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Abstract. Streamflow regimes are rapidly changing in many
regions of the world. Attribution of these changes to specific
hydrological processes and their underlying climatic and an-
thropogenic drivers is essential to formulate an effective wa-
ter policy. Traditional approaches to hydrologic attribution
rely on the ability to infer hydrological processes through
the development of catchment-scale hydrological models.
However, such approaches are challenging to implement in
practice due to limitations in using models to accurately as-
sociate changes in observed outcomes with corresponding
drivers. Here we present an alternative approach that lever-
ages the method of multiple hypotheses to attribute changes
in streamflow in the Upper Jhelum watershed, an important
tributary headwater region of the Indus basin, where a dra-
matic decline in streamflow since 2000 has yet to be ade-
quately attributed to its corresponding drivers. We generate
and empirically evaluate a series of alternative and comple-
mentary hypotheses concerning distinct components of the
water balance. This process allows a holistic understanding
of watershed-scale processes to be developed, even though
the catchment-scale water balance remains open. Using re-
mote sensing and secondary data, we explore changes in
climate, surface water, and groundwater. The evidence re-
veals that climate, rather than land use, had a consider-
ably stronger influence on reductions in streamflow, both
through reduced precipitation and increased evapotranspira-
tion. Baseflow analyses suggest different mechanisms affect-
ing streamflow decline in upstream and downstream regions,
respectively. These findings offer promising avenues for fu-
ture research in the Upper Jhelum watershed, and an alter-
native approach to hydrological attribution in data-scarce re-
gions.

1 Introduction

Water resources are changing throughout the world under an-
thropogenic pressures, including climate change, land use
change, and changes in water management (Vörösmarty
et al., 2004; Milly et al., 2008; Ceola et al., 2019). These
drivers pose challenges for water policy by increasing cli-
matic variability (Smirnov et al., 2016), exacerbating water
scarcity (Srinivasan et al., 2017), and reducing our ability
to predict hydrological variables (Ehret et al., 2014). In arid
and semi-arid regions, these concerns are particularly alarm-
ing, given the concurrent challenges of increasing hydrolog-
ical uncertainty and competition for scarce water resources
(Flörke et al., 2018; Aeschbach-Hertig and Gleeson, 2012).
In many such regions, mitigation and adaptation strategies
are urgently needed but require accurate understanding of the
underlying drivers of change (Thompson et al., 2013; Penny
et al., 2020a). In order to address the management challenges
of mitigation and adaptation, observed changes in hydrolog-
ical processes must be correctly attributed to the correspond-
ing drivers (i.e., the processes that cause changes in hydrol-
ogy).

Here, we focus on the attribution of hydrological changes
in the Upper Jhelum watershed, a headwater catchment of
the Indus basin and an important source of water for both
India and Pakistan (Romshoo, 2012). The Upper Jhelum wa-
tershed provides essential ecosystem services in the Kash-
mir Valley, yet in recent decades many of these services have
been threatened with lakes and wetland shrinking, fish pop-
ulations declining, and less water available for agriculture
(Wetlands International South Asia, 2007). Each of these
ecosystem services depends on streamflow, which has de-
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clined dramatically in the Upper Jhelum watershed since
the year 2000. This decline is concerning, given that the
watershed is increasingly vulnerable to water stress due to
population growth (Showqi et al., 2014), increasing pollu-
tion (Rather et al., 2016), and climate change (Rashid et al.,
2015). These concerns are compounded by the transbound-
ary nature of the Upper Jhelum watershed, while the attri-
bution is complicated by the myriad of potential drivers and
changing processes occurring within the basin. Streamflow
is fed by a variety of sources within the basin, including pre-
cipitation, seasonal snowmelt, and glacier melt (Romshoo
et al., 2015). The valley contains a thick surficial aquifer
which is recharged directly from the surrounding karst moun-
tains, meaning that there may be considerable flows that by-
pass tributary streams (Jeelani, 2008). Furthermore, the large
scale of the basin (nearly 13 000 km2), varying topography
(elevation spans 1500 m to over 5000 m above sea level), and
rapidly changing land use (agricultural intensification and in-
creasing orchards, see Rather et al., 2016) make it such that
adequately estimating hydrological variables is difficult.

This research builds upon previous studies that associated
declining streamflow in the Upper Jhelum watershed with
potential drivers of change. For instance, Romshoo et al.
(2015) found that the declining streamflow in the headwa-
ter region of the Upper Jhelum watershed was associated
with glacier recession and changes in snowmelt in the basin.
Another study by Romshoo et al. (2018) identified nega-
tive trends in precipitation as being a key driver of losses
in streamflow, and an analysis by Zaz et al. (2019) indicated
that changes in precipitation may have resulted from global
warming. Badar et al. (2013a) identified changing land use
as a key contributor to changes in runoff, but the implica-
tions on streamflow changes in the river remained unclear.
Considerable hydrological research at the basin scale has
focused on streamflow forecasting (e.g., Mahmood and Jia,
2016; Badar et al., 2013b), along with empirical work char-
acterizing streamflow in tributaries and the hinterlands (Jee-
lani, 2008; Jeelani et al., 2013; Romshoo et al., 2015). These
studies have tended to focus on particular aspects of hydro-
logical change, and a coherent understanding of the causes
of hydrological change has, therefore, yet to be achieved.

Given the importance of this river, scientific understanding
of changing hydrological processes is essential to support ef-
fective domestic and transboundary water management. Nev-
ertheless, the difficulties in conducting hydrological attribu-
tion in this basin are common to many regions, as measure-
ment challenges often make it difficult to accurately close
the water balance (Kampf et al., 2020), and changes in its
key components may go unnoticed. These difficulties make
the broader challenge of attributing hydrological changes ex
post to their landscape and climatic drivers a substantial on-
going scientific challenge (Wine and Davison, 2019).

The most common approaches to hydrological attribution
(see Dey and Mishra, 2017, and Luan et al., 2021, for recent
reviews) are unlikely to be appropriate for the Upper Jhelum

watershed. In perhaps the most common approach, water-
shed modeling is used to simulate streamflow, and the cal-
ibrated model is used to infer hydrological relationships and
conduct the attribution (e.g., Liu et al., 2019). Goodness of fit
and other model evaluation metrics influence which models
or calibration parameters are given more credibility (Müller
and Thompson, 2019) and which models are, in turn, used
to identify the causal processes in the attribution. The ma-
jor challenge of this approach for attribution is the difficulty
in validating hydrological processes within the model. These
difficulties can arise due to equifinality (i.e., cannot distin-
guish drivers by considering outcomes only; Beven, 2006),
nonlinearity (i.e., drivers are not linearly separable; Siva-
palan, 2006), hydrological regime shifts (Foufoula-Georgiou
et al., 2015; Gober et al., 2017), or lack of appropriate data
(i.e., cannot test hypotheses pertaining to specific processes;
Sheffield et al., 2018). Calibrated models have particular dif-
ficulty with hydrological regime shifts, where the underlying
mechanisms of streamflow generation change but cannot be
directly observed (Savenije, 2009). This general approach to
attribution is known as predictive inference (Ferraro et al.,
2019) because the accuracy of predictions is used to validate
the model which is then used to infer the underlying causal
processes. Another approach to attribution utilizes hydrolog-
ical fingerprinting, but this approach requires that the effects
of specific drivers (i.e., signatures) are specified a priori and
used to identify or separate the effects of multiple drivers in
particular situations (Viglione et al., 2016). This approach
is not suitable for analyzing streamflow decline the Upper
Jhelum watershed because multiple drivers may have similar
signatures in terms of streamflow outcomes. A third set of ap-
proaches use the relationship between the water balance and
energy balance (via the latent heat flux) to assess how precip-
itation is partitioned into streamflow and evapotranspiration
as a basis for understanding changes over time (e.g., Ning
et al., 2018; Tomer and Schilling, 2009). Although these ap-
proaches associate changes in streamflow with changes in
climate or land use, the partitioning approach is more akin
to correlative than causal analysis. Last, field-based studies,
including paired catchment studies, have also been used for
hydrological attribution (Penny et al., 2020b) but may require
extensive resources and often cannot be applied in situations
of historical attribution, unless a suitable space-for-time sub-
stitution can be applied. Additionally, field research may be
logistically complicated where accessibility is challenging
(e.g., due to remoteness or political instability), and consider-
able methodological challenges remain, especially in human-
impacted catchments, due to the difficulty in capturing spa-
tial complexity and ruling out potential alternative drivers of
change (Srinivasan et al., 2015).

Here, we advance an alternative approach to attribution,
wherein several plausible hypotheses are generated and each
is evaluated separately. The approach is grounded in the
method of multiple working hypotheses (Chamberlin, 1965)
and has two key benefits. First, the approach does not rely
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on constructing and calibrating a fully integrated catchment-
scale hydrological model but rather relies on specific sets
of empirical observations that are necessary to individually
test each hypothesis. As such, it is particularly helpful in
data-scarce catchments, where limited hydrological records
preclude the complete characterization of the water balance
and where data collection may be difficult. Relatedly, the ap-
proach allows us to explicitly account for uncertainties in
hydrological fluxes or issues with data integrity. These is-
sues might cause some (though not all) hypotheses to be in-
conclusively evaluated. This contrasts with the predictive in-
ference approach, where integrity issues with some of the
data might cause the whole analysis to be inconclusive, or
worse, be concealed within the model calibration process
(e.g., due to equifinality issues). Second, the approach mit-
igates against observational and conceptual biases in which
certain hypotheses are favored based on preconceived no-
tions of change (Railsback et al., 1990). Using consistent ob-
servational datasets before and after 2000 ensures that only
a nonstationary bias would affect the results of the analyses.
Furthermore, by employing separate analyses for each hy-
pothesis, we construct a process-based narrative of attribu-
tion in which each analysis comprises part of the whole and
serves to corroborate or contradict other analyses. Indeed,
the method of multiple hypotheses advocates a broader un-
derstanding of the whole over in-depth understanding of the
individual components. By favoring breadth over depth, we
seek to develop a coherent and holistic narrative of change.

Although initially proposed in 1890 (and later republished
as Chamberlin, 1965), few studies have applied the method
of multiple hypotheses towards hydrological attribution. Har-
rigan et al. (2014) used the method of multiple hypotheses
to demonstrate the combined effect of changing precipita-
tion and catchment drainage in producing greater stream-
flow. Srinivasan et al. (2015) sought to attribute hydrologi-
cal change in a drying river by generating (and subsequently
testing) a set of hypotheses based on stakeholder knowl-
edge. Here, we employ the water balance as a guiding frame-
work to generate hypotheses regarding hydrological pro-
cesses, while using stakeholder knowledge via the published
literature to provide additional context with respect to water
management.

Previous studies using the method of multiple hypothesis
to attribute hydrological change were grounded in building
empirical evidence through extensive field research. How-
ever, given the challenges associated with field research (de-
scribed above), remote sensing offers tremendous potential
to overcome both major limitations of field experimentation
in terms of capturing spatial heterogeneity and generating
observational datasets after hydrological changes occur and
are detected (e.g., Valentín and Müller, 2020). The increas-
ing availability of remote sensing products now provides
satellite estimates of precipitation, evapotranspiration, and
changes in water storage including surface water, soil mois-
ture, and groundwater (Montanari and Sideris, 2018). The

Landsat record provides coverage extending back to 1972,
and many relevant satellites were launched circa 2000, pro-
viding a record over the last 2 decades. Remote sensing,
therefore, provides unique opportunities to attribute hydro-
logical changes in data-scarce regions (Müller et al., 2016;
Penny et al., 2018), particularly when combined with sec-
ondary data (i.e., historical data collected by third parties,
such as government agencies). This study demonstrates this
potential by using secondary data and remote sensing obser-
vations to apply the method of multiple hypotheses in the
Upper Jhelum watershed.

2 Study site: the Upper Jhelum watershed

The Upper Jhelum watershed in the Western Himalayas lies
between the Karakorum mountain range in the north, the Pir
Panjal Range in the south and west, and the Zanskar range in
the east. The river serves as one of the six main tributaries of
the Indus (Fig. 1a), supporting residents in both India and
Pakistan. The watershed covers approximately 13 000 km2

and drains into the Kashmir Valley, where the river flows east
to west before discharging through a deep gorge at the out-
let along the western side of the basin (Fig. 1b). The valley
rests upon a layer of alluvial sediment which partially over-
lays a layer of glacial till, the combination of which extends
nearly 1 km into the subsurface (Dar et al., 2014). Mountain
ranges on either side of the valley consist of limestone karst
formations, and streamflow is supported both by groundwa-
ter recharge in the valley and karst springs emerging from
mountainsides (Jeelani, 2008).

The climate in Kashmir is characterized by four sea-
sons (Mahmood et al., 2015), including winter (December–
February), spring (March–May), summer (June–August),
and autumn (September–November). The valley receives an
average annual precipitation of 700–1250 mm/yr−1, depend-
ing on elevation. Although precipitation occurs throughout
the year, it is dominated by Mediterranean westerlies in
the spring (March–May) and the Indian monsoon in the
summer (June–September; Zaz et al., 2019). Average val-
ley temperatures range from 8 ◦C in January to 29 ◦C in Au-
gust. Higher elevations remain below freezing in winter, and
streamflow receives a boost from snowmelt as temperatures
warm throughout the spring.

The main stem of the Upper Jhelum watershed is inter-
cepted by the Wular Lake (Fig. 1d) between gauges (iii) and
(iv). A number of other, smaller lakes intersect tributaries
within the watershed, and seasonally inundated wetlands oc-
cupy much of the center of the valley (Fig. 1e). Tributaries
connect the valley to surrounding hill stations, where tourism
services are a mainstay of economic production (Malik and
Bhat, 2015). The Upper Jhelum watershed also provides
transport services for ferrying people and timber extracted
from forests (Raina, 2002). Agricultural land comprises the
majority of the valley and supports paddy, maize, and wheat,
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Figure 1. Study site and hydrological change. (a) Himalayan water towers, including the Indus basin and the location of the Upper Jhelum
watershed. (b) Upper Jhelum watershed, including locations of streamflow records (gauges i–v), climate records (stations ii and vi–ix),
and bounding boxes for panels (d)–(f). The streamflow gauge numbers refer to (i) Sangam, (ii) Munshi Bagh, (iii) Asham, (iv) Sopore,
and (v) Baramulla. (c) Annual streamflow normalized by catchment area, with long-term averages for the periods 1955–1983 (670 mm;
no climate data), 1984–1999 (852 mm; pre-2000 with climate data), and 2000–2013 (419 mm; post-2000). The remaining panels highlight
water storage within the Upper Jhelum watershed, including the (d) Wular Lake, (e) valley inundation, (f) snowpack in May, and (g) Kolahoi
Glacier in August. In these images (d–g), Landsat bands SWIR2–SWIR1–Red are mapped to red–green–blue so that vegetation, water, and
snow are clearly visible as green, dark, and blue pixels, respectively. MODIS imagery in panel (a) (Vermote, 2015) and Landsat composite
imagery in panels (b), (d)–(g) from the U.S. Geological Survey were prepared and downloaded using Google Earth Engine (Gorelick et al.,
2017).

as well as noticeably increasing fruit orchards (Ministry of
Agriculture, Directorate of Economics and Statistics, 2015).
Summer is the primary growing season for paddy and maize,
which are sown in the spring and harvested in the late sum-
mer or early autumn. Wheat is typically planted in October
and harvested in the following June. Outside of the valley
bottom, the Upper Jhelum watershed consists primarily of
grassland, shrubs, and coniferous forests (Alam et al., 2020).

2.1 Declining streamflow

Streamflow observations were obtained from the Department
of Irrigation and Flood Control for Jammu and Kashmir at
five stream gauging stations throughout the Upper Jhelum
catchment (Fig. 1b) for the period 1955–2013. Standard data
integrity checks (Searcy and Hardison, 1960) were applied
to ensure temporal and spatial consistency (see Sect. S1 in
the Supplement). Streamflow in the main stem of the Upper
Jhelum watershed has declined over time. In particular, an-
nual streamflow time series reveal a dramatic decline around

the year 2000 (Fig. 1c). Average annual streamflow at the
watershed outlet at Baramulla station (Fig. 1b; gauge v) dur-
ing the 2000–2013 period (419 mmyr−1) reduced by 50 %,
compared to the 1984–1999 period (852 mmyr−1), and by
27 %, compared to the 1944–1983 baseline (670 mmyr−1).
Similar declines were observed at the four additional stream-
flow gauges (see Fig. S2). Multiple hypotheses on the drivers
and hydrological processes underlying this streamflow de-
cline are introduced and evaluated in the remainder of the
paper.

3 Methods

3.1 Implementing the method of multiple hypotheses

We use the water balance as a guiding framework to attribute
the streamflow decrease in the Upper Jhelum watershed. In
particular, it serves as a conceptual tool to build alternative
hypotheses regarding changes in each of the water balance
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fluxes that could explain the observed reduction in stream-
flow (Fig. 2). Testing these hypotheses individually allows
us to build understanding about the different pathways of hy-
drologic change throughout the catchment. Importantly, this
approach does not rely on the predictive ability of an ag-
gregate hydrological model, where calibration would depend
upon on specific information that is not necessarily available.
The multiple hypotheses are developed for each component
of the water balance in the following paragraphs, along with
approaches and datasets (Fig. 2, Table 1) to evaluate these
hypotheses.

3.2 Precipitation

3.2.1 Hypotheses

Changes in precipitation (P ) could occur through different
mechanisms that would have distinct impacts on streamflow.
For instance, a reduction in precipitation would decrease the
water balance inputs and reduce the water available to gener-
ate streamflow. Alternatively, an increase in storm frequency
and a reduction in average storm size could produce an in-
crease in vadose zone water storage, greater evapotranspira-
tion (ET), and reduced streamflow (Zhao et al., 2019), even
if aggregate precipitation volumes remain unchanged. We,
therefore, pose the following hypotheses:

– Hypothesis 1: annual precipitation declined.

– Hypothesis 2: climate exhibited a change in rainfall sea-
sonality.

The first hypothesis represents a direct reduction in the water
input to the catchment that would generate a corresponding
reduction in streamflow. The second hypothesis represents a
shift in the availability of water throughout the year. Such a
shift in precipitation from a season with low ET to high ET
could decrease the average streamflow.

– Hypothesis 3: the distribution of precipitation events
changed.

A shift in the distribution of rainfall events could have vari-
ous effects. A shift towards smaller event sizes would likely
reduce the fast component of streamflow (i.e., quickflow;
McCaig, 1983) and leave a greater fraction that is directly in-
tercepted, re-evaporated, or infiltrated. In other words, a shift
in precipitation patterns towards more frequent small events
and fewer large events could lead to a reduction in runoff
and an increase in evapotranspiration. These changes would
reduce quickflow and groundwater recharge and, thus, ulti-
mately reduce the annual streamflow volume.

3.2.2 Data sources

To address these hypotheses, monthly precipitation data were
obtained from the Indian Meteorological Department (IMD;
Srinagar) for the period 1984–2013 at Srinagar, Kupwara,

and Pahalgam stations (see stations ii, vi, and vii in Fig. 1b).
We interpolated monthly precipitation to the watershed scale
using Thiessen polygons. We also conducted an interpolation
using the inverse-distance-squared approach with an eleva-
tion gradient, but this method appeared to overestimate pre-
cipitation at the water balance scale (see Sect. S2; Fig. S6).
Consequently, we only used Thiessen-interpolated rainfall
to test our hypotheses; note that this decision did not intro-
duce any bias in our analysis because both interpolations pro-
duced similar results in terms of the change in precipitation
(Fig. S6).

The monthly frequency of the IMD precipitation dataset
precluded an analysis of the distribution of precipitation
event sizes. Therefore, we utilized daily precipitation records
from the gridded PERSIANN (Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Net-
works) Climate Data Record (CDR; Ashouri et al., 2015).
The purpose of PERSIANN CDR is to provide consistent
precipitation data for long-term climate analysis dating back
to 1984 at 0.25◦ resolution. Consistent with the daily fre-
quency of PERSIANN rainfall data, we here define a precipi-
tation event as any day with precipitation≥ 2 mm. In order to
determine a shift in the distribution of event sizes, we binned
events into the following three groups: small (2–7.4 mm),
medium (7.4–18.6 mm), and large (≥ 18.6 mm). The size of
the bins was determined such that the total precipitation from
all events within each bin was equivalent (i.e., the sum of pre-
cipitation from all events in the small bin was equivalent to
the sum in the medium and large bins, respectively). We then
determined whether or not the number of precipitation events
in each bin changed before and after 2000.

To formally test these hypotheses, we bootstrapped confi-
dence intervals (N = 104) for annual precipitation, seasonal
precipitation, and the number of precipitation events in each
category. In each case, the null hypothesis (no change before
and after 2000) was rejected if the 95 % confidence interval
excluded zero. As a robustness check for the change in event
size, we reran the same analyses using minimum event sizes
of 1 and 3 mm, adjusting the bins accordingly. The hypothe-
sis tests resulting from these robustness checks yield identi-
cal results (Sect. S2; Table S1).

3.3 Evapotranspiration

3.3.1 Hypotheses

Evapotranspiration (ET) affects streamflow by reducing the
volume of water stored in the vadose zone that could have
otherwise produced streamflow. A reduction in streamflow
could, therefore, be generated by an increase in ET, either
through changes in potential evapotranspiration or vegetation
properties and land use. We, therefore, include the following
hypotheses:

– Hypothesis 4: climate change and warmer air tempera-
tures led to greater evapotranspiration.
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Figure 2. Hypothesis generation and evaluation. We develop a general empirical approach to attribution that (a) utilizes the water balance to
(b) generate overarching research questions and (c) construct multiple hypotheses. The hypotheses are addressed (d) using remote sensing
and in situ secondary data and (e) by applying empirical analyses, the results of which are (f) used to infer relationships regarding changing
hydrological processes. We implement this approach in the Upper Jhelum watershed by defining the long-term water balance in terms of
streamflow (Q), precipitation (P ), evapotranspiration (ET), and changes in catchment water storage (1S). Specific research questions (red),
data (blue), and analyses (green) focus on the detection and characterization of changing water balance fluxes in the Upper Jhelum watershed.
The inference step is contingent on understanding how each flux has changed and provides a deeper understanding of watershed hydrological
processes.

Table 1. Datasets used in analyses. Note: Government of Jammu and Kashmir is abbreviated to J & K Govt.

Dataset Type Source Time period Recurrence

Streamflow Station The Department of Irrigation and Flood Control (J & K Govt) 1955–2013 Daily–monthly
Precipitation Station Indian Meteorological Department (Srinagar) 1984–2013 Monthly
Temperature Station Indian Meteorological Department (Srinagar) 1984–2013 Monthly
Precipitation Satellite PERSIANN 1984–2013 Daily
Evapotranspiration Satellite MODIS ET product 2000–2013 Every 8 d
Land use Satellite MODIS Land Cover product 2001, 2010 Annual
Snow and water extent analyses Satellite Landsat Missions 5, 7, and 8 1989–2013 Varies

– Hypothesis 5: land use change toward water-intensive
crops led to greater evapotranspiration.

Both hypotheses are grounded in observed, ongoing changes
within the watershed. Temperatures have been warming (Zaz
et al., 2019), and there has been a notable shift towards or-
chard plantations in portions of the valley (Romshoo and
Rashid, 2014), which may use more water than traditional
crops due to a longer growing season (Allen et al., 1998) and
better access to subsurface water storage (Zhang et al., 2018).
Both changes might have led to increased evapotranspiration
and a reduction in streamflow.

3.3.2 Data sources

We required an approach to estimate seasonal and annual
evapotranspiration for the periods before and after 2000.
Multiple approaches have been developed to estimate evap-
otranspiration (ET) using remote sensing products, but few
provide robust estimates that would allow consistent com-
parisons of the pre- and post-2000 periods. For instance,
MODIS provides an 8 d ET product (Running et al., 2019),
but this dataset has only been available since the launch of
the Terra satellite in late 1999. The surface energy balance
approach (SEBAL; Bastiaanssen et al., 1998) can be used to
estimate ET from Landsat imagery prior to 2000, but rela-
tively few Landsat images were available during this time
period. The instantaneous nature of SEBAL may, therefore,
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present biased estimates of seasonal ET, as usable Landsat
imagery is predominantly available for cloudless days that
may not be representative of average seasonal ET conditions.

We, therefore, applied a regression framework based on
the concept of reference evapotranspiration (Allen et al.,
1998), where actual evapotranspiration (ET) is defined as
the product between the evapotranspiration value (ET0) of
a reference crop under well-watered conditions and a crop
coefficient (k). These two terms respectively capture the ef-
fect of climate (ET0) and land use (k; representing the ef-
fect of vegetation on evapotranspiration). To calculate refer-
ence ET, we used the Hargreaves equation (Hargreaves and
Samani, 1985), which provides estimates of ET0 at monthly
timescales or larger. The Hargreaves equation captures the
effect of climate drivers and accounts for extraterrestrial radi-
ation (Ra), air temperature (TA), and the diurnal temperature
range (TR) as follows:

ET0 = 0.0023Ra(TA+ 17.8)
√
TR . (1)

Extraterrestrial radiation Ra varies seasonally with chang-
ing solar declination angles which are associated with lati-
tude and topography. The diurnal temperature range TR de-
pends on a variety of climate conditions, including humid-
ity, soil moisture, precipitation, and cloud cover (Dai et al.,
1999; Geerts, 2003). We group these parameters into a sin-
gle seasonal parameter, as ∝ RaT

0.5
R , which represents mean

climate conditions within each season and captures the sea-
sonal variability in the Upper Jhelum watershed. We assume
that the greenness of the vegetation canopy exerts the pri-
mary control on the stomatal conductance, such that we can
define the crop coefficient as k ≈ NDVIc, where c is a cal-
ibrated parameter, and NDVI is the normalized difference
vegetation index (Carlson and Ripley, 1997). This assump-
tion is supported by empirical evidence (Duchemin et al.,
2006; Groeneveld et al., 2007). Combining the Hargreaves
equation with this parameterization of the crop coefficient k
allows evapotranspiration at any pixel (i) season (s) and year
(y) to be expressed as a nonlinear regression, as follows:

ETi,s,y = as× (TA,i,s + 17.8)×NDVIci,s,y + εi,s,y, (2)

where ETi,s,y is average MODIS ET for an individual pixel
i in season s and year y, TA,i,s is the interpolated post-
2000 seasonal average air temperature (see Sect. S3), and
NDVIi,s,y is the average Landsat NDVI for the same year–
season–pixel combination. The regression coefficients as
represent the estimated average effect of extraterrestrial ra-
diation Ra and diurnal temperature range TR, and c mediates
the effect of NDVI on the crop coefficient. These coefficients
are assumed to be stationary across pixels (homogeneous)
and years (stationary). We used a cross-validation analysis to
evaluate how robust our ET estimates were to uncalibrated
data. A calibration sample was formed by independently
drawing 80 % of pixels from each image, which we used to
estimate the regression coefficients as and c. The estimated

Figure 3. Separating local and climatic drivers of evapotranspira-
tion (ET). Temperature (T ) modulates ET directly, through the ef-
fect on potential evapotranspiration (PET), or indirectly, by chang-
ing growing conditions, vegetation structure, and phenology and,
therefore, NDVI. Land use modulates ET directly, by changing land
cover characteristics, or indirectly, by affecting air temperature. We
evaluate the effects depicted by the solid red lines and decouple the
effects of the dashed lines via the Hargreaves model and maps of
land use change (see the text for details).

coefficients were then used to predict ET on the remaining
20 % of the pixels, using Eq. (2). Predictions matched ET
observation on the validation with a high degree of accuracy
(R2
= 0.87). The cross-validation results give confidence in

the assumptions that c and ac were stationary and homoge-
neous. We relied on these assumptions to predict pre-2000
ET, using Eq. (2), and regression coefficients as and c were
estimated using post-2000 observations.

Temperature and land use modulate evapotranspiration by
affecting potential evapotranspiration (PET) and vegetation
characteristics (e.g., morphology and stomatal conductance).
Within the hypothesis testing framework, we assume that the
primary control of temperature on ET occurs through the ef-
fect on PET, as described in Eq. (1), and that the effect of
land use occurs primarily through the effect on NDVI. In or-
der to account for the possibility of additional links among
temperature, land use, and ET (see Fig. 3), we provide addi-
tional robustness checks as described below and presented in
Sect. 4.

We tested both hypotheses that temperature (H4) and land
use (H5; via NDVI) increased evapotranspiration by boot-
strapping confidence intervals in each season. For tempera-
ture, we treated each year/season as an independent obser-
vation to bootstrap confidence intervals (N = 104) on the
change in seasonal temperature and used the results to pre-
dict the effect on evapotranspiration. For NDVI, we assumed
that the uncertainty occurred due to our inability to precisely
measure the relationship between the pixel NDVI and ET.
We, therefore, created NDVI bins (with width of 0.02) and
bootstrapped confidence intervals (N = 104) for ET by sam-
pling the associated ET for each pixel NDVI value from the
associated NDVI bin.

As a robustness check to better evaluate the above as-
sumptions, we evaluated changes in land use based on the
17 land use categories, proposed by Strahler et al. (1999),
using MODIS imagery. We combined these categories into
seven superclasses to represent the major land use categories
within the watershed, namely grassland and shrubs, forest,
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cropland, mosaic vegetation, open water (lakes), urban land,
and barren land. Within the Upper Jhelum watershed, the mo-
saic vegetation class indicates the presence of orchard plan-
tations (see Fig. S9). Land use change involving the crop-
land and mosaic classes are, therefore, likely to have an out-
size effect on ET in the watershed, representing the primary
component of locally driven anthropogenic changes. We used
the MODIS land cover classification from 2001 (the earliest
available year) to approximate land use prior to the observed
hydrological change and the land classification from 2010 to
represent land use after the change.

3.4 Catchment storage

3.4.1 Hypotheses

The Upper Jhelum watershed contains a variety of stor-
age reservoirs, including surface water bodies, groundwater,
snow, and glaciers (Fig. 1d–g). From the water balance, a de-
crease in storage (e.g., glacial melt) must be matched by a
corresponding increase in the outgoing fluxes, evapotranspi-
ration, or streamflow. As such, a long-term decrease in catch-
ment storage could have produced a corresponding increase
in streamflow, followed by a similar decrease as catchment
storage stabilizes. We hypothesize that there could have been
a long-term reduction in permanent water storage, leading to
a subsequent decline in streamflow. For instance, we hypoth-
esize the following:

– Hypothesis 6: a long-term decline in glaciers produced
an increase, and subsequent decrease, in streamflow.

– Hypothesis 7: a long-term decline in permafrost pro-
duced an increase, and subsequent decrease, in stream-
flow.

These hypotheses are grounded in the studies of other
catchments, showing that a warming climate could tem-
porarily increase streamflow through glacial loss (Singh and
Kumar, 1997; Schaner et al., 2012) or permafrost melting
(Kurylyk et al., 2016; Qiang et al., 2019). Such changes have
been predicted to occur in high-elevation montane regions
and could have contributed to the increase in streamflow in
the 1980s and 1990s and the subsequent decline after 2000
(Fig. 1c).

In addition to these long-term effects, catchment storage
at the seasonal timescale creates a time lag between pre-
cipitation and streamflow. Understanding how snow cover,
groundwater, and surface water storage have changed over
time would provide additional insight into the processes gov-
erning hydrological change in the catchment. Specifically,
we hypothesize the following:

– Hypothesis 8: earlier snowmelt contributed to an earlier
peak in the annual hydrograph.

– Hypothesis 9: groundwater storage in the saturated zone
of the riparian aquifer declined.

– Hypothesis 10: surface water storage in lakes and wet-
lands in the valley decreased.

The processes involved in these three hypotheses might have
increased the proportion of annual precipitation exiting the
catchment as evapotranspiration instead of streamflow. All
things being equal, earlier snowmelt would tend to increase
the amount of streamflow early in the year and decrease
streamflow later in the year. Earlier snowmelt would also
allow greater vegetation activity and evapotranspiration ear-
lier in the spring, thereby reducing groundwater recharge. A
storage reduction, both in the saturated zone of the riparian
aquifer and in the riparian lakes and wetlands in the val-
ley bottom, could be indicative of reduced seepage and in-
creased evapotranspiration from the unsaturated vadose zone
(see Sect. 5).

3.4.2 Data sources: glaciers and permafrost

High-altitude hillslopes and mountain peaks in the Upper
Jhelum watershed exhibit sufficiently cold annual tempera-
tures to support both glaciers and permafrost. In particular,
the Kolahoi Glacier sits along the northeastern edge of the
watershed and has been melting over recent decades. The
glacier was approximately 14.5 km2 in 1962 and 11.3 km2

in 2014 (Shukla et al., 2017). We rely on estimates of glacial
mass loss from published studies to determine whether these
losses are sufficient to explain the observed variations in
streamflow. In particular, we use the average annual loss of
glacial mass as an upper bound on the potential for deglacia-
tion to have contributed to the observed reduction in stream-
flow. Rashid et al. (2017) estimated that Kolahoi Glacier lost
0.3 km3 in volume over the period 1962 to 2010 but did not
estimate errors associated with this value. Instead, we ap-
proximate confidence intervals using estimates of the error
on areal changes in the glacier from Shukla et al. (2017), who
provided bounded estimates on the loss in glacier area over
time as 3.18± 0.34 km2 over the period 1962–2014. By as-
suming that the volumetric loss was associated with the mid-
point of glacial extent, we can translate the volumetric loss
to a depth loss and provide an upper bound on the volumetric
water loss. In reality, the effect of glacier melt on the change
in streamflow would be lower, which reduces the propensity
to mistakenly rejecting hypothesis 6.

We also consider the potential for loss of permafrost
to have produced an increase and subsequent decrease in
streamflow. For example, Qiang et al. (2019) found that melt-
ing permafrost generated a temporary increase in streamflow
in the upper Yellow river of 5 %, corresponding to 1 cm/yr−1

of permafrost melt. To evaluate the possibility for this pro-
cess in the Upper Jhelum watershed, data were downloaded
from the Global Permafrost Zonation Index (GPZI) map
(Gruber, 2012). Given the uncertainty in permafrost occur-
rence, the GPZI is presented on a scale that indicates the
likelihood of permafrost, with a minimum indicating that
“permafrost exists only in most favorable conditions” and
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maximum indicating that “permafrost exists in nearly all
conditions” (Gruber, 2012). We binned this scale into five
groups of permafrost likelihood, including low, medium–
low, medium, medium–high, and high. The Upper Jhelum
watershed contains no pixels with a medium–high or high
likelihood of permafrost, and in most of the areas where per-
mafrost is possible, the likelihood is low (see Fig. S12). To
evaluate the potential for permafrost to affect streamflow, we
assumed the rate of permafrost melt to be 10 mm (as in Qiang
et al., 2019) from all areas with permafrost likelihood greater
than zero. This provides an upper bound on the potential for
permafrost melt to contribute to streamflow decline which,
again, decreases the propensity of mistakenly rejecting hy-
pothesis 7.

3.4.3 Data sources: snow

Winter precipitation occurs largely as snowfall and remains
in some parts of the catchment until the late summer. Because
different regions of the watershed may be affected by missing
pixels (e.g., clouds) on any given acquisition date, we sepa-
rated the watershed into 15 distinct zones of roughly equal
areas defined by three elevation bands (< 1650 m, 1650–
2200 m, and > 2200 m) in the five local subwatersheds cor-
responding to the available stream gauges. Snow contains a
distinct spectral signature with high reflectance in the vis-
ible and near-infrared (NIR) bands and low reflectance in
shortwave infrared (SWIR) bands and can, therefore, be de-
tected from normalized difference snow index (NDSI), which
is defined as (green−SWIR)/(green+SWIR) (Dietz et al.,
2012). We generated the time series of snow cover in each
of the 15 zones using Landsat 5 imagery and Landsat 7 im-
agery (prior to the failure of the scan line corrector in May
2003; see Scaramuzza and Barsi, 2005) by applying a thresh-
old of 0.5 to NDSI to distinguish snow and water cover from
dry land. We further distinguish snow (high reflectance) from
open water (low reflectance) using a threshold of 0.2 on the
NIR band reflectance (Kulkarni et al., 2002). For each zone,
we selected only the dates where missing pixels constituted
less than 25 % of the zone, leaving an average of 112 and 141
observations in each zone before and after 2000, respectively.

We evaluated this hypothesis by considering changes in
the dates of peak snow cover and peak streamflow. The date
of peak snow cover was determined by using a loess regres-
sion (Cleveland et al., 1992) to smooth snow cover before
and after 2000. More specifically, because different regions
of the watershed were imaged by Landsat on different days
and in some cases parts of the watershed contained consid-
erable cloud cover, the watershed was divided into five sub-
basins (based on the stream gauges in Fig. 1) and three el-
evation bands, thus creating 15 subregions. Within each re-
gion, loess regression was used to generate a smoothed snow
cover curve spanning the calendar year (combining all im-
ages for the pre- and post-2000 periods and producing two
curves for each subregion). The results were then aggregated

to the entire watershed. The peak value of the smoothed loess
curve was used to determine the date of peak snow cover.
Confidence intervals for peak snow cover were bootstrapped
(N = 104) by resampling the set of Landsat observations in
each subregion and calculating the dates of peak snow cover
(pre- and post-2000) for each bootstrap iteration. We simi-
larly bootstrapped confidence intervals on the date of peak
streamflow, using loess regression and sampling from all of
the streamflow observations before and after 2000 to esti-
mated the average annual hydrograph using a loess regres-
sion. For each bootstrap iteration, the date of peak stream-
flow of the loess curve was extracted.

We also consider two additional analyses as robustness
checks. First, we use MODIS data to estimate snow cover
extent, which provides an improved temporal representation
of seasonal snow cover after 2000. Second, in order to ac-
count for seasonal changes in the volumetric contribution of
snow storage to streamflow, we compared the total monthly
snowmelt before and after 2000 using ERA5-Land data
(Muñoz-Sabater et al., 2021) spanning 1984–2013. These
analyses are presented in the Supplement (Figs. S13 and
S14).

3.4.4 Data sources: groundwater

We were unable to obtain in situ groundwater observa-
tions, and remotely sensed observations from GRACE satel-
lite were inadequate due the large spatial averaging ker-
nel (≈ 40 000 km2 compared to a catchment area of ap-
proximately 13 000 km2) and lack of observations prior to
2002. Instead, we conceptualize the catchment as a (poten-
tially nonlinear) bucket reservoir (Wittenberg, 1999; Joth-
ityangkoon et al., 2001) in which baseflow discharge QB is
positively related with mobile groundwater storage S, as fol-
lows:

QB = aS
b, (3)

where a and b are positive recession coefficients. Under these
conditions, a reduction in baseflow can be considered as be-
ing indicative of a reduction in groundwater storage.

To evaluate whether baseflow declined, we apply a re-
cursive digital filter (Nathan and McMahon, 1990) to the
streamflow data to separate quickflow and baseflow (see
Fig. S3). We used 2 decades of daily flow at the Baramulla
station (the most downstream station) to calibrate the filter,
which requires a single smoothing parameter, α. We first
set α = 0.925 for daily flow, based on analysis from Nathan
and McMahon (1990), and then tuned the value of α to
0.45 for 3-monthly flow so that the annual baseflow index
(QB/Qtotal) matched that of daily flow (Fig. S4). Last, to en-
sure the results were not sensitive to the specific selection
of α, we reran the analysis with α = 0.4 and α = 0.5. Al-
though the baseflow index changed, the changes were imma-
terial for the before and after comparisons as the results were
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highly correlated across combinations of all three values of
α (R2 > 0.999).

To formally evaluate hypothesis 9, we bootstrapped confi-
dence intervals (N = 104) to determine if there was a decline
in annual baseflow in the valley in the periods before and af-
ter 2000. We also used linear regressions on quickflow, base-
flow, and the baseflow index to better understand the causes
of the changes in baseflow.

Additionally, to better assess our assumptions, we looked
for a hysteresis in the relationship between surface water
storage and streamflow. A clear hysteresis would build con-
fidence that there is a connection between subsurface stor-
age and streamflow because this connection can only occur
if groundwater levels are sufficiently high to reach the eleva-
tion of the lake and wetlands. A weak or nonexistent hystere-
sis might be indicative of a weak influence of groundwater
on streamflow. In contrast, a strong hysteresis would indicate
both a greater influence of groundwater and the occurrence
of meaningful fluctuations in the water table. Comparison be-
tween surface water extent (both Wular Lake and valley in-
undation) and streamflow reveals a clear seasonal hysteresis
(Fig. S11). We interpret these results as being an indication
that groundwater plays an important role mediating stream-
flow generation in the valley bottom.

3.4.5 Data sources: surface water

A number of lakes and wetlands exist throughout the valley,
including Wular Lake, which intersects the main stem of the
Upper Jhelum watershed between gauges (iii) and (iv), and
seasonally inundated valley wetlands, which capture flow
from the subwatershed that drains into gauge (iv; see Fig. 1).
The actual volumetric surface water storage of the catchment
is difficult to estimate. Instead, we focus on changes in sur-
face water area using remote sensing imagery. We classify
the surface water extent in Wular Lake and in the center of
the valley in all available Landsat imagery over the period
1984–2013.

Open water is highly absorptive in shortwave infrared
bands and more reflective in bands with shorter wavelengths.
We use the modified normalized difference water index
(MNDWI; Xu, 2006) as an indication of the likelihood
of open surface water, with a threshold distinguishing
between land and water pixels. Because water exhibits
spatial coherence dictated by topography, we gap-filled
the missing pixels in Landsat 7 bands, due to the scan
line corrector error, by propagating edge pixels towards
the center of the gap (as in Penny et al., 2018). We used
a fixed MNDWI threshold across all images to classify
surface water. Clouds were identified using the rudimen-
tary simple cloud score algorithm in the Google Earth Engine
(ee.Algorithms.Landsat.simpleCloudScore())
on top-of-atmosphere images. We applied this classification
approach to 66 images (Landsat 5) before 2000 and 237

Figure 4. Water balance for the Upper Jhelum watershed. (a) Av-
erage annual fluxes (P , Q, and ET) for the periods 1984–1999 and
2000–2013. (b) Average annual change in water balance fluxes be-
tween the two periods, given by the bars, with each flux estimated
independently. The change in water balance fluxes estimated from
water balance residuals is given by the arrows. In other words, each
flux is calculated using the equation 1P −1Q−1ET= 0 and es-
timates of the other two fluxes.

images (Landsat 5 and 7) after 2000 for the Wular Lake and
valley inundation.

We formally test hypothesis 10 by bootstrapping (N =
104) confidence intervals to compare the average water ex-
tent of the Wular Lake and valley inundation before and after
2000. Seasonal analyses reveal a similar downward trend in
surface water for both the Wular Lake and valley inundation
(Fig. S10), and images were evenly spaced across season in
both the before and after time periods, meaning that our find-
ings were not affected by a change in seasonal selection bias.

4 Results

Our estimates of precipitation, streamflow, evapotranspira-
tion, and storage change allowed the water balance to be
closed for the 1984–1999 and 2000–2013 periods, with an
error of ±15 % of total precipitation (Fig. 4). This suggests
that the total watershed fluxes are estimated with reasonable
confidence, particularly given the uncertainty in rainfall in-
terpolation and remote sensing models of evapotranspiration.

However, the analysis did not allow us to close the dif-
ferential water balance (i.e., changes in the water balance)
between the two periods. We observed an average decrease
in precipitation of 117 mm/yr−1 and an increase in ET of
32 mm/yr−1, which together do not close the observed de-
crease in streamflow of 433 mm/yr−1. We do not find evi-
dence of a change in long-term storage processes (e.g., de-
crease in glacial melt) that would close the balance. The is-
sue, therefore, appears that biases on individual watershed
fluxes (e.g., an equivalent underestimation of P and ET)
might compensate for each other, and close the water balance
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at individual periods, while underestimating the components
of changes in Q.

In order to better understand the limitations of the wa-
ter balance approach, we estimated the change in each of
the main water balance fluxes via the water balance resid-
ual (Fig. 4b; arrows), using the values provided by indepen-
dent estimates (Fig. 4b; bars; e.g.,1Presidual =1Qempirical+

1ETempirical). The magnitude of the change in precipitation
predicted via the water balance residual was considerably
greater than the observed change in precipitation (−401 mm
compared with−117 mm; see Fig. 4b). The residual estimate
of the change in ET was much higher than the empirical
estimate of the change in ET (316 mm versus 32 mm). The
magnitude of the residual for the remaining flux, streamflow,
was therefore considerably less than the observed change in
streamflow (−148 mm versus −433 mm). Results were sim-
ilar when using the elevation–gradient approach to precipita-
tion interpolation (see Sect. S2; Fig. S6).

On the one hand, these discrepancies highlight the uncer-
tainty in our approach to estimate each component of the
water balance individually. On the other hand, it illustrates
the limitations of using an approach that requires water bal-
ance closure to calculate residuals or to reconcile discrep-
ancies (e.g., predictive inference), particularly because the
water balance itself does not indicate where uncertainties or
biases might exist. To address this issue, we evaluate the hy-
potheses presented above through formal hypothesis testing
(Table 2) and complementary analyses as described above
(Sect. 3). We then use the results of the analysis to construct
a coherent narrative of change (Sect. 5).

4.1 Precipitation: hypotheses 1–3

Precipitation exhibited notable changes in total volume, as
annual precipitation decreased by 117 mm, and the 95 %
confidence interval excluded zero, confirming hypothesis 1
(Table 2). These changes were driven almost entirely by a
loss of spring precipitation of 117 mm (Fig. 5). The loss of
spring precipitation resulted in more uniform seasonal pre-
cipitation (Fig. 5a), confirming hypothesis 2, keeping in mind
that spring was the only season with a statistically signif-
icant change in precipitation (Table 2). The other seasons
saw modest and statistically insignificant changes in precip-
itation (on average, +20 mm in winter, −14 mm in summer,
and −5 mm in autumn).

There was a clear, statistically significant increase in the
number of small precipitation events (2–7.4 mm) and a de-
crease in the number of large events (≥ 18.6 mm), confirm-
ing hypothesis 3 (Table 2). Changes in medium events (7.4–
18.6 mm) were statistically insignificant at the annual scale.
The number of small events increased in all seasons ex-
cept spring, while the number of large events decreased in
spring and autumn (Fig. 5c). These results were robust to
changes in the minimum event size (1–3 mm) and corre-
sponding changes to the bins (see Sect. S2; Table S1).

4.2 Evapotranspiration: hypotheses 4–5

Both temperature and NDVI increased evapotranspiration in
the Upper Jhelum watershed. The changes were statistically
significant for temperature in the spring and for NDVI in all
seasons. This confirmed hypothesis 4 and hypothesis 5 (Ta-
ble 2), noting that the only statistically significant increase in
temperature occurred in spring (+1.9 ◦C). There were statis-
tically insignificant increases in temperature in the remaining
seasons, including winter (+0.8 ◦C), summer (+0.4 ◦C), and
autumn (+1.0 ◦C; Fig. 5).

Annual average watershed evapotranspiration increased by
32 mm, from 311 mm before 2000 to 343 mm after 2000. Al-
though this change is smaller than the uncertainty in water
balance closure (i.e., 15 % of precipitation), the results are
statistically significant, and the direction is in agreement with
the estimate of ET from water balance residual.

The two hypotheses pertaining to ET seek to attribute this
increase to either increasing temperature or changing land
use. As noted in Fig. 3, however, it is possible that land
use may also affect temperature (e.g., through radiative forc-
ing and the sensible and latex heat fluxes) and that tempera-
ture can also affect NDVI (e.g., through changing phenology;
Fig. 3). To better evaluate these factors, we further consider
changes in ET within different land use classes (Fig. 6).

The most dramatic increases in ET occurred within agri-
cultural land cover classes (cropland and mosaic vegetation;
i.e., orchards), which constituted 27 % of the catchment area
in 2001. In these classes, NDVI increased substantially in the
valley in the spring and summer seasons (Fig. 6a, b), corre-
sponding to the primary growing season for paddy, maize,
and orchards. Between 2001 and 2011, the catchment ex-
hibited a notable expansion of the mosaic land cover class,
including approximately 230 km2 converted from traditional
crops to mosaic. The largest local increases in ET are associ-
ated with the expansion of the mosaic class (see Fig. 7a),
with ET increasing by 70 mm (mosaic to mosaic), 78 mm
(cropland to mosaic), and 82 mm (shrubs and grassland to
mosaic).

Noticeable increases in ET also occurred in the large por-
tion of the watershed area (53 %) that was consistently clas-
sified as shrubs and grassland in both 2001 and 2011. NDVI
increased along the hills on the southwestern and northeast-
ern portions of the watershed, resulting in higher ET in grass-
land/shrubs and forest land cover. NDVI remained constant
in the Wular Lake in spring but increased considerably in
summer, which is likely due to increasing fertilizer applica-
tion supporting algae and other aquatic vegetation in the lake
(Wetlands International South Asia, 2007). In contrast, re-
gions where NDVI appears to have decreased are dominated
by urbanization in the center of the valley (visible in Fig. 6a,
b) and mountain peaks with near-constant cloud cover in the
summer, which occur along the southeastern and northwest-
ern watershed boundaries. In these pixels, few (≤ 5) summer
NDVI observations are available before 2000 due to cloud

https://doi.org/10.5194/hess-26-375-2022 Hydrol. Earth Syst. Sci., 26, 375–395, 2022



386 G. Penny et al.: Climatic and anthropogenic drivers of a drying Himalayan river

Table 2. Summary of hypothesis tests with 95 % bootstrapped confidence intervals. Statistical significance occurs when the confidence
interval excludes zero. Note that n/a stands for not applicable.

Hypothesis Changes in Confidence interval Unit Significance

1 Total precipitation [−172.1, −107.2] mm Yes

2 Winter precipitation [−61.5, 61.3] mm
Spring precipitation [−185.3, −44.8] mm Yes
Summer precipitation [−57.6, 30.7] mm
Autumn precipitation [−37.9, 29.8] mm

3 Number of large events [−3.8, −2.5] − Yes
Number of medium events [ −0.5, 1.6] −

Number of small events [14.1, 18.0] − Yes

4 Temperature effect on winter ET [−0.9, 1.3] mm
Temperature effect on spring ET [1.2, 5.2] mm Yes
Temperature effect on summer ET [−2.3, 1.9] mm
Temperature effect on autumn ET [−0.1, 2.3] mm

5 NDVI effect on winter ET [−0.6, −0.3] mm Yes
NDVI effect on spring ET [7.0, 7.5] mm Yes
NDVI effect on summer ET [12.7, 13.7] mm Yes
NDVI effect on autumn ET [2.8, 3.2] mm Yes

6 Glacier melt (upper bound) [n/a, 0.0] mm

7 Permafrost melt (upper bound) [n/a, 0.6] mm

8 Peak snow cover date [−27.0, −5.0] d Yes
Peak streamflow date [−28.0, 0.0] d Yes

9 Annual baseflow [−436.8, −241.7] mm Yes

10 Wular Lake extent [−24.1, −8.2] km2 Yes
Valley inundation [−14.0, −3.0] km2 Yes

cover, and these pixels exhibit a downward bias in the re-
ported NDVI change relative to pixels with more images (see
Fig. S8). This suggests that any potential bias would lead to
a conservative estimate on the change in ET.

On average, of the 32 mm annual increase in ET that we
detected, approximately 17% can be attributed directly to
increasing air temperature through its effect on PET and
the remaining 83 % to an increase in NDVI. The largest
net contributors to watershed-averaged increases in ET were
shrubs and grassland (15 mm), cropland (11 mm), and forest
(3 mm). Although associated with strong local increases in
evapotranspiration, mosaic vegetation covered only 2.7 % of
the watershed in 2011 and only contributed a 2 mm increase
to watershed-averaged ET. The black boxes in Fig. 7b en-
compass the change in ET for regions of the watershed that
maintained consistent land cover in 2001 and 2010, account-
ing for a total increase in ET of 27 mm compared with 5 mm
in regions where land cover changed. We can, therefore, infer
that warming temperatures not only had a clear effect on wa-
tershed evapotranspiration through the direct effect on PET
but also indirectly by increasing NDVI within naturally veg-
etated land classes. This indicates that our findings for hy-

pothesis 4 are likely conservative. Regarding hypothesis 5,
land use change has led to large local increases in ET, but the
watershed-averaged effect of land use indicated by Table 2
is likely to be overestimated. This is because the overall ef-
fect on the catchment water balance in pixels where land use
changed is small compared to the effect in pixels where land
use remained the same. Nevertheless, it is possible there were
additional changes in land management (e.g., increased irri-
gation) that could have affected these results and were not
captured by the land use classification from Strahler et al.
(1999).

4.3 Catchment storage: hypotheses 6–10

Although a permanent loss of frozen water storage in the Up-
per Jhelum watershed might play an important role in the
water balance in some tributaries, the overall effect on the
watershed as a whole was small. The upper bound on aver-
age annual glacial contribution to streamflow was 0.003 mm,
and the upper bound for the permafrost contribution was
0.64 mm. We reject hypothesis 6 and hypothesis 7 on the ba-
sis that the effect on watershed streamflow is likely negligi-
ble. The primary reason these contributions to streamflow are
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Figure 5. Seasonal climate and hydrology in the pre-2000 (1984–1999) and post-2000 (2000–2013) periods, including (a) the mean seasonal
gauge precipitation and (b) the mean number of storms in PERSIANN grid cells for small (2–7.4 mm), medium (7.4–18.6 mm), and large
(≥ 18.6 mm) events. (c) The mean gauge temperature and (d) the mean streamflow in cubic meters per second (cumec; m3 s−1) at the
watershed outlet (gauge v; Baramulla station). Statistically significant differences are noted by the asterisk (∗) when the 95 % bootstrapped
confidence intervals exclude zero. Notably, spring exhibited dramatic changes in temperature (+1.9 ◦C) and precipitation (−117 mm). The
number of small storms increased across all seasons, while large storms decreased in all seasons except summer.

Figure 6. Spatial changes in evapotranspiration after 2000. (a) Spring and (b) summer changes in NDVI. (c) Annual change in evapotran-
spiration (ET). (d) MODIS land cover map from 2010. (e) The same MODIS 2010 land cover map with the pixel transparency determined
by the magnitude of positive change in annual ET from panel (c). The 2000 m contour separates the low-elevation valley from moderate
elevation hillslopes in both mountain ranges. Changes in ET are clustered in the valley, especially in cropland and mosaic vegetation (i.e.,
orchards), with increasing ET in natural vegetation just above 2000 m. See the text for details.

so small is due to the limited spatial extent of glaciers (1 %)
and permafrost (≤ 6.4 %; Fig. S12) relative to the entire area
of the Upper Jhelum watershed.

We found statistically significant changes in the seasonal
timing of peak snow cover and peak streamflow. After 2000,
peak snow cover occurred 15.4 d earlier, and the confidence

interval included zero. Peak streamflow occurred 13.2 d ear-
lier on average, and the upper limit confidence interval was
equal to zero. This provides confidence that the earlier peak
in snowmelt led to an earlier peak in streamflow, thus con-
firming hypothesis 8. We note that observational data were
missing to quantify the effect of changes in snow storage
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volumes. However, reanalysis data from ERA5-Land indi-
cate that snowmelt increased in earlier months and decreased
in later months after 2000 at all elevations in the watershed
(see Fig. S13). Data from MODIS also show an earlier peak
in snow cover after 2000 (Fig. S14).

We found statistically significant changes in baseflow ex-
iting the watershed (Table 2), which is consistent with the
reduction in groundwater storage in the valley described in
hypothesis 9. We complement this result by presenting ad-
ditional findings pertaining to baseflow and groundwater–
surface water interactions in the watershed. First, we com-
pare temporal trends in streamflow below Wular Lake
(gauge iv; Sopore station) and the most upstream gauge of
the watershed (gauge i; Sangam station). The streamflow
time series at both locations exhibited statistically significant
decreasing trends over the period 1960–2013 (Fig. 9a). Base-
flow separation, however, revealed important differences be-
tween both streamflow time series. Baseflow decreased over
time only in the downstream gauge (Fig. 9b), whereas quick-
flow decreased only in the upstream gauge (Fig. 9c). Tempo-
ral changes in the baseflow index (B =QB/QTotal) of each of
these gauges therefore occurred in opposite directions, with
decreasing B near the outlet and increasing B in the hinter-
lands (Fig. 9d). This lends additional credence to hypothe-
sis 9, and we further discuss potential causes and implica-
tions of these opposing trends in the baseflow index with
respect to saturated and unsaturated groundwater storage in
Sect. 5.

Classification of surface water reveals that surface water
storage declined dramatically during the study period, both
in Wular Lake and the neighboring wetlands (Fig. 8b), thus
confirming hypothesis 10. Both of these surface reservoirs
connect to the main stem of the Upper Jhelum watershed be-
tween gauges iii and iv (see Fig. 1) and likely play an impor-
tant role in streamflow generation along this reach.

There appear to be clear relationships among surface wa-
ter storage, groundwater storage, and streamflow. A com-
parison between surface water extent and streamflow exhib-
ited a clear seasonal hysteresis (Fig. S11). We also com-
puted locally generated baseflow as the difference in base-
flow between gauges iii and iv, which is a reach that con-
tains Wular Lake and the valley wetlands. Baseflow along
this reach peaks earlier and at a much lower amplitude after
2000 (Fig. 8c). It also transitions much earlier (midsummer)
to losing conditions (i.e., negative local streamflow values),
compared to pre-2000 when baseflow transitioned to losing
conditions only at the end of autumn and beginning of win-
ter. Taken together, these findings suggest that storage plays
a critical role in mediating streamflow in the Upper Jhelum
watershed.

5 Discussion

We now synthesize the results presented above to develop
a narrative of hydrological change by reconciling the var-
ious fluxes that have either increased or decreased over
time (Fig. 10; red and blue arrows). Taken together, the ob-
served changes in hydrological fluxes indicate additional un-
observed changes in fluxes connecting surface and ground-
water that might play an important role in explaining the hy-
drological change in the catchment. As discussed in the fol-
lowing paragraphs, evidence suggests that these fluxes have
decreased over time (Fig. 10; pink arrows).

– The season with the most precipitation is spring, when
the prevailing climate is driven by westerlies, yet spring
precipitation declined considerably during the study pe-
riod. At the same time, vegetation activity increased
across most of the watershed within both anthropogenic
(cropland and orchards) and natural (forest, shrubs, and
grassland) land use classes (Fig. 6a), producing an in-
crease in evapotranspiration. The corresponding reduc-
tion in spring streamflow may have been partially com-
pensated by higher temperatures and earlier snowmelt.
Before and after 2000, snowpack storage was mostly ex-
hausted by the end of spring (Fig. 8a).

– Springtime seepage generates high groundwater
recharge throughout the valley, both from the highlands
and from within the valley (Jeelani, 2008). High
groundwater levels at the end of the spring season are
reflected by the peak in baseflow along the reach of the
stream that includes the Wular Lake (Fig. 8d). Prior to
2000, this peak occurred near the transition between
spring and summer. After 2000, this peak occurred
earlier in spring and at a much lower level of baseflow.
This suggests considerably lower groundwater storage
over time, which is reflected in the reduced groundwater
recharge fluxes (Fig. 10; spring).

– In summer, the prevailing climate is driven by the In-
dian monsoon, and precipitation is generally less than
the westerly precipitation in the spring (Fig. 5a). Con-
sequently, hydrology within the watershed is controlled
largely by water storage (snow, lakes, and groundwater)
left over from spring. Prior to 2000, the seasonal reces-
sion of the baseflow hydrograph starts high, at the end
of spring, and continues to produce discharge through-
out the summer season (Fig. 8d). The river then tran-
sitions to losing conditions in autumn and early winter
before baseflow increases with winter precipitation and
snowmelt (Fig. 8d). After 2000, surface water (Fig. S10)
and groundwater (Fig. 8d) storage are greatly reduced
at the beginning of summer. The receding limb of the
hydrograph starts low, at the beginning of summer,
and quickly depletes, transitioning to losing conditions
within the summer season. Indeed, the recovery of local
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Figure 7. Changes in land use and evapotranspiration. (a) Change in evapotranspiration within each combination of land use categories from
2001 and 2010. The size of the circle represents the fractional area covered by each pairwise grouping, and the shading of the circle indicates
the average change in ET per unit area. For instance, the largest increase in ET occurred in pixels that changed from crops in 2001 to mosaic
in 2010 (+80 mm), but this represented a small fraction of the watershed (< 5 %). ET increased in every category. (b) The cumulative change
in ET by 2010 land use category (note that the y axis continues across both panels). The cumulative effect (or watershed average) ET is
equal to the change in ET× fraction of watershed for each land use combination. For instance, the pixels that changed from crops in 2001
to mosaic in 2010 reduced ET by 1.4 mm when averaged over the entire watershed. Overall, most of the increase in watershed ET (27 mm)
occurred in regions where land cover remained consistent from 2001 to 2010 (b; see the bars outlined in black), compared to regions where
land cover changed (5 mm; no outline).

Figure 8. Declining water storage and baseflow. (a) Landsat observations of snow cover with loess smoothing, highlighting the earlier spring
snowmelt after 2000. (b) Long-term trends in the valley inundation and Wular Lake, indicating decreasing surface water storage over time.
The loess smoothing of the water extent is weighted by cloud cover given by exp(−Acloud/Atotal). (c) The percent of satellite images used to
assess water extent was seasonally consistent before and after 2000. (d) Baseflow at gauge iv (Sopore) minus baseflow at gauge iii (Asham),
encompassing the river reach that includes Wular Lake. After 2000, baseflow peaks and depletes earlier in the year, as does a transition from
gaining to losing conditions.
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Figure 9. Long-term trends at Sangam station (upstream; gauge i) and Sopore station (downstream; gauge iv) of (a) streamflow, (b) baseflow,
(c) quickflow, and (c) the baseflow index, which is the fraction of streamflow comprised of baseflow. The statistical significance in this
analysis was associated with p < 0.1 for a nonzero trend from a linear, least-squares regression. All statistically significant trends were also
significant for p< 0.05, except for the upstream trend in panel (a).

Figure 10. Conceptual diagram of seasonal water fluxes and direction of change. The subsurface cross section represents the thick layer (up
to 1 km) of sedimentary deposits in the valley (see Sect. 2). Black, red, and blue arrows indicate observed fluxes combined with the observed
sign of change. Pink arrows indicate groundwater fluxes that have been inferred and hypothesized to decrease over the study period. Both
natural vegetation on hillslopes and agricultural crops in the valley exhibit increased evapotranspiration (Fig. 6). See the text for details.

baseflow in autumn (i.e., baseflow becoming less nega-
tive; see Fig. 8d; brown) is driven by declining baseflow
downstream rather than increasing baseflow upstream.
Additionally, summer evapotranspiration after 2000 in-
creased throughout much of the watershed, including in
natural and anthropogenic land use classes.

– The hydrological cycle in the watershed is mostly dor-
mant in autumn and winter. In autumn, little precipita-
tion falls, and the hydrograph recedes into winter. No-
tably, lake storage depletes, and the lake transitions to
losing conditions in several years, particularly before
2000 (Fig. 8d). Winter precipitation arrives mostly as
snowfall, replenishing the snow storage. Winter rain and
snowmelt serve as the early primers for the seasonal cy-
cle to renew in spring.

To summarize, climate appears to be the primary cause
of hydrological change within the Upper Jhelum watershed.
The most influential driver is the decline in spring west-
erly precipitation. Other studies have associated this de-
crease with warming temperatures and climate change (Zaz
et al., 2019). This effect is compounded by an array of
other drivers that affect watershed processes. Notably, the
loss of baseflow downstream of the Wular Lake suggests a
decrease in groundwater storage in the valley. This decline
in groundwater is facilitated both by reduced rainfall dur-
ing the spring and increasing watershed evapotranspiration.
The latter might be supported by an increase in the number
of small precipitation events that are less likely to generate
runoff. This observation from the PERSIANN CDR dataset
allows us to hypothesize that the shift towards a larger num-
ber of smaller storms results in reduced overland and macro-
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pore flow, along with more stable and persistent soil moisture
and, ultimately, more water lost to vegetation uptake. In this
case, seepage would be increasingly likely to occur via slow
drainage processes rather than macropore flow activated in
large storms. Such changes have been observed in other karst
catchments (Zhao et al., 2019) and are supported by the ev-
idence that the quickflow declined and the baseflow index
increased in the most upstream gauge in the Upper Jhelum
watershed (Fig. 9).

The increase in evapotranspiration appears to have oc-
curred throughout the catchment. Our evapotranspiration
model indicates that increasing air temperature had a small
direct effect on ET via PET (17 % of the total increase) and
that most of the overall increase in ET (83 %) occurred due to
changes in NDVI, which increased in all natural and anthro-
pogenic vegetation classes. Evapotranspiration exhibited the
greatest increases in regions that transitioned to orchard culti-
vation, but these areas represent a small fraction of the over-
all watershed and increase in ET. In places where land use
was unchanged, the observed increase in NDVI either indi-
cates an increase in water availability (when ET is water lim-
ited), an increase in energy availability (when ET is energy
limited), or an increase in nutrient availability (where plant
growth is limited by nutrient availability). In other words,
such greening could arise due to agricultural intensification
(via increased irrigation or fertilizer application) or increas-
ing temperature due to climate change. These findings are
consistent with other studies. For instance, agricultural in-
tensification has been documented in the Upper Jhelum wa-
tershed (Wetlands International South Asia, 2007), and mod-
eling studies have demonstrated that warming temperatures
will produce more favorable conditions for plant biomass
growth (Rashid et al., 2015).

6 Conclusions

In this study, we develop an empirical approach to hydro-
logical attribution, using the method of multiple hypotheses,
to understand the drivers of dramatic changes in the annual
streamflow of the Upper Jhelum river. We find that much
of the observed decrease in streamflow is associated with
decreases in westerly precipitation in spring, in addition to
greater evapotranspiration. While land use change to orchard
plantations and agricultural intensification are likely con-
tributing factors, we attribute most of the increase in evapo-
transpiration to nonlocal anthropogenic causes, most notably
increased vegetation activity in spring, which are likely due
to increased temperature and earlier snowmelt. Changes in
key fluxes of the water balance (P , ET, and 1S) do not fully
account for the changes in streamflow (Q), and there remain
considerable differences between the change in fluxes from
independent estimates and the change estimated from water
balance residuals.

By focusing on the cumulative understanding from evalu-
ating separate but complementary hypotheses, we neverthe-
less develop a coherent narrative of hydrological change in
the Upper Jhelum basin. In addition to the loss of westerly
precipitation, there appears to be a reduction in groundwater
storage evidenced by the considerable reduction in baseflow
in the valley. This situation contrasts with upstream changes,
where declining streamflow occurred primarily through re-
ductions in quickflow, and could potentially be explained by
changing precipitation patterns. These findings suggest mul-
tiple directions to guide future research in the basin, includ-
ing better characterization of (a) baseflow generation and
surface water–groundwater interactions, (b) the role of soil
moisture, phenology, and rainfall intensity in mediating the
water balance on hillslopes outside the valley, and (c) vegeta-
tion water consumption in both natural and human land uses
within the watershed.

The method of multiple hypotheses is a promising tool to
attribute hydrological change in situations where process un-
certainty might be compounded by hydrologic regime shifts.
While outcomes associated with individual hypotheses might
exhibit considerable uncertainty, especially in data-scarce
catchments, together the multiple hypotheses provide mul-
tiple strands of evidence to support (or refute) specific mech-
anisms and, ultimately, attribute hydrological change.

Data availability. This research utilized a vari-
ety of remote sensing products and datasets col-
lected in situ. MODIS products, including surface re-
flectance (https://doi.org/10.5067/MODIS/MOD09A1.006;
Vermote, 2015), evapotranspiration
(https://doi.org/10.5067/MODIS/MOD16A2.006;
Running et al., 2019), and land cover
(https://doi.org/10.5067/MODIS/MCD12Q1.006; Friedl and
Sulla-Menashe, 2019) were accessed online via Google
Earth Engine. Landsat products, including top-of-atmosphere
and surface reflectance, were accessed via Google Earth
Engine, including for the Landsat (Enhanced) Thematic
Mapper (Masek et al., 2006; https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_TOA,
USGS, 2020a; https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LT05_C01_T1_SR, USGS,
2020b; https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT_LE07_C01_T1_TOA, USGS, 2020c;
https://developers.google.com/earth-engine/datasets/catalog/
LANDSAT_LE07_C01_T1_SR, USGS, 2020d) and Operational
Land Imager (Vermote et al., 2016; https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_TOA,
USGS, 2020e). PERSIANN precipitation data (Ashouri et al.,
2015) were also accessed via Google Earth Engine. The in situ
data were provided by government agencies in India and can be
requested from the corresponding government offices. Climatic
data (precipitation and temperature) were obtained from the Indian
Meteorological Department (Srinagar), and streamflow data were
obtained from the Department of Irrigation and Flood Control (J &
K Govt).
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