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Abstract. Agricultural drought mainly stems from reduced
soil moisture and precipitation, and it causes adverse im-
pacts on the growth of crops and vegetation, thereby af-
fecting agricultural production and food security. In order
to develop drought mitigation measures, reliable agricultural
drought forecasting is essential. In this study, we developed
an agricultural drought forecasting model based on canonical
vine copulas in three dimensions (3C-vine model) in which
antecedent meteorological drought and agricultural drought
persistence were utilized as predictors. Furthermore, a meta-
Gaussian (MG) model was selected as a reference to eval-
uate the forecast skill. The agricultural drought in China in
August of 2018 was selected as a typical case study, and
the spatial patterns of 1- to 3-month lead forecasts of agri-
cultural drought utilizing the 3C-vine model resembled the
corresponding observations, indicating the good predictive
ability of the model. The performance metrics – the Nash–
Sutcliffe efficiency (NSE), the coefficient of determination
(R2), and the root-mean-square error (RMSE) – showed that
the 3C-vine model outperformed the MG model with respect
to forecasting agricultural drought in August for diverse lead
times. Moreover, the 3C-vine model exhibited excellent fore-
cast skill with respect to capturing the extreme agricultural

drought over different selected typical regions. This study
may help to guide drought early warning, drought mitigation,
and water resource scheduling.

1 Introduction

Agriculture is the source of livelihood for over 2.5 billion
people worldwide, but this sector also sustains 82 % of all
drought impacts (FAO, 2021). Thus, a cascade of impacts
from droughts, such as crop reduction and failure, increased
human and tree mortality, and ecological disturbance, has at-
tracted considerable attention (FAO, 2021; Lu et al., 2012;
Modanesi et al., 2020; Su et al., 2018; Q. Zhang et al., 2018,
2019; Zscheischler et al., 2020). Droughts reduced global
crop production by about 9 %–10 % in the 1964–2007 pe-
riod (Lesk et al., 2016). Additionally, droughts have caused
overall crop and livestock production loss of USD 37 billion
over the least-developed and lower-middle-income countries
(FAO, 2021). Agricultural drought forecasting, therefore, lies
at the core of overall drought risk management and is critical
for food security, early warning, and drought preparedness
and mitigation.
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Agricultural drought is generally referred to as soil mois-
ture shortage, which adversely affects crop yield and veg-
etation health (Modanesi et al., 2020; Zhang et al., 2016;
T. Zhang et al., 2021). Under natural conditions, atmospheric
precipitation is a paramount source for the replenishment
of soil moisture (Wu et al., 2021b). Therefore, reduced soil
moisture (agricultural drought) mainly arises from a pre-
cipitation deficit (meteorological drought) (Modanesi et al.,
2020; Orth and Destouni, 2018). Moreover, soil moisture has
a good drought memory due to the time-integration effects
(Long et al., 2019), i.e., agricultural drought persistence.
Hence, previous meteorological drought and antecedent agri-
cultural drought can be taken into consideration as predictors
of subsequent agricultural drought.

In hydrology, some physically based hydrological models
(e.g., the Distributed Time-Variant Gain Hydrological Model
– DTVGM, Ma et al., 2018, and the Soil and Water As-
sessment Tool – SWAT, Wu et al., 2019) are widely used
in hydrological simulation and prediction, including the pre-
diction of droughts. However, physically based hydrological
models typically only apply at the catchment or subregional
scale, and they generally require numerous hydrometeoro-
logical variables to achieve more accurate real-time predic-
tions (Liu et al., 2021a; L. Xu et al., 2021). Traditional meth-
ods, such as regression models, machine learning models,
and hybrid models (considering both statistical and dynami-
cal predictions) (Hao et al., 2016), have been extensively em-
ployed to forecast drought. However, these models tend to be
limited with respect to considering complex nonlinear factors
(e.g., regression models), explicit physical mechanisms, and
overfitting (e.g., machine learning models) as well as the de-
mand of massive hydroclimatic data input (e.g., hybrid mod-
els). The copula functions, first introduced by Sklar (1959),
overcome the limitations of the abovementioned conven-
tional statistical methods, with the application of copulas in
hydrology and geosciences stretching back to the 2000s (e.g.,
De Michele and Salvadori, 2003; Favre et al., 2004; Sal-
vadori and De Michele, 2004). As copulas are flexible, join-
ing arbitrary marginal distributions of variables, they have
been widely employed by the hydrological research commu-
nity in applications such as frequency analysis and risk as-
sessment (De Michele et al., 2013; Hao et al., 2017; Liu et
al., 2021b; Sarhadi et al., 2016; Y. Xu et al., 2021; T. Zhang
et al., 2021, 2022; Zhou et al., 2019), flood and runoff fore-
casting (Bevacqua et al., 2017b; Hemri et al., 2015; Liu et
al., 2018; Zhang and Singh, 2019), and drought forecast-
ing (Ganguli and Reddy, 2014; Wu et al., 2021b). However,
when bivariate copulas are extended to higher-dimensional
(≥ three-dimensional) cases, they are restricted due to the
nonexistence of analytical expressions (Liu et al., 2021a).
Symmetric Archimedean copulas and nested Archimedean
copulas have partially addressed the issues of dimensional-
ity, but characterizing the various dependence structures with
single-parameter and Archimedean class copulas is difficult
(Aas and Berg, 2009; Hao et al., 2016; Wu et al., 2021b). For-

tunately, vine copulas, developed by Joe (1996) and Bedford
and Cooke (2002), can be adopted to address these limita-
tions.

Vine copulas are flexible with respect to decomposing
any multidimensional joint distribution into a hierarchy of
bivariate-copula or pair-copula constructions (Aas et al.,
2009; Bedford and Cooke, 2002; Liu et al., 2021a; Vernieuwe
et al., 2015; Xiong et al., 2014). These copulas have been
extensively applied in the hydrological field (Bevacqua et
al., 2017b; Liu et al., 2021b; Vernieuwe et al., 2015; Wu et
al., 2021a, b). For instance, Xiong et al. (2014) derived an-
nual runoff distributions using canonical vine copulas; Liu et
al. (2018) developed a framework to investigate compound
floods based on canonical vine copulas; Wang et al. (2019)
utilized regular vine copulas with historical streamflow and
climate drivers to simulate monthly streamflow for the head-
water catchment of the Yellow River basin; Liu et al. (2021a)
developed a hybrid ensemble forecast model, using Bayesian
model averaging combined canonical vine copulas, to fore-
cast water level; and Wu et al. (2021b) proposed an agri-
cultural drought forecast model based on vine copulas using
four-dimensional scenarios.

The meta-Gaussian (MG) model, a popular statistical
model in the hydrometeorological community, has explicit
conditional distributions, which are apt for forecasting and
risk assessment purposes (Hao et al., 2016, 2019a; Wu et al.,
2021c; Y. Zhang et al., 2021). The forecast skill of the MG
model for drought or compound dry–hot events, for exam-
ple, has outperformed persistence-based or random forecast
models (Hao et al., 2016, 2019a; Wu et al., 2021c). However,
the MG model only depicts the linear relationship among ex-
planatory variables (predictors) and the forecasted variable
via a covariate matrix, and it cannot characterize the nonlin-
ear or tail dependence existing in the variables (Hao et al.,
2016). Fortunately, vine copulas can flexibly combine mul-
tiple variables via bivariate copula to characterize numerous
or complex dependencies. To date, there has been rather lim-
ited investigation, to our knowledge, into model comparisons
between vine copulas and the MG model with respect to
agricultural drought forecasting under the same conditions.
Therefore, comparative investigations into drought forecast-
ing skill between vine copulas and the MG model are needed
to obtain more reliable drought forecasts.

With the abovementioned facts in mind, the objective of
this study was to compare the ability of canonical vine cop-
ulas in three dimensions (i.e., the 3C-vine model) and the
MG model to forecast agricultural drought in August of ev-
ery year in the 1961–2018 period using a three-dimensional
scenario. Thus, the remainder of this paper is structured as
follows: in Sect. 2, we briefly describe the study area and data
used; the MG and 3C-vine models and performance metrics
utilized are presented in Sect. 3; the results of the 3C-vine
model application and assessment are displayed in Sect. 4;
and, finally, the discussion and conclusions are presented in
Sect. 5.
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Figure 1. The seven subclimate regions over China used in this
work. Specific information on climate regions D1–D7 is listed in
the bottom left of the panel.

2 Study area and data used

China stretches across a vast area that covers diverse cli-
mate regimes and is a major agricultural producer (Wu et
al., 2021b; Zhang et al., 2015). For the convenience of an-
alyzing the spatial patterns of agricultural drought, the cli-
mate of China was divided into seven subclimate regions,
based on of Zhao (1983) and Yao et al. (2018), as shown in
Fig. 1. For each subclimate region, the combined temperature
and moisture conditions are roughly similar, and the soil and
vegetation types have a certain common characteristic (Zhao,
1983).

In this study, the gridded monthly precipitation at
a 0.25◦× 0.25◦ spatial resolution was obtained from
the CN05.1 data set for the 1961–2018 period over
mainland China (excluding the Taiwan Province),
which was provided by the Climate Change Research
Center, Chinese Academy of Sciences (available at
http://ccrc.iap.ac.cn/resource/detail?id=228, last access:
17 August 2021). The Copernicus Climate Change Ser-
vice (C3S) at the European Center for Medium-Range
Weather Forecasts (ECMWF) has begun the release of
the ERA5 “back extension” data covering the 1950–1978
period on the Climate Data Store (CDS). Therefore, the
gridded monthly soil moisture at a 0.25◦× 0.25◦ spatial
resolution corresponding to three soil depths (0–7 cm,
7–28 cm, and 28–100 cm) is available from the ECMWF
ERA5 reanalysis data sets for the 1961–1978 period
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels-monthly-means-preliminary-
back-extension?tab=overview, last access:
14 May 2021) and the 1979–2018 period

(https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-
era5-single-levels-monthly-means?tab=overview, last ac-
cess: 14 May 2021). The CN05.1 and ERA5 reanalysis data
sets have been extensively utilized in numerous studies for
applications such as drought monitoring and forecasting
(Wu et al., 2021b; T. Zhang et al., 2021), long-term climatic
analysis (He et al., 2021; Wu et al., 2017), and flash-drought
attribution analysis (Wang and Yuan, 2021).

3 Methodology

The standardized precipitation index (SPI; based on monthly
precipitation) and the standardized soil moisture index (SSI;
based on monthly cumulative soil moisture at the top three
soil depths) are leveraged to characterize meteorological
drought and agricultural drought at a 6-month timescale, re-
spectively. The empirical Gringorten plotting position for-
mula (Gringorten, 1963) was used to obtain the empiri-
cal cumulative probabilities of these two indexes, which
were then transformed into standardized variables via nor-
mal quantile transformation. As meteorological drought is
a source of other drought types (e.g., agricultural drought),
the antecedent precipitation deficiency (i.e., meteorological
drought) has a stronger effect on the subsequent soil moisture
deficiency (i.e., agricultural drought). Moreover, soil mois-
ture has a good memory for prior drought (i.e., agricultural
drought persistence), which is attributed to the soil poros-
ity characteristics and time-integration effects (Long et al.,
2019; Wu et al., 2021b).

We attempted to use the prior meteorological drought
(SPIt−i , where t denotes the target month (e.g., August), and
i indicates the lead time (month)) and agricultural drought
persistence (SSIt−i) to forecast the subsequent agricultural
drought (SSIt ) based on canonical vine copulas using three-
dimensional scenarios (3C-vine model). We selected the
meta-Gaussian (MG) model as a reference model to assess
the agricultural drought forecast performance of the 3C-
vine model. Here, the 6-month timescale SPI (SSI) in Au-
gust, which is calculated using the cumulative precipitation
(soil moisture) from March to August, can indirectly reflect
water surplus or deficit conditions in the spring (March–
April–May) and summer (June–July–August) seasons. Fur-
thermore, August is a key growth period for crops (e.g., an-
thesis, fruiting, and seed filling) and vegetation and is also a
period with frequent droughts (Wu et al., 2021b). Undoubt-
edly, agricultural drought forecast can be implemented in any
month of interest using the 3C-vine and MG models. More
detailed information is given in the following.

3.1 The meta-Gaussian model using three-dimensional
scenarios

The meta-Gaussian (MG) model can effectively combine
multiple hydrometeorological variables, which have gained
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attention with respect to drought forecasting and risk assess-
ment (Hao et al., 2019a, b; Wu et al., 2021c; Y. Zhang et al.,
2021). Thus, if the series of SPIt−i , SSIt−i , and SSIt corre-
spond to random variables Y1, Y2, and Y3, respectively, the
predictand y3, under the given conditions of y1 and y2 based
on the MG model, can be expressed as follows (Wilks, 2020):

y3|(y1,y2)∼N(µy3|(y1,y2),6y3|(y1,y2)), (1)

where N signifies the Gaussian distribution function,
µy3|(y1,y2) denotes the conditional mean, and 6y3|(y1,y2) rep-
resents the conditional covariate matrix.

Furthermore, we remove the forecast values in a specific
year of y1, y2, and y3, which denote y−yr

1 , y−yr
2 , and y−yr

3 ,
respectively. Under this circumstance, the covariate matrix
6 regarding y−yr

1 , y−yr
2 , and y−yr

3 can be written as follows:
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, and µ
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represent the mean of y−yr
1 ,

y
−yr
2 , and y−yr

3 , respectively; yyr
1 and yyr

2 denote that y1 and
y2 provided the forecast information at time t − i in a spe-
cific year. More details about forecasting agricultural drought
based on the MG model can be found in Fig. 3.

3.2 The canonical vine copulas model using
three-dimensional scenarios

Copulas can effectively combine multiple variables with-
out the restriction of marginal distributions (Nelsen, 2006;
Sarhadi et al., 2016; Wang et al., 2019; Xiong et al., 2014).
They were initially utilized for deriving joint distributions
of two-dimensional variables, as parameters are easy to as-
sess and the analytical solution is easy to obtain (Liu et al.,
2021a; Sadegh et al., 2017). However, in higher-dimensional
(e.g., d ≥ 3) scenarios, owing to the limitations of a great deal
of parameters and complexity, the copulas (mainly referring
to bivariate copulas) are difficult to promote and apply (Joe,
2014; Liu et al., 2018, 2021a; Sadegh et al., 2017). To over-
come these limitations, Joe (1996) and Aas et al. (2009) de-
veloped vine copulas, which are a hierarchy of pair-copula

constructions, for multidimensional cases. Vine copulas pos-
sess two subclasses: canonical vine copulas (C-vine copu-
las) and drawable vine copulas (D-vine copulas). Here, we
mainly employed C-vine copulas to establish the forecast
model of agricultural drought under three-dimensional con-
ditions. Undoubtedly, the application of a similar scheme
would be possible using D-vine copulas.

C-vine copulas may have numerous tree structures, espe-
cially in the case of higher dimensions, which are associated
with the quantity and ordering of variables (Aas et al., 2009;
Liu et al., 2018, 2021a; Wu et al., 2021b). Moreover, the dif-
ferent ordering of variables affects the estimation of the pa-
rameters of C-vine copulas (Liu et al., 2021a; Wang et al.,
2019). Given the ordering of variables Y1, Y2, and Y3 for the
three-dimensional C-vine copula model (hereinafter referred
to as the 3C-vine model; Fig. 2a), the joint probability den-
sity function (PDF), g123, can be expressed as follows (Aas
et al., 2009):

g123 = g1 · g2 · g3 · c12 · c13 · c23|1, (4)

where g1, g2, and g3 correspond to the margin density
functions of g1(y1), g2(y2), and g3(y3), respectively; c is
the bivariate-copula density; and c12, c13, and c23|1 sig-
nify the abbreviation of c1,2[G1(y1), G2(y2)], c1,3[G1(y1),
G3(y3)], and c2,3|1[G(y2|y1), G(y3|y1)], respectively. The
term Gm(ym) corresponds to the cumulative density func-
tion (CDF) of the ym, and G(y2|y1) denotes the conditional
probability distribution of y2 under known conditions of y1,
which is similar forG(y3|y1). The Gaussian (or normal), Stu-
dent t , Clayton, and Frank copulas as well as their rotated
(survival) forms (Dißmann et al., 2013; Liu et al., 2021b) are
utilized to obtain the optimal internal bivariate copulas for
distinct trees in the 3C-vine model based on the Akaike infor-
mation criterion (AIC). With the help of the “CDVineCond-
Fit” R function in the “CDVineCopulaConditional” R pack-
age (Bevacqua, 2017a), based on the AIC, we selected the
optimal tree structures (i.e., detected the suitable variable or-
dering; as seen in Fig. 2).

A conditional copula density needs to be addressed in
Eq. (4), i.e., G(y|w), where w is a d-dimensional vector
w = (w1, . . . , wd). Here, regarding the conditional distribu-
tion of y given the conditions w, we introduced the h func-
tion, h(y, w; θ ), to indicate G(y| w) as follows (Aas et al.,
2009; Joe, 1996):

h(y,w;θ) :=G(y|w)

=
∂Cy,wj |w−j

[
G(y|w−j ),G(wj |w−j )

]
∂G(wj |w−j )

, (5)

where θ denotes the parameter(s) of the bivariate-copula
function Cywj |w−j , wj represents an arbitrary component of
w, and w−j indicates the excluding elementwj from the vec-
tor w.

If we set the ordering variables as y1, y2, and y3, the con-
ditional variables as y1 and y2, and the predictand as y3,
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Figure 2. Different schematics (two types) for C-vine copulas using three-dimensional scenarios. For the first type (a), the ordering variables
are y1, y2, and y3; for the second type (b), they are y2, y1, and y3. C12(C21), C13(C23), and C23|1(C13|2) denote bivariate copulas with
parameters of θ11, θ12, and θ21, respectively. Here, θij signifies the parameters of the j th edge with respect to the ith tree. G(·|·) represents
conditional distribution functions.

G(y3|y1, y2), based on Eq. (5), can be expressed as follows:

G(y3|y1,y2)=
∂Cy3,y1|y2

[
G(y3|y1),G(y2|y1)

]
∂G(y2|y1)

= h {h(u3 |u1;θ12 ) |h(u2 |u1;θ11);θ21 } . (6)

Here, θij (where i denotes a tree and j is an edge) represents
the parameters of different conditional copulas in the 3C-vine
model (Fig. 2a), and uk (k = 1, 2, 3) is the marginal CDF of
yk . The CDF for each variable is substituted by the corre-
sponding empirical Gringorten cumulative probability (Be-
vacqua et al., 2017b; Genest et al., 2009; Wu et al., 2021b).

Next, we introduced the τ th copula–quantile curve (Chen
et al., 2009; Liu et al., 2018) to simulate u3 based on Eq. (6)
and derived its inverse distribution function as follows:

y3 =N
−1
{G(τ |y1,y2)} =N

−1(u3)

=N−1
[
h−1

{
h−1(τ |h(u2 |u1;θ11);θ21) |u1;θ12

}]
, (7)

where N−1 and h−1 signify the inverse forms of the Gaus-
sian distribution and the h function, respectively; y3 is the
forecasted agricultural drought at time t (i.e., SSIt ); and y1
and y2 are the predictors corresponding to the antecedent me-
teorological drought and agricultural drought persistence at
time t − i (i.e., SPIt−i and SSIt−i , respectively). The “Bi-
CopHfunc” and “BiCopHinv” R functions in the “VineCop-
ula” R package (Nagler et al., 2021) were utilized to model
the h function and its inverse form for Eq. (7), respectively.

The tree structure is related to the ordering variables; thus,
when the ordering variables are y2, y1, and y3 (conditional
variables are y1 and y2; Fig. 2b), Eqs. (6) and (7) can be
changed analogously as follows:

G(y3 |y2,y1 )= h {h(u3 |u2;θ12 ) |h(u1 |u2;θ11);θ21 } ; (8)

y3 =N
−1(u3)=N

−1[
h−1

{
h−1(τ |h(u1 |u2;θ11);θ21) |u2;θ12

}]
. (9)

For agricultural drought forecast via the 3C-vine model (see
Fig. 3 for details), we first selected the best 3C-vine model
(i.e., selected the best model from Eqs. (7) and (9) accord-
ing to the minimum AIC). A sample size of 1,000 uniformly
distributed random values was then generated over the [0,
1] interval using Monte Carlo simulation. Finally, the best
3C-vine model was utilized to obtain 1000 simulations (or
estimations) of yyr

3 . The best forecast of yyr
3 was finally cal-

culated using the mean value of these simulations. Note that
leave-one-out cross-validation (LOOCV) (Wilks, 2020) is
applied to forecast agricultural drought for each grid cell in
August of every year during 1961–2018 based on the 3C-
vine model or MG model, namely, each time one sample (or
observation) was left for validation, and the rest were used
to establish the 3C-vine model or MG model and obtain the
corresponding parameters of these models. In other words,
this process was repeated 58 times (the length of years used
in this study) for a specific grid cell.

3.3 Performance metrics

Three evaluation metrics – the Nash–Sutcliffe efficiency
(NSE), the coefficient of determination (R2), and the root-
mean-square error (RMSE) – were utilized to assess the fore-
cast performance of the 3C-vine and MG models. These met-
rics can be expressed as follows:

NSE= 1−

n∑
i=1
(APi −AOi)2

n∑
i=1
(AOi −AO)2

NSE ∈ (−∞,1]; (10)

R2
=

[
n∑
i=1
(AOi −AO)(APi −AP)

]2

n∑
i=1
(AOi −AO)2 ·

n∑
i=1
(APi −AP)2

R2
∈ [0,1];

(11)
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Figure 3. Flowchart of agricultural drought forecasting based on the canonical vine copulas (3C-vine) and meta-Gaussian (MG) models
using three-dimensional scenarios. Here, t denotes the target month (e.g., August), i signifies the lead times (1–3 months), LOOCV stands
for leave-one-out cross-validation, y−yr

1 (y
−yr
2 ) indicates the series after removing a sample (yyr

1 (y
yr
2 )) for a specific year, and yyr

3 is the
agricultural drought forecast value for the target month of a specific year. Note that the optimal tree structure (i or ii on the right-hand side of
this figure) is selected based on the AIC to forecast agricultural drought.

RMSE=

√√√√1
n

n∑
i=1
(APi −AOi)2 RMSE ∈ [0,+∞). (12)

Here, n is the number of forecast periods; AOi and APi are
the ith observed and forecasted agricultural droughts (i.e.,
SSI), respectively; and AO and AP denote the mean of the
SSI observations and forecasts in the target month (e.g., Au-
gust), respectively. Moreover, a more positive NSE and R2

value and a lower RMSE value indicate good forecast per-
formance for the 3C-vine or MG models.

4 Results

4.1 Correlation patterns of agricultural drought with
potential predictors

The dependence between variables can be measured by the
correlation coefficient, which indirectly characterizes the
quantity of common information between two variables. We
employed Kendall’s correlation coefficient (τk) to measure
the dependence of agricultural drought at current time t

(SSIt , where t is August in this work) on the previous me-
teorological drought (SPIt−i , where i indicates the 1- to
3-month lag or lead times in this work) and agricultural
drought persistence (SSIt−i). It should be mentioned that
the widely used significant correlation threshold may over-
estimate or overinterpret the dependence between variables
(Wilks, 2016). Therefore, we adopted the maximum false
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discovery rate (FDR) of 0.1 to correct τk at the 0.05 signif-
icance level (Benjamini and Hochberg, 1995; Röthlisberger
and Martius, 2019; Wilks, 2016).

Figure 4 summarizes the 1- to 3-month lag τk between
an antecedent SPI (SSI) and succedent SSI for August dur-
ing 1961–2018 over China. For most regions of China, the
previous meteorological drought or agricultural drought per-
sistence (memory) showed significant positive correlations
(i.e., stippling in Fig. 4) with the target agricultural drought
when using 1- to 3-month lag times. Moreover, we found
perfect agricultural drought memory over many regions of
China (excluding D4, a humid climate region; Fig. 4e, f), as
overlapping information existed in SSIt and SSIt−i . Addi-
tionally, the dependency pattern varied both temporally and
spatially, and this phenomenon evidently occurred with the
lag (or lead) time extended, especially between SPIt−i and
SSIt (Fig. 4a, b, c). Overall, the prior meteorological drought
and agricultural drought memory provided reliable and use-
ful forecast information for subsequent agricultural drought
for most areas of China.

4.2 Forecast performance comparison between the
3C-vine and MG models

We leveraged the MG model as a reference model to mea-
sure the performance of the 3C-vine model with respect
to forecasting agricultural drought for the 1961–2018 pe-
riod over China. Figure 5a–i show the difference in the
NSE, R2, and RMSE between the 3C-vine and MG models
(i.e., 1NSE=NSE3C−NSEMG; 1R2

= R2
3C−R

2
MG; and

1RMSE=RMSE3C−RMSEMG) for respective 1- to 3-
month lead times for August. In terms of the spatial extent
of 1NSE> 0, 1R2> 0, and 1RMSE< 0, the agricultural
drought forecast ability of the 3C-vine model was superior
to the MG model, which occupied 65 %, 68 %, and 58 % of
land areas in China, respectively, for the 1-month lead SSI
forecast (Fig. 5a, d, g). The relationship between the predic-
tors and the forecasted variable was simple at a 1-month lead
time; thus, the MG model better showed their connection.
However, when using a prolonged lead time, the forecast skill
of the 3C-vine model was superior to the MG model for most
regions of China, accounting for 72 % and 74 % of land ar-
eas in China for 1R2> 0 for 2- and 3-month lead times, re-
spectively (e.g., Fig. 5e, f). This indicates the 3C-vine model
sufficiently utilized the forecasted information on previous
meteorological drought and agricultural drought persistence,
in contrast with the MG model under the same conditions.

The forecast ability of the 3C-vine model, compared with
the MG model, is limited over climate region D5 (e.g.,
Fig. 5b, c). This may be related to the fact that D5 is a crucial
grain-producing region in China (Lu et al., 2012; Xiao et al.,
2019; Zhang et al., 2016), and the related intensive anthro-
pogenic activities (e.g., irrigation and urbanization) in the
area may alter the linkage between meteorological drought
and agricultural drought as well as the strength of the agri-

cultural drought memory (AghaKouchak et al., 2021). To en-
sure food security, if D5 had experienced a drought event
at the previous stage, agricultural managers and policymak-
ers would have mitigated the drought through irrigation in a
variety of ways, such as groundwater exploitation and reser-
voir operation (Zhang et al., 2016). However, in this case,
the soil water obtaining the supplement from the irrigation
water would affect the performance of agricultural drought
forecast. Thus, in contrast with the MG model, the 3C-vine
model yielded a better forecast performance for August un-
der 1- to 3-month lead times for agricultural drought across
most areas of China, except for the climate region D5.

4.3 Case study and subclimate region assessment

A severe drought hit most regions of China in summer 2018,
especially southern and northern China, due to the abnormal
impact of the western North Pacific subtropical high (Liu
and Zhu, 2019; Zhang et al., 2020; Y. Zhang et al., 2018).
We chose the agricultural drought that occurred in August
of 2018 as a case study to investigate the forecast ability of
the 3C-vine model. The MG model was selected as a bench-
mark model. Figure 6 presents the SSI observations and the
1- to 3-month lead time SSI forecasts for this agricultural
drought using the 3C-vine and MG models. Obviously, the 1-
to 3-month lead time SSI forecasts from the 3C-vine model
resembled the observations (Fig. 6a, b, c, d), which captured
the droughts that emerged in southern China, northern China,
and northeastern China (i.e., climate regions D1–D2 and D4–
D6). Comparing the 3C-vine model with the MG model us-
ing 2- to 3-month lead times (Fig. 6a, b, c, and d versus
Fig. 6f and g), we observed the deteriorating forecast skill
of the MG model in climate region D5, which tended toward
a non-drought state (i.e., SSI> 0), but the 3C-vine model
better forecasted the agricultural drought for these regions
under the same conditions, although the severity of agricul-
tural drought had some decrement. The above analyses indi-
cated that the 3C-vine model, using previous meteorological
drought and agricultural drought persistence as two predic-
tors, had the ability to reliably forecast drought over many
regions of China.

Furthermore, to explore the skill of the 3C-vine model
with respect to capturing the extrema of agricultural drought
(i.e., minimum and maximum SSIs), we randomly selected
a typical area (black rectangles in Fig. 6b) in each climate
region. Note that these extreme SSI values were calculated
using the spatial average in each typical region. Figure 7a
and b show the probability density function (PDF) curves of
the minimum and maximum SSIs for these selected typical
regions (D1S–D7S) using the 3C-vine and MG models for
1- to 3-month lead times in August. Here, the vertical black
dashed line denotes the SSI observation in each subplot. The
x-axis value of the peak point (i.e., high probability) for each
PDF curve is regarded as the best estimation of the SSI for
diverse lead times. Using the 3C-vine model as an exam-
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Figure 4. Spatial patterns of 1- to 3-month lag times for the Kendall’s correlation coefficient (τk) between SPIt−i and SSIt (where t denotes
August, and i is the 1- to 3-month lag time) (top row) and between SSIt−i and SSIt (bottom row) for August during 1961–2018 over China.
Note that the stippling indicates where τk is at a 0.05 significance level, which is corrected via the false discovery rate (FDR) of 0.1.

ple (as for the MG model), for a minimum SSI with 1- to
2-month lead times, the differences between the forecasted
SSI and the observed SSI were slight (except for D3S), and
all cases reflected the drought state for these typical regions
(Fig. 7a). The deteriorated skill of the 3C-vine and MG mod-
els in region D3S may be attributed to the lengthy response
time existing between precipitation deficiency and soil mois-
ture shortage, which is caused by limited precipitation that
cannot effectively replenish soil moisture depletion due to the
incrassation of the vadose zone. For the 3-month lead time,
poor forecasts were produced in region D5S for the minimum
SSI. This phenomenon may result in the agricultural man-
ager utilizing irrigation to mitigate the effect of drought on
crop growth; thus, the response relationship between meteo-
rological drought and agricultural drought accordingly would
change (Y. Xu et al., 2021).

For the maximum SSI forecasted utilizing the 3C-vine
model (as for the MG model) over diverse regions, excel-
lence forecast ability is displayed for the 1- to 3-month lead
times (Fig. 7b), excluding regions D5S and D6S (PDF curve
shifted left). Due to abundant precipitation and a higher soil
moisture content in D6S, the shortened response time be-
tween precipitation and soil moisture (Y. Xu et al., 2021) may
cause inferior forecasts for the 3C-vine model for the target
month.

To display the robustness of the 3C-vine model with re-
spect to forecasting agricultural drought in any month of in-
terest, we further forecasted extreme agricultural drought in
July for D1S–D7S (Fig. 7c, d). The difference between the

forecasted and observed extreme SSIs for the MG model
is larger than that for the 3C-vine model in distinct typical
regions, e.g., the forecasted maximum SSI in July for D4S
(Fig. 7d). The width of the PDF curve qualitatively provides
an estimation of the forecast uncertainty of the 3C-vine and
MG models. As shown in Fig. 7, in comparison with the 3C-
vine model, we found that the width of the PDF curves of
the MG model are broadened, indicating that the MG model
produced more pronounced uncertainty with respect to agri-
cultural drought forecast. Furthermore, the skill of the MG
model tended to deteriorate over many selected typical re-
gions, especially for 2- to 3-month lead times in July and
August. Generally, compared with the MG model using dif-
ferent lead times, agricultural drought forecasts made by the
3C-vine model are more accurate across different typical re-
gions, in terms of predictive uncertainty (i.e., the width of
PDF curve) as well as the difference between observed and
forecasted extreme SSIs (Fig. 7).

Moreover, to assess the forecast performance (according
to the NSE, R2, and RMSE) of the 3C-vine model over each
climate region, we counted the pixels contained in each cli-
mate region and constructed box plots for these performance
metrics (Fig. 5j, k, l). We still selected the MG model as the
reference model and obtained the difference between these
two models (i.e., 1NSE, 1R2, and 1RMSE). The forecast
performance of the 3C-vine and MG models was generally
consistent for a 1-month lead time for August over climate
regions D1–D7 (the median percentiles of 1NSE, 1R2, and
1RMSE were all around the zero line; Fig. 5j, k, l), indicat-
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Figure 5. Forecast performance based on (a)–(c) 1NSE (the difference in NSE between the 3C-vine and MG models, NSE3C−NSEMG),
(d–f) 1R2 (R2

3C−R
2
MG), and (g–i) 1RMSE (RMSE3C−RMSEMG) for the 1- to 3-month lead times in August during 1961–2018 over

China. The corresponding box plots of (j) 1NSE, (k) 1R2, and (l) 1RMSE relative to a threshold of zero (horizontal black dash line) for
agricultural drought forecast in August for 1- and 3-month lead times in climate regions D1–D7 over China are also shown. The percentages
of 1NSE> 0, 1R2> 0, and 1RMSE< 0 are listed in the bottom left of the corresponding subfigures.

https://doi.org/10.5194/hess-26-3847-2022 Hydrol. Earth Syst. Sci., 26, 3847–3861, 2022



3856 H. Wu et al.: Comparison between canonical vine copulas and a meta-Gaussian model

Figure 6. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts for 1- to 3-month lead times utilizing the 3C-vine
model (b–d) and the MG model (e–g) over China. The black rectangles (as shown in b) denote the typical areas (corresponding to D1S–D7S)
selected in climate regions D1–D7.

ing that the improved skill of the 3C-vine model was limited
under the same conditions. Obviously, the median percentiles
of 1NSE and 1R2 were greater than zero and 1RMSE was
lower than zero for the 2- to 3-month lead time SSI fore-
casts for August in the different climate regions D1–D7 (ex-
cept for D5), indicating that the 3C-vine model shows better
performance than the MG model with respect to forecasting
agricultural drought over diverse climate regions of China.

In conclusion, based the ability of typical agricultural
drought forecasts (Fig. 6), the agricultural drought extrema
captured in selected typical regions (Fig. 7), and the compre-
hensive forecast performance shown in diverse climate re-
gions (Fig. 5j, k, l), the 3C-vine model had a good forecast
skill for 1- to 3-month lead times for agricultural drought in
August over most areas of China.

5 Discussion and conclusions

This study developed a C-vine copula model to forecast agri-
cultural drought over China in three dimensions in which
antecedent meteorological drought and agricultural drought
persistence were employed as two predictors. We selected
the MG model as a reference, in terms of the difference in
NSE, R2, and RMSE between the 3C-vine and MG models,
in order to evaluate the forecast performance of the 3C-vine
model. These performance metrics all showed that the 3C-
vine model, especially for 2- to 3-month lead times, outper-
formed the MG model in many climate regions over China
(except for D5, which lies in the humid and subhumid re-
gions of northern China) (Fig. 5). Compared with the MG
model, the 3C-vine model yielded good forecast skill for the
selected typical agricultural droughts (Fig. 5). Furthermore,
the nearly perfect forecast of extrema agricultural drought in

typical regions (Fig. 7) further certified the excellent ability
of the 3C-vine model.

Heterogeneous topography and anthropogenic activities
(e.g., irrigation and urbanization) have certainly impacted
precipitation interpolation and soil moisture simulation,
which may depart from the actual precipitation or soil mois-
ture conditions; notwithstanding, the precipitation of CN05.1
and the soil moisture of ERA5 show good performance with
respect to drought monitoring and forecasting over China
(Wang and Yuan, 2021; Wu et al., 2021b; Xu et al., 2009;
T. Zhang et al., 2021; X. Zhang et al., 2019). The abovemen-
tioned factors can also influence the response (propagation)
time from meteorological drought to agricultural drought as
well as agricultural drought memory and can, thus, lead to
the 3C-vine model falling short in some climate regions. To
address this issue, we can comprehensively utilize multiple
reanalysis data sets, e.g., the precipitation and soil moisture
data in Global Land Data Assimilation System (GLDAS) and
ERA5, to reduce the uncertainty resulting from a single data
source (Wang and Yuan, 2021; Wu et al., 2021b). Currently,
it is a challenge to consider irrigation activities in agricul-
tural drought forecasting, especially at large spatial scales.
In addition to the antecedent precipitation deficit, air tem-
perature, relative humidity, and evapotranspiration may influ-
ence the soil moisture budget. Moreover, from the perspec-
tive of driving mechanisms, the effects of certain atmospheric
circulation anomalies (e.g., the El Niño–Southern Oscilla-
tion, ENSO; the Pacific Decadal Oscillation, PDO; the and
North Arctic Oscillation, NAO) on agricultural drought at re-
gional and global scales can also be considered as predictors
(Y. Zhang et al., 2021). Therefore, a more efficient space can
be established by leveraging these predictors for forecasting
agricultural drought.
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Figure 7. Probability density function (PDF) curve of minimum (a, c) and maximum (b, d) SSI for 1- to 3-month lead times for August (a,
b) and July (c, d) during the 1961–2018 period over seven selected typical areas in the climate regions D1–D7 (i.e., the black rectangles
in Fig. 6b signify regions D1S–D7S; see labels). The black dashed line and text indicate the minimum and maximum SSI observations in
August and July over D1S–D7S. The red (green), blue (yellow), and cyan (coral) text on the left (right) of each subfigure denote SSI forecasts
for 1- to 3-month lead times in August or July from the 3C-vine model (MG model), which correspond to the abscissa projected by the peak
point of each PDF.
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In recent years, a myriad of extreme events, such as heat
waves and flash droughts, have swept many regions around
the globe (Wu et al., 2021a). These extreme events have a
rapid onset of a few days or weeks and lead to devastat-
ing impacts on agricultural production, water resource secu-
rity, and human well-being (Wang and Yuan, 2021; Yuan et
al., 2019; Zscheischler et al., 2020). Therefore, agricultural
drought forecasting at finer temporal scales (e.g., weekly) is
essential for agricultural managers and policymakers to man-
age and plan water use. However, with the limited spatiotem-
poral resolution and the length of model samples, agricultural
drought forecasting has not been carried out at sub-monthly
or pentad temporal scales.

The limitation of this study is that we choose a “best”
model from two C-vine copula candidate models (i.e., Fig. 2)
as the ideal forecast. However, due to the inherent structural
differences (i.e., ordering variables are different), the utilized
best model may underestimate the forecast uncertainty (Liu
et al., 2021a). Therefore, to reduce the predictive uncertainty
and improve the forecast performance, a multi-model combi-
nation technique (e.g., Bayesian model averaging; Liu et al.,
2021a; Long et al., 2017) could be considered to merge dif-
ferent C-vine copula candidate models. Moreover, as we only
focused on C-vine copulas and several bivariate-copula func-
tions, other D-vine copulas or regular vine copulas as well as
a multitude of bivariate-copula families (Sadegh et al., 2017)
could be investigated to establish the forecast model for agri-
cultural drought in following work.
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