluorescein visualization method (Weiss et al., 2018)
was utilized to detect the front’s position during the experi-
ment. Fluorescein was applied at the water input side of the
sample, and a set of couples (t,ξ), time and the front’s posi-
tion was registered. The data were calibrated (using a simple
linear transformation) to agree with the value measured after
finishing the experiment.

The following problem was formulated. In the interval
[0,T ], the solution t 7−→ ξ(t), ξ ∈ C1(0,T )∩C[0,T ], of
Eq. (28) is sought that satisfies the initial condition

ξ(0)= L, (29)

where ρ and n (density and porosity) are known constants.
Since neither functions cd and cw nor their boundary val-

ues at x = 0, ξ(t) and L were measured during the experi-
ment, the following two assumptions were introduced.

(∗) The vapor concentration has a constant value cf at the
evaporation front in the gaseous phase and at points of pos-
itive value of water content θ , i.e., at points of contact with
liquid-phase water.

(∗∗) There are steady-state outer atmospheric conditions
during the process giving a constant value ce of vapor con-
centration in the gaseous phase at x = L.

The assumptions do not contradict each other at the point
ξ(0), since the characteristic surface layer ε was accepted
in the model. As presented above, the right-hand side of
Eq. (28) can be determined by solving the related initial
boundary value problems with Eqs. (20), (21), and (22).

In view of assumption (∗) and Eqs. (21) and (19), it holds
that

cw(t,x)= cf and bw(t,x)= 0 in Gw. (30)

Applying assumption (∗), Eq. (21) reads as

∂θ

∂t
−
∂vw

∂x
= 0. (31)

The comparison with Richards’ Eq. (22) gives vw
=−w;

the gaseous phase continuously replaces the leaving water.
A similar result has already been expected even for more
general cases; see the estimations utilized when replacing
Eq. (15) by Eq. (18). Making use of these results, Eq. (28)
becomes

dξ
dt
(t)=

ρw(t,ξ)− b(t,ξ)

θ(t,ξ)(ρ− cf)
, (32)

where the unknown parameters on the right-hand side
of Eq. (32) are solutions of the following two initial bound-
ary value problems and, since bw, cw and Dw do not appear
in what follows, b, c and D stand for bd, cd and Dd.

To determine functions θ and w, function h defined in Gw

is sought that satisfies Eq. (22), now in the form

∂θ

∂t
−
∂

∂x

(
k(h)

∂h

∂x

)
= 0 (33)

and the conditions

h(0,x)= hi(x) in (0,L) (34)

and

h(t,0)= h0(t)

and − k(h(t,0))
∂h

∂x
(t,0)= w0(t) in (0,T ), (35)

where θ(h) is the retention curve. Functions h0 and w0 are
known from the experiment, and function hi, the initial pres-
sure head distribution, was not measured and has to be deter-
mined.

Incorporating the characteristic surface layer into the prob-
lem formulation, we change the set Gd to

Gd
= {(t,x) ∈ R2

; x ∈ (ξ(t),L+ ε), t ∈ (0,T )}. (36)

Now, c solves the equation

∂

∂t
(nc)−

∂

∂x

(
D
∂c

∂x

)
= 0 (37)

Hydrol. Earth Syst. Sci., 26, 397–406, 2022 https://doi.org/10.5194/hess-26-397-2022



J. Mls: Evaporation front and its motion 403

in Gd and satisfies the conditions

c(0,x)= ci(x) in (L,L+ ε) (38)

and

c(t,ξ(t))= cf and c(t,L+ ε)= ce in (0,T ), (39)

where ci is the initial distribution of the water concentra-
tion in the gaseous phase. The values ce and cf were cho-
sen with respect to these requirements: the relative humidity
at the front was 100 %, the outer relative humidity was be-
tween 30 % and 50 % and the temperature was between 18
and 23 ◦C.

In order to define the initial state of the sample, functions
ci and hi, it was assumed that the process started from the
steady-state water vapor diffusion determined in (L,L+ ε)
by the boundary values cf and ce and from the steady-state
water flow determined in (0,L) by the initial conditions
h0(0) and w0(0). The error involved in functions ci and hi
vanishes soon, since the sample is small and the imposed
boundary conditions take over the dominant role.

Our requirement for the initial conditions is easy to satisfy
in the case of function ci in the domain �d

t=0, since, in view
of Eq. (37), the governing equation is

d
dx

(
D

dci

dx

)
= 0 in (L,L+ ε). (40)

With respect to the boundary conditions, the solution reads
as

ci(x)=
ce− cf

ε
(x−L)+ cf. (41)

In the case of function hi and domain �w
t=0, the governing

equation is

d
dx

(
ρ k(hi)

dhi

dx

)
= 0 in (0,L), (42)

with the initial conditions

hi(0)= h0(0) and − k(hi(0))
dhi

dx
(0)= w0(0). (43)

The solution to the problem (42), (43), is equivalent to the
solution to the problem

dhi

dx
=−

w0(0)
k(hi)

in (0,L), (44)

with the initial condition hi(0)= h0(0). Let the maximum
solution to this initial value problem be defined in [0,λ). It
can be shown that, in our case, λ > L and the wet zone reach
the point x = L. Hence, our choice of the initial condition hi
does not contradict the initial condition (29).

Now the problem (32), (29), can be solved numerically.
The utilized values are the Mualem and van Genuchten pa-
rameters α = 0.0223 cm−1, n= 1.99, and m= 1− 1/n, the

Figure 4. Evaporation front motion. �: measured positions, solid
lines: numerical simulations. (1) cf = 2.27× 10−5, ce = 9.35×
10−6, (2) cf = 2.41× 10−5, ce = 9.94× 10−6, (3) cf = 2.56×
10−5, ce = 1.06× 10−5, all in grams per cubic centimeter.

saturated hydraulic conductivityKs = 0.0071 cm s−1 and the
diffusion coefficient of water in the gaseous phase within the
porous medium Dd

= 0.045 cm2 s−1. Figure 4 shows three
solutions obtained for three different couples of chosen pa-
rameters and the boundary values of water concentration in
the gaseous phase. The chosen values were

(1) cf = 2.27× 10−5 g/cm3, ce = 9.35× 10−6 g/cm3,

(2) cf = 2.41× 10−5 g/cm3, ce = 9.94× 10−6 g/cm3,

(3) cf = 2.56× 10−5 g/cm3, ce = 1.06× 10−5 g/cm3.

When using the method by McRae (1980) and choosing the
relative humidity at the evaporation front and at the sample’s
surface as 100 % and 40 %, respectively, we get the following
temperatures at the evaporation front and at the sample’s sur-
face: (1) 19.5 ◦C and 20.0 ◦C, (2) 20.5 ◦C and 21.0 ◦C, and
(3) 21.5 ◦C and 22.0 ◦C.

The problem (32), (29), was solved numerically using
a predictor–corrector method. The values of the right-hand
side were determined using the method of Rothe to solve
problems (33) to (35) and (37) to (39).

Let Mw denote the total mass of liquid water in the inves-
tigated domain related to the unit cross section. Then it holds
that

Mw(t)=

ξ(t)∫
0

ρ θ(t,x)dx. (45)

Hence, the rate of its change is

dMw

dt
(t)= ρ

dξ
dt
(t) θ(t,ξ(t))+ ρ

ξ(t)∫
0

∂θ

∂t
(t,x)dx. (46)
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Making use of Eqs. (32), (33) and (19), we get

dMw

dt
(t)= ρ

ρw(t,ξ(t))− b(t,ξ(t))

ρ− cf

+ ρ (w(t,0)−w(t,ξ(t))) . (47)

Since ρw(t,0) is the inflow of liquid water into the domain,

E(t)=
b(t,ξ(t))− cfw(t,ξ(t))

1− cf/ρ
(48)

is, under the assumptions of this section, the rate of evap-
oration expressed as the mass of evaporated water per unit
time and unit surface of the evaporation front. Consequently,
having solved an evaporation front motion problem, the de-
mands of the latent heat of vaporization can be evaluated and
located in time and space.

6 Discussion and conclusions

The evaporation front has been defined as an interface sep-
arating two different zones, wet and dry, inside or upon the
boundary of a porous-medium domain. The exact definition
of these zones, presented in this paper, is based on the form
of water they contain. Subsequently, the law of the evapo-
ration front motion was formulated in the form of the vector
Eq. (15). Since the law is based on the complete mass balance
of water, i.e., liquid water and water vapor, it holds generally
and does not need any additional account of energy. The laws
of heat transfer and heat balance do not affect the presented
equations which define the evaporation front motion. On the
contrary, solving problems that are fully determined by water
transport data, the equations of the evaporation front motion
can give certain insight into the energy requirements of such
processes, e.g., the final part of Sect. 5.

Smits et al. (2011) and Nuske et al. (2014) studied the
process of evaporation from soils with particular attention
to the phase change and found that nonequilibrium models
yield better agreement with experimental data than equilib-
rium models. The nature of the phase change process does
not affect the results presented here directly, since the equa-
tion of the evaporation front motion requires other kinds of
data. The process of phase change enters Eq. (15) through
its actual effect on the transport of water. On the other hand,
the constitution laws like Darcy’s law or the retention curve
that may be utilized when solving problems with Eq. (15) are
equilibrium laws. In the example presented in Sect. 5, equi-
librium laws were utilized. However, the governing Eq. (15),
being general, makes it possible to use nonequilibrium laws
as well. Mls (1999) presented a general nonequilibrium ap-
proach to two-phase systems that keeps Darcy’s law valid.

Lehmann et al. (2008) and Or et al. (2013) investigated
the process of evaporation from the top of an initially satu-
rated vertical column. They introduced the term “characteris-
tic length” as the distance between the surface and the reced-
ing drying front (interface between the saturated zone and

the unsaturated zone) and described different stages of the
evaporation process. No evaporation front was introduced.
By virtue of the present theory, the evaporation front cannot
move in the positive direction of ν(t,ξ) if

ξ(t) ∈�w
t ∩B

d
t , (49)

i.e., if ξ(t) is a point of a “dry-from-outside” part of the do-
main boundary. Hence, see Eq. (14): the front does not move
until the condition

((ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+bw(t,ξ)−bd(t,ξ)

− cd(t,ξ)vd(t,ξ)),ν(t,ξ)) < 0 (50)

is satisfied. In the simplified one-dimensional case, Eq. (28),
this condition reads as(
ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ)

)
ν(t,ξ) < 0, (51)

where ν(t,ξ)= 1 if x ∈�w
t ⇒ x < ξ(t) and vice versa. Un-

der conditions of sufficiently small values of |bd
|, condi-

tion (51) is not satisfied for a period, and the evaporation
front does not move. Consequently, the evaporation rate does
not change significantly. In the solved problem, the cho-
sen initial conditions and the size of ε make Eq. (51) valid
even at t = 0, and the front moves from the very beginning
of the process. If the flux density of liquid water from in-
side of the wet zone exceeds the flux density b(t,L), ei-
ther θ(t,L) increases or, being θ(t,L)= θsat, flux density
ρw(t,L)− b(t,L) of liquid water discharges out of the
porous-medium domain.

The characteristic surface layer ε was found experimen-
tally, see Slavík et al. (2020), and accepted in this paper as
a part of the measured data. Note that Song et al. (2018)
studied similar problems and also introduced a special diffu-
sion layer outside the porous medium. From the viewpoint of
moving front equations, the characteristic surface layer pre-
vents infinite values of function bd at x = 0 and t = 0 which
may be obtained when solving a problem with Eq. (20). This
possibility originates in the fact that the equation is a balance
equation that contains an equilibrium law – Fick’s law; for
more on this problem and an alternate approach, see Mls and
Herrmann (2011).

The process of evaporation alone does not determine the
direction of the evaporation front motion. Since the denomi-
nator of the right-hand side of Eq. (15) is positive, the direc-
tion of the evaporation front motion is determined by the sign
of the scalar product in the numerator. Consequently, both the
processes of wetting or drying (increasing or decreasing the
wet zone) can take place while evaporating water out of the
profile; compare also Eqs. (32) and (48).

The presented problem example and its numerical solu-
tions were aimed at showing the ability of the theory to sim-
ulate real processes, not at getting an optimized agreement.
Most of the measured parameters of the solved problem were
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obtained independently of the experiment. Only the pres-
sure head and water flow data shown in Figs. 2 and 3 were
measured during the experiment and utilized as the imposed
boundary conditions of the problem. The concentration of
water in the gaseous phase, the functions cf and ce, and the
initial values of functions h and w were not measured but
chosen. For the sake of their simple interpretation by means
of acceptable values of temperatures and relative humidities,
cf and ce were kept constant. No method of fitting was ap-
plied, and a different choice of functions hi and wi and con-
stants ce and cf can give a better agreement between the mea-
sured and computed values.

The presented theory is now prepared to prove its reliabil-
ity in such problems that are fully documented and to be used
when solving a wide range of problems of evaporation from
a rock or soil profile.
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